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Zasanie 0.1 Maly pastuszek zauwazyl lecgce bociany i krzykngt chyba ich leci 100. Starszy pastuch
odpowiedzial duzo mniej, gdyby leciato ich dwa razy tyle, i pot tyle, i cwierc tyle i ty Zebys z nimi
polecial to wtedy byloby ich razem z tobg 100. Ile bociandw lecialo po niebie?

e i S

Obraz Jozefa Chetmoriskiego (1849-1914). Bociany

Rozwigzanie.

2 x tyle + polowa * tyle + cwierc x tyle + 1 = 100
—— ~—~

8xcwierc + 2xcwierc + lxcwierc+1 = 100

11 % cwierc =99, cwierc= % =9,

1
cwierc = 7 * tyle

tyle = 4 * cwierc = 4% 9 = 36.
Odpowiedz : Ilosc bocianow rowna jest 36
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Od Autora

Skrypt "Matematyka dla Szkoty Podstawowej i Liceum Ogdlnoksztatcgcego” zostal opracow-
any na podstawie kilkodziesigcio-letnej pracy i doswiadczenia autora w réznych systemach
edukacji gtéwnie w szkolach wyzszych, ale réwniez w szkotach podstawowych i §rednich w
Polsce 1 Afryce. Zatem, tekst ten nie jest podrecznikiem dla szkoly podstawowej. Nato-
miast, jako material kompleksowy, obejmuje tres¢ matematyki z zakresu podstawowego
i rozszerzonego programu uczonego na drugim i trzecim etapie edukacji. To opracowanie
calosci matematyki podstawowej i licealnej moze by¢ szczegdlnie pomocne jako material do
nauki indywidualne;j.

Tadeusz Sty$ Warszawa listoped 2023r.
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0.1 Wstep

Material przedstawiony w skrypcie "Matematyka dla Szkoty Podstawowej i Liceum...”

przekracza podstawe programowa matematyki uczonej w szkotach podstawowych i w duzej
czescl zawiera tematy programu matematyki uczonej w liceach i technikach. Naturalnie,
ten rozszerzony zakres tematyki pozwala na wybdr tematéw zaawansowanych o stopniu
trudnodci na poziomie uczniéw szkoty podstawowej z wigkszymi predyspozycjami i zaintere-
sowaniami w przedmiotach Scistych.

W skrypcie czytelnik znajdzie wiele interesujacych algorytmoéw, twierdzen z dowodami i
przykltadami spoza podstawowego programu matematyki na poziomie drugiego i trzeciego
etapu nauczania.

Systematyczny opis liczb naturalnych, wymiernych, niewymiernych, algebraicznych i liczb
rzeczywistych oraz wlasnosci operacji arytmetycznych na tych liczbach podane sa w rozdziatach
1i2.

Wyrazenia arytmetyczne i algebraiczne jako podstawowe pojecia zwigzane z algorytmami i
ich kodowaniem w jezykach programowania zostaly opisane z przykladami w rozdziale 3.

Liczne przyktady obleczania procentow prostych i ztozonych podane sa w rozdziale 4. Rozdziat
5-ty obejmuje podstawowa wiedze o ciagach i szeregach arytmetycznych i geometrycznych.

Liczby pierwsze i ich wlasnosci stanowia najwazniejsza i interesujaca tre$¢ rozdzialu 6 . Doty-
czy on gléwnie nastepujacych tematéw: Fundamentalne Twierdzenie Arytmetyki, Algorytm
Euklidesa, najwiekszy wspdlny dzielnik NWD(a,b) i najmniesza wspélna wielokrotnosé
NWW (a,b) liczb naturalnych a i b.

Reprezentacja liczb w komputerach w zmiennym przecinku i operacje arytmetyczne na
liczbach o skoniczonej ilosci cyfr z analizg bledow bezwzglednego i wzglednego zostaly opisane
w rozdziale 7.

Cechy podzielnosci liczb catkowitych i operacja kongruencji dzielenia z resztata wsparte
licznymi przykladami stanowia tre$¢ rozdzialu 8.

Ogodlna zasada tworzenia liczb w systemach binarnym, dziesigtnym, 6semkowym i w innych
systemach liczbowych o podstawie naturalnej p > 1 opisana jest szczegélowo w rozdziale 9.

Rozdzial 10-ty poswigcony jest wielomianom, najprostrzej klasie funkcji o fundamentalnym
znaczeniu w matematyce i jej zastosowaniach.

Wzory uproszczonego mnozenia, dwumian Newtona i tréjkat Pascala z licznymi przykladami
zostaly opisane w rozdziale 11-tym.

Rozdzialy 12, 13, 14, 15, ¢ 16 poswiecone sa funkcjom elementarnym do ktérych naleza
funkcje liniowe, funkcje wymierne, funkcja pierwiastek kwadratowy, funkcje wykladnicze i
logarytmiczne.

Rozdzial 17-ty poswigcony jest geometrii plaskiej- planimetrii. Zakres geometrii plaskiej
obejmuje konstrukcje z linijka i cyrklem figur plaskich oraz zwigzki miarowe w tréjkatach,
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prostokatach, réwnolegltobokach, w okregach i w wielokatach foremnych.

Rozdzial 18-ty , Geometria Przestrzenna- Stereometria zawiera opis nastepujacych tematow:

1. Kartezjanski uktad wspolrzednych.

Punkty i wektory w przestrzeni.
2. Parametryczne rownanie prostej

3. Graniastostupy i prostopadlosciany,
objetosé i pole powierzchni

4. Ostrostupy, objetosé i pole powierzchni

5. Bryly obrotowe: walec, kula, stozek,
objetosé i pole powierzchni.

Wirod bryt przestrzennych wyrézniamy bryly foremne i bryly platonskie. Bryly foremne
maja wszystkie Sciany przystajace. Bryly platoniskie do ktérych naleza tylko czworoscian,
szedcian, o$mioscian, dunastoscian i dwudziestoscian, uwazane bylty w czasach starozytnych
w Akademii Platoniskiej (427-343 B.C.) za figury idealne.

Rozdzial 19-ty poswiecony jest trygonometrii wiedzy o zwigzkach miarowych pomiedzy
bokami i katami w tréjkatach. Istotna czescia tego rozdzialu jest charakterystyka i analiza
funkcji trygonometrycznych okreslonych w tréjkacie prostokatnym i na kole trygonome-
trycznym.

Kombinatoryka, rozdzil . 20, obejmujje takie pojecia jak sinia z liczby naturalnej n, permu-
tacje w zbiorach n-elementowych, kombinacje i wariacje w zborach n-elementowych.

Rozdzial 21-ty, statystyka opisowa, wazna w wyksztalceniu podstawowym, zawiera opis
takich pojec jak; dane statystyczne, diagramy, korelacje, Srednie i mediany, odchylenia stan-
dardowe i wariancje.

Rachunek prawdopodobienistwa czyli probabilistyka zajmuje si¢ badaniem praw rzadzacych
zjawiskami losowymi ( przypadkowymi), to jest takimi zjawiskami, ktérych przebiegu czy
wyniku nie mozna jednoznacznie przewidzie¢. Zdarzenia losowe i ich prawdopodobieristwo
zajscia zostaly szczegélowo wyjasnione w rozdziale 22-gim.

Tadeusz STYS Warszawa listopad 2023r.



0.2 Matematyka Grecka

Od tysigcy lat B.C. w okresie Imperium Greckiego, Starozytni Grecy asymilowali osiagnigcia
wielu kultur Bliskiego Wschodu i Indii z zakresu Astronomii, Archiktektury, Medycyny,
Matematyki i Fizyki. Grecy stali si¢ najlepszymi nauczycielami pozostawiajac po sobie do-
brze udokumentowana literature z Matematyki i nauk $cistych. Wazna czescia ich dziatalnosci
byla organizacja Szkol Filozofii, Matematyki i nauk Scistych na obszarze Grecji, Egiptu i
Mezopotamii.

Tales z Miletu (625-545 B.C.)

zatozyl pierwsza Szkote Joriska Astronmii, Matematyki i Folozofii.
Pitagoras (569-500B.C.) z Samos

zalozyl koedukacyjna szkote mistyczna Filozofii i Matematyki w mieécie Kroton nad morzem
jonskim. Pitagoras mitoénk muzyki, stworzyl podstawy wyznaczania wysokosci dzwiekow,
autor Twierdzenia Pitagorasa o zwigzkach miarowych w tréjkacie prostokatnym i tréjkach
liczb pitagorejskicch a, b, ¢
a4+ bv* =c?

Euklides (330-275 B.C.) Dziekan wydziatu Arytmetyki i Geometrii na Uniwersytecie w Alek-
sandrii (330-275 p.n.e.) przeszedt do historii jako jeden z najwigkszych matematykdw
starozytnych.

Autor ksiag Elementy Arytmetyki i Geometrii. Geometria Euklidesa jest ciagle uczona w
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szkotach podstawowych i srednich.

Euklides

Eukldes 2yl w Il wieku przed nasza
era, O zyciu Eukldesaniewiele
wiadomo, 2yt Aleksandri, ktéra
wéwczas skupiala wielu wybitnych
matematykow. Eukldes wykladai
Sakole Aleksandryjskiei. 3y plocnym
pisarzem, na co viskazuje navet
objetost Elements’. Zajmowal sie
unie teoria muzyki, optyka (prawo
odbicia swiatia, zasada prostolininego
rozchodzeniz sie promien éwietinych)
oraz astronomia,

Jego Elementy” saly sie podstana
‘geometril nauczane] w szkolzch na
calym Swiecie.

Archimedes (287-212 B.C.) syn astronoma z Syracus oglosit znane powszechnie Prawo
Archimedesa, sformutowal podstawy rachunku nieskoriczenie matych. W wiekach $rednich
Newton (1642-1727) i Leibnitz (1646-1716) rozwineli ide¢ rachuneku niezkoriczenie matych.
Wiyniki ich badan o rachunku nieskonczenie malych mialy istotny wplyw na dalszy rozwdj
matematyki i nauk Scistych. Mianowicie, Newton i Leibnitz stworzyli podstawy rachunku
rézniczkowego i calkowego.!

(Archimedes (287-212 B. Wielu innych grekéw zastuzonych
weszlo na state do historii nauki. Wéréd nich Platon (429-428 B.C.) twérca filozofii ideal-
istycznej 1 Arystoteles (384-322 B.C.) Uczeni Platona i nauczyciel Aleksandra Wielkiego.
Platon zalozyl stynna Akademie Platoniska w Atenach. Po $mierci Platona Arystoteles

1Rachunek rézniczkowy i calkowy, czyli Calculus, jest uczony na politechnikach i uniwersytetach jako
przedmiot obowiazkowy
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zalozyl wlasng szkolg liceum w roku 343 B.C..

A o

(Platon i Arystoteles)

Wymiennmy jeszcze Sokratesa (469-399 B.C.) ojca filozofii i milo$nika matematyki, ktéry
zostal ogloszony nauczycielem wszechczasdw.

Sokrates jest postacia historyczna. Socrates nie pozostawil po sobie zadnych pism. Wszys-
tko, co o nim wiemy, to sa relacje jego uczniéw: Platona i Ksenofonta, a takze przekazy
Arystotelesa i historykéw greckich
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Chapter 1

Liczby naturalne i catkowite

1.1 Wprowadzenie

Koncepcja liczb naturalnych i proste operacje arytmetyczne byly znane juz od okoto 50
tysiecy lat temu. To wiemy na podstawie archeologicznych i historycznych odkryé.
Natomiast pierwszy systematyczny opis arytmetyki liczb naturalnych opracowany zostal
przez starozytnych grekéw w szkole Joriskiej Talesa, (625-545 p.n.e.), w szkole Pitagore-
jskiej (569-475 p.n.e.), na uniwersytecie w Aleksandrii przez Euklidesa (330-267 p.n.e.) i
przez Archmedesa z Syrakus (287-212 p.n.e.)

Teoria liczb jest w dalszym ciagu inspirujacym przedmiotem licznych artykuléw, monoggrafii
publikowanych w wiodacych pisamach po$wieconych teorii liczb. W ostatnich kilkudziesieciu
latach obserwuje sie szerokie zastosowania teorii liczb w projektowaniu systeméw komput-
erowych, w kryptografii i ochronie danych oraz w tworzeniu nowych algorytméw dla potrzeb
administracji i programéw spolecznych.

1.2 Liczby naturalne
Zbiér liczb naturalnych dodatnich ( liczebniki) oznaczmy symbolem

Ny ={1,2,3,..,n,..} (1.1)

Umownie do zbioru liczb naturalnych zalicza si¢ zero. Wtedy zbidr liczb naturalnych oz-
naczamy symbolem

N={0,1,2,3,...n,..} (1.2)

zbior liczb naturalnych dodatnich Ny

0 1 2 3

zbior liczb naturalnych N

0s liczbowa. Liczby naturalne

1.2.1 Wilasnosci liczb naturalnych

Oczywiste wlasnosci zbioréw N4 i N.



Zbior liczb naturalnych N, zawarty jest w zbiorze liczb naturalnych NV, piszemy N C N.
Suma liczb naturalnych m + n tez jest liczbg naturalng. Zatem dla dowolnych liczb natu-
ralnych m,n € N ich suma nalezy do zbioru liczb naturalnych, piszemy

m+néeN

To znaczy ze zbidr liczb naturalnych jest zamknigty ze wzgledu na operacje dodawania.
Na przyklad dla liczb m =5, n =7 ich suma

m+n=54+7=12€ N

12 jest liczba naturalna.
Operacja dodawania jest przemienna, to znaczy, ze dla dowolnych liczb naturalnych m,n
suma

m+n=n-+m

Na przyklad
T+5=5+7=12€ N.

Podobnie zbidr liczb naturalnych jest zamknigty na operacje mnozenia oraz operacja mnozenia
jest przemienna

Mianowicie, iloczyn liczb naturalnych m % n jest liczba naturalna.

Zatem dla dowolnych liczb naturalnych m,n € N ich iloczyn

mxn €N

nalezy do zbioru liczb naturalnych.
To znaczy, ze zbiér liczb naturalnych jest zamknigty ze wzgledu na operacje mnozenia.
Na przyklad dla liczb naturalnych m = 5, n = 7 ich iloczyn

mxn=5x7=35&€ N

jest liczba naturalng. Operacja mnozenia jest przemienna dla dowolnych liczb naturalnych
m,n iloczyn
m*xn=mnm

Natomiast, wynik odejmowania liczb naturalnych nie zawsze jest liczba naturalng.
Na przyktad, réznica liczb 3 —5 = —2 nie jest liczba naturalna, ale —2 jest liczba catkowita.
Liczby calkowite oméwimy w nastepnym paragrafie.

1.2.2 Przyklady
Przyklad 1.1 Oblicz sume kolejnych 10 liczb naturalnych

S10=14+2+3+44+54+6+7+8+9+10
uzywajgc tylko jednej operacji mnozenia i jednej operacji dzielenia.

Rozwiazanie:
Zapiszmy skladniki sumy w odwrotnej kolejnosci i dodajmy stronami réwnosci, jak nizej:

S1o = 14+24+3+44+54+64+7+8+9+10
S1o 104+94+8+7+6+5+4+3+2+1

2% S1o 114+114+114+11+11+ 11+ 11+ 11+ 11+ 11

10 skladnikow sumy




Skad obliczmy sume S1¢ uzywajac jednego mnozenia i jednego dzielenia.
S10=10%11:2 =155
Przyklad 1.2 Podaj wzor ogdlny na sume n kolejnych liczb naturalnych
Sp=1+2+34---4n

Podaj przyktad zastosowania tego wzoru uzywajgc tylko jednej operacji mnozenia i jednej
operacji dzielenia.

Rozwiazanie:
Zapiszmy skladniki sumy w odwrotnej kolejnosci i dodajmy réwnosci stronami, jak nizej:

Sh = 14243+ +(n—-2)+(n—1)+n
Sn = n+(n—1)4+n—-2)+---+3+2+1
2«5, = m+D)+Mm+D)+0+D)+--+n+1)+(n+1)

n skladnikow sumy

Skad obliczmy sume S, .

_n(n+1)
Sp = 5
Dla n = 10 obliczamy Sy¢
_10%11 55
0="%5 =

1.3 Liczby calkowite

Jak wiemy w zbiorze liczb naturalnych operacja odejmowania nie zawsze jest wykonalna.
Na przyklad nie ma liczby naturalnej, ktéra bytaby wynikiem odejmowania liczby 9 od liczby
5, gdyz réznica

5—9=-4

—4 nie jest liczba naturalna.

1.3.1 Liczby przeciwne

Liczbami przeciwnymi nazywamy dwie liczby lezace na osi liczbowej w tej samej odleglosci
od zera, ale po przeciwnych stronach zera.

Liczby przeciwne maja ta wlasnosé, ze ich suma réwna jest 0.

Zatem liczba —m jest przeciwna do liczby m wtedy

—-m+m=20
Na przyklad
dlam =17, liczba przeciwna —m = =7, wtedy 7T+ (=7) =0
Podobnie

dla m = =9, liczba przeciwuna —m =19, wtedy —9+4+9=0.



Na osi liczbowej mamy zaznaczone liczby naturalne po prawej stronie zera, a po lewej stronie
zera mamy zanaczone liczby przeciwne do liczb naturalnych.

liczby przeciwne liczby naturalne

-3 —2 -1 0 1 2 3

Nizej na osi liczbowej zaznacze sa liczby catkowite

liczby calkowite

-3 —2 -1 0 1 2 3

Wiszystkie liczby naturalne razem ze wszystkimi liczbami do nich przeciwnymi tworza zbiér
liczb catkowitych
Zbior liczb calkowitych oznaczamy litera C', piszemy

Przyklad 1.1 Zaznacz na osi liczbowej liczby przeciwne do wskazanych liczb naturalnych

0 1 2 3 4 )

05 liczbowa, liczby calkowite

Nizej na osi liczbowej widzimy liczby naturalne
0,1,2, 3,4, 5
i liczby przeciwne do liczb naturalnych

0,-1,-2,-3,—4,—5

-5 -4 -3 -2 -1 0 1 2 3 4 5

05 liczbowa, liczby calkowite

1.3.2 Proste przyklady

Przyklad 1.3 Roznica pomiedzy zerem i kolejnymimi liczbami naturalnymi

0-1 = -1, 0-6 = -6
0-2 = -2, 0-7 = -7
0-3 = -3, 0-8 = -8
0—4 = -4, 0-9 = -9



Zadanie 1.1 Wykonaj odejmowanie

0—11= , 0—16=
0-12= . 0—17=
0—13= , 0—18=
0—14 = , 0-19=
0—15= , 0-20=

Przyklad 1.4 SprawdZ odejmowanie

5-10 = -5 , 10-16 = -6
6-12 = —6 , 11—-17 = —6
7-13 = —6 , 12-18 = —6
8—14 = —6 , 13-19 = —6
9-15 = —6 , 14-20 = —6

Zadanie 1.2 Wykonaj odejmowanie

1-10= , 10-20=
3-12= , 11-21=
5—14= , 12-22=
7—15= , 13-23=
9—16 = , 14-24=

1.4 Dodawanie i odejmowanie liczb catkowitych
Zbiér liczb catkowitych
C =i, —5, —4, =3, =2, =1, 0, 1,2, 3, 4, Beorrerrerrerrn }

jest zamkniety za wzgledu na operacje dodawania i odejmowania. To znaczy, ze dla dowol-
nych dwéch leczb catkowitych m,n € C suma

m+neC

i réznica
m-neC

tych liczb jest liczba calkowita.



1.4.1 Przyklady

Rozpatrzmy kilka przykladéw dodawania i odejmowania liczb catkowitych.
Dodajac do liczby calkowitej m liczbe calkowita ujemna n, odejmujemy od liczby m liczbe
przeciwna —n

Przykiad 1.5

54(-4) = 5-4 = 1, dla m =5, n = —4,
—5+(-4) = —-5-4 = -9 dla m = -5, n = —4,
8—(=7) = 847 = 15, dla m =8, n=-2,
—8—(=7) = 847 = -1, dla m=-8 n=-T.

1.5 Mnozenie liczb catkowitych

Zbior liczb catkowitych
C={iiiiie, -5, =4, =3, =2, =1, 0, 1, 2, 3, 4, Berrrrriiiiiieinnins }

jest zamkniety za wzgledu na operacje mnozenia. To znaczy, ze dla dowolnych dwoch leczb
catkowitych m,n € C iloczyn
mxn¢eC

tych liczb jest liczba calkowita.

Tloczyn m xn > 0 liczb calkowitych m,n € C jest liczba calkowita dodatnia, jezeli liczby
m > 0, n > 0 sa dodatnie lub liczby m < 0, n < 0 sa ujemnne, w przeciwnym przypadku,
iloczyn m *xn < 0 liczb m > 0, n <0 lub m < 0, n > 0 jest ujemny.

Przykiad 1.2
4%8 = 32, dla m=4>0, n=8>0,
(=6)x(=7) = 42, dla m=-6<0,n=-7<0.
Zadanie 1.3 Oblicz wartosé¢ wyrazenia arytmetycznego
(@) (=9) % (=9) + (=6) x (=6)
(1) 20 (—1)—14%(-2)
(#i1) (—=3)x4— (12 (—2) — (—5H)

1.6 Dzielenie liczb catkowitych

Zauwazmy, ze wynik dzielenia liczb calkowitych nie zawsze jest liczba catkowita.

Na przyklad

9:2:4%, ale 9:3=3

Zatem zbior liczb catkowitycha nie jest zamkniety ze wzgledu na operacje dzielenia.

Tloraz m : n > 0 liczb calkowitych m i n # 0 jest liczba dodatnia, jezeli obie liczby sa
dodatnie lub obie liczby sa ujemnne, w przeciwnym przypadku, jezeli m > 0,n < 0 lub
m < 0,n > 0 to iloraz m : n < 0 jest ujemny.



Przyklad 1.3 Wynik dzielenia dwoch liczb dodatnich jest liczbg dodatnig. Mianowicie
niechm =8 in =4

Przyklad 1.4 Wynik dzielenia dwoch liczb ujemnych jest liczbg dodatnig. Niech m = —8 i
n = —4; Wtedy
m:n=(=8):(-4) = 2,

Podobnie wynik dzielenia liczby dodatniej przez liczbg ujemna jest liczba ujemng. Wynik
dzielenia liczby ujemnej przez liczbe dodatnia jest liczba ujemna.

Przykilad 1.5

(=8):4 = -2, dla m=-8, n=4
8:(

—-4) = =2 dla m=8, n=-4
Zadanie 1.4 Oblicz wartosé¢ wyrazenia arytmetycznego

(1) (-8:4414:7)—(9:3-6:2)
(i) (~18):3+12:3— (15: (=5) — (16 : 2))

(i) ((—24):6+12:3) — (15 : (—=5) — (16 : 2))

1.7 Liczby parzyste i nieparzyste

Zbiér liczb naturalnych sklada si¢ z dwéch podzbioréow rozlacznych. Mianowicie z podzbioru
liczb parzystych i podzbioru liczb nieparzystych.
Liczby parzyste piszemy w ogdlnej formie jak nizej

n=2k dla k=0,1,2,3,..;
Mamy wiec ciag nieskoriczony liczb parzystych
0,2,4,6,8,10,12,...;
Liczby nieparzyste. Podobnie, liczby nieparzyste piszemy
n=2k+1, dla k=0,1,2,3,..;
Zatem mamy ciag nieskonczony liczb nieparzystych
1,3,5,7,9,11,13, ...;

Zauwazamy, ze liczby parzyste dziela sie przez 2, natomiast liczby nieparzyste dziela sie
przez 2 z reszty 1.



1.7.1 Przyklady
Przyklad 1.6 Suma trzech kolejnych liczb parzystych rowna jest 84. ZnajdZ te liczby.

Rozwiazanie:
Kolejne liczby parzyste to
2n—2, 2n, 2n+ 2,

Ich suma
2n—2)+2n+ (2n+2) =6n =284

Obliczamy n:

6n=84, n=84:6=14
Obliczmy trzy kolejne liczby parzyste

2 —2=2%14—2=26,
2n = 2 14 = 28,
n+2=2%14+2=30

Sprawdzenie: Obliczamy sume trzech kolejnych liczb parzystych
26 4+ 28 + 30 = 84.
Przyklad 1.7 lle réinych liczb nieparzstych dwucyfrowych mozna utworzyé z cyfr 1,2,3.7

Rozwiazanie:

Liczby nieparzyste utworzone z cyfr 1, 2,3 maja dwie cyfry jednosci 1 lub 3

Wiszystkie liczby nieparzyste dwucyfrowe i r6zne, ktére maja cyfre jednosei 1 lub 3, piszemy
w tabbeli

11 21 31
13 23 33

Odpowiedz: Ilos¢ réznych liczb dwucyfrowych nieparzystych utworzonych z cyfr 1, 2, 3 réwna
jest ilosci liczb w tabeli, to jest 6.

Przyklad 1.8 lle rdéinych liczb nieparzstych trzycyfrowych mozna utworzyé z cyfr 1,2,3.7

Rozwiazanie:

Liczby nieparzyste utworzone z cyfr 1,2, 3 maja dwie cyfry jednosci 1 lub 3

Wiszystkie liczby nieparzyste trzycyfrowe i rézne, ktore maja cyfre jednosci 1 lub 3, piszemy
w tabbeli

111 211 311
113 213 313
121 221 321
123 223 323
131 231 331
133 233 333

Odpowiedz: Ilos¢ réznych liczb nieparzystych trzycyfrowych utworzonych z cyfr 1, 2, 3 réwna
jest ilosci liczb w tabeli, to jest 6 % 3 = 18.

Przyklad 1.9 lle réinych liczb parzystych dwucyfrowych mozna utworzyc z cyfr1,2,3,4,5,6,77



Rozwiazanie:

Liczby parzyste utworzone z cyfr 1,2,3,4,5,6,7 maja trzy cyfry jednosci

2 lub 4 lub 6

Napiszmy wszystkie rézne liczby parzyste dwucyfrowe, ktore maja cyfre jednosci 2 lub 4 lub 6

12 14 16
22 24 26
32 34 36
42 44 46
52 54 56
62 64 66
72 74 76

Odpowiedz: Ilo$¢ réznych liczb parzystych dwucyfrowych utworzonych z cyfr 1,2,3,4,5,6,7
rowna jest ilosci liczb w tabeli, to jest 3 %7 = 21.

Przyklad 1.10 Suma trzech kolejnych liczb nieparzystych réwna jest 51. Znajdz te liczby.
Rozwiazanie: Kolejne liczby nieparzyste to
2n+1, 2n+3, 2n+5.

Ich suma
2n+1)+(2n+3)+ (2n+5)=6n+9 =51.

Obliczamy n:
6n+9=>51, 6n=42, n=42:6="71.

Obliczmy trzy kolejne liczby nieparzyste

2n+1=2x7+1=15,
2n+3=2x7+3 =17,
2n+5=2x7+5=19.

Sprawdzenie: Suma trzech kolejnych liczb nieparzystych
15417419 = 51.
Przyklad 1.11 Oblicz sume 10-ciu kolejnych liczb parzystych
Sio=2+44+6+8+10+12+144+16+ 18420

Podaj przyktad zastosowania tego wzoru.

Rozwiazanie: Zapiszmy skladniki sumy w odwrotnej kolejnosci i dodajmy stronami réwnosci,
jak nizej:

S1o = 244+46+84+10+124+14+164+18420
S1o = 204+ 184+16+14+124+10+84+6+4+2
2% S0 = 224224224224+ 22+22+ 22+ 22+ 22+ 22

10 skladnikow sumy
Skad obliczmy sumeg S1p uzywajac jednego mnozenia i jednego dzielenia.

10 * 22

Sio=10%22:2=110 lub Syo = =110
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Przyklad 1.12 Podaj wzor ogdlny na sume n kolejnych liczb parzystych
Sp=2+44-+2n—-2)+2n

Podaj przyktad zastosowania tego wzoru uzywajgc tylko jednej operacji mnozenia i jednej
operacyi dzielenia.

Rozwiazanie: Zapiszmy skladniki sumy w odwrotnej kolejnosci i dodajmy stronami réwnosci,
jak nizej:

Sh = 2+ 4+ 6+ e+ 2n— 24 2n
Sn = 2n+ 2n—-2)+ (2n—-4)+ -+ 4+ 2
2%S, = (2n+2)+ (2n+2)+ 2n+2)+ -+ (2n+2)+ (2n+2)

n skladnikow sumy

Skad obliczmy sume S, .

5= 1AL 20D

Dla n = 10 obliczamy Sy¢

10 * 22
=10%11 =110

S0 =
Przyklad 1.13 Oblicz sume 10-ciu kolejnych liczb nieparzystych
Sio=1+3+5+7+9+114+13+154+17+19

Podaj przyktad zastosowania tego wzoru.

Rozwiazanie: Zapiszmy sktadniki sumy w odwrotnej kolejnosci i dodajmy réwnosci stron-
ami, jak nizej:

S1o = 1 +34+5+7+94+11+134+15+174+19
S10 = 194+17+154+134+114+9+7+54+3+1
2% S = 20420420420+ 20+ 20+ 20 + 20 + 20 + 20

10 skladnikow sumy
Skad obliczmy sume S1¢ uzywajac jednego mnozenia i jednego dzielenia.

10 % 20

S10=10%20:2=100 lub Sig9 = =100

Przyklad 1.14 Podaj wzor ogdlny na sume n kolejnych liczb nieparzystych
Sp=143+---+2n—-3)+(2n—-1)

Podaj przyktad zastosowania tego wzoru uzywajgc tylko jednej operacji mnozenia i jednej
operacyi dzielenia.

Rozwiazanie: Zapiszmy skladniki sumy w odwrotnej kolejnosci i dodajmy stronami réwnosci
Sp = 1+ 3+ 5+ o+ (2n=3)+ (2n-—1)
Sh = 2n—-1D+ 2n-3)+ (2n—-5)4+ -+ 3+ 1

2x%xS, = 2n+ 2n+ 2n+ st 2n+ 2n
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Skad obliczmy sume S, .

2
25, =n*2n, Sn:n* n:n>kn:n2

2

Dla n = 10 obliczamy Sy¢
SIO =10%10 =100

Przyklad 1.15 Udowodnij, ze wyrazenie algebraiczne
a®+(a+2)(a+2)+(a+4)(a+4)+1
jest podzielne przez 12 dla kazdej liczby nieparzystej a.

Rozwiazanie:
Poniewaz liczba a jest nieparzysta to dla pewnego n

a=2xn—1
gdyz dla kazdej liczby nieparzystej jest naturalne n, takie ze

a=2xn-—1

Podstawiajac do tego wyrazenia algebraicznego
a=2xn-—1
otrzymamy

a*+(a+2)(a+2)+ (a+4)(a+4)+1=
2xn—1)2xn—-1)4+2*xn—-1+2)2*xn—14+2)+
2¢sn—1+4)2xn—-14+4)+1=
dxnxn—4xn+1)+2*n+12*xn+ 1)+
2xn+3)2xn+3)+1=
(Axn?—dxn+1)+@*n2+4xn+1)+@*n2+12xn+9) =
12xn? 4+12%n+12 =

12% (n?+n+1)

=+ 1+

Dla kazdej nieparzystej liczby a = 2 x n — 1 to wyrazenie rozklada si¢ na czynniki 12 razy
(n?+n+1). Zatem to wyrazenie algebraiczne jest podzielne przez 12 dla kazdej nieparzystej
wartosci parametru a.

1.7.2 Zadania

Zadanie 1.5 Ile rdéznych liczb parzstych dwucyfrowych mozna utworzyé z cyfr 1,2,3.7

Zadanie 1.6 Ile rdéznych liczb parzstych trzycyfrowych mozna utworzyé z cyfr 1,2,3.7

Zadanie 1.7 Ile réznych liczb nieparzystych trzycyfrowych mozna utworzyé z cyfr1,2,3,4,5,6,7¢

Zadanie 1.8 Oblicz sume kolejnych 15 liczb naturalnych
Si5=1+24+3+44+5+64+7+84+9+104+11+12+134+14+15

uzywajgce tylko jednej operacji mnozenia i jednej operacyi dzielenia.
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Zadanie 1.9 Oblicz sume 9 — ciu kolejnych liczb naturalnych rozpoczynajgc od liczby 10

Sg=10+124+13+144+154+16+ 174+ 18+ 19
stosujgc wzor na sume n kolejnych liczb naturalnych.
Zadanie 1.10 Suma trzech kolejnych liczb naturalnych rowna jest 45. Znajdz te liczby.
Zadanie 1.11 Suma trzech kolejnych liczb parzystych rowna jest 120. Znajdz te liczby.
Zadanie 1.12 Suma trzech kolejnych liczb nieparzystych rowna jest 180. Znajdz te liczby.
Zadanie 1.13 Wykaz, ze warto$¢ wyrazenia algebraicznego

n*+n+1

jest liczbg nieparzystq dla kazdego naturalnego n =0,1,2,3,...;

1.8 Operacja potegowania

Mnozac liczbe przez siebie kilka razy obliczamy jej potege.
Na przyklad, mnozac liczbe 2 otrzymamy jej kolejne potegi

20 = 1
21 = 2
2 %2 = 22=4
2%2%2 = 23=38
24%2%2%x2 = 24=16

Podobnie, mnozac liczb 3 przez siebie otrzymamy kolejne jej potegi

30 =1

3! = 3

3%3 = 32=9

3%3%3 = 33=27
3%x3x3x%3 = 3*=381
3%3%3%x3%x3 = 3°=243

Kazda liczba a # 0 rézna od zera podniesiona do potegi 0 réwna jest 1
! Na przyklad

=1, 59=1, 6°=1, 79=1, 14°=1, 259°=1

Ogdlnie, potega liczby a # 0 réznej od zera o wyktadniku naturalnym n nazywamy iloczyn
tej liczby pomnozonej przez siebie n razy i piszemy

a® =1, 20 =1
axa..xa =a", 2%2...%2 =2"
——— ——
n—czynnikow n—czynnikow

Wtedy a nazywamy podstawa i n wykladnikiem potegi a™.

ISymbol 0° jest nieokreslony, nie ma sensu liczbowego
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Zadanie 1.14 Oblicz potegi

40 = 4 = 42 =
52 = 53 = 54 =
102 = , 10 = 100 =

Operacje arytmetyczne na potegach. Na potegach nastepujace operacje sa wykonalne:
1. Mnozenie poteg o tych samych podstawach
af x a? = aPt
dla dowolnych p, q.
Na przyklad dla a = 2, p =3, ¢ = 5 mamy

23 %25 = 2315 =98 — 956

2. Drzielenie poteg o tych samych podstawach

p
a _
— =qP ‘1,
ad

dla dowolnych liczb p, q.
Na przyklad dla a = 2, p =5, ¢ = 3 mamy

2°:2° =273 =22 =4
3. Potegowanie poteg o tych samych podstawach
() = ar,

dla dowolnych p, q.
Na przyklad dla a = 2, p =2, ¢ = 3 mamy

(23)2 _ 22*3 — 26 — 64
4. Potega iloczynu liczb o tym samym wykladniku
(axb)" =a™ xb"

rowna jest iloczynowi poteg.
Na przyklad dla a = 2, b = 3, n = 3 mamy

(2%3)° =2 % 3> =8%27 =216

5. Potega ilorazu liczb o tym samym wykladniku

a., a"
G =%
rowna jest ilorazowi poteg.
Na przyklad dla a = 4, b = 2, n = 3 mamy
4 43 4
(4:2)°=4:2°=64:8=8 lub (—)3:—:6—:8

2 23 8



Przyklad 1.16 Oblicz wartosé wyrazenia arytmetycznego

23 % 34
22 % 33
Rozwiazanie. Wykonujac dzialania na potegach obliczmy
23 5 34

Zadanie 1.15 Oblicz wartosé wyrazenia arytmetycznego
(i)  52%2343%2 %23 — 4% %52

22 %32 452572 -2%6%x8—1

(i) 32552 — 23 %42 4 3

Odp (i7) :12
Zadanie 1.16 Oblicz wartosé wyrazenia arytmetycznego

33 %23 — 32422
3%x234+2%x3
Odp:6

1.9 Liczby podzielne przez 2,3,4 1 5

e Liczby podzielne przez 2
0,2,4,6,8,10,12,14, 16, 18, 20, 22, 24, ...;
piszemy w postaci ogdlne;j

n = 2k, dla £=0,1,2,3,..;

Przykiad 1.6
124:2 =62, lub %:62
316:2 =158, lub 252£ = 1264
e Liczby podzielne przez 3

0,3,6,9,12,15,18,21,24,27,...;
piszemy w postaci ogdlnej
n = 3k, dla £=0,1,2,3,..;
Jasne, ze liczby postaci 3xk, k=0,1,2,3,...; sa podzielne przez 3, gdyz

3*1{7

3xk:3=Fk, lub
* , lu 3

k

dla kazdego naturalnego k =0,1,2,3,4,...;

14

Ogolnie liczba n jest podzielna przez 3 wtedy @ tylko wtedy, jezeli suma cyfr liczby n

dzieli sie przez 3.
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Przyklad 1.7 Liczba n = b4 jest podzielna przez 3, poniewaZz jej suma cyfrb+4 =19
jest podzielna przez 3.

54:3=18, bo 3%x18=54

Przyklad 1.8 Liczban = 756 jest podzielna przez 3, poniewaz jej suma cyfr 7+5+6 =
18 jest podzielna przez 3.

756 : 3 =252 bo 3%254=756

Test podzielnosci liczby n = ajag przez 3 ma proste uzasadnienie dla liczb dwucyfrowych.
Liczba dwucyfrowa ma cyfre dziesiatek ai, i druga cyfre jednosci ag.

a1a0:a1*10+a0:a1(9+1)+a0:9*a1+a1+a0

Pierwszy skladnik 9 % ay dzieli sie przez 3 bo

9%ay:3=3a;, lub = 3a1
Jezeli drugi sktadnik sumy a1 + ag dzieli sie przez 3 to cala suma tez dzieli sie przez 3

Przyklad 1.9 Liczba n = 57 ma cyfre dziesigtek 5 i cyfre jednosci 7. Zatem suma
cyfr 547 =12 dzieli se przez 3 i liczba 57 tez dzieli sie przez 3.
Rzeczywiscie mamy

57=5%10+7=5%(94+1)+7=5%x9+5+7,
(5%9+5+7):3=5%9:3+12:3=5%x3+4=19

Liczby podzielne przez 4

0,4,8,12,16, 20, 24, 28, 32, 36, 40, 44, 48,52, ...;
piszemy w postaci ogdlne;j
n = 4k, dla £=0,1,2,3,..;

Jasne, ze liczby postaci 4k, k=0,1,2,3,...; sa podzielne przez 4, gdyz

Askid—k b 2Ry
4
dla kazdego naturalnego k =0,1,2,3,4,...;
Liczby podzielne przez 5.
0,5,10, 15,20, 25,30, 35,40, 45, ...;
piszemy w postaci ogdlnej
n = 5k, dla £=0,1,2,3,..;
Jasne ze liczby postaci 5x k, k£ =0,1,2,3,....; sa podzielne przez 5, poniewaz
ek 5=k lub 2F g

5
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dla kazdego naturalnego k =0,1,2,3,4,...;
Podzielnos¢ liczby n przez 5 poznajemy uzywajac testu:

Liczba n jest podzielna przez 5 wtedy i tylko wtedy, jezeli jej cyfra jednosci jest 0 lub
5.

Przyklad 1.17 Liczba n = 50 jest podzielna przez 5, poniewaz jej cyfra jednosci jest
rowna 0.

50:5 =10, bo 5%10=50

Przyklad 1.18 Liczba n = 265 jest podzielna przez 5, poniewaz jej cyfra jednosci jest
rowna 5.

265:5=153, bo 5%53 =265
1.10 Dzielenie liczb przez liczby jednocyfrowe z reszta
Liczby naturalne, ktore spelniaja testy podzielnosci przez liczby 2 lub 3 lub 5, dziela si¢ z

reszta 0. Wtedy méwimy, ze sa podzielne przez 2 lub 3 lub 5. Jednak, jest duzo liczb, ktére
nie spelniaja testéw podzielnosci, wtedy dzielenie wykonujemy z reszta.

1.11 Dzielenie z reszta
Rozpatrzmy nastepujace przyktady
Przyklad 1.10 Podziel liczbe 13 przez 3

13
—
13 Sxdel
3 3 N 3

Liczba 13 dzielona przez 8 rowna sie 4 z resztg 1.
Liczby dzielimy wedlug schematu

4

13 :3
—12

1

Odpowiedz: 13 podzieli¢ przez 8 rowna sie 4 z resztg 1
Wynik dzielenia piszemy w postaci:

13=4%x3+1
Przyklad 1.11 Podziel liczbe 53 przez 8
——
53 6%x8+5

5
s - s ~0Fg



Liczba 53 dzieli sie przez 8 z resztg 5.
Liczby dzielimy wedlug schematu

Odpowiedz: 53 podzieli¢ przez 8 réowna sie 6 z resztg 5
Wynik dzielenia piszemy w postaci:

53 =6%8+5

Przyklad 1.12 Podziel liczbe 85 przez 9

85
—T—
8  9x9+4 6+ 4
9 9 9
Liczba 85 dzieli sie przez 9 z resztg 4.
Liczby dzielimy wedtug schematu
9
8 :9
—81
4

Odpowiedz: 85 podzieli¢ przez 9 rowna sie 9 z resztg 4
Wynik dzielenia piszemy w postaci:

85 =9%x9+4+4

Ogédlnie piszemy, ze liczba n dzieli sie przez liczbe d z reszta r wedlug wzoru

Przyklad 1.13 Dzielimy liczbe n przez d

—
no k*d—l—rik_‘_r
d d - d

Liczba n dzieli sie przez d z resztg r.
Liczby dzielimy wedtug schematu

Odpowiedz: n podzieli¢ przez d rowna sie k z resztg
Wynik dzielenia pisujemy w postaci:

n=kxd+r

17
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1.12 Dzielenie liczb przez liczby dwucyfrowe z reszta

Przyklad 1.14 Podziel liczbe 78 przez 42

——
8 42430 36
42 42 42

Liczba 78 dzieli sie przez 42 z resztg 36.
Liczby dzielimy wedlug schematu

1

78 42
—42

36

Odpowiedz: 78 podzieli¢ przez 42 réwna sie 1 z reszta 36
Wiynik dzielenia piszemy w postaci:

78 =142+ 36

Przyklad 1.15 Podziel liczbe 1190 przez 25

1190
—_———
1190 47 %25+ 15 15
= =47+ ==
25 25 25

Liczba 1190 dzieli sie przez 25 z resztg 15.
Teraz dzielimy wedlug schematu

47

1190
—100

190

—175

15

25 miesci sie w 119 cztery razy, piszemy nad kreska 4
4 % 25 = 100; odejmujemy 100

roznica 19 dopisujemy nastepna cyfre 0,

25 miesci sie w 190 siedem razy piszemy nad kreska 7
7 %25 = 175; odejmujemy 175

reszta 15

Odpowiedz: 1190 podzieli¢ przez 25 rowna sie 47 z resztg 15
Wynik dzielenia piszemy w postaci:

Przyklad 1.16 Podziel liczbe 1995 przez 17

1190 15 3
1190 = 47 % 2 1 lub — =14 — =4 —
90 7%254 15 u 5% 7+25 7+5
1995
——
1995 117% 17+ 6 6
= =117+ —

17 17 17
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Liczba 1995 dzieli sie przez 17 z resztg 6.
Teraz dzielimy wedtug schematu

117
1995 :17 17 miesci sie w 19 jeden raz, piszemy 1 nad kreska
—17 1% 17 = 17; 0odejmujemy 17
29 roznica 2 dopisujemy nastepna cyfre 9
—17 17 miesci sie 29 jeden raz, piszemy drugie 1 nad kreska
—— roznica 12 dopisujemy nastepna cyfre 5
125 17 miesci sie 125 siedem razy
—119 7% 17 =119 piszemy 7 nad kreska
6 reszta 6

Odpowiedz: 1995 podzieli¢ przez 17 rowna sie 117 z resztq 6
Wynik dzielenia piszemy w postaci:

9% 74 8

1995 =117%17+6 lub 7 7

1.12.1 Zadania
Zadanie 1.17 Wykonaj dzielenie pisemne
(7) 2546 : 3, (6)  5796:9
Zadanie 1.18 Wykonaj dzielenie pisemne
(1) 455 : 13, (¢¢)  18011: 31
Zadanie 1.19 Wykonaj dzielenie pisemne z resztq
(7) 2547 : 3, (15)  5766:9

Zadanie 1.20 Udowodnij, ze liczba asasaiag jest podzielna przez 3 wtedy i tylko wtedy,
jezeli suma cyfr

a3+ a2 + a1+ o
jest podzielna przez 3. Podaj warunek konieczny @ dostateczny na to, Zeby liczba azaaaiayg
byta podzielna przez 9.

Zadanie 1.21 Podaj najmniejszq liczbe naturalg wiekszg od liczby 2018 , ktéra ma sume
cyfr 11.

Zadanie 1.22 Udowodnij, Ze liczba czterocyfrowa aszaa2b jest podzielna przez 25 dla dowol-
nych cyfr as, as.

Zadanie 1.23 .

(a) Zapisz wzorem ogdlnym zbidr liczb podzielnych przez 8. Wypisz & kolejnych liczb
podzielnych przez 3.

(b) Zapisz wzorem ogdlnym 2bidr liczb podzielnych przez 8 z reszta 1. Wypisz 6 kolejnych
liczb podzielnych przez 3 z reszytq 1
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(¢) Zapisz wzorem ogdlnym 2bidr liczb podzielnych przez 8 z resztg 2. Wypisz pierwsze 7
kolejnych liczb podzielnych przez 3 z resztg 2.

Zadanie 1.24 Bracia Antek, Bolek, Wacek i Stas dostali od ojca razem 400 2t na zakupy
szkolne. Bolek wydal o 4zt wiecej niz Antek, Wacek wydat o 3 2zt mniej niz Bolek, Stas
wydat tyle samo co Wacek.

lle kazdy z nich wydal na zakupy szkolne?

Zadanie 1.25 W gospodarstwie byty krowy, owce, kury i gesi. Owiec byto 2 razy wiecej niz
krow, gesi byto 4 razy wiecej niz owiec, kur byto 6 razy wiecej niz gesi. Razem mieli 124
nogi. Ile byto w gospodarstwie kréw, owiec, kur i gesi ¢



Chapter 2

Liczby wymierne 1 niewymierne

2.1 Ulamki zwykle

Tloraz dwéch liczb catkowitych p i g
licznik
p
—_—, q#0
q

~—

mianownik

nazywamy utamkiem zwyklym, gdzie liczba p jest licznikiem utamka zwyklego, a liczba g # 0
zawsze rézna od zera jest mianownikiem utamka zwyklego.
Na przyklad ulamek zwykty

licznik

=

5
8
~—
mianownik
ma licznik p = 5 i mianownik ¢ = 8.
Zauwazmy, ze liczniki utamkow zwyktych

11 1 1 1 1 1 1 1

TR S U A S U
rowne sa 1. Natomiast mianowniki tych utamkoéw sa kolejnymi liczbami 1,2,3,4,5,6,7,8,9
Natomiast nizej podane utamki maja rézne liczniki i rézne mianowniki.

12 3 4 5 9 11 10 11 12 13

2’ 3 4 5 6 7 8 9’ 100 11’ 12

Wiroed utamkoéw zwyklych wyrézniamy uwlamki wlasciwe i utamki niewtasciwe.
Utamkami wtasciwymi nazywamy utamki

licznik

p
E— p<q q#0
~—

mianownik

21
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w ktorych licznik p jest mniejszy od mianownika gq.
Podobnie Utamkami niewtasciwymi nazywamy ulamki
licznik
=
L p>q  q#0
-

mianownik
w ktorych licznik p jest wigkszy od mianownika q.

Utamki niewlasciwe piszemy réwniez w postaci liczb mieszanych wyrdzniajac czesé caltkowita
Na przyklad utamek niewlasciwy

po DOl Ot

piszemy umownie w postaci liczby mieszane;j %, jak nizej

Przyklad 2.1 Zamien utamk niewtasciwy

na liczbe mieszang
Wrylaczajac caloéé z tego utamka, wykonaj dzielenie

2
4=242 =2
9 +7=2+

N~

9
Skad utamek niewtasciwy 1 rowny jest liczbie mieszaj 2%, piszemy

Przyklad 2.2 Zamien liczbe mieszang

na utamek niewtasciwy

3
Dany ulamek niewlasciwy piszemy jgko sume calo$¢ liczby mieszanej 1 doda¢ utamek 7 jak

nizej
1 7
= ~
B3 43 T3 7
4 4 4 4 4 4

Skad liczba mieszana 1— réwna jest utamkowi niewlasciwemu %, piszemy

121
4 4
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2.2 Dodawanie ulamkow

Dodawanie utamkow o tych samych mianownikach. Utamki o tych samych mianownikach
dodajemy liczniki zostawiamy ten sam mianownik.

Przyklad 2.3 Dodaj utamki

Lol 1s1 2

2 2 2 2

l+l+l:1+1+1:§:1

3 3 3 3 3

1+1+1+171+1+1+1:é:1

4 4 4 4 4 4
Przyklad 2.4 Dodaj utamki

L3 143 1,

2 2 2 2

1,24 14244 7 1

3 3 3 3 3

l+g+§+§:1+2+3+5_222§

4 4 4 4 4 4 4

Dodawanie utamkow o réznych mianownikach. Zeby dodaé¢ utamki o réznych mianown-
ikach nalezy znalezé wspdlny mienownik. Moze to by¢ najmniesza wspolna wielokrotnosé’
mianownikdéw.

Przyklad 2.5 Dodaj utamki
1.1 3 2 342 5

2 3 6+6 6 6

wspolna wielokrotnosc 21 3 rowna 6

1,1 .2 20 15 24 20415424 59

5717576 T60 60 60 60

wspolna wielokrotnosc 3, 41 5 rowna 60

1+375+1275+12717
45 20 20 20 20

wspolna wielokrotnosc 415 rowna 20

Zasanie 2.1 Zamien utamek niewtasciwy

24
5
na liczbe mieszang
Zasanie 2.2 Zamien liczbe mieszang
4
5=
9

na utamek niewtasciwy
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2.3 Odejmowanie ulamkoéow

Odejmowanie utamkow o tych samych mianownikach. Ulamki o tych samych mianownikach
odejmujemy w nastepujacy sposob:
odejmujememy liczniki i zostawiamy ten sam mianownik

Przyklad 2.6 Odejmij utamki

1 1 1-1
37 3- 3
2 1_2-1_1
3 3 3 3
4 2 1 4-2-1 1
5 5 5 5
Przyklad 2.7 Dodaj utamki
1.3 _1+43 4
2 2 2 2
Lo2 4 14244 7 1
3'3'3 3 3
1,2.3 5 1424345 11,3
4 4 4 4 4 4 T4
Przyklad 2.8 Odejmij utamki

7

7T—1 6

1
9 9 9 9
13 5 3 13-5+3 12

20 20720° 20 20
37 23 37-23 14

50 50 50 50

Odejmowanie utamko o réinych mianownikach. Odejmujac ulamki o réznych mianown-
ikach nalezy znalez¢ wspdlny mienownik. Moze to by¢ najmniesza wspoélna wielokrotnosé
mianownikéw.

Przyklad 2.9 Odejmij utamki

5 1 5-3x1 2
9 3 9 9
wspolna wielokrotnosc; 9 i 3 rowna 9

33 21 2%33-21 45 9

25 50 50 50 10

wspolna wielokrotnosc 25 ¢ 50 rowna 50

14 2 2 14-3%2+5%2 14-6+10 18

5 573 15 15 15

wspolna wielokrotnosc 15 5 i 3 rowna 15

253 126 2x253-126 506 —126 380
500 1000 1000 ~ 1000 1000
wspolna wielokrotnosc 500 ¢ 1000 rowna 1000




Zasanie 2.3 Odejmij utamki

5 2
@ 579
12 7
b = _ L
Zasanie 2.4 Odejmij utamki
@ -3
4 8
43 23
b X _ 22

2.4 Mnozenie ulamkow

Operacja mnozenia utamkéw jest bardzo prosta.
Utamek B, q # 0 mnozymy przez utamek ;, s # 0 wedtug schematu:
q

licznik razy licznik, mianownik razy mianownik

S * S
Ea2 =820 g0, t£0
q t qx*xt

Przyklad 2.10 Pomndz utamki

(a) g*§72*47§

Y 3 5T 3%5 15
2 (—4) 2% (-4

) 2 (=4 _2+(4) _ 8
3% 75 355 15

10 21 10=x21 210
() 13%5 = T3 = 573
13 25 13x25 273

Zasanie 2.5 Pomndz utamki

A,-\
s &
©1 =1 wl
* *
[ RSCING, ST

2.5 Dzielenie ulamkéw

Operacja dzielenia utamkow jest bardzo prosta.

Utamek B, q # 0 dzielimy przez utamek ;, s # 0 wedtug schematu:
q

licznik razy mianownik, mianownik razy licznik

s *t
B:_:p 9 Q7S#Oa pat#o
q t q*Ss
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Przykiad 2.11 Podziel utamki

1 (=53 10
() 9 "3 9x3 12
10 21 10%25 250
13725  13x21 273

Zasanie 2.6 Podziel utamki

o 3
@ =0 ()
@ -2:(-3)

Zauwazmy, ze do liczb wymiernych zaliczamy réwniez wszystkie liczby catkowite

e —5b,—4,-3,-2—,-1,0,1,2,3,4,5, ...
Ogdlnie, dla liczb catkowitych p 1 ¢ # 0 ulamek
p

q
nie jest liczba caltkowita, jezeli ¢ # 1. Dla ¢ = 1 ulamek jest liczba calkowita. Zbiér
wszystkich liczb calkowitych razem ze zbiorem wszystkich mozliwych ulamkéw tworza zbiér
liczb wymiernych.
Zbior liczb wymiernych oznaczamy litera W i piszemy

W ={Z . dla calkowitych liczb pi ¢ # 0}
q

Latwo sprawdzamy, ze zbiér liczb wymiernych jest zamknigty ze wzgledu na cztery operacje
arytmetyczne dodawanie, odejmowanie, mnozenie i dzielenie przez liczby rézne od zera. To
znaczy dla dowolnych liczb wymiernych wi,wa € W wynik czterech operacji jest liczba
wymierng

w1
wy+wy €W, wi—wy €W, wixwy €W, — €W, ws #£0.
w2

Na przyklad, dla

2 3
’LU1:—§€W, ’LU2216W

suma
+§72*4+3*378+97276W
4 12 12 12

w1 + wo =

[V V)

jest liczba wymierng

Dla 1 5
’LU1:—§€W, ’LU2:§€W
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roznica
1 2 1%x3—-2%x3 3-—6 3 1€W
Wy — Wy = — — = = = = —-_Z
TP T3 6 6 6 2
jest liczba wymierng
Dla 5
W1:§€W”LU2_Z€W
iloczyn
2 3 2x3
R Vi PR D S
jest liczba wymierng
Rowniez, dla liczb
2 3
W1_§€W”LU2:Z€W
iloraz )
= 2x4
3 - =
mim =g =g =gl

jest liczba wymierng
Zauwazmy, ze zbior liczb wymiernych jest wszedzie gesty. To znaczy pomiedzy dwoma
roznymi liczbami wymiernymi wi, wo istnieje ”duzo” innych liczb wymiernych, na prrzyktad

w1 + w
LT 22 cw.

Ponadto, zbidr liczb wymiernych W jest najmnieszym zbiorem liczbowym zamknietym
ze wzgledu na cztery operacje arytmetyczne. Mianowicie, zal6zmy na chwile, ze liczba
wymierna x nie nalezy do zbioru W, (x ¢ W). Poniewaz kazda liczba wymierna ma postaé

ich $rednia arytmetyczna

P dla pewnych catkowitych p i ¢ # 0. To znaczy, ze nie ma liczb wymiernych poza zbiorem
q
W.

Liczby wymierne sa reprezentowane jako punkty na osi liczbowej

2 -4-1 b0 b1 § o2 o3

05 liczbowa. Liczby wymierne

|
o

|
wlut

2.6 Liczby niewymierne i liczby rzeczywiste

Dotychczas poznaliSmy zbiér liczb naturalnych N, zbidr liczb calkowitych C i zbidr liczb
wymiernych W. Wiemy, ze w zbiorze liczb naturalnych wykonalne sa dwie operacje aryt-
metyczne, dodawanie i mnozenie, natomiast wynik odejmowania lub dzielenia dwéch liczb
naturalnych moze nie by¢ liczba naturalna.

Rozszerzeniem zbioru liczb naturalnych N jest zbidr liczb calkowitych C'. Zatem wszystkie
liczby naturalne naleza do zbioru liczb catkowitych, piszemy N C C. W zbiorze C liczb
catkowitych wykonalne sa trzy operacje arytmetyczne dodawanie odejmowanie i mnozenie,
a wynik dzielenia dwdéch liczb calkowitych moze nie by¢ liczba catkowita.

Rozszerzeniem zbioru liczb caltkowitych C jest zbiér liczb wymiernych W. Zatem wszystkie
liczby calkowite naleza do zbioru W liczb wymiernych, piszemy C' C W. W zbiorze W liczb
wymiernych wykonalne sa wszystkie cztery operacje arytmetyczne dodawanie odejmowanie
i mnozenie i dzielenie.

Zauwazmy, ze w zbiorze liczb wymiernych W nie zawsze jest wykonalna operacja odwrotna
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do operacji potegowania.
Na przyklad, nie ma liczby wymiernej z, ktérej kwadrat réwny bytby 2. Inaczej réwnanie

2 =2

nie ma rozwiazania w zbiorze liczb wymiernych.
Istotnie, gdyby istniala liczba wymierna

=2 q#0,
q
o najwigkszym wspéluym dzielniku NW D(p, ¢) = 1 to ta liczba wymierna bylaby rozwigzaniem
rownania

Wtedy liczba catkowita p bylaby liczba parzysta, to znaczy p = 2k dla pewnej liczby
catkowitej k. W tym przypadku liczba ¢ musialaby by¢ réwniez liczba parzysta, to znaczy

q=2s

dla pewnego catkowitego s.
W konsekwencji mamy nieréwnosé¢ NW D(p, q) >= 2, ktéra przeczy istnieniu liczby wymiernej

w postaci nieskracalnego utamka B, w ktorym najwiekszy wspdlny dzielnik licznika p i mi-
anownika ¢, NWD(p,q) = 1.
Kolejnym rozszerzeniem zbioréw liczb

N, C, W

jest zbior liczb rzeczywistych R w ktérym operacja odwrotne do potegowanie jest wykonalna.
Do zbioru liczb rzeczywistych naleza wszystkie liczby wymierne i wszystkie liczby niewymierne

takie jak
\/5, \3/5, \5/?, Ty ;
Vz2 = |z|, dlatego VA =2, a — 2 nie jest pierwastkiem z 4
-3 —2 —1 0 1 2 3 T
L 4 L 4 L 4 L 4 L 4 L 4 @

-3 V2 m

Os$ liczbowa. Liczby rzeczywiste

Zbior liczb rzeczywistych oznaczamy litera R, piszemy

R={.... —m,=3,—V5,-2,—v2-1,0,1,v/2,2, V9,3, 7...;}

2.7 Zadania

Zadanie 2.1 Oblicz wartosé¢ wyrazenia arytmetycznego
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Zadanie 2.2 Oblicz wartosé¢ wyrazenia arytmetycznego

4 7.1 1 4 7.4 7
e+ 190G+ 1)+ 619G+ 10!
Zadanie 2.3 Oblicz wartosé¢ wyrazenia arytmetycznego

1,2 5 .2
—(2415): (2 —12
5z +1.5): (5 —13)

Zadanie 2.4 Oblicz wartosé¢ wyrazenia algebraicznego

0+ DG )
dlaa=3ib=2
Zadanie 2.5 Wykonaj operacje arytmetyczne
axb, a—b, b:a
dlaa=3+7, b=4-2V7
Zadanie 2.6 Oblicz wartosé wyrazenia
67 — V27

Zadanie 2.7 Udowodnij, ze liczba \/3 jest liczbg niewymierng
Zadanie 2.8 Udowodnij, Ze liczba §/T jest liczbg niewymierng
Zadanie 2.9 ZnajdZ warto$ci parametrow a i b dla ktorych
avh = V50 + V128 + V162
Zadanie 2.10 Dla zbiorow
A={z: —co<zx <5} oraz B={z: 2<z<9}

Zaznacz na o0si liczbowej alternatywe zbioréw A — B i i ich koniukcje A ~ B.

2.8 Wartos¢ bezwzglena

Wartosé bezwzgledna liczby to odlegtos¢ punktu x od poczatku uktadu oznaczonego przez
0. Zatem, wartos¢ bezwzgledna liczby x jest zawsze nieujemna.

Defimnicja 2.1 Wartos¢ bezwzgledng liczby x okreslamy jak nastepuge:
z, gdy x>0,
|z =

—x gdy =<0
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Na przyktad |5| = 5 bo 5 > 0, réwniez | — 5| = —(=5) =5, gdy = = =5 < 0.
Réwniez warto$é bezwzgledna liczby « jest dana wzorem |x| = vz2.

Va2 = |z
Vi = ale — 2 nie jest pierwidastkiem 24
i i -
-2 -1 0 1 2

Wykres wartosci bezwzlednej y = |z|

Odcinek na osi liczbowej. Z definicji wartosci bezwzglenej liczby x, wynika nieréwnoscé
|| <a, wtedy itylkowtedy gdy —a<z<a, a>0.
Rzeczywiscie, zauwazamy, ze
lz|<a, gdy z<a 1 —z<a, toznaczy —a<z<a.

Na osi liczbowej zaznaczmy zbiér liczb z, ktére speliaja —a <z < a

—a 0 a

Odcinek na osi liczbowej |z] < a.
Podobnie, odcinek [a, b] o poczatku w punkcie a i koficu w punkcie b, to jest zbiér punktéw
x lezacych pomiedzy punktami a i b piszemy jak nastepuje:
[a,)]={zx € R: a<x<b}

Dhugosé odcinka [a, ], to jest odlegto$é punktu a od punktu b, réwna sie¢ wartosci bezwzglednej
réznicy |b — al.

Przyklad 2.1 Rozwigz réownanie
|22 — 3| = 5.

Zaznacz rozwigzanie na osi liczbowey.
Rozwiazanie. 7 defincji wartosci bezwzglednej
20 —3=5, gdy 2x—32>0, to x =4,
|22 — 3| =
—(2x—-3)=5 gdy —20+3<0, to z=-1,

Rozwiazanie x=-1 lub z = 4 podane jest nizej na osi liczbowej.

r=—-1 0 r=41

Rozwiazanie z = —1 lub = = 4.

s

Przyklad 2.2 Rozwigz nierowns
|z — 3] < 2.
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Rozwiazanie. 7 definicji wartosci bezwzlenej nieréwnosé
|z — 3] <2.

jest rownowazna z podwdjna nieréwnoscia

—2<x—-3<2, lub 1<z<5.
Odpowiedz: 1 < x <5.
Przyklad 2.3 Podaj zbior punktow, ktore spelniajg nierdwnosé

e —1|+]z+ 1 <1.
Zaznacz ten zbior na osi liczbowe;.
Rozwiazanie. 7 definicji wartosci bezwzlenej znajdujemy
l.dla z+1<0, lt+1l]=—(x+1)=-1-2z, i |[z—1]=—(x—-1)=-1—2

e =14+ jz+1=1-2z—-1—2=—-2z<1,

gdy x> 3 wtedy nierownosc nie ma rozwiazania
2.dla -1<z<1l, j[z—=1=@-1)=z-1, i [z+1ll=—(z+1)=-1—2
e =1+ ]z+1ll=2—-1-1-2z=-2<1,
gdy —1<z <1, wtedy nierownosc jest prawdziwa dla —1 <z <1
3.dla x—-1>0, lt—1=z—-1, i [z+1]=2+1

le =14+ ]jz+1=(x—-1)+ (z+1) =22z <1,

, wtedy nierownosc nie ma rozwiazania

N~

gdy =<

Odpowiedz: Nieréwnos¢ jest spelniona dla —1 < z < 1. To znaczy dla wszystkich z takich,
ze |z < 1.

Zauwazmy, ze odlegto$¢ kazdego punktu 2 € [—1, 1] od punktu —1 plus odlegtosé tego punktu
x od punktu 1 réwna si¢ 1. Zatem nieréwno$¢ jest spelniona réwniez dla x = —1 lub z = 1,
wtedy zachodzi znak réwnosci. Zaznaczmy to rozwiazanie na rysunku.

|z+1] |z—1|

L
Iy

VA

-~
Py

-1 0 T 1
|z — 1] + |z + 1] = 1 dla kazdego = € [—1,1]

2.8.1 Zadania

Zadanie 2.11 RozwigZ réownanie
|3z — 5| = 4.

Zaznacz rozwigzanie na osi liczbowey.
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Zadanie 2.12 RozwigZ réownanie
|22 — 3| = 5.

Zaznacz rozwigzanie na osi liczbowey.
Zadanie 2.13 Rozwigz nierownosé
|z — 5] < 2.
Zaznacz rozwigzanie na osi liczbowey.
Zadanie 2.14 Podaj zbior punktow, ktore speiniajg nierdwnosé
|z] + |z — 2| < 2.

Zaznacz ten zbior na osi liczbowej



Chapter 3

Wyrazenia arytmetyczne i
algebraiczne

Zacznijmy od sformulowania poje¢ wyrazenia arytmetycznego i algebraicznego.

Defimnicja 3.1 Wyrazeniem arytmetycznym nazywamy cigg liczb polgczonych czterema
operacjami arytmentycznymi dodawania, odejmowania mnozenia i dzielenia przez liczby
rozne od zera.

Na przyklad, wyrazenie

3x44+6:2—2%x3
23 4+32-8:2

jest wyrazeniem arytmetycznym sktadajacym sie z ciagu liczb

Licznik : 3,4,6,2,2,3,
maianiwnik : 2,3,3,2,8,2
polaczonych operacjami arytmetycznymi
T R 1 T
Podobnie definiujemy wyrazenia algebraiczne. Mianowicie

Defimnicja 3.2 Wyrazeniem algebraicznym nazywamy cigg liczb lub liter potgczonych czterema
operacjami arytmentycznymi dodawania, odejmowania mnozZenia i dzielenia przez liczby lub
litery, ktorych warto$ci sq rézne od zera.

Na przyklad

ax4d+x:2—2%x3
3432 -0b:2

jest wyrazeniem algebraicznym skladajacym sie z ciagu liczb i liter

a,4,2,2,2,3,2,3,3,3,2,b,2
polaczonych operacjami arytmetycznymi

*, +7 BT *3/574_57_7:

33
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ktére dla wartosci a = 3, x = 6, b = 8 staje si¢ wyrazeniem arytmetycznym.
Obliczajac warto$¢ wyrazenia arytmetycznego nalezy zachowac kolejnos¢ wykonywania op-
eracji arytmetycznych.

Najpierw wykonujemy operacje mnozenia i dzielenia, w nastepnej kolejnosci wykonujemy
operacje dodawania i odejmowania.

Kolejnos¢ wykonywania operacji arytmetycznych moga zmieni¢ nawiasy, jezeli w wyrazeniu
nawiasy wystepuja.’
3.0.2 Zadania
Zadanie 3.1 Oblicz wartosé¢ wyrazenia arytmetycznego
() 12414424
(b) 50—24-38
Zadanie 3.2 Oblicz wartosé¢ wyrazenia arytmetycznego zachowujgce kolejnosé dziatan
(a) 18—16+2x%8
(b) 5%x6+24:3
Zadanie 3.3 Oblicz wartosé¢ wyrazenia arytmetycznego z nawiasamsi
(a) 3x(446)—2x*(3+5)
(b) (50 —40)*2—(104+6):2
Zadanie 3.4 Oblicz wartosé¢ wyrazenia arytmetycznego
52 %2% 3% %25 — 47 57
Zadanie 3.5 Oblicz wartosé¢ wyrazenia artmetycznego

33 %23 — 32422
3%x234+2%x3
Odp:6

Zadanie 3.6 Oblicz wartosé¢ wyrazenia arytmetycznego

2,3 _2,.3
5*5 " 9*s3
5,2 4,3,7
3k5t 73

Zadanie 3.7 Oblicz wartosé¢ wyrazenia arytmetycznego

1 2 1 3
2 1 3 4
§*_+_*§

Zadanie 3.8 Oblicz wartosé¢ wyrazenia arytmetycznego z nawiasamsi
G-9E-3)
1
ErHGET3)

L Algorytmy maja posta¢ wyrarzen algebraicznych
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Zadanie 3.9 Oblicz wartosé¢ wyrazenia arytmetycznego z nawiasamsi

(g3 PEri-tad)
Gr v D i)

Zadanie 3.10 Oblicz wartosé wyrazenia arytmetycznego z nawiasami

(+2-4s93a2-dd
RS S R T RE S I

3.1 Wyrazenia algebraiczne

Przypominamy, ze oprécz wyrazen arytmetycznych, mamy wyrazenia algebraiczne. W
wyrazeniach algebraicznych dopuszczamy litery, symbole o zmiennej warosci. Zatem, wyrazeniem
algebraicznym nazywamy ciag liczb i liter polaczonych operacjami arytmetycznymi dodawa-

nia, odejmowania, mnozenia i dzielenia.

Przyklad 3.1 Uprosé wyrazenie

CL2—6L

a_l—(a—l-l), a>1.

Rozwiazanie. Wykonujac dzialania arytmetyczne, obliczmy

Cf__la—(a—i-l) _ (a® — a) —a(iil)(a—i-l)
_ (a®> —a) —[a(a+1) = 1(a+1)]
a—1
a?—a—[ad*+a—a—1]
N a—1
_a*—a—a*+1]
N a—1

- l—ai l—ai 1
T a-1  1—a

3.1.1 Zadania

Zadanie 3.11 Oblicz wartosé wyrazenia algebraicznego dla wartosci a = 2

a__ g
3 2
a a
3171

Zadanie 3.12 Oblicz wartosé wyrazenia algebraicznego dla wartosci b =1

*

+
BN ISHISHIN
* *

[SMISHISHIN
*

[SHISH SN
wlc S lw

Zadanie 3.13 Oblicz wartosé wyrazenia algebraicznego dla wartosci ¢ = 3

wla [wio

* *
o I=|uin
o lw|wla
wlo [0 [w
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Zadanie 3.14 Oblicz wartosé wyrazenia algebraicznego dla a = 2

Zadanie 3.15 Oblicz wartosé wyrazenia algebraicznego dla b =3

(
(

Zadanie 3.16 Oblicz wartosé wyrazenia algebraicznego dla ¢ =1

(
(

*

b

JG*3—5%32)
b b b
Js*s+7*3

wloH oo
SH[NY (SO
~jw|olc

* &+

+

* *
* *

wla [wio
[N [N (S1i[sY
'Niel ] le

3.2 Wyrazenie algebraiczne liniowe

Wyrazenie algebraiczne
axx+0b

nazywamy liniowym ze wzgledu na zmienna z, gdzie wspdtczynniki wyrazenia liniowego a i
b maja ustalona wartosc.

Na przyklad
2xx+ 1, gdzie wspolczynniki a=2, b=1

—5xx+4, gdzie wspolczynniki a=-5 b=4

3.2.1 Zadania

Zadanie 3.17 Napisz wyrazenie algebraiczne liniowe o wspotczynnikach

(1)  a=35, b= —-25
3 2
= — b: —
i) a=2 .
1 1
(i) a=-23 o1
15 29

3.3 Rownanie liniowe

Roéwnanie w postaci
axx+b=0

lub kazde inne réwnanie, ktére mozna sprowadzi¢ do tej postaci nazywamy réwnaniem
liniowym ze wzgledu na niewiadoma x. Wspdlczynniki a i b tego réwnania maja wartosc
ustalona.

Rozwiazaniem réwnania liniowego z niewiadoma x jest kazda liczba, ktéra podstawiona w
miejsce x, spelnia to réwnanie.

Rozwiazanie réwnania liniowego otrzymujemy postegpujac wedlug schematu:

e przenosimy liczby na prawa strone zmieniajac ich znak na przeciwny,

e niewiadoma x zostawiamy na lewej stronie
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e dzielimy lub mnozymy przez wspélczynnik a # 0, zeby otrzymaé wspélczynnik 1 przy
zmiennej x.
Przyklady réwnan liniowych z rozwiazaniami.

2%xx—4=0, x=2, bo 2x2—-4=0, dla a=2, b=-4

—3xx+3=0, z=1, bo —-3%14+3=0, dla a=-3, b=3

Przyklad 3.2 Rozwigz réownanie liniowe
2c—1=0, a=2, b=-1.

Rozwiazanie.
Przenosimy liczbe —1 na prawa strone, zmieniajac znak na przeciwny i dzielimy obie strony
tego rownania przez 2

20=1]:2

W ten sposéb znajdujemy rozwiazanie

xr =

1
2
Podstawiajac do réwnania x = > sprawdzamy, ze otrzymane rozwigzanie spelnia to réwnanie.

1
Mianowicie dla x = 5> mamy
1
2x—1:2§—1:1—1:0.

1
Widzimy, ze rozwiazanie x = 3 spelnia to réwnanie. Teraz podamy ogdlny schemat rozwiazania

roéwnania liniowego.
axr+b=0,

a#0,

3.3.1 Zadania
Zadanie 3.18 RozwigZ rownanie
(i) 3x-12=0
(5) H5x+4+20=10
5

(iid) %x—l— g =1

(w) 1,52+2,9=7
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Zadanie 3.19 Maly pastuszek zauwazyt lecgce bociany @ krzykngt chyba ich leci 100.
Starszy pastuch odpowiedzial duzo mniej, gdyby leciato ich dwa razy tyle, i pot tyle, i
Cwieré tyle i ty Zebys z nimi poleciat to wtedy bytoby ich razem z tobg 100. Ile bocianow
leciato po niebie?

B

Obraz Jozefa Chetmoriskiego (1849-1914). Bociany

Zadanie 3.20 Franek czytal ksigzke 25 stron dziennie. Przeczytal calg ksigike w ciggu 3
dni.
Oblicz ile stron ma ta ksigzka ?

Zadanie 3.21 Marysia kupita 3 zeszyty po 7 ztotych kazdy. Kazik kupit pitke za 10 ztotych
i zegarek za 35 zlotych?

lle zaptacita Marysia za 3 zeszyty ¢

lle zaptacit Kazik za pitke © za zegarek ¢

O lle wiecej ztotych Kazik zaplacit za zakupy od Marysi ?

Bolek jest 2 razy starszy od Stefki, ktora ma 7 lat. Olek ma tyle lat co Bolek i Stefka razem.
(a) Ile lat ma Bolek ?

(b) Ile lat ma Olek ¢

Zadanie 3.22 Na kilku drzewach siedzialy wrony. Janek powiedziat do Ojca
Tato duzo wron widze na drzewach, chyba jest ich 100.
Ojciec odpowiedzial Jasiu gdyby byto 2 razy tyle © potowe tyle to wiedy bytoby 100 wron.

Ile wron siedziato na drzewach ?

Zadanie 3.23 Uprosé wyrazenie algebraiczne

(1,2—(1,

—(a+1), a>1.
a—1
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3.4 Nierownosci

Zaznacz na osi liczbowej te wartosci zmiennej x, ktore sa wieksze od zera.

x>0

Nieréwnosé ostra x > 0 wartosci dodatnich zmiennej
Zaznacz na osi liczbowej te wartosci zmiennej x, ktore sa mniejsze od zera.

<0

Nieréwnosé ostra x < 0 wartosci ujemnych zmiennej x

Zaznacz na osi liczbowej te wartosci zmiennej x, ktore leza
pomiedzy liczba 1 i liczba 2.

Wartosci zmiennej x pomiedzy 1 7 2

Zaznacz na osi liczbowej te wartosci zmiennej z, ktére leza pomiedzy liczba -2 i liczba -1
lub liczba 1 i liczba 2.

—2<x<—1 1<x<2
—— ——
. P S . P O .
-3 —2 —1 0 1 2

Wartosci zmiennnej x pomiedzy —2 i —1 lub 1 i 2

gdy —2<z<-1 lub 1<z<2
3.4.1 Zadania

Zadanie 3.24 Rozwigz nierownosé
(1) 2z—-1>1
(i) 4x—6<10

Zaznacz na osi liczbowej te wartosci zmiennej x, dla ktérych nieréwnosci (a) i (b) sg
prawdziwe.
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s

Przyklad 3.1 Rozwigz nieréwnos
3(z—1)<2(x+1)
Zaznacz na osi liczbowej te wartosci zmiennej x, dla ktorych nierowno$c jest prawdziwa.

Rozwiazanie
Wykonujemy mmnoZenia po lewej i po prawej stronie nierownosci

3r—3<2x+2

Zawsze, przenosimy zmienng T na lewg strone nierownosci ze znakiem przeciwnym, nato-
miast liczby przenosimy na prawg strone nierdwnosci tez ze znakiem przeciwnym

3r—2xr <243, x<5

Na osi liczbowej zaznaczmy rozwigzanie nierownosci r < 5
<5

Nierowno$é ostra wartosci zmiennej x mniejszych od 5
Zadanie 3.25 Rozwigz nierownosé
(1) 3Bx—-1)—22x+1)<4(x—1)
(15) 3(x—2)+4(x+2)<2x+10

r—1
r+1

<1 dla xz# -1

Zaznacz na osi liczbowej te wartodci zmiennej x, dla ktérych nieréwnosci (i), (i) i (#i) sg
prawdziwe.

3.5 Ulamki dziesietne

Utamki zwykle o mianownikach 10,100, 1000 na zywamy ulamkami dziesigtnymi. Ulamki
dziesietne piszemy uzywajac przecinka zamiast kreski, piszemy jak nizej

1 1 1
i 1. — = 1, — = 1.
10 0.1, 100 0,01, 1000 0,00
oraz 3 5
E = 07 37 ﬁa = 07 057
35 735
Tooo = 0,035 000 - 0,735,
3 12
10 '3, 0100 0
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Mamy relacje odwrotne, utamki dziesigtne zamieniamy na utamki zwykle

0,1 = 11—0 0,01 = 11%
0,001 = 101% 0,3 = 13—0
0.05 = % 0,035 = %
10,735 = % 2,3 = %
10,12 = 10%.

Kazdy utamek zwykly mozemy zamieni¢ na ulamek dziesigetny.

Pierwszy prosty sposob zamiany ulamka zwyklego na dziesigtny polega na zapisaniu tego
utamka przy mienowniku, 10,100, 1000, ... Ten sposéb jest prosty tylko dla wybranych
utamkdw.

Przyklad 3.2

1 1%5 5
5_2*5_E_0'1
T
4 4 % 25 100

7T Tx2

T_Tx20 MO,
5 5% 20 100

15 15%4 60
250 ~ 2504 1000 0
Drugi sposéb zamiany utamkoéw zwyklych na dziesigtne polega na dzieleniu licznika przez

mianownik.

1
Przyklad 3.3 Zamien utamek 1 na utamek dziesietny.

Rozwiazanie. Dzielimy 1=1,00 przez 4. ZauwazZamy, Ze zera po przecinku mie zmieniajg
warto$ci 1

0,25
1,00 :4
- 0

10
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Odpowiedz: i =0,25

3.5.1 Zadania

Zadanie 3.26 Zamien utamek zwykly na dziesietny

.. 37
(44) 50

.. 253
(#it) 350

Zadanie 3.27 Zamien utamek zwykly na dziesietny

i) =
) =

37
(4i1) 150



Chapter 4

Procenty i promile

p% procent to utamk % o liczniku p i o mianowniku 100.
Na przyklad

1
1% jeden procent to utamek To0 = 0.01 o liczniku 1 i o mianowniku 100.

25% to ulamek % = 0.25 o liczniku 25 i o mianowniku 100.

100% to caloséé % =1 o liczniku 100 i o mianowniku 100

Obliczamy p% procent z wartosci a

p% * a=-L xa

100

jako utamek o liczniku p i o0 mianowniku 100 z a.

4.0.2 Zadania
Zadanie 4.1 Oblicz 15% z wartosci a=60

15 15x60 15%x6 90
15%*60—m*60— 00— 10 —E—Q
Zadanie 4.2 Oblicz 25% z wartosci a=3000
2 2
5 5 % 3000 _ 75000 _ 750

25%*300():%*3()00: 100 100

Odwrotnie, majac p% * a procent z wartosci a, obliczamy wartosé¢ a

Przyktad 4.1 30% procent wartoéci a réwna sie 600. Oblicz wartosé a

Rozwiazanie.

30 600 600 x 100
30% * a = 600, m*azﬁoo, QZ%ZT

= 2000

43
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Zadanie 4.3 Oblicz 75% z wartosci a = 2000
Zadanie 4.4 Oblicz 15% z wartosci a = 4000

Odwrotnie, majac p% * a procent z wartosci a, oblicz warto$é a podana nizej w éwiczeniach

Zadanie 4.5 50% procent wartosci a réwna sie 800. Oblicz wartosé a
Zadanie 4.6 30% procent wartosci a réwna sie 5000. Oblicz warto$é a

Zadanie 4.7 Cena metra kwadratowego materiatu na zastony okien kosztowata 50 zt. Na-
Jpierw podwyzszono cene o 30% potem obnizono o 10 % za metr kwadratowy. Ile zaplacit
klient za 10 m? materiatu ?

Zadanie 4.8 Cena materiatu razem z 7% VAT kosztowata 107 2t. Podatek VAT materiatu

wrdst do 22%. Ile kosztowal materiat z catym VAT 2. O ile procent wrosta cena materiatu
7

4.1 Promile

Promile to utamki o mianowniku 1000.
p%% promili to utamk 1000 © liczniku p i o mianowniku 1000.

Na przyklad

1
1%% jeden procent to utamek 1000 = 0.001 o liczniku 1 i o mianowniku 1000.

25%% to ulamek % = 0.025 o liczniku 25 i o mianowniku 1000.

1
1000%% to calosé 1888

=1 o liczniku 1000 i o mianowniku 1000.
Ogdlmoie p%% promili z wartosci a, obliczamy jak nizej

p%% * a=-—L_xa

1000
jako ulamek o mianowniku 1000 z a.
4.1.1 Zadania
Zadanie 4.9 Oblicz 15%% z wartosci a=3000
15 15 % 3000
1 = = —— = 4
5%% * 3000 1000 x 3000 1000 5
Zadanie 4.10 Oblicz 25%% z wartosci a=3000
2 2
25%% * 3000 = —5 x 3000 = M =75

1000 1000
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Odwrotnie, majac p%% * a promili z wartosci a, tatwo obliczamy wartosé a

Przyklad 4.2 30%% promili z wartosci a réwna sie 600. Oblicz wartosé a

Rozwiazanie.

600 600 + 1000
a=600, a=—p =0

1000

30%% * a = 600, = 20000

3

*
1000
Zadanie 4.11 Oblicz T5%% z wartosci a = 2000

Zadanie 4.12 Oblicz 15%% 2z wartosci a = 4000

4.2 Procent skladany

Whprowadzmy nastepujace oznaczenia
o K - kapital poczatkowy
o K, - kapital po n latach

e p - procent wzrostu kapitatu lub malenia kapitatu kredytu w skali roku, przy stalych
ratach miesigcznych R splacania kredytu K.

e 1 - iloé¢ lat oszczednosci

Po pierwszym roku oszczgdzania kapital Ky wzrosnie o p%

b '4
K = K, Ky— = Ko(1 + —
1 o+ 9700 of +100)

Po drugim roku oszczednosei kapitat K7 wzrosnie o p%

— b Py P 2
Ky, = K1+ Ky 100 K1(1+ 100) Ko(1+ 100)

Ogédlnie, stosujac zasade indukcji zupelnej, po n latach oszczedzania kapital K,,_; wrosnie
o p%. To znaczy

p p
K,=K, 1 +K, 1+ =Ky(l14+ —-)"
1+ 1700 of +100)

W ten sposéb otrzymalismy wzor na koncowy kapital po n latach oszczedzania
p
K, =Ky(1+-—=—7)" 4.1
o1+ 100) (4.1)
Przyktad 4.1 Oblicz o ile wzrosnie kapitat 150000P LN po 10 latach, jezeli prcent p = 5%.

Rozwiazanie. Stosujac wzor (4.1) dla Ky = 150000, n = 10, p = 5, obliczamy

5
K10 = 150000(1 + r.0)10 = 150000 * 1.05'° = 150000 * 1.62889 = 244334PLN

Odpowiedz: Kapital 150000P LN wzros$nie przez 10 lat do sumy 244334PLN.
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Splata kredytu. Podobnie obliczamy procent skltadany od kredytu Ky przy ratach miesigcznych
R, jezeli procent kredytu jest réwny p%
Po pierwszym roku splacania kapital Ky zmaleje o 12R rat plus p% z kapitatu Kj.

p p
Ky = Ko+ Ko2 — 19R = Ko(1+ -2} — 12
1= Ko+ Koggg = 121 = Kol + 755) — 12R

Po drugim roku sptacania kapital K; zmaleje o 12R rat plus p% z kapitatu Kj.

P
Ky= = K{(1+-+2)-12
2 1(+100) R
P P
= (Ko(l+ =—)—12R)(1 4+ —) —12R
(Ko( +1oo) )( +100)
P p p p
= Ko(1+ -2 —-12R(1+ ) —12R=Ko(1+ —)?2 —12R(1 + (1 + —
o1+ 755 1+ 700 o1+ 755) A+ A+ 155"

Ogédlnie, stosujac zasade indukcji zupelnej, po n latach splacania kapital K, zmaleje do
sumy

p
K,= = K, (1+-£-)-12
1( +100) R
p n p p 2 p n—1
= Ko(l4+—4)"—12RA+ (14 — )+ (14+ L2 4. 41+
0(Jr1oo) (+(+100)+(+100)+ +(+100) )
Stosujac wzor
n_1
Sp=ltatd 4=

. . P , ,
na sume postepu geometrycznego o ilorazie ¢ =1+ To0’ otrzymamy wzér na koncowy
kapital po n latach splacania kredytu.

n_lzR(1+%)"—1 (1+ 55" — 1

p p
a = Ko(1+ -2y ~12R 100
00 a1 olt g *

K = Ko(1+ 100

(4.2)

Przyklad 4.2 Oblicz do jakiej sumy zmaleje kredyt od kapitatu Ky = 300000PLN po 20
latach sptacania kredytu obcigzonego p = 5% przy ratach miesiecznych R = 2000PLN.

Rozwiazanie. Stosujac wzér (4.2) dla Ky = 300000, n =20, R = 2000, p =5, obliczamy

(14 35)%*° -1

5 —
Ko = 300000(1 + ——)? — 12 % 2000 * 100 = 2406.41

100 )
Odpowiedz: Po 20 latach kredyt zmaleje do sumy Koo = 2406.41PLN.

Zadanie 4.13 Oblicz do jakiej sumy zmaleje kredyt Ko = 500000PLN po 20 latach sptaconia,
jezeli raty miesigczne R = 2500, a procent (i) p = 5%, (ii) p=6%."

1 Jezeli roczny wzrost kredytu réwny jest sumie 12 rat splaty kredytu to kredyt Ko nigdy nie zmaleje i
nie wzroénie



Chapter 5

Ciagi arytmetyczne i
geometryczne. Szeregi
arytmetyczne i postepy
geometryczne.

Wyrazenia postaci
ag, a1 =ag+7r, ag=ag+2r, az=ap+3r,...,an=ag+n 7; n=20,1,2,..;

nazywamy ciagiem arytmetcznym, gdzie ap € R jest pierwszym wyrazem ciggu i réznica
an — an—1 =1 € R jest stala dla ciagu {ax}p_;.
Zatem wyraz ogdlny ciagu a, mozna zapisa¢ wzorem

anp =ag+nr, n=20,1,2,..;
Roéznica pomiedzy kolejnymi wyrazami ciagu wynosi
ny1—ap=a+n+Lr—(a+nr)=r, n=0,1,2..;
Na przytad, ciag kolejnych liczb naturalnych
0,1,2,..;

jest ciagiem arytmetycznym o wyrazie pierwszym ag = 0, réznicy r = 1 i o wyrazie ogélnym
an = n.
Srednia Arytmetyczna. Zauwazmy, ze wyraz ciagu arytmetycznego

an—1 + An+41

2
jest Srednia arytmetyczna wyrazu poprzedniego i nastepnego.
Rzeczywiscie, obliczamy

Ay =

n-1+any1  (ag+(n—1)r)+ (ao + (n+1)r)  2a0 +2nr u
2 B 2 o2

Roéwniez sumy dwéch wyrazow odleglych o liczbe k od ag i o liczbe k od ay,

ag + anp = ag + Gpn—k

47
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sa réwna dla kazdego k = 0,1, 2, ...n;
Mianowicie, sprawdzamy, ze dla kazdego k = 0,1, 2, ..., n, may

ag + an—p =ao+kr+ao+ (n—k)r =ap+ ao+nr=ao+ an.
—_— Y— — - ~——
ag An—k an
Przyklad 5.1 SprawdZ czy nastepujgcy cigg jest artmetyczny

. 3n+1
(Z) Ap = 3 )

(it) an=1+n% n=0,1,2,..,:

n=20,1,2,..;

Rozwiazanie (i). Sprawdzamy czy réznica r kolejnych wyrazéw tego ciagu jest stata, to
znaczy jest niezalezna od n

3(n+1)+1_3n+1:3n+1 I 3n+1 1 n=0.1.2 .

3 3 3 3 3 3’
——

An41 An

= 0an4+1 — An =

OdpowiedZ: Ciag (i) jest arytmetyczny, gdyz réznica pomiedzy kolejnymi wyrazami tego
ciagu jest stata r = 3 inie zalezy od n =0,1,2,...;

Rozwiazanie (ii). Sprawdzamy czy réznica kolejnych wyrazéw ciagu jest stata, to znaczy,
ze niezalezy od n

Fr=tni1—apn=1+Mn+1)2-Q+n*)=1+n*+2n+1-(1+n?) =1+2n,
—_—————— —\—
Ant1 an
OdpowiedZ: Widzimy, ze ciag (ii) nie jest ciagiem arytmetyczny, gdyz réznica pomiedzy
kolejnymi wyrazami ciaggu 7 = 2n+ 1 dlan = 0,1, 2, ...; zalezy od n.
5.0.1 Zadania
Zadanie 5.1 SprawdZ czy nastepujgcy cigg jest artmetyczny

. 8n+1
(Z) apn = 5 )

(1) ap=142", n=0,1,2,..:

n=20,1,2,..;

Postep Arytmetyczny. Postepem arytmetycznym nazywamy sume wyrazdéw ciagu aryt-
metycznego
ap+ar+az+---+an

lub
ap + (ao+ 1) + (ap + 2r) + - - - + (ap + nr),

W sigma notacji piszemy szereg arytmetyczny jako nastepujaca sume:

n
Zak:a0+al+a2+"'+ana
k=0

lub

Z(ao—i-kr) =ag+ (ap+7r)+ (ag +2r) + -+ -+ (ag + nr).
k=0
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Latwo wyprowadzi¢ wzér na sume n wyrazéw ciggu arytmetycznego.
Mianowicie, oznaczmy sume przez

Sp=ap+ai+az+-+an_1+an.
Napiszmy ta sume w odwrotnej kolejnosci dodawania wyrazow

Sp =an+an—1+ - +az+a+ag
Dodajac stronami, otrzymamy

25, = (ao+an)+ (a1 +an-1)+ (a2 +an—2)+ -+ (an-1+ a1) + (an + ao)

Poniewaz, wyrazy postepu arytmetycznego spetniaja rownosc
ag+ap, =a1+ap—1 =a2+ap_o20=---=an + ag
dlatego, suma wyrazow ciagu arytmetycznego
25, = (n+1)(ao + an)
lub

n+1
2

Przyklad 5.2 Oblicz sume postepu arytmetycznego

Sp =

(2ag + nr).

1+243+ - +n.

Rozwiazanie. Zauwazmy, ze w tym postepie arytmetycznym pierwszy wyraz ag = 0 i
roznica r = 1.
Stosujac powyzszy wzor, znajdujemy sume

(n+1)

(n+1)n
5 —

S, = .

(2a9 +nr) =

Zadanie 5.2 Oblicz sume n wyrazow postepu arytmetycznego o wyrazie ogolnym

3n+5
a,n: y
2

n=20,1,2,..;
5.1 Ciagi i postepy geometryczne.
Wyrazenie postaci
ap, aoqg, a’0q2a aoqga "'aaoqn n:051525"';

nazywamy ciagiem geometrycznym, gdzie ag € R jest pierwszym wyrazem ciagui q € R
jest ilorazem ciggu.
Zatem wyraz ogdlny ciagu geometrycznego okreslamy wzorem

an = apq", n=0,1,2,..;

Zakladamy, nie trywialny przypadek, gdy ag # 0, ¢ # 0.
Tloraz q dwéch kolejnymi wyrazéw ciagu jest staly, to znaczy

An+41
(227

=q=constant, n=0,1,2,..;
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Na przyklad, ciag liczb
1,2,22,23. ;27

o wyrazie pierwszym ag = 1, ilorazie ¢ = 2 i o wyrazie ogélnym a,, = 2™ jest ciagiem
geometrycznym. Zauwazmy, ze gdy iloraz ¢ = 0 to ciag geometryczny jest o wyrazie ogélnym
stalym a,, = a¢ dla kazdego nl,2,...;

Srednia Geometryczna. Zauwazmy, ze wartos¢ bezwzgledna wyrazu ciaggu geometryczngo
jest érednig geometryczng wyrazu poprzedniego i nastgpnego

lan| = V|an—1an41]

Rzeczywiscie, obliczamy

1 2

>kq2n — CL2

Un_1*app1=aq" txaxg"™ =a -

Skad wynika srednia geometryczna
|an| = Van—1* any1

Roéwniez iloczyny dwéch wyrazéw odlegtych o liczbe k od ag i liczbe k od a,
aQ * Gy, = G * Gk

sa réwna dla kazdego k = 0,1, 2, ...n;
Mianowicie, sprawdzamy, ze dla kazdego k =0,1,2,...,n
A * Qn_p = ao * ¢° xag * ¢" % = ag(apq™) = ag * an.
ar, An—r
Przyklad 5.3 Sprawd?Z czy nastepujgcy cigg o danym wyrazie ogolnym jest geometryczny

. 3"
(Z) an = 2_71’

(it) an,=n% n=12,..,:

n=20,1,2,..;

Rozwiazanie (i). Sprawdzamy czy iloraz ¢ kolejnych wyrazéw ciagu jest staly, to znaczy
jest niezalezny od n
anyr 3" S8 gntlyon 3

i ) ) T o g T T n=0 L2

Odpowiedz: Ciag jest geometryczny, gdyz iloraz kolejnych wyrazow ciagu jets staly i nie
. 3

zalezy od n, ¢ = 3 dlan=0,1,2,..;

Rozwiazanie (ii). Sprawdzamy czy iloraz ¢ kolejnych wyrazéw ciagu jest staly, to znaczy

jest niezalezny od n

an+17(n+1)27n2+2n+171 2 1 19 .
P} - +E+ﬁa n=14..,

an, n2 n

2 1
Odpowiedz: Ciag nie jest geometryczny, gdyz iloraz kolejnych wyrazéw ciagu g =1+ — + —
n o n

dlan =1,2,...; zalezy od n.
Przyklad 5.4 Z czterech liczb x,y, z,t trzy pierwsze tworzq cigg arytmetyczny, ktorych

suma rowna jest 12, a trzy ostatnie tworzg cigg geometryczny, ktorych suma rowna jest 15.
Znajdz te liczby
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Rozwiazanie. Wiemy, ze suma trzech pierwszych liczb réwna jest 12, a suma trzech
ostatnich liczb réwna jest 19. Zatem mamy dwa réwnania liniowe

r+y+z = 12
y+z+t = 19

Trzy pierwsze liczby tworza ciag arytmetyczny, dlatego réznica pomiegdzy druga liczba y i
pierwsza x jest ta sama jak réznica pomiedzy trzecia z i druga y

y—r=z-y

Podobnie trzy ostatnie liczby tworza ciag geometryczny, dlatego iloraz trzeciej z i liczby
drugie y jest taki sam iloraz jak czwarej liczby t i trzeciej liczby z

W ten sposéb otrzymalismy uklad czterech rownan z czteremi niewiadomymi

r+y+z = 12

y+z+t = 19
y—x = 2=y
z t 2,2

Rozwiazanie tego ukladu znajdujemy metoda eleminacji Gaussa. Mianowicie, z ostatnich
dwoéch réwnan znajdujemy
T+ z 222
= oraz t=
2 Y+ 2z
Po podstawieniu do pierwszych dwéch rownarn i redukeji wyrazéw podobnych otrzymamy
rownania

r+z=28
224+42—-60=0

Roéwnanie kwadratowe ma dwa pierwiastki rzeczywiste
zZ1 = 9, zZ9 = —10

Skad znajdujemy dwa rozwigzania

$1:2, y1:4, 21:6, t1:9
oraz

T = 18, Y2 = 4, zZ9 = —10, t2 =25

5.1.1 Zadania
Zadanie 5.3 SprawdZ czy nastepujgcy cigg jest geometryczny.

NP
(’L) 5—n’

(i1)  Vn,... n=12,..;

n=20,1,2,..;
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Zadanie 5.4 Podaj pierwszy wyraz, n-ty wyraz i oblicz iloraz ciggu geometrycznego

(1) V2, 2, 2V2, 4, 4V2,...:

Zadanie 5.5 Z czterech liczb m, n, k, 1 trzy pierwsze tworzq cigg arytmetyczny, ktorych
suma rowna jest 3, a trzy ostatnie tworzg cigg geometryczny, ktorych suma rowna jest 9.
Znajdz te liczby



Chapter 6

Liczby pierwsze. Algorytm
Euklidesa

Liczba 2 jest jedyng liczbg pierwszq najmmniejszq i parzystg

—3 —2 —1 0 1 2 3 T

Liczba 1 nie jest liczba pierwsza

6.1 Wstep

Jedna z najwazniejszych operacji na liczbach jest rozktad dowolnej liczby naturalnej na
czynniki liczb pierwszych. Rozktad liczb na czynniki pierwsze podajemy na podstawie fun-
damentalnego twierdzenia arytmetyki.

Bezposrednia konsekwencja rozktadu liczb naturalnych na czynniki pierwsze jest wyznaczanie
najwiekszego wspodlnego dzielnika i najmniejszej wspolnej wielokrotnosci dwéch liczb natu-
ralnych. Jednym z optymalnych algorytméw wyznaczania namniejszego wspélnego dzielnika
dwéch liczb naturalnych jest algorytm Euklidesa.

6.2 Liczby pierwsze
Opis liczb pierwszych nalezy zacza¢ od definicji

Defimnicja 6.1 Liczbe naturalng p > 1 nazywamy liczbg pierwszg, jezeli ma doktadnie dwa
dzielniki, to jest liczbe 1 i samg siebie p. To znaczy, ze liczby pierwsze dzielg sie tylko przez
liczbe 1 i przez siebie samg. Kazda inna liczba nazywa sie liczbg ztoZong.

Zauwazmy, ze liczba natyralna p = 1 nie jest liczba pierwsza, gdyz ma tylko jeden dzielnik
sama siebie i nie jest wigksza od 1. Liczba 0 rowniez nie jest pierwsza bo jest mniejsza od 1
i ma wiecej dzielnikéw niz dwa, gdyz podzielona przez dowolna liczbe naturalna, rézna od
zera, daje wynik 0. Wymienmy kilka kolejnych liczb pierwszych

2,3,5,7,11,13,17, 19, 23,29, 31, 37,41, 43,47, 51,53, 59, 61...;

7 defincji wynika w sposéb oczywisty, ze liczba p = 2 jest jedyna liczba pierwsza parzysta.
Zbioér liczb pierwszych nie jest zamknigty na operacje arytmetyczne. Wystarczy podac
kontr-przyktad.
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Przyklad 6.1 Mianowicie liczby m = 7 i n = 3 sq pierwsze jednak ich suma m 4+ n =
7+ 3 = 10 nie jest liczbg pierwszq i roznica 7 — 3 = 4 teZ nie jest liczbg pierwszqg. Podobnie
iloczyn tych liczb m xn = 3 %7 = 21 nie jest liczbg pierwszg.

Jedna z najwazniejszych wilasnosci liczb pierwszych opisana jest w nastepujacym twierdze-
niu:

Twierdzenie 6.1 Fundamentalne Twierdzenie Arytmetyki. Kazdg liczbe naturalng
m > 1 mozna przedstawic jako iloczyn liczb pierwszych. Taki rozktad jest jedyny.
Inaczej, jezeli n jest liczbg naturalng to istniejg liczby pierwsze

P1,DP2,P3 s Pk

takie, ze

N =Dp1*pP2*pP3g*-- *pPg

6.3 Rozklad liczb na czynniki pierwsze

Z fundamentalnego twierdzenia arytmetyki wiemy, ze kazda liczba naturalna m > 1 ma
postaé iloczynu liczb pierwszych. Inaczej, kazda liczba naturalna dodatnia m > 1 rozktada
si¢ na iloczyn liczb pierwszych. Co wigcej taki rozktad jest jedyny. To znaczy, ze nie ma
innego rozkladu tej liczby naturalnej m na czynniki liczb pierwszych, oprécz czynnikow
P1,P2,P3; -+, Pk-

Sposob rozkladu liczby naturalnej m na czynniki pierwsze jest prosty. Mianowicie, dzielimy
liczbg m przez kolejne liczby pierwsze. Wtedy liczba m réwna sig iloczynowi jej dzielnikéw.

Przyklad 6.2 Roztoz liczbe m = 1638 na czynniki pierwsze.

postuzymy sie schematem
1638
819
273
91
13
1

Liczba 1638 rozktada si¢ na czynniki 2,3,3,7,13
To znaczy

— g W W N

1638 =23 %3713

Przyklad 6.3 Roztoz liczbe m=5040 na czynniki pierwsze. postuzymy sie schematem

5040 |
2520 |
1260 |
630 |
315 |
105 |
21 |
7 |
1 |

N W Ut WNNDN N
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Liczba m = 5040 rozklada si¢ na czynniki 2,2, 2,2, 3,5, 3,7, To znaczy
5040 = 2% 2% 2% 2% 3 x5+ 3% T.

Zauwazmy, ze siedem silnia réwna sie
T'=1%2%3%x4x5x6x%7=>5040

W tym rozktadzie mamy liczby zlozone

6.3.1 Zadania

Zadanie 6.1 Wiadomo, ze liczba naturalna m jest podzielna przez 5 i rozktada sie na 3
czynniki pierwsze, ktorych suma rowna jest 14. ZnajdZ liczbe m.

Zadanie 6.2 Wiadomo, ze liczba naturalna m jest podzielna przez 5 i rozktada sie na 3
czynniki pierwsze, ktorych suma rowna jest 19. ZnajdZ wszystkie wartosci liczby m.

6.4 Najwiekszy wspélny dzielnik NW N(a,b)

Najwigkszy wspdlny dzielnik dwdéch liczb naturalnych a i b oznaczamy symbolem NW D(a, b).
Jednym ze sposobéw obliczania najwigkszego wspdlnego dzielnika danych liczb naturalnych
a i b jest rozklad tych liczb na czynniki liczb pierwszych.

Rozpatrzmy kilka przyktadéw obliczania NW D(a,b) przez rozklad liczb a i b na czynniki
pierwsze

Przyklad 6.4 Niech liczba a = 21 i liczba b = 57. Rozktad tych liczb jest oczywisty
21=3%714 57=3%19

Wspolnym dzielnikiem liczb 21 i 57 jest liczba 3, poniewaz liczba 3 dzieli liczbe 21 i dzieli
liczbe 57. Poza tym te liczba nie magjg innych wspolnych dzielnikow.
Skgd mamy warto$é najwiekszego wspdlnego dzielnika

NWD(21,57) =3
obliczzanie nai wigkszego wspdlnego dzielnika
Przyklad 6.5 Znajdz najwiekszy wspdlny dzielnik liczb 42 i 78.

Rozkladamy obie liczby na czynniki pierwsze wedlug schematu

42 | 2 8 | 2
21 | 3, 39 | 3
707, 13 | 13
1| 1|

Skad mamy rozklad liczb

42=2%3x7 1 78=2%3x13
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Wsp6lnymi czynnikami tych liczb sa 2 i 3. Dlatego najwiekszym wspdélnym dzielnikiem liczb
421 78 jest liczba NW D(42,78) = 2% 3 = 6.

Rozpatrzy jeszcze jeden przyklad wyznaczania najwigkszego wspélnego dzielnika przez rozklad
liczb na czynniki pierwsze

Przyklad 6.6 Znajdz najwickszy wspdlny dzielnik liczby 210 4 liczby 231

210 | 2, 231 | 3
105 | 3, T
35 | 7, 11 ] 11
5] 5 1|
1|

Skad mamy rozklad liczb 210 ¢ 231 na czynniki pierwsze
210=2%3xT+b ¢ 231 =3*7x11
Wsp6lnymi dzielnikami tyczh liczb sa 3 i 7. Dlatego najwiekszym wspdlnym dzielnikiem
liczb 210 1 231 jest NW D(210,231) = 3% 7 = 21.
Sprawdzamy, ze liczba NW D(210,231) = 21 dzieli liczby 210 ¢ 231

210:21 =10 oraz 231:21=11.

6.5 Algorytm Euklidesa (325-265 B.C.)

Najbardziej efektywnym sposobem wyznaczania najwigkszego wspoélnego dzielnika jest algo-
rytm Euklidesa. Juz w starozytnych czasach w Egipcie, Euklides grecki nauczyciel i dziekan
wydzialu nauk przyrodniczych na Uniwersytecie w Aleksandrii podal algorytm na znaj-
dowanie najwigkszego wspélnego dzielnika dwéch liczb naturalnych.

Algorytm Euklidesa. Najwigkszy wspolny dziellnik danych liczby naturalne a ¢ b obliczamy
tworzac wyrazy ciagu malejacego

TQO>T1>T22>T4> .00.2>Tp_1>Thp

reszt z dzielenia startujac z danych liczb ro = a i 1 = b, wedlug algorytmu

To T2

— = k2+—, T2:T0—I€2*T1
1 1
™ 73
— = k3+—, T3:T1—I€*3*T2
T2 T2
T2 Tq
— = ks+ —, rg =19 —kg*rs
3 3
Tn—1 Tn+1
- knJrl + y Thm = Tp—2— kn *Tp—1
Tn Tn

Zauwazmy, ze powyzsze wzory mozemy zapisa¢ jednym wzorem rekurencyjnym

Ti:Ti,Q—ki*Tifl, dla ro = a, leb, i:2,3,...,n, (61)
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gdzie wspétezynniki k; = F| I ]. i=2,3,4, ... sa liczbami catkowitymi.!

Tit1
Ostatni wyraz ciagu r, # 0 rézny od zera jest najwiekszym wspélnym dzielnikiem dwéch
pierwszych wyrazéw ro = a, r1 = b. To wynika ze wzoru rekurencyjnego (6.1). piszemy

rn = NWD(ro,m1) = NWD(a,b).

Mianowicie, jezeli liczba d = NW D(rg,r1) jest dzielnikiem liczb rg i r1 to d jest réwniez
dzielnikiem kazdej nastepnej reszty

To =70 — k2 * 71
Ti =Ti—2 — kl *Ti—1, dla 1= 2, 3, ey 1y
Konstrukcje ciggu rekurencyjnego (6.1) wijasnimy na przykltadach.

Przyklad 6.7 Znajdz najwickszy wspolny dzielnik liczb ro = 78 i r1 = 42 stosujgc algo-
rytm Euklidesa (6.1)

1. Dzielimy liczbe wieksza ry = 78 przez liczbe mniejsza 1 = 48, wedlug schematu

L ro = ko *r1 472
T1 T1

78 36

B3 78 1x42 436
n -t R=h i

i obliczamy reszte ro z dzielenia liczb rg = 78 przez r; = 42
ro =70 — ko x 11,

7o =78 — 1 %42 = 36.

. o . S
gdzie ko = E[—] oznacza calosé z dzielenia rg przez ry.
1
2

2. Podstawiamy ry = 42, ro = 36 i dzielimy liczbe wieksza 1 = 42 przez liczbe mniejsza
ro = 36, wedlug schematu

T T

—1:k3+—3, r1 =k3xro+rs
T2 T2

42 6

— =14+ — ks=1 42=1%36+6.
36 3g T h s

i obliczamy reszte z dzielenia liczb ry = 421 ro = 36
r3 =71 — k3 * 72,
r=42— 36 =6.

3. Podstawiamy ro = 36, r3 = 6 i dzielimy liczbe wieksza ro = 36 przez liczbe mniejsza
rg = 6, wedlug schematu

N R Ty =kaxT3 474
T3 T3

36

=6 ki =6, 36=06%6+0.

LE[x] entire of # oznacza calo$é z liczby x
2E[x] entire of = oznacza caloé z liczby x
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i obliczamy reszte z dzielenia liczb ro = 421 rg = 36
T4 = 36 — k4 * 6,
ry = 36— 36 =0.

Najwiekszym wspdlnym dzielnikiem liczb 78 i 42 jest ostatnia reszta r3 = 6 rézna od zera,
piszemy NWD(78,36) =6

Rozpatrzymy nastepny przyklad zastosowania algorytmu Euklidesa (6.1).

Przyklad 6.8 Znajdz najwiekszy wspdlny dzielnik liczb ro = 1995 ¢ rp = 1190

Podobnie jak w poprzednim przykladzie znajdujemmy najwiekszy wspdlny dzielnik liczb
1995 ¢ 1190 stosujac wzér (6.1)

ro=1995, r; ==1190 | resztar

Ti90 =+ 190 | 72 =805
%%?:1+§% | r3 =385
%:24—% | r4=35

%:11 | r5=0

Najwiekszym wspdlnym dzielnikiem liczb 1995 i 1190 jest ostatnia reszta r4 = 35 rézna od
zera, piszemy NW D(1995,1190) = 35

Przyklad 6.9 Znajdz najwiekszy wspdlny dzielnik liczb 975 4 690

Rozwiazanie.
Stosujemy wyzej opisany algorytm Euklidesa obliczajmy kolejne reszty

a=rg=975, b=r; =690 | reszta
975 285
975 _ 28 — 975 — 1% 690 = 285
690 ' 690 |2 *
690 120
6% _, , 120 — 690 — 2 % 285 — 12
=24 | 5= 690 — 2% 285 = 120
285 45
e | 4= 285 2%120 =45
120 30
E_2-|-R |  r5=120—2%45=230
4 1
H_ | re=45—1%30=15
30 30
Ny | ~0
5 e

Ciag reszt
975 > 690 > 285 > 120 > 45 > 30 > 15
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jest malejacy.
Ostatnia reszta z dzielenia rg = 15 rézna od zera jest najwigkszym wspdlnym dzielnikiem
liczb naturalnych ro = 9751 1 = 690, piszemy

NW D(975,690) = 15.

Zauwazmy, ze najwiekszy wspolny dzielnik r¢ = 15 liczb 19 = 975 1 71 = 690 jest rowniez
najwiekszym wspélnym dzielnikiem wszystkich poprzednich reszt

ro = 285, r3 =120, r4 =45, r5 =30, 76 = 15

6.6 Najmniejsza wspdolna wielokrotnosé

Wspélna wielokrotnoscia danych liczb naturalnych a, b jest trzecia liczba naturalna m, ktéra
jest podzielna przez obie liczby a i b. Wspdlnych wielokrotnosci danych liczb naturalnych
jest nieskoriczenie wiele. Wybieramy najmniesza z nich NWW (a, b).

Przyklad 6.1 Dla liczb 5 i 7 wspolng wielokrotnoscig jest ich iloczyn 5 x 7 = 35. Liczba
35 jest najmniejsza wspolna wielokrotnosé liczb 5 i 7. Inng wspolng wielokrotnosé liczb 5 i
7 jest liczba 70, poniewaz 70 : 5 =24 ¢ 70 : 7= 10. Jednak 70 nie jest najmnieszg wspdlng
wielokrotnoscig liczb 5 1 7.

Najmniejsza wspélna wielokrotnosé¢ znajdujemy przez rozklad danych liczb na czynniki liczb
pierwszych.

Przyklad 6.2 Znajd? najmniejszg wspolng wielokrotnsé liczb 120 4 210
Rozktadamy liczby 120 ¢ 210 na czynniki pierwsze wedtug schematu

120 2, 210| 2
60| 2, 105| 3
30| 2, 35 5
15 3, 71 7

5 5 1
1 |

Wybieramy wspdlne czynniki w rozkladzie obu liczb : 2,31 5. Nastepnie do iloczynu 23 %5
dopisujemy czynniki, ktére nie sa wspdlne, to znaczy, ze nie powtarzaja sie. To sa czynniki
4i7.

Najmniejsza wspolng wielokrotnosca jest iloczyn tych czynnikow

NWW (120,210) = 2 %3 5% 4% 7 = 1540

Przyklad 6.3 Znajd? najmniejszg wspdlng wielokrotnsé liczb 910 4 1155
Rozktadamy liczby 910 ¢ 1190 na czynniki pierwsze wedtug schematu

910| 2, 1155| 3

455 5, 385 5
91| 7, 77
13| 13, 1] 11
1 1

3Prosty algorytm Euklidesa z powodzeniem stosuje si¢ w systemach obliczeniowych. Jest latwy w pisaniu
kodu w jezykach programowania.
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Wybieramy wspdlne czynniki w rozkladzie obu liczb : 51 7. Nastgpnie do iloczynu 5 * 7
dopisujemy czynniki, ktére nie sa wspdlne, to znaczy, ze nie powtarzaja sie. To sa czynniki
2,3,11,13.

Najmniejsza wspolng wielokrotnodcig jest iloczyn tych czynnikéw

NWW(910,1155) = 5% 7% 2% 3% 11 x 13 = 30030

6.6.1 Zadania

Zadanie 6.3 Roztoz na czynniki pierwsze liczby

(1) a=184, (44) b = 6006
Zadanie 6.4 Podaj reszte z dzielenia liczby a przez liczbe b
(i) a=254 i b=15
(ii) b=2672 ¢ b=2848

Zadanie 6.5 ZnajdZ najwiekszy wspolny dzielnik liczb 425 4 125
(i) przez rozktad tych liczb na czynniki pierwsze.
(ii) stosujgc algorytm Euklidesa
Zadanie 6.6 ZnajdZ najwiekszy wspolny dzielnik liczb stosujgc algorytm Euklidesa

2672 ¢ 848
Zadanie 6.7 Sprawd, czy dla p = 3 liczby p + 10 i p 4 20 sq liczbami pierwszymi.

Udowodni, zZe dla dowolej liczby pierwszej p # 3 przynajmniej jedna z liczb p+ 10 lub p + 20
jest liczb ztozong

Zadanie 6.8 Wyznacz wszystkie rozwigzania uktadu rownan

rz+y =180

NWD(z,y) =30
4
Zadanie 6.9 ZnajdZ najmniejszg wspdolng wielokrorng liczb

() 9 i 12

(i) 36 4 48
Zadanie 6.10 ZnajdZ najmniejszqg wspolng wielokrotnosé liczb
(i) 25 i 235
(i) 512 i 5040

Zadanie 6.11 Czy liczbe pierwszg p mozna przedstawié w postaci tloczynu ToZnicy i sumy
liczb naturalnych a i b

p=(a—">b)(a+Db)

Zadanie 6.12 Wykaz, ze dla kazdej liczby pierwszej p > 4 liczba (p—1)(p+1) jest podzialna
przez 24

ANWD(x,y) oznacza najwickszy wspdlny dzielnik liczby x i liczby y.
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Reprezentacja liczb w
arytmetyce komputerowej

Btgd bezwzgledny zaokrgglenia liczby x

€z = — fl(x)
Blgd wzgledny zaokrgglenia liczby x # 0
x — fl(z)

5, = LA
X

Blgd procentowy zaokrgglenia liczby x # 0
— fl
6% = z — fl(z) + 100%
x

Liczby w zapisie dziesietnym zokraglamy na r-tym miejscu po przecinku w ten sposéb, ze
do cyfry na r-tym miejscu dodajemy 1, jezeli nastepna cyfra jest wigksza lub rowna 5. W
przeciwnym razie cyfry po r-ym miejscu kasujemy. Operacje zaokraglania liczby x na r-tym
miejscu oznaczamy symbolem fI,.(z).

22
Przyklad 7.1 Zaokrgglamy liczbe - na 5-tym miejscu po przecinku.

Utamek zwykty - zamieniamy na utamek dziesietny dzielgce licznik 22 przez mianownik 7.

? =22:7 = 3.142857142857...;

W wyniku dzielenia otrzymalismy liczbe 3.142857142857...; o nieskoriczonej ilosci cyfr po
przecinku. Na pigtym miejscu po przecinku tej liczby jest cyfra r = 5, a nastepna cyfra 7.
Zatem zaokrgglamy liczbe 3.142857142857...; dodajgc 1 do cyfry 5.

22
- = 3.142857142857...;  fl5(3.142857142857...) = 3.14286, r =5.

7.1 Zapis liczb w zmiennym przecinku

W obliczeniach z uzyciem systemoéw obliczeniowych i komputeréw liczby zapisywane s w
postaci zmiennego przecinka

x = Fml0°  m — mantysa, c¢— cecha,
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gdzie mantysa m = O.cjas...qr ; a1 #0; 0 < «a; <9; 4 =1,2,....,r Najbardziej
znaczaca cyfra oy # 0 jest zawsze rézna od zera.
Dlatego mantysa m spelnia nastepujaca nieréwnosé

0.1<m<1.

Jasne, ze liczba x moze mie¢ dokladng zmienno przecinkowa reprezentacje w komputerze,
jezeli jej mantysa ma skonczong liczbe cyfr.

Na przyklad % ma dokladng reprezentacje gdyz jej mantysa m = 0.25 i cecha ¢ = 0.
Natomiast, mantysa liczby

1
-=0.333...
3

ma nieskonczenie wiele cyfr m = 0.333..., i nie ma dokladnej reprezentacji komputerowe;j.
Kazda liczbe, nawet z mantysa o nieskonczonej ilosci cyfr, mozna zapisa¢ w komputerze z
doktadnoécia bledu zaokraglenia mantysy na r-tym miejscu po przecinku.

€ <0.000...05=0.510"".
——

r—zer

Na przyklad
r = % = 0.66666666666...

zaokraglone na 4-tym miejscu po przecinku (r = 4)
fl(xz) = 0.6667
ma blad zaokraglen e = 0.0000333...

Zadanie 7.1 Zaokrgglij nastepujgce liczby na 3-cim miejscu po przecinku i zapisz je w
zmiennym przecinku

7.2 Blad bezwzgledny zaokraglenia.
Bladem bezwzgednym zaokraglenia liczby x zapisanej w zmiennym przecinku
x = Fml0°

nazywamy roznice
€x = flo(x) —x

Ten blad spelnia nier6wnosé
| flr(x) -z |§ € 109,

gdzie e =0.510"".
Niech
x =0.57367864 % 102, r =3.

Wtedy biad bezwgledny liczby x na trzecim miejscu po przecinkuzledny zaokaglenia wynosi

| £13(0.57367864 x 10?) — 0.57367864 % 10? |=

1
| 0.574 % 10% — 0.57367864  10% |= 0.032136 < 5 1073 % 10 = 0.05.
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7.3 Blad wzgledny zaokraglenia.

Blad wzgledny zaokraglenia danej liczby x = Fm 10° # 0 okreslamy jak nastepuje:

DR LIC) ek )
X

Poniewaz mantysa m > 0.1, dlatego blad wzgledny spelnia nieréwnosc¢
lr(x) —
LG e AT )
x
Rzeczywiscie,
fl-(Fm10°) £ m10° 0.5% 107"

Iy (z) —
flr(z) — = = I<| |< 10e = 0.5% 107",

1
Tak wiec blad wzgledny nie przewyzsza komputerowej precyzji 6 = 5101*’”.
1
Na przyklad, jezeli r = 3 wtedy komputerowa precyzja § = 510*2

Obliczamy wzgledny blad zaokraglenia liczby = = 0.57367864 * 102

fi(z) — x 0.032136
= = 0.0005601742.
== G5mers60s 107

Blad wzgledny bezposrednio zwiazany jest z bledem procentowym.
Mianowicie, blad procentowy wyraza sie wzorem
z) —
% = 100 8,% = 1002 “ T oay w20,

€T

Obliczamy btad procentowy liczby x = 0.57367864 * 102
p% = 100% 0.5601742% 103%
= 0.5601742 % 1071% = 0.05601742%.

Wiyniki obliczeri w komputerze czterech operacji arytmetycznych « + y, xzy i dzielenia x/y
na ogdt sa niedoktadne, nawet jezeli x i y sa dane w postaci doktadnej.

Na przyklad, niech x = 0.11111111 i y = 0.55555555 beda 8-cyfrowymi liczbami w 8-mio
cyfrowej arytmetyce w komputerze, (8-cyfr mantysa).

Zauwazamy, ze wynik mnozenia ry = 0.617283938271605 * 10~ ma 15-sto cyfrowa mantyse
m = 0.617283938271605, ktora automatycznie jest zaokraglona w komputerze do 8 cyfrowej
mantysy 0.61728394 z bledem bezwzglednym

€z = 0.000000018271605.

Przyklad 7.2 Oblicz wartosé wyrazenia arytmetycznego w 3 i 5-cio cyfrowej arytmetyce
liczb w zapisie zmienno - przecinkowym

25 % 3% +45.27
2
45

Podaj: bled bezwzgledny, bted wzgledny i blgd procentowy obliczer.
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Rozwiazanie. Najpierw, napiszemy liczby

1 1 2
=2-,y=3-, 2=45.27, t =4—
&€ 3’ y 7’ z 3 9

w postaci zmiennego przecinka, potem zaokraglimy do miejsca r = 3 i podamy blad zaokraglenia
kazdej z danych liczb

x =21 =233333..; fls(z) = 0.233 %10, €, = 0.003333....;

y =31 =3.142857142857..;  fla(y) = 0.314% 10, ¢, = 0.0042857....;
45.27 fls(z) = 0.453% 102, ¢, = 0.07

t =42 =4.222222..; Fls(t) = 0.422 %10, ¢ = 0.00222....;

Dalej, stosujac reguly kolejnosci wykonywania operacji arytmetycznych, mnozenie, dzielenie,
dodawanie i odejmowanie, obliczmy warto$¢ wyrazenia w arytmetyce 3-cyfrowe;j:

Iloczyn = fl3(2 ) fls(3 ) fl3(2.33 % 3.14) = fl3(7.3162) = 7.32
Suma = fl3(7.32+ fl3(45.274)) = fl5(7.32 4+ 45.3) = fI3(52.62) = 52.6
Licznik = 52.6, Mianownik = 4.22,

Licznik 52.6

= fla((5) = fla(12.4645) = 12.5,

Mianownik

Odpowiedz: Wartos¢ wyrazenia artmetycznego obliczonego w 3 cyfrowej arytmetyce wynosi
12.5

Teraz obliczmy wartos¢ tego wyrazenia w 5-cio cyfrowej arytmetyce.

Mamy nastepujace dane:

x =21 =233333.. fls(x) = 0.23333% 10, €, = 0.00003333....;
y=3fls% = 3.142857142857...;  fl5(y) = 0.31429% 10, ¢, = 0.000042857....;
2 =45.27 fls(2) = 0.4527% 102, €. = 0.0

t =42 =4.222222..; fls(t) = 0.42222% 10, € = 0.0000222....;

Podobnie, obliczmy warto$¢ wyrazenia arytmetycznego w 5-cio cyfrowej arytmetyce

Tloczyn = fl5(2 ) fls(3 ) f15(2.3333 % 3.1429) = fi3(7.333333) = 7.3333
Suma = fl15(7.3333 4 fI5(45.27)) = fl5(7.3333 + 45.27) = f15(52.6033) = 52.603
Licznik = 52.603, Mianownik = 4.2222,

Licznik 52.603
Vianowmik = fl5(4'2222) = fl3(12.4587) = 12.459

Odpowiedz: Wartos¢ wyrazenia artmetycznego obliczonego wyzej w 5-cio cyfrowej aryt-
metyce wynosi 12.459
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Doktadna warto$¢ wyrazenia réwna jes 12.457

Blad bezwgledny zaokraglen w 3 cyfrowej arytmetyce 12.5 — 12.457 = 0.043.

.04
Blad wzgledny zaokraglen w 3 cyfrowej arytmetyce = 1020—4537 = 0.00345; 0.345%
Bladu bezwgledny zaokraglen w 5 cyfrowej arytmetyce 12.459 — 12.457 = 0.002.
, . 0.002
Blad wzgledny zaokraglen w 5 cyfrowej arytmetyce = T 0.00016; 0.016%.

7.4 Zadania
Zadanie 7.2 Zaokrqglij liczbe % na 3-cim miejscu po przecinku.
Zadanie 7.3 Oblicz blgd bezwzgledny liczby 1.5782 zaokrgglonej na trzecim mmiejscu po
przecinku.
Zadanie 7.4 Oblicz blgd bezwzgledny sumy liczb
3,1415 41,5782
zaokrgglonej na trzecim mmiejscu po przecinku.
Zadanie 7.5 Oblicz btgd bezwzgledny iloczynu liczb
3,1415% 1,5782
zaokrgglonej na trzecim mmiejscu po przecinku.
Zadanie 7.6 Oblicz blgd wzgledny iloczynu liczb
3,1415 % 1,5782
zaokrgglonej na trzecim mmiejscu po przecinku.

Zadanie 7.7 Oblicz btgd wzgledny ilorazu liczb

3,1415
1,5782

zaokrgglonej na trzecim mmiejscu po przecinku.

Zadanie 7.8 Oblicz blgd wzgledny wyrazenia arytmetycznego
1,5782+ 3,1415 = 0.72345

zaokrgglonego na trzeim mmiejscu po przecinku.

Zadanie 7.9 Oblicz blgd wzgledny wyrazenia arytmetyczngo
1 1

.
273 6

zaokrgglonego na trzeim mmiejscu po przecinku.
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Zadanie 7.10 Oblicz blgd wzgledny wyraZenia arytmetyczngo
1.5782 4+ !
' 3

zaokrgglonego na trzeim mmiejscu po przecinku.

Zadanie 7.11 Oblicz warto$¢ nastepujgcego wyrazenia arytmetycznego w 3 i 5-cio cyfrowej
arytmetyce w zapisie zmiennego przecinka

2 3
75 %92 +125.97
37
9

+ 256.75

Podaj bledy: bezwzgledny, wzgledny i procentowy obliczen.



Chapter 8

Cechy podzielnosci liczb
catkowitych. Kongruencja i
operacja modulo

W tym rozdziale rozpatrujemy cechy podzielnosci i operacje dzielenia liczb calkowitych z
reszta orzaz przystawanie modulo liczb catkowitych.

8.1 Cechy podzielnosci liczb naturalnych

Cechy podzielnosci liczb naturalnych wynikaja z ogdlnego zapisu liczb w systemie pozy-
cyjnym. Przypominamy, ze w systemie dziesietnym, kazda liczbe n-cyfrowa piszemy w
postaci

m = Qp-10np_2°""Q1QQ

= Qp1*10" N a0 % 10772 4 - 4y * 101 4 g * 100

gdzie
Op—1,0n—2," ", 01, Q9

sa cyframi liczby m o wartosciach 0,1, 2,3,4,5,6,7,8,9.
Teraz sformulujemy i podamy prosty dowdd cechy podzielnodci liczby naturalnej przez 3

8.1.1 Cecha podzielnosci liczby naturalnej przez 3 lub przez 9

Liczba naturalna
m = 0p-10np—2- - 01QQ

jest podzielna przez 3 wtedy i tylko wtedy, jezeli jej suma cyfr
Qp_1+ap_2+---+ar+a

dzieli sie¢ przez 3. Ponadto, jezeli suma cyfr liczby m dzieli si¢ przez 9 to liczba m réwniez
jest podzielna przez 9.
Zanim podamy dowdd tej cechy, rozpatrzmy kilka przykladéw jej zastosowania.

Przyklad 8.1 Niech m = 24. Cyfry tej liczby dwucyfrowej, gdyn =2, to oy =2 i ag =4
Suma cyfr
a1 +ayg=2+4=6

67
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jest podzielna przez 3. Zatem liczba 24 jest podzielna przez 3. Rzeczywiscie

24:3=8
Przyklad 8.2 Niech m = 381. Cyfry tej liczby trzycyfrowej, gdy n =3, to aa =3, a1 =8
1 Qg = 1

Suma cyfr
a2+a1+a0:3+8+1:12

jest podzielna przez 3, bo 12 : 3 = 4. Zatem liczba 381 jest podzielna przez 3. Rzeczywiscie
381:3 =127

Przyklad 8.3 Niech m = 5673. Cyfry tej liczby czterocyfrowejn = 4, to a3 = 5, a9 =

6, Q1 = 71 Qg = 3

Suma cyfr
astoaxt+ar+ay=5+64+7+3=21

jest podzielna przez 3. Zatem liczba 5673 jest podzielna przez 3. Rzeczywiscie

5673 : 3 = 1891
Przyklad 8.4 Niech m = 48537. Clytry tej liczby pieciocyfrowej, gdy n = 5, to g =
4, 013:8, 012:5, a3:7ia0:7

Suma cyfr
a3+a2+a1+a0:4+8+5+3+7:27

jest podzielna przez 3 i przez 9. Zatem liczba 5673 jest podzielna przez 3 i przez 9. Rzeczywiscie
48537 : 3 =16177, i 48537 :9 = 5393
Dowdéd w przypadku liczb dwucyfrowych. Liczby dwucyfrowe piszemy w postaci
arag = a1 x 10 4+ ag
Proste przeksztalcenie wyrazenia algebraicznego
a1*x10+ap = a1*x(94+1)+ o
= 9xa+ (a1 + ag)
zawiera skladnik 9% ay z czynnikiem 9, zatem ten skladnik jest podzielny przez 3 i przez 9.
Skad wnioskujemy, ze:

Jezeli suma cyfr a1 + ag jest podzielny przez 3 lub 9 to liczba m jest podzielna przez 3 lub
przez 9.

Prawda jest réwniez zdanie odwrotne:

Jezeli liczba m jest podzielna przez 3 lub przez 9 to suma jej cyfr a1 + o tez jest podzielna
przez 3 lub przez 9.

Te dwa zdania wyrazamy jednym zdaniem:

Liczba m jest podzielna przez 3 lub przez 9 wtedy i tylko wtedy, jezeli jej suma cyfr a1 + g
jest podzielna przez 3 lub przez 9.
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Ta relacja w obie strony nazywa si¢ warunkiem koniecznym i dostatecznym. W tym przykladzie
jest to warunek konieczny i dostateczny podzielnosci liczby m przez 3 lub przez 9.

Powtérzmy dowdd cechy podzielnosci liczby m przez 3 lub przez 9 dla liczb trzycyfrowych.
Dowdéd w przypadku liczb trzycyfrowych. Liczby trzycfrowe piszemy w postaci
asarag = aig x 100 4+ aq * 10 + o
Proste przeksztalcenie wyrazenia algebraicznego
ag*x 1004+ a1 *10+ap = ae*(99+1)+a1*x(9+1)+ap
= 99%xay+9*xag + (a2 + a1 + o)

zawiera skladnik 99 * as + 9 1 , ktory dzieli sie przez 3 i przez 9. Zatem, jezeli suma cyfr
a9 + a1 + ag jest podzielna przez 3 lub przez 9 to liczba m jest réwniez podzielna przez 3
lub przez 9.

Skad wnioskujemy, ze:

Jezeli suma cyfr as + a1 + ag jest podzielny przez 3 lub 9 to liczba m jest podzielna przez 3
lub przez 9.

Prawda jest réwniez zdanie odwrotne:

Jezeli liczba m jest podzielna przez 3 lub przez 9 to suma jej cyfr as + a1 + ap tez jest
podzielna przez 3 lub przez 9.

Te dwa zdania wyrazamy jednym zdaniem:

Liczba m jest podzielna przez 3 lub przez 9 wtedy i tylko wtedy, jezeli jej suma cyfr aa+a1+aq
jest podzielna przez 3 lub przez 9.

Ta relacja w obie strony nazywa si¢ warunkiem koniecznym i dostatecznym podzielnosci
liczby m przez 3 lub przez 9.

W przypadku ogdlnym dla liczb n-cyfrowych, schemat dowodu cechy podzielnosci liczby m
przez 3 lub przez 9 jest taki sam jak dla liczb dwucyfrowych i trzycyfrowych.

Zadanie 8.1 Wiadomo, Ze liczba naturalna m jest podzielna przez 3 i ma doktadnie 4 dziel-
niki, ktorych suma rowna jest 128. ZnajdZ tg liczbe.

8.1.2 Cecha podzielnosci liczby naturalnej przez 5

Bardzo tatwo rozpozna¢ liczbe m, ktora jest podzielna przez 5. Mianowicie, zachodzi
nastepujace cecha podzielnosci:

Liczba naturalna m jest podzielna przez 5 wtedy i tylko wtedy, jezeli jej cyfry jednosci sq 0
lub 5.

Przyklad 8.5 Latwo sprawdzamy, Ze liczby
30, 35, 40, 45, 150, 155, 2360, 2365, 9800, 9855, 9890, 9995

sq podzielne przez b
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Dowdéd cechy podzielnosci liczby m przez 5.

Dla uproszczenia , rozpatrzymy liczbe trzycyfrowa m, ktora ma cyfre jednosci 0 lub 5.
Wtedy liczba m rozklada sie na iloczyn liczby 5 przez liczbe naturala. Mianowicie, mamy

m = as*x10%+aq x10
= 5x(2xayx10+2xaq)

lub
m = asx1024+a;*x10+5

= 5x(2xayx104+2xa;+1)

W przypadku ogélnym liczb n-cyfrowych, ktére maja cyfre jednosci 0 lub 5 mamy réwniez
rozklad liczby m na iloczyn liczby 5 przez liczbg naturalna. Mianowicie

m = no1*10" 14, 9x10""2 4 - 4y * 101
= 5k (2%, 1% 10" 2+ 2%y 0% 10" 3 4 -+ 2% )

lub
m = 5% (2% 1%10" 24 2%, 2% 10" 3+ +2xan + aq)

Zatem w przypadku ogdlnym liczba m, ktéra ma cyfre jednosci 0 lub 5 jest podzielna przez
5.

8.2 Dzielenie liczb przez 3 z reszta
Kazda liczba naturalna m dzieli si¢ przez 3 lub dzieli sie przez 3 z reszta 1 lub z reszta 2.
Wtedy piszemy
m = 3k gdy liczba m jest podzielna przez 3
m=3k+1 gdy liczba m jest podzielna przez 3, reszta 1
m=3k+2 gdy liczcha m jest podzielna przez 3, reszta 2
Przyklad 8.6 Wykonaj dzielenie z resztq
o 33:3=11 reszta 0O
o 34:3=11 reszta 1
e 35:3=11 reszta 2

lub piszemy dzielenie w postaci utamkow

° g:11 reszta 0
3
4 1
° %:11—1—5 reszta 1
2
° 3—35:11—1-5 reszta 2

Przyklad 8.7 Suma trzech kolejnych liczb podzielnych przez 3 rowna jest 36. Jakie to
liczby?
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Rozwiazanie.
Napiszmy trzy kolejne liczby podzielne przez 3
3k—3, 3k, 3k+3

Suma tych liczb
3k —3)+3k+ (3k+3) =9k =36

Skad obliczamy
9k =36, k=36:9 k=4

Odpowiedz:
3k—3=3%x4—-3=09,

3k=3x4=12,
3k+3=3%44+1=15
Kolejnymi liczbami podzelnymi przez 3, ktérych suma réowna jest 36 sa liczby

9, 12 15

Sprawdzenie:
9+12+4+15 =36

Zadanie 8.2 Suma trzech kolejnych liczb podzielnych przez 3 réwna jest 72. Jakie to liczby?

Zadanie 8.3 Suma trzech kolejnych liczb podzielnych przez 3 z resztq 1 jest rowna 75. Jakie
to liczby?

Zadanie 8.4 Suma trzech kolejnych liczb podzielnych przez 3 z resztg 2 jest réwna 105.
Jakie to liczby?

8.3 Dzielenie liczb przez 5 z reszta

Kazda liczba naturalna m dzieli sie przez 5 lub dzieli sie przez 5 z reszta 1 lub reszta 2 lub
z reszta 3 lub z reszta 4.

Wtedy piszemy
m = bk gdy liczba m jest podzielna przez 5
m=>5k+1 gdy liczbka m jest podzielna przez 5, reszta 1
m=>5k+2 gdy liczha m jest podzielna przez b, reszta 2
m=>5k+3 gdy liczcha m jest podzielna przez b, reszta 3

m=>5k+4 gdy liczha m jest podzielna przez 5, reszta 4

Przyklad 8.8 Wykonaj dzielenie przez 5 z resztg
e 35:5=7 reszta 0
e 36:5=7 reszta 1



o 37:5=7T reszta 2
o 38:5=7 reszta 3
o 39:5=7 reszta 4

lub piszemy dzielenie w postaci utamkow

° §:7 reszta 0
5

1

° 35—6:7—1-5 reszta 1
2

° 3—57:7—1-5 reszta 2
2

° %:7—1—5 reszta 3
2

° ?:7—1—5 reszta 4

Przyklad 8.9 Suma trzech kolejnych liczb podzielnych przez 5 réwna jest 45.

liczby?

Napiszmy trzy kolejne liczby podzielne przez 3
Rozwiazanie.

5k — 5, 5k, 5k+5

Suma tych liczb
(5k —5) + 5k + (5k + 5) = 15k = 45

Skad obliczamy k
16k =45, k=45:15 k=3.

Skad obliczmy trzy kolejne liczby podzielne przez 5, ktérych suma réwna jest 45
5k —5=5%3—5 =10,
5k =5%3 =15,
5k+5=5+%3+5=20
Kolejnymi liczbami podzelnymi przez 5, ktérych suma rowna jest 45 sa liczby
10, 15 20

Sprawdzenie:
10+ 15420 =45

72

Jakie to

Zadanie 8.5 Suma trzech kolejnych liczb podzielnych przez b z resztg 1 rowna jest 108.

Jakie to liczby?
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Rozwiazanie.
Napiszmy trzy kolejne liczby podzielne przez 5 z reszta 1

5k+1, 5k+6, 5k+11

Suma tych liczb
(5k+1) 4+ (5k + 6) + (bk + 11) = 15k + 18 = 108

Skad obliczamy k
15k =90, k£=90:15 k=6.

Skad obliczmy trzy kolejne liczby podzielne przez 5, ktérych suma réwna jest 108
S5k+1=5=5%6+1+31,
5k4+6=5%64 6= 36,
5k+11=5%64+11=41

Kolejnymi liczbami podzelnymi przez 5, ktérych suma rowna jest 45 sa liczby

31, 36 41

Sprawdzenie:
31436+ 41 =108

Zadanie 8.6 Suma dwdch kolejnych liczb podzielnych przez b z resztq 2 jest rowna 79. Jakie
to liczby?

Zadanie 8.7 Suma trzech kolejnych liczb podzielnych przez b z resztg 3 jest réwna 129.
Jakie to liczby?

8.3.1 Ogdblna zasada podzielnosci liczb naturalnych z reszta

Kazda liczba naturalna m dzieli si¢ przez liczbe naturalna n z reszta r. W wyniku dzielenia
otrzymujemy catosé k i reszte r.!
Wtedy piszemy

m:n=k+r:n lub m
n

:k—i—Z lub m=kxn+r
n

gdzie reszta r =0,1,2,...,n— 1.
7 operacja dzielenia liczb z reszta laczymy funkcje calosé z dzielenia liczby m przez liczbe
n.

e Funkcje caloéé z dzielenia, piszemy E[m : n] lub [m : n].

Wartosé funkeji cato$é z E[m : n] jest réwna najwickszej liczbie calkowitej nie wiekszej od
m:n.

Zatem
Em:n]<m:n lub [m:n] <m:n.

Na przyklad niech m =37, n =2>5.

1Wartoéé funkcji calogé z ulamka =z, piszemy E[z] < z lub [z] < =z, réwna jest najwickszej liczbie
calokowitej nie wigkszej od x. Po angielsku Entire of x
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Najwieksza liczba calkowita z tego dzielenia, ale nie wigksza od

2
37:5="T-
5
jest réwna 7, piszemy
37 37
E[37:5]:E[€]:7 lub [37:5]:[?]:7.
Przyklad 8.10 Oblicz calosé i reszte z dzielenia liczb m = 36, 37, 38, 39 40, 41 przez

n = 6.
Podaj wzor ogolny dzielenia liczby m przez 6 z resztq r.

Rozwiazanie:

36:6 =6, liczba 36 jest podzielna przez 6, z reszta 0, calosck =6, r=20.

37:6 =6, liczba 37 dzieli sie przez 6, zreszta 1, calosck =6, r =1,
38:6 =6, liczba 38 dzieli sie przez 6, z reszta 2, calosck =6, r =2,
39:6 =6, liczba 37 dzieli sie przez 6, z reszta 3, calosc k =6, r =3,
40: 6 =6, liczba 40 dzieli sie przez 6, zreszta 4, calosck =6, r =4,
41:6 =6, liczba 31 dzieli sie przez 6, z reszta b, calosck =6, r =05,

Wzér ogdlny dzielenia liczby naturalnej m przez 6
m=06k+r, z reszta r=20,1,2,3,4,5.

Zadanie 8.8 Stosujgc wzor ogolny dzielenia liczby naturalnej m przez 6 wykaz, ze kazda
liczba pierwsza p > 3 dzieli sie przez 6 z resztq 1 lub z resztq 5 i wtedy mozna napisac liczbe
p w postact

p=6xk+1, lub p==6k—1 dla pewnej liczby naturalnej k

Napisz liczbe pierwszg p = 7901 w postaci p = 6k — 1

8.4 Liczby przystajace. Kongruencja

Liczby catkowite a i b nazywamy przystajace wzgledem liczby naturalnej n, jezeli ich réznica
a — b jest podzielna przez n.
Na przyklad

13 przystaje do 3 wzgledem 2, bo (13—3):2=5,¢gdy a=13,b=3, n=2.
47 przystaje do 35 wzgledem 6, bo (47— 35): 6 = 2,
gdy a =47, b =35, n=6.

Liczby przytajace sa rowniez nazywane liczbami kogruentnymi. Kongruencja po polsku
znaczy przystawanie.
Karol Gauss (1777-1835) wprowadzil oznaczenia operacji modulo.

a = b(modn)



75

Powyzszy zapis rozumiemy, ze réznica a — b jest podzielna przez n. To znaczy
a—b=kxn

dla pewnej liczby catkowitej k.

Przyklad 8.11 Piszqc

27 = 13(mod 7)

rozumiemy, ze roznica 27 — 13 jest podzielna przez 7. W tym przyktadzie
(27—-13):7=2.

To znaczy, ze 27 — 13 =2x%T7 dla k = 2.

Przykiad 8.12 Ktére kongruencje sg prawdziwe?

7=3(mod2), prawdziwa bo (7-3):2=4:2=2

12 =5(mod 4), nieprawdziwabo (12 —5) =7, 7 niepodzielne przez 4
Z operacja dzielenia z reszta laczymy operacje modulo r = m(mod n)
e Mianowicie, reszte z dzielenia liczby m przez lliczbe n, piszemy

r = m(mod n).
Wiynik operacji modulo jest réwna réznicy
r=(m:n—Em:n])xn

lub

r=(m:n—[m:n])*n.

Na przyklad niech
m =37, n=>.

Wtedy obliczamy wartos¢ funkcji modulo, reszte z tego dzielenia
2
T:(37:5—E[37:5D*5:(75—7)*5:2
lub

r:(37:5—[37:5])*5:(7%—7)*5:2.

8.4.1 Dzielenie modulo

Wynik dzielenia modulo liczby calkowitej a przez liczbe naturala n réwny jest reszcie z
dzielenia liczby a przez liczbe n. Zatem, operacja modulo okreslona jest na zbiorze liczb
catkowitych.



Na przyklad
r=25(mod 15) =10 bo 25:15=1+reszta 10

r=37(mod12) =1 bo 37:12=34reszta 1

Dokladny wylnik

%71_’_&
15 15
37 1
ICREART)

Wtedy piszemy
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r =a(modn), 25(modl5)=10, gdy a=25n=15 reszta r=10
r=a(modn), 37(modl2)=1, g¢gdy a=37, n=12, reszta r=1
Przyklad 8.13 Oblicz 47(mod 5)
Obliczamy
47:5 =9+ reszta 2,
Odpowiedz:
47(mod 5) = 2
Przyklad 8.14 Oblicz 123(mod 7)
Obliczamy
123 : 7 =17+ reszta 4,
Odpowiedz:
123(mod 7) =4
8.4.2 'Wilasnosci operacji modulo
Relacja = kongruencji, to znaczy, ze relacja przystawania liczb calkowitych ma podobne

wlasnosci jak zwykla relacja réwnosci =.
Witasnosci kongruencji:

1. Wilasnos$é symetrii
a=b(modn) to b=a(modn)
Przyklad 8.15 Rozpatrzmy kongruencje

15 = 3(mod 4) t 3= 15(mod 4)

Liczby a = 151 b = 3 sg przystajace wzgledem liczby naturalnej n = 4 w obu przy-

padkach, gdyz
(15-3):4=3 i (3—15):4=-3
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2. Operacja przechodnia

Jezeli liczby a1 b oraz liczby b i c¢ sa przystajace wzgledem liczby n, to znaczy, ze
prawdziwe sa kongruencje

a=b((modn) i b= c(modn)
to liczby a i c tez sa przystajace wzgledem liczby n, to znaczy
a = ¢(mod n)
Przyklad 8.16 Rozpatrzmy dwie kongruencje
20 = 12(mod 4) i 12 =28(mod 4),

Liczby a = 20 1 ¢ = 8 tez sa przystajace wzgledem liczby 4, gdyz
20 = 8(mod 4)

poniewaz réznica

(20-8):4=23

3. Dodawanie i mnozenie kongruencji
Jezeli prawdziwe sa kongruencje

a=b(modn) i ¢=d(modn)
to suma stron tych kongruencji
a+c=0b+d(modn)
oraz iloczyn stron tych kongruencji
a-c=b-dmod n)

Przyklad 8.17 Rozpatrzmy dwie kongruencje

15 = 3(mod 4) i 3=15(mod4)

a=15 b=3 c¢=3, d=15, n=414

Liczby 15 i 3 sa przystaja wzgledem liczby naturalnej n = 4, gdyz réznice
(15-3):4=3 i (3—15):4=-3
sa podzielne przez 4.

4. Mnozenie kongruencji przez siebie. Potega Kongruencji. Mnozac stronami

kongruencje
a = b(mod n)}

przez siebie, otrzymamy
a®> = b*(mod n), a® =0b3(mod n)}, ...,a" = b (mod n)}

dla kazdego naturalnego k =1,2,3,...;
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Przyklad 8.18 Rozpatrzmy kongruencje

9 = 3(mod 2)

Mnozac ta kongruencje stronami, otrzymamy
92 = 3%(mod 2), 9% = 33(mod 2), ...,9* = 3¥(mod 2)

lub
81 = 9(mod 2), 729 = 27(mod 2), ..., 9" = 3¥(mod 2)

Sprawdzamy:
(81 -9):2=136, (729—27):2=702:2=351,...,(9"-3%):2=):2

Réznica 9% — 3% jest réwniez podzielna przez 2. Poniewaz cyfry jednosci liczb 9% i 3*
sa nieparzyste. Mianowicie cyfry jednodci liczby 9% to

1,9,1,9,1,9, ...

i cyfry jednodci liczby 3% to
9,7,1,9,7,1,...5

Roéznica liczba nieparzystych jest liczba parzysta.
Zatem liczba 9% — 3% jest podzielna przez 2 dla kazdej liczby naturalnej k = 1,2,3, ...;
Skad wynika, ze liczby 9% i 3% sa przystajace modulo 2.

Przyklad 8.19 Liczba
43125 _ 33125

jest podzielna przez 10.
Podnoszac stronami kongruencje

43 = 33(mod 10)
do potegi 125, otrzymamy kongruencje

43'% = 33'25(mod 10)

Liczba 43 przystaje do liczby 33 modulo 10, gdyz

(43-33):10=1
Dlatego liczba 4325 przestaje do liczby 3325 modulo 10. Zatem réznica

43125 _ 33125

jest podzielna przez 10. Zastosowanie kongruencji do sprawdzania podzielnosci liczb wskazemy
w nastepujacym przykladzie

Przyklad 8.20 Stosujgc wlasnosé mnozenia stronami kongruencji, potegowania stronams
kongruencyji, udowodnij, ze liczba 7?4 + 1 jest podzielna przez 10.
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Rozwiazanie. Zauwazmy, ze liczba 72+1 = 50 jest podzielna przez 10. To znaczy, ze liczba
49 przystaje do liczby —1 modulo 10. Zatem mamy

49 = —1(mod 10)
Podnoszac stronami tg kongruencje do potegi 123, otrzymamy
4923 = (=1)'23(mod 10),  7*5 = (=1)'?3(mod 10)

Skad, wynika kongruencja
7246 = _1(mod 10)

ktéra oznacza, ze liczba 7246 4- 1 jest podzielna przez 10.

8.4.3 Rozwiazywanie kongruencji liniowych

Ogdlna postaé¢ kongruencji liniowej
a*x = b(mod n)

w ktérej w spdlezynniki a, b sa liczbami catkowitymi, natomiast n jest liczba naturalna.
Rozwiazac kongruencje liniowa znaczy wyznaczy¢ wszystkie liczby catkowite, ktére podstaw-
ione na x spelniaja kongruencje, to znaczy, ze mamy znalezé wszystkie wartosci catkowite
dla ktérych liczba a * x przystaje do liczby b modulo n.

W pierwszej kolejnosci powstaje pytanie, podobnie jak w przypadku innych réwnan, ile
rozwigzan ma kongruencja liniowa? Z géry mozna spodziewaé sig¢ ze kongruencja liniowa
moze miec¢

e jedno rozwiazanie, to znaczy istnieje tylko jedna liczba catkowita xo przystajaca do
liczby b modulo n taka, ze
a* xg = b(mod n)

e wigcej niz jedno rozwigzanie, to znaczy, ze istnieje skonczona lub nawet nieskonczona
ilos¢ liczb catkowitych x1, xo, ..., x, ...; ktore sa przystajace do liczby b modulo n. To
Znaczy

a x xx = b(mod n), k=1,2,3,..;

e kongruencja nie ma rozwiazan.

Istnienie rozwigzania kongruencji liniowej wynika z nastgpujacego warunku koniecznego i
wystarczajacego:

Warunek konieczny i wystarczajacy
Kongruencja liniowa
a*x = b(mod n)

ma rozwigzanie wtedy i tylko wtedy, gdy najwickszy wspdlny dzielnik NW D(a,n) liczb a in
jest dzielnikiem liczby b, to znaczy NW D(a,b)|n.

Po przeczytaniu powyzszego wstepu o kongruencjach liniowych nalezy rozwiazac¢ kilka kon-
gruencji, azeby poznac sposoby ich rozwigzywania.

Przyklad 8.21 Rozwigi kongruencje

2+ x = 3(mod 2)



Sprawdzamy warunek konieczny i wystarczajacy istnienia rozwigzania tej kongruencji.

Najwiekszy wspdlny dzielnik
NWD(a,b) = NWD(2,2) =2

nie dzieli wspélczynnika
b=3, 2t 3.

Zatem nie istnieje rozwigzanie tej kongruencji.

Przyklad 8.22 Rozwigi kongruencje

3xx = 6(mod9)

Sprawdzamy warunek konieczny i wystarczajacy istnienia rozwigzania tej kongruencji.

Najwiegkszy wspdlny dzielnik
NWD(a,b) = NWD(3,9) =3

dzieli wspotczynnik
b=6, 3|6, 6:3=2.

Zatem istnieje rozwigzanie tej kongruencji.
Z definicji kongruencji mamy réwnanie

3xx—6=9xk,
dla wszystkich wartosci catkowitych k= 0,41, £2,4£3,...;
Skad obliczamy rozwiazanie
3xx=9%k+6, zp=3xk+2, dla k=0,£1,£2,43,..;
Sprawdzenie:
Podstwiajac rozwiazanie
zp=3%k+2, dla k=0,4£1,£2,43,..;

do kongruencji
3xx = 6(mod9)

otrzymamy

3% (3xk+2)=6(mod9),

Skad wynika tozsamosc¢
(9%k+6—-6):9=9xk, 9xk=9xk

dla kazdej catkowitej wartosci k = 0, +1, +2, £3,...;
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8.5 Zadania

Zadanie 8.9 Udowodnij, ze liczba naturalna dwuzyfrowa
m =« * 107 4+ ag
jest podzielna przez 7 wtedy @ tylko wtedy, gdy wyrazenie algebraiczne
3a1 + g
jest podzielne przez 7.
Zadanie 8.10 Udowodnij, ze liczba naturalna trzycyfrowa
m = a210% + 0110 + ag
jest podzielna przez 7 wtedy @ tylko wtedy, gdy wyrazenie algebraiczne
32as + 3a1 + Qg
jest podzielne przez 7.
Zadanie 8.11 Ogdlinie udowodnij, ze liczba naturalna (n+1)-cyfrowa
m=apl0™ 4+ an_110""" + .. 4 a310% + a1 * 10 4+ ayg
jest podzielna przez 7 wtedy @ tylko wtedy, gdy wyrazenie algebraiczne
3y, + 3" tap_1 + ... + 3%as + 301 + ao

jest podzielne przez 7.

Zadanie 8.12 Podaj warunek konieczny i dostateczny na to, zeby liczba czterocyfroawa
m = 013103 + 012102 + 01110 + (67}
byta podzielna przez 11.

Zadanie 8.13 Wykonaj dzielenie z resztq

e 52:3
e 331:3
e 830:3

Zadanie 8.14 Suma trzech kolejnych liczb podzielnych przez 3 z resztg 1 rowna jest 376.
Jakie to liczby?

Zadanie 8.15 Suma trzech kolejnych liczb podzielnych przez b z resztg 2 rowna jest 167.
Jakie to liczby?
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Zadanie 8.16 Oblicz cato$c i reszte z dzielenia liczb
m = 136, 237, 3381

przezn = 1.

Podaj wzor ogolny dzielenia liczby m przez 7 z resztg r.

Zadanie 8.17 Oblicz
(i) 8+ 10(mod 4)
(ii) 24 5(mod 7)
(ii)  12(mod 7) + 13(mod 8)
Zadanie 8.18 Dodaj, odejmij i pomnoz stronami kongruencje. Sprawdz wyniki tych oper-
acyi.
18 = 10(mod 4)

oraz

25 = 17(mod 4)
Zadanie 8.19 ZnajdZ najwiekszy wspdlny dzielnik liczb
a=105 ¢ b=091.
Zadanie 8.20 ZnajdZ najwiekszy wspdlny dzielnik liczb

a=1995 ¢ b=1190



Chapter 9

Ogodlna zasada tworzenia
systemow liczbowych

pozycyjnych

Ogolna forma systemow pozycyjnych liczbowych ma posta¢ wielomianu

Q1" pop™ 2+ agp® 4 aip + o, (9.1)

gdzie liczbe naturalna p > 2 nazywamy podstawa systemu liczbowego. Natomiast wspoétczynniki
Qp—1, Qp—2, ..., A1, g Nazywamy cyframi systemu liczbowego.
Cyfry systemu liczbowego o podstawie p sa to liczby jednocyfrowe:

0,1,2,3,...,p— 1

z ktérych tworzone sa liczby systemu. Ilos¢ cyfr zalezy od podstawy p i jest rowna p.
Samag liczbe = piszemy umownie jako nastepujacy ciag cyfr

T = (An—10n—2...0100),

W przypadku systemu dziesigtnego, ktéry jest powszechnie uzywany, nawias z indeksem p
opuszczamy
(O[nflo[n72. . .O[loéo)p.

Wtedy liczbe dziesietna piszemy bez nawiasu
T = 0p-_10npn_2...0010Q

jako ciag wspélezynnikéw wielomianu (9.1).

9.1 Przyklady zapisu liczb w réznych systemach
Przyklad 9.1 W systemie dziesietnym p = 10. Liczbe
r=2%10+4=24

piszemy bez nawiasu r = 24
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Przyklad 9.2 W systemie binarnym p = 2. Tg¢ samg liczbe
r=1%2" 41523+ 0522 4+0%2" 4 0%2° = (11000)y = 24
piszemy z nawiasem x = (11000)2
Przyklad 9.3 W systemie oktalnym p = 8. Tg¢ samg liczbe
xr=3+%8+0=(30)g =24

piszemy z nawiasem x = (30)s

9.2 System dziesietny. Decymalny

W systemie dziesigtnym podstawa p = 10. Wtedy dla p = 10 wielomian jest wyrazeniem
algebraicznym

an,ll()"fl + an,210"72 + -+ allO + apg = ap—-1a0p—2...a4100

wspolczynniki tego wyrazenia sa cyframi ag, o, asg, ..., a,—1, gdzie

g oznacza iloéé jednosci liczby x, wspétezynnik przy potedze p? = 10°.
o oznacza iloéé dziesiatek liczby x, wspélezynnik przy potedze p' = 10.
oy oznacza iloéé setek liczby x, wspélezynnik przy potedze p? = 102.

a3 oznacza iloéé tysiecy liczby x, wspétezynnik przy potedze p3 = 103.
a1 oznacza wspélezynnik przy potedze p” ' = 10"L.

Najbardziej znaczaca cyfra jest zawsze wigksza lub réwna 1, ap—1 > 1.
Cyfry systemu dziesigtnego

0,1,2,3,4,5,6,7,8,9

sa jednoczesnie liczbami jednocyfrowymi
Liczby dwucyfrowe piszemy w ogdlnej postaci

aj * 10+CLO = a1ap

gdzie cyfra dziesigtek jest wspdlczynnik ai, cyfra jednosci jest wspoélczynnik ag

Przyklad 9.4 Liczba xr =57
5*10+7= 57

Tutaj cyfra dziesigtek an =5, cyfra jednosci agp = 7.
Liczby trzycyfrowe piszemy w ogdlnej postaci
as * 100 + a1 * 10 + ag = asaiag
lub w zapisie potegi podstawy 10, piszemy
100 =10 % 10 = 10%, 10' =10, 10°=1
wtedy liczba trzycyfrowa ma ogdlna postaé

as * 10% 4+ a1 x 10' + ag * 10° = a2a1ag
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Przyklad 9.5 =z = 348
3%x1024+4%10" + 8% 10° = 348

gdzie cyfra setek az = 3, cyfra dziesigtek a1 =4, cyfra jednosci ag = 8.

Ogodlnie liczby n-cyfrowe w pozycyjnym systemie dziesigtnym piszemy jako wspdlczynniki
wyrazenia algebraicznego

an,ll()"*l + an,210"72 + an,gl()"*?’ + -+ a110 + apg = Ap—-10np—2...a100

gdzie potega podstawy 10

10t = 10
—
1
102 = 10 %10
—
2
103 =10 % 10 % 10

10" 3 =10%10% 10 % ... * 10

n—3
10"2=10%10% 10 % ... * 10
n—2
10" =10%10% 10 % ... * 10
n—1

oznacza liczbe 10 pomnozong przez siebie 1 raz lub 2 razy lub 3 razy itd...n — 3 razy n — 2
razy i n — 1 razy. Liczba 10 pomnozona przez siebie zero razy 100 = 1.

Przyklad 9.6 Niech n =4, wtedy liczbe czterocyfrowa x="7831.
piszemy w postaci wyrazenia arytmetycznego

7%1000+ 8 %100+ 3 10+ 1 = 7831
lub w symbolach potegi 1000 = 10 % 10 % 10 = 103, 100 = 10 10 = 102, 10 =10, 10° =1
7%10° +8%10° + 3% 10" + 1 = 7831

gdzie cyfra tysiecy as =7, cyfra setek ax = 8, cyfra dziesigtek a1 = 3, cyfra jednosci ag = 1.

9.2.1 Operacje arytmetyczne w systemie dziesietnym

Operacje arytmetyczne w systemie dziesigtnym wykonujemy w kolejnosci:
mnozenie, dzielenie, dodawanie i odejmowanie.
Ten porzadek wykonywania operacji arytmetycznych moze by¢ zmieniony przez nawiasy.

Przyklad 9.7 Oblicz wartosé wyrazenia arytmetycznego z nawiasami

W wyrazeniach arytmetycznych z nawiasami w pierwszej kolejnosci obliczamy watosé wyrazen
w nawiasach. W tym przyktadzie w pierszej kolejnosci wykonujemy dodawanie i odejowanie
w nawiasach, a nastepnie mnozenie i dzielenie

(12+13)x4—(15—-6):3 = 25%x4—-9:3
——— ~———
25 9

= 100-3=97
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9.2.2 Dodawanie pisemne liczb naturalnych

Tabliczka dodawania liczb systemie pozycyjnym dziesigtnym

Dodawanie dziesietne |
+ |1 |2 |3 |4 5 |6 |7 |8 |9 |10
1 2 |13 |4 |5 6 [7 |8 |9 [10]11
2 3 |4 |5 |6 7 |8 |9 |10 |11 |12
3 4 |5 |6 |7 8 |9 |10 11 |12 | 13
4 5 |6 |7 |8 9 (10|11 |12 |13 |14
5 6 |7 |8 |9 1011 (1213|1415
6 7 |8 |9 |10} 11|12 |13 |14 | 15| 16
7 8 |9 | 10|11 || 12 |13 |14 | 15| 16 | 17
8 9 |10 11|12 13|14 |15 |16 | 17| 18
9 10|11 (12| 13|14 | 15|16 | 17|18 |19
1011 |12 (13| 14 || 15|16 | 17 | 18 | 19 | 20

Dodawanie dziesietne pisemne wyjasniamy na przyktadach
Przyklad 9.8 Wykonaj dodawanie liczb dziesietnych 25 i 13

Wykonujemy pisemne dodawanie 25 4 13, stosujac tabliczke dziesietnego dodawania.

25
+ 13

38
Przyklad 9.9 Wykonaj dodawanie liczb dziesietnych 89 i 56
Wykonujemy pisemne dodawanie 25 4 13, stosujac tabliczke dziesietnego dodawania.

89
+ 56

145

9.2.3 Odejmowanie pisemne liczb catkowitych

Tabliczka odejmowania w systemie pozycyjnym dziesietnym

Odejmowanie dziesietne |
-1 2] 3| 4| 56| 78| 9|10
140(-1(-2]|-3|-4|-5|-6|-7T]-8]-9
2011 0|-1}{-2-3|-4|-bH]|-6]|-7]|-8
3Ift2y1|0(-1)-2|-3|-4]|-5|-6]-7
413 2(1|0}-1|-2|-3|-4|-5]|-6
5(4) 3| 2| 1) 0-1|-2|-3|-4|-5
65| 4| 3|2 1|0(-1|-2|-3|-+4
7TIN6 5 4 3 2| 10]-1|-2]-3
8IW71 6| 5| 4 3| 21| 0-1]-2
9118 7| 6| 5| 4] 3| 2| 1| 0] -1
1019 8| 7| 6] 54| 3] 2| 1] 0
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Odejmowanie pisemne wyjasniamy na przykladach
Przyklad 9.10 Wykonaj odejmowanie liczb dziesietnych 29 4 18
Wykonujemy pisemne oktalne odejmowanie 29 — 18, stosujac tabliczke odejmowania.

29
— 18

11

Przyklad 9.11 Wykonaj odejmowanie liczb dziesietnych 629 ¢ 354

Wykonujemy pisemne oktalne odejmowanie 629 — 354, stosujac tabliczke odejmowania.

629
- 354

275

9.2.4 Mnozenie pisemne liczb naturalnych

Tabliczka mnozenia w systemie pozycyjnym dziesietnym

Mnozenie dziesigtne |

* 1 2 3 4 5 6 7 8 9 10

11 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10112 |14 | 16 | 18 | 20
3 3 6 9 12 | 15 | 18 | 21 | 24 | 27 | 30
4 4 8 12116 || 20 | 24 | 28 | 32 | 36 | 40
5 5 10 | 15 | 20 || 25 | 30 | 35 | 40 | 45 | 50
6 6 12 | 18 | 24 || 30 | 36 | 42 | 48 | 54 | 60
7 7 14 | 21 | 28 || 35 | 42 [ 49 | 56 | 63 | 70
8 8 16 | 24 | 32 || 40 | 48 | 56 | 64 | 72 | 80
9 9 18 | 27 | 36 || 45 | 54 [ 63 | 72 | 81 | 90
10 {| 10 | 20 | 30 | 40 {| 50 | 60 | 70 | 80 | 90 | 100

Mnozenie pisemne wyjasniamy na przykladach
Przyklad 9.12 Wykonaj mnozenie pisemne liczb dziesietnych 49 i 15

Wykonujemy pisemne binarne mnozenie 49 * 15, stosujac tabliczke mnozenia i dodawania.

Przyklad 9.13 Wykonaj mnozenie pisemne liczb dziesietnych 345 i 123
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Wykonujemy pisemne mnozenie 345 x 123, stosujac tabliczke mnozenia i dodawania.

345
x 123

1035
690
345

42435

9.2.5 Dzielenie pisemne liczb naturalnych
Drzielenie pisemne wyjasniamy na przykladach
Przyklad 9.14 Wykonaj dzielenie pisemne liczb dziesietnych 345 podziel przez 5

Wykonujemy pisemne dzielenie 345 : 5.

345:5

Przyklad 9.15 Wykonaj pisemne dzielenie liczb dziesietnych 1659 przez 21
Wykonujemy pisemne dzielenie 1659 : 21.
79

1659 : 21
—147

189
189

9.3 Wilasnosci liczb parzystych i nieparzystych dziesietnych

9.3.1 Liczby parzyste dziesietne.
Whtasnosci liczb parzystych:

1. Liczby parzyste maja cyfry jednosci 0 lub 2 lub 4 lub 6 lub 8.
Na przktad liczby
120, 132, 134, 156, 178

maja odpowiednio cyfry jednosci

0,2, 4, 6, 8



Liczby parzyste sa podzielne przez 2, zatem maja ogdlna postac

n=2xk, dla k=0,1,2,3,..;

Na przyklad

k=0, n=2%0=0,

., n=2x1=2
. n=2%2=4,

k=8, n=2x8=16,
k=26, n=2x26=52

Suma, réznica i iloczyn liczb parzystych jest liczba parzysta

Na przyklad:

a=38, b=06,

a+b=846=14, a—-b=8—-6=2, axb=8%6=48

9.3.2 Liczby nieparzyste dziesietne

Witasnosci liczb nieparzystych:

1.

Liczby nieparzyste maja cyfry jednosci 1 lub 3 lub 5 lub 7 lub 9.

Na przktad liczby

121, 133, 135, 157, 179

maja odpowiednio cyfry jednosci

1,3,5 7,9

Liczby nieparzyste maja ogélna postac
n=2xk+1, lubn=2xk—1,
Na przyklad

k=0, n=2x04+1=1, lub
k=1, n=2x141=23, lub
k=2, n=2x241=25, lub
k=8 n=2x8+1=17, lub
k=26, n=2%26+1=53 lub

Tloczyn liczb nieparzystych jest liczba nieparzysta

Na przyklad:

dla k=0,1,2,3,...

n=2x0—-1=-1
n=2x1-1=1
n=2%x2-1=3

n=2x8—-1=15
n=2%26—-1=051

5x7 =35, T7x11=77, 9%15=105

Suma lub réznica dwdéch liczb nieparzystych jest liczba parzysta. Podaj przyklad.

89

Natomiast suma lub réznica liczby nieparzystej i liczby parzystej jest liczba nieparzysta.

Podaj przyktad.
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9.3.3 Przyklady
Zadanie 9.1 Suma trzech kolejnych liczb nieparzystych réowna jest 51. ZnajdZ te liczby.

Rozwiazanie:
Kolejne liczby nieparzyste to

2n+1, 2n+3, 2n-+5.

Ich suma
@2n+1)+(2n+3)+ (2n+5)=6n+9 =51

Obliczamy n:
6n+9=>51, 6n=42, n=42:6=7
Obliczmy trzy kolejne liczby parzyste
2n+1=2%x74+1=15, 2n+3=2x74+3=17, 2n+5=2x7+5=19.

Sprawdzenie:
154+17+19 =51

Zadanie 9.2 Suma pieciu kolejnych liczb parzystych réwna jest 200. Znajdz te liczby.

Rozwiazanie:
Kolejne liczby parzyste to
2n—4, 2n—2, 2n, 2n+2, 2n+4.

Ich suma
Cn—4)+(2n—-2)+2n+ (2n+2+ (2n+4) = 10n = 200

Obliczamy n:
10n =200, n=200:10=20
Obliczmy pie¢ kolejnych liczb parzystych

M —4=2%20—4=36, 2n—2=2%20—2=238, 2n=2x%20=40,
M+2=2%20+2=142, 2n+4=2%20+4=44.

Sprawdzenie:
36 4 38 + 40 4 42 + 44 = 200.

Zadanie 9.3 Suma czterech kolejnych liczb nieparzystych rowna jest 160. Znajdz te liczby.

Rozwiazanie:
Kolejne cztery liczby nieparzyste to

2n—3, 2n—1, 2n+1 2n+4 3.

Ich suma
2n—-3)+(2n—-3)+(2n+ 1)+ (2n+ 3) = 8n = 160

Obliczamy n:

8n =160, to n =160:8 =20
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Obliczmy cztery kolejne liczby nieparzyste
2n—3=2%x20—-3=37, 2n—-1=2%20—-1= 39,
2n+1=2%x20+1=41, 2n+3=2%20+3 =43.

Sprawdzenie:
37439+ 41443 =160

9.3.4 Zadania
Zadanie 9.4 Wykonaj dodawanie pisemne liczb dziesietnych 1659 ¢ 421

Zadanie 9.5 Wykonaj odejmowanie pisemne liczb 1659 — 421
Zadanie 9.6 Wykonaj mnozenie pisemne liczb dziesietnych 345 % 21
Zadanie 9.7 Wykonaj dzielenie pisemne liczb dziesietnych 1722 przez 21

Zadanie 9.8 Dopisz do liczby czterocyfrowej 3058 cyfre 7 na pozycji pomiedzy jej cyfry albo
na poczgtku albo na koncu, zZeby otrzymac nagmniejszq liczbe pieciocyfrowg.

Zadanie 9.9 Ile roznych liczb dwucyfrowych parzystych mozna utworzyé z cyfr 1,2,3,4,5
Zadanie 9.10 Suma trzech kolejnych liczb nieparzystych rowna jest 51. znajdZ te liczby.
Zadanie 9.11 Udowodnij, ze wyrazenie algebraiczne
a>+(a+2)(a+2)+ (a+4)(a+4)+1
jest podzielne przez 12 dla kazdej liczby naturalnej i nieparzystej a.
Zadanie 9.12 Pomiedzy cyfry liczby 18519 wstaw cyfre 2, zeby otrzymaé
(a) liczbe najwickszg
(b) liczbe najmiejszg
Zadanie 9.13 Suma trzech kolejnych liczb parzystych rowna jest 36. znajdZ te liczby.
Zadanie 9.14 Suma czterech kolejnych liczb nieparzystych rowna jest 180. znajdzZ te liczby.
Zadanie 9.15 Suma pieciu kolejnych liczb parzystych rowna jest 180. znajdz te liczby.
Zadanie 9.16 Oblicz sume
Si5=1+24+3+44+5+6+7+84+9+10+11+12+134+14+15
uZywajgc jednej operacji mnozenia i jednej operacji dzielenia.
Zadanie 9.17 Oblicz sume
Sie=2+4+6+84+10+124+14+16

uZywagjgc jednei operacji mnozenia.
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Zadanie 9.18 Oblicz sume
So1=14+3+5+74+94+11+134+154+17+19+421
uZywagjgc jednej opercji mnozenia.

Zadanie 9.19 .

(a) Oblicz sume 20-stu wyrazéw ciggu

3,6,9,12,15,18,21,24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60.

(b) Podaj wzdr ogdlny na sume n-wyrazéw ciggu

3,6,9,12,15,18,21,- - -, 3n.

(c) Stosujgc ten wzdr oblicz sume 15-stu wyrazdw tego ciggu.
Zadanie 9.20 Udowodnij, ze wyrazenie algebraiczne
(a+1)(a+1)+4

jest podzielne przez 4 dla kazdej liczby parzystej a.

9.4 System dwdjkowy. Binarny

W systemie pozycyjnym binarnym podstawa p = 2 i odpowiedni wielomian jest wyrazeniem
algebraicznym

an-12"" '+ 22" 4+ +a12+ag = (@n—1Gn—2...a100)2
Mamy wtedy tylko dwie cyfry 0, 1. To znaczy, ze wspdtczynniki
Qp, 01, -+ 05 Ap—1

przyjmuja wartosci 0 lub 1.
Na przyklad, liczba binarna czterocyfrowa

T = agasaiag = 1010
ma
iloéé jednodci 2° =1, o = 0,
ilog¢ dwéjek 2%, ag =1,
ilog¢ kwadratéw dwdjek 22, ag =1
ilog¢ kubicznych dwdéjek 23, az = 1.
Zauwazmy, ze w systemie dziesigtnym podstawa jest liczba 10. W systemie dziesigtnym
piszemy liczby uzywajac 10-ciu cyfr

0,1,2,3,4,5,6,7,8,9.
Natomiast w systemie binarnym podstawa jest liczba 2. W binarnym systemie sa dwie cyfry

0,1,
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ktére sa jednoczesnie liczbami jednocyfowymi binarnymi.
Liczby binarne dwucyfrowe piszemy w ogélnej postaci

aq * 2+ ag = (alao)z

gdzie cyfra dwdjek jest wspoélczynnik aq, cyfra jednosci jest wspdlczynnik ag

Przyklad 9.16 Liczba binarna x = (11)2

15241 =(11)s.

Tytaj cyfrg dwdjek jest wspotczynnik a1 = 1, cyfra jednosci wspdotczynnik ag = 1. Wartosé
tej liczby binarnej w zapisie dziesietnym jest rowna 3.

Liczby binarne trzycyfrowe piszemy w ogélnej postaci
a9 * 22 + aq * 21 “+ ag * 20 = (a2a1a0)2

gdzie kolejne potegi dwdjki
2x2=22 2t=2 20=1.

Przyklad 9.17 Na przyktad liczbe binarng x = (101)2 w ogdlnym zapisie piszemy
a9 * 22 + ap * 21 + ag * 20 = (CLQCLlCLO)Q,
1522 40%2" +1%2° = (101)s,

gdzie cyfra binarna az = 1 jest wpdtczynnikiem przy 22,
cyfra binarna a1 = 0 jest wpdtczynnikiem przy 2,

cyfra binarna jednosci ag = 1.

Wartosé tej liczby binarnej

(101)g =1%22 402" +1x2"=5
w zapisie dziesietnym jest rowna 5.

Ogodlnie liczby n-cyfrowe w pozycyjnym systemie binarnym piszemy jako wspdlczynniki
wyrazenia algebraicznego

12"t + 22" 4+ 32" P 4+ a12 4+ ag = (an—1an-2...a1a0)2

gdzie kolejne potegi podstawy 2 sa:

2l = 9
<~
1
22 =92x%2
<~
2
23 =2%2%2
——
3

273 = 2% 2% 2% ... %2
T/
2772 = 2% 2% 2% ... %2
n—2
27l =24 2% 2% ... %2
n—1
Tutaj 2%, 22, 23 ... 2"~ ! oznacza liczbe 2 pomnozona przez siebie 1 raz lub 2 razy lub 3 razy
itd...n — 3 razy n — 2 razy i n — 1 razy. Liczba 2 pomnozona przez siebie zero razy 2° = 1.
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Przyklad 9.18 Niech n =5, wtedy liczbe binarng pieciocyfrowg x = (10101),.
piszemy w postact wyrazenia arytmetycznego

1520 4028 +0%22 + 02" +1%2° = (10001),

gdzie wpsdtczynnik przy 2* jest réwny ay = 1,

wpsdtczynnik przy 23 jest réwny az = 0,

wpsdtczynnik przy 22 jest réwny as = 0,

wpsdtczynnik przy 2 jest réwny ay = 0,

i wpsdtezynnik jednosci binarnych, przy 20 jest réwny ag = 1.

9.4.1 Przeliczanie liczb dziesietnym na liczby binarnym

Kazda liczbe dziesietna mozna przeliczy¢ na liczbe binarna. To przeliczanie jest proste. Mi-
anowicie, dzielimy liczbe dziesietna przez 2 i piszemy reszte. Nastepnie cze$¢ catkowita tego
dzielenia dzielimy przez 2 i piszemy reszte. Dalej kontynuujemy dzielenie czedci catkowitych
przez 2 zapisujac ich reszty tak dlugo az w wyniku dzielenia przez 2 otrzymamy cze$¢
catkowita rowna 0.

Liczbe binarng otrzymujemy piszac reszty z dzielenia w kolejnosci zaczynaja od ostatniej
reszty 1 koniczac na pierwszej reszcie jako cyfrze binarnej jednosci. Zobaczmy przeliczanie
liczb dziesigtnych na binarne na przykladach.

Przyklad 9.19 Przelicz liczbe dziesietng x = 9 na liczbe binarng
Wykonujemy dzielenia liczby dziesietnej x =9 przez 2

9
5:4—1—% resztarg=1 bo 9=2x4+1
4
5:2 resztari =0 bo 4=2%x2+0
2
5:1 resztara =0 bo 2=2%x1+0
1
2

:0—1-% resztars=1 bo 1=2x0+1

Piszqc reszty w kolejnosci od ostatniej do pierwszej otrzymamy liczbe binarng
(T3T2T1T0)2 = (1001)2

Powtorzmy kolejne dzielenia liczby 9 przez 2 wedtug innego stosowanego schematu

Liczba x/2 | Reszta z dzielenia przez 2
9/2=4 | 1
4/2 = 0
2/2 = 0
1/2 = 1

W wyniku otrzymujemy liczbe binarng piszac reszty w kolejnosci od ostatniej do pierwszej
(1001)2

Sprawdzenie:

(1001)g = 1523 + 022 +0%2" +1%2° =8+ 1=0.
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Przyklad 9.20 Przelicz liczbe dziesietng x = 15 na liczbe binarng

Wykonujemy dzielenia liczby dziesigtnej x = 15 przez 2

15
?:74—% resztarg=1 bo 15=2x7+1
7
523 resztari=1 bo 7T=2%x3+1
3
5:1 resztarga =1 bo 2=2x%x1+1
1
520—1—% resztar3=1 bo 1=2x0+1

Piszac reszty w kolejnosci od ostatniej do pierwszej otrzymamy liczbg binarng

(T3T2T1T0)2 = (1111)2

Powtérzmy kolejne dzielenia liczby 15 przez 2 wedlug stosowanego innego schematu

Liczba x/2 | Reszta z dzielenia przez 2
15/2 = 1
7/2 = |1
3/2=1 | 1
1/2 = 1

W wyniku otrzymujemy liczbe binarng piszac reszty w kolejnosci od ostatniej do pierwszej
(1111)2

Sprawdzenie:

(1111) =1 %22 4+ 1522 + 12 +1%2°=84+4+2+1=15.

9.4.2 Schemat ogdlny przeliczania liczb z sytemu dziesietnego na
binarny

Podobnie jak w wyzej w podanych przyktadach, w schemacie ogdélnym dzielimy liczbe
dziesietna x przez 2.

X To

— =k —.

g ~ 0ty
Skad

{E:2*I€0+T0

. 7 x . . .
gdzie ko oznacza calosé¢ z E [5] irg oznacza reszte z dzielenia x przez 2

Ogodlnie, piszemy

ks Ti+1
- = k’L )
2 1t
gdzie
ki = 2% k:l'Jrl +T1'+1, = 0, 1, 2, ey M.
dla

kiy1 = E[—l] i i1 reszta z dzielenia k; przez 2

2



96

9.4.3 Algorytm

Zapiszmy powyzsze kolejne dzielenia w nastepujacym schemacie

Liczba © Reszta
$/2:I€0—|—T0/2 To
k0/2:k1—|—7”1/2 T1

|
|
|
|
k1/2:k2—|—7”2/2 | T2
I
|
|

k2/2:k3—|—7”3/2 T3
km72/2 = kmfl + Tm71/2 Tm—1
km71/2: O+Tm/2 T'm

W wyniku otrzymujemy liczbe binarng piszac reszty w kolejnosci od ostatniej do pierwszej

T = (TmTm—1Tm—2---T170)2

9.4.4 Dowdd algorytmu

L Zauwazmy, ze wyzej podany algorytm prowadzi do przeliczenia liczby dziesigtnej x na
liczbe binarna.
7Z tego algorytmu znajdujemy

X = 2]€0—|—T0 | k0:2l€1—|—7"1
= ky+ 229 4 211 + 7 | ke =2ks 4y
= 2342354 229 + 271 470 | ks =2kt 74

e e | .........
= 2m Mk o+ 2" 2 o4+ 220+ 2r 410 | k2 = 2km—1 4 T
2k 4+ 2™ e 4+ 220+ 2 4 7 | km_1 = 2km +7m
|
|

= 2Mpr 42" e e 221 4+ 2m + 1 km = Tm
= (Tmefle,Q...TQTlTo)Q

Zastosujmy powyzszy algorytm przeliczajac liczbe dziesietna x = 256 na binarna.

Liczba x/2 | Reszta z dzielenia przez 2
256/2=128 | O
128/2=64 | 0
64/2 = 32 | 0
32/2=16 | 0
16/2=8 | 0
8/2 =4 0
4/2 =2 0
2/2 =1 0
1/2=0 |1

W wyniku otrzymujemy liczbe binarng piszac reszty z powyzszej tabeli w kolejnosci od
ostatniej do pierwszej
x = 256 = (100000000)2

Sprawdzenie:

(100000000)5 = 152840527+ 0% 26 + 0% 2° + 0% 24 + 0% 2% +0%22 + 02" + 0% 2° = 256.

1Dowéd mozna pominaé. Zanajomosé dowodu algorytmu jest nie konieczna w przeliczaniu
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9.4.5 Operacje arytmetyczne w systemie binarnym

Operacje arytmetyczne w systemie binarnym dodawanie, odejmowanie, mnozenie i dzie-
lenie wykonujemy w podobny sposéb jak w systemie dziesigtnym. Przypominamy, ze w
systemie dziesigtnym uzupelmiamy do podstawy p = 10 wykonujac operacje na liczbach
(cyfrach dziesigtnych,0,1,2,3,4,5,6,7,8,9.) Natomiast w systemie binarnym uzupeliamy
do podstawy p = 2 wykonujac operacje na liczbach (cyfrach binarnych 0, 1.

9.4.6 Binarne dodawanie

Tabliczka binarnego dodawania

+of t ]
0 0 1
1 1| (10)2
Binarna suma
0+0=0
O+1=1
1+40=1

1+1=(10)3 =12 40%2°

Dodawanie binarne wyjasniamy na przyktadach
Przyklad 9.21 Wykonaj dodawanie binarne liczb dziesietnych 5 i 3

Liczba dziesigtna 5 w zapisie binarnym 5 = (101)2, liczba dziesigtna 3 w zapisie binarnym
3= (11)a.
Wykonujemy pisemne binarne dodawanie 101+ 11, stosujac tabliczke binarnego dodawania.

101
+ 11

1000
Sprawdzenie:
5+3=(101)2 + (11)2 = (1000)2 = 1 %23 + 0% 22 + 0% 2' + 0% 2° = 8.
Przyklad 9.22 Wykonaj dodawanie binarne liczb dziesietnych 5 i 3
Liczba dziesigtna 5 w zapisie binarnym 5 = (101)2, liczba dziesigtna 3 w zapisie binarnym
%V;lfc}il?émy pisemne binarne dodawanie 101+ 11, stosujac tabliczke binarnego dodawania.

101
+ 11

1000

Sprawdzenie:

5+3=(101)2 4 (11)2 = (1000)2 = 1 %23 + 0% 22 + 0% 2' + 0% 2° = 8.
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9.4.7 Binarne odejmowanie

Tabliczka binarnego odejmowania

[-[o]t]

1] 0 ]-1

1 110
Binarna réznica

0—-0=0

0—1=-1

1-0=1

1-1=0

Odejmowanie binarne wyjasniamy na przyktadach
Przyklad 9.23 Wykonaj dodawanie binarne liczb dziesietnych 5 i 3

Liczba dziesigtna 5 w zapisie binarnym 5 = 101)s, liczba dziesigtna 3 w zapisie binarnym
3= (11)a.

Wykonujemy pisemne binarne odejmowanie (101)s — (11)2, stosujac tabliczke binarnego
odejmowania.

101
— 11

10

Sprawdzenie:
5—3=(101)2 — (11)2 = (10)g = 1% 2" +0%2° = 2.

9.4.8 Binarne mnozenie

Tabliczka binarnego mnozenia

0l 0|0

1] 011
Binarny iloczyn

0x0=0

0x1=0

1x0=0

1x1=1

Mnozenie binarne wyjasniamy na przyktadach
Przyklad 9.24 Wykonaj mnozenie binarne liczb dziesietnych 5 i 3

Liczba dziesigtna 5 w zapisie binarnym 5 = (101)2, liczba dziesigtna 3 w zapisie binarnym
3= (11)a.
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Wykonujemy pisemne binarne mnozenie (101)2%(11)2, stosujac tabliczke binarnego mnozenia
i dodawania.

101
* 11

101
101

1111

Sprawdzenie:

5%3=(101)2 % (11)g = (1111)y = 1% 23 + 1% 22 + 1% 2" 4 1%2° = 15.

9.4.9 Binarne dzielenie

Dzielenie binarne wyjasniamy na przyktadach
Przyklad 9.25 Wykonaj dzielenie binarne liczb dziesietnych 15 podziel przez 3

Liczba dziesigtna 5 w zapisie binarnym 15 = (1111)s, liczba dziesigtna 3 w zapisie binarnym
3= (11)a.

Wykonujemy pisemne binarne dzielenie (101)s : (11)2, stosujac tabliczke binarnego dzielenia
i dodawania.

1111 :11
11

=11
11

Sprawdzenie:

5:3=(101)g: (11)2 = (101)g = 1 %22 + 0+ 2" + 1% 2° = 5.

9.5 Liczby binarne parzyste i nieparzyste

Podobnie jak w systemie dziesigtnym, liczby binarne parzyste i nie parzyste poznajemy
po cyfrze jednosci. Mianowicie, jezeli cyfra jednosci liczby binarnej jest réwna 0 to liczba
binarna jest parzysta, w przeciwnym przypadku, jezeli cyfra jednosci liczby binarnej jest 1
to liczba binarna jest nieparzysta.

9.5.1 Liczby binarne parzyste

1. Liczby binarne parzyste maja cyfry jednosci 0.
Na przktad liczby binarne

10, 110, 1010, 110110, 111110110

maja cyfre jednosci 0, dlatego sa parzyste.
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2. Liczby binarne parzyste sa podzielne przez binarne 10, zatem maja ogélna postaé 2
n=10xk, dla k=0,10,100,110,1000,...;

Na przyklad
k=0, n=10%0=0,
k=1, n=10x1 =10,
k =10, n = 10x 10 = 100,

k =1000, n = 1000x* 100 = 10000,

3. Suma, réznica i iloczyn liczb binarnych parzystych jest liczba binarna parzysta
Na przyklad:
a = 1000, b= 110,

a+b=1000+ 110 = 1110,
a—b=1000— 110 = 10,
a*b=1000% 110 = 110000

9.5.2 Liczby binarne nieparzyste
Witasnosci liczb binarnych nieparzystych

1. Liczby binarne nieparzyste maja cyfre jednosci 1.
Na przktad liczby binarne

111, 111, 1011, 110111, 111110111

maja odpowiednio cyfre jednosci 1.

2. Liczby binarne nieparzyste maja ogdlna postac
n=(10)axk+1, lubn=(10)2xk—1, dla k=0,10,100,110,1000,...;

Na przyklad

k=0, n=10%0+1=1, lub  n=10%x0—1=—1
k=1, n=10%1+1=11, lub n=10x1—-1=1
k=10, n=10%10+1= 101, lub  n=10%x10—1=11

k =1000, m=10x%10004+1=10001, lub n=10%1000 -1 =1111

3. Suma lub réznica dwoch liczb binarnych nieparzystych jest liczba parzysta.
101 +11 =1000, 101 —-11=10
Podaj inny przykiad.

4. Tloczyn liczb binarnych nieparzystych jest liczbg nieparzysta
Na przyklad:
101 %11 = 1111, 111 %101 = 100011

Podaj inny przykitad.

2Tutaj binarne liczby (10)2 = 10, 110 = (110)2, 1010 = (1010)3 itd...; piszemy bez nawiaséw
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5. Natomiast suma liczby binarnej nieparzystej i liczby binarnej parzystej jest liczba
nieparzysta.

Na przyklad

101 +110 = 1011.
Podaj inny przykiad

7. Podobnie, r6znica liczby binarnej nieparzystej i liczby binarnej parzystej jest lichanieparzysta.
Na przyklad

111 -100 =11
Podaj inny przykiad.

9.5.3 Przyklady

Zadanie 9.21 Suma dwdch kolejnych liczb binarnych nieparzystych réwna jest (100000)s.
Znagjdz te liczby binarne.

Rozwiazanie:
Dwie kolejne liczby binarne nieparzyste to

(10)3xn—1, (10)axn+1

Ich suma 3

(10xn—1)+ (10« n + 1) = 100 * n = 100000
Obliczamy n:

100 * n = 100000, to n = 100000 : 100 = 1000
Obliczmy dwie kolejne liczby nieparzyste

10xn—1=10%1000—1=1111, 10%xn+1=10=1000+ 1 = 1001.
Sprawdzenie w systemie binarnym:
(10xn —1)+ (10xn+1) = 10% 1111 + 10 * 1001 = 11110 + 10010 = 100000

Sprawdz rozwiazanie w systemie dziesietnym.

Zadanie 9.22 Suma trzech kolejnych liczb binarnych parzystych réwna jest (11000)s. Znajdz
te liczby.

Rozwiazanie:
Kolejne trzy liczby binarne parzyste to

10«n — 10, 10%n, 10x*xn+ 10.

Ich suma
(10 xn —10) 4+ (10 *n) + (10 x n + 10) = 110 x n = (11000)s.

3Tutaj pomijamy nawias 10 = (10
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Obliczamy n:
110 * n = 11000, n = 11000 : 110 = 100.
Obliczmy trzy kolejnych liczb binarne parzyste
10%n — 10 =10 * 100 — 10 = 110,
10 % n = 10 % 100 = 1000,
10%n +10 =10 % 100 + 10 = 1010,

Sprawdzenie:
(110)2 4 (1000)2 + (1110)2 + (1010)2 = (11000)s.

Sprawdz rozwiazanie w systemie dziesietnym.
Zadanie 9.23 Oblicz sume liczb binarnych

S1010=1+10+ 114110+ 101 4+ 110 4 111 + 1000 + 1001 4 1010
uzywagjgc tylko jednej operacji mnozenia binarnego i jednej operacji dzielenia binarnego.

Rozwiazanie:
Zapiszmy skladniki sumy w odwrotnej kolejnosci i dodajmy stronami réwnosci, jak nizej:

S1o10 = 14+10+11+4 1104 101 + 110 + 111 + 1000 + 1001 4 1010

S1o 1010 41001 4+ 1000 + 111 + 1104101 + 100 +11 4+ 10+ 1

10 * 819010 = 101141011+ 1011+ 1011+ 101141011 + 1011+ 1011+ 1011+ 1011

1010 skladnikow sumy

Skad obliczmy sume S1p10 uzywajac jednej operacji binarnego mnozenia i jednej operacji
binarnego dzielenia.

(10)3 * Sy010 = (1010)  (1011)y = (1101110)5
Si010 = (1101110)5 : (10)g = (11111),

Sprawdz rozwiazanie w systemie dziesietnym.

9.5.4 Zadania

Zadanie 9.24 Przelicz liczby dziesietne na liczby binarne stosujgc algorytm przeliczania.
(a) x =53
(b) x =1025

Sprawdz otrzymane wyniki przeliczenia.

Zadanie 9.25 .
(a)  Przelicz liczby dziesietne 513 i 25 na liczby binarne. SprawdZ wynik
przeliczenia.
(b) Dodaj liczby binarne
(1000000001)2 + (100001)2
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Zadanie 9.26 .

(a)  Przelicz liczby dziesietne 256 i 16 na liczby binarne. SprawdZ wynik
przeliczenia.

(b) Odejmij liczby binarnych

(100000000)2 — (1000)2
Sprawdz wynik odejmowanie.

Zadanie 9.27 .

(a)  Przelicz liczby dziesietne 129 i 3 na liczby binarne. Sprawdz wynik
przeliczenia.

(b) Pomndz liczby 129 i 3 w systemie binarnym SprawdZ wynik mnozenia.

Zadanie 9.28 .

(a)  Przelicz liczby dziesietne 63 i 3 na liczby binarne. SprawdZ wynik
przeliczenia.

(b) Podziel liczbe 63 przez liczbe 3 w systemie binarnym Sprawd? wynik dzielenia.

Zadanie 9.29 Ile jest réznych liczb binarnych trzycyfrowych?

Zadanie 9.30 Oblicz wartosé wyrazenia arytmetycznego zachowujgc kolejnosé operacji do-
dawania, odejmowania, mnozenia i dzielenia.

(10)g # (101)3 + (11)3 * (101)3 — (110) : (10)s

Zadanie 9.31 Oblicz wartosé wyrazenia arytmetycznego zachowujgc kolejnosé operacji aryt-
metycznych z nawiasams.

(a)
(100) * ((10) % (101)g + (11)g % (101)y).

(b)
(10)2 * ((110)2 : (10)2 — (1000)2 : (100)2)

Zadanie 9.32 Suma pieciu kolejnych liczb binarnych parzystych réwna jest (100100)s. Znajdz
te liczby.

Zadanie 9.33 Oblicz sume liczb binarnych parzystych
S10100 = (10)2 4 (100)2 + (110)2 + (1000)2 + (1010)2 + (1100)2+
+ (1110)2 + (10000)2 + (10010)2 + (10100)2

uzywajgc tylko jednej operacji mnozenia binarnego.

9.6 System 6semkowy. Octalny

W systemie pozycyjnym ésemkowym podstawa p = 8. Odpowiedni wielomian jest wyrazeniem
algebraicznym

an—18""" +an,_28" "% + -+ a18' + a8’ = (an—1a5-2...a1a0)s
Osiem cyfr systemu 6semkowego to sg liczby jednocyfrowe

0,1,2,3,4,5,6,7
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Wspétezynniki systemu ésemkowego 4

(QO; Qp, e, O‘nfl)8

przyjmuja wartoci 0,2,3,4,5,6,7.

Na przyktad, liczba ésemkowa z = (azazaiag)s = (1257)s ma

iloéé jednodci 8° =1, o = 7,

ilo$¢ 6semek 8', oy = 5,

iloéé kwadratéw ésemek 82, ap = 2

iloéé kubikéw ésemek 83, az = 1.

Zauwazmy, ze w systemie dziesigtnym podstawa jest liczba 10. W systemie dziesigtnym
piszemy liczby uzywajac 10-ciu cyfr

0,1,2,3,4,5,6,7,8,9.

Natomiast w systemie 6semkowym podstawg jest liczba 8. W dsemkowym systemie jest
osiem cyfr
0,1,3,4,5,6,7

ktére sg jednoczesnie liczbami jednocyfowymi dsemkowymi.
Liczby ésemkowe dwucyfrowe piszemy w ogdlnej postaci

ay * 8+ apg = (alao)g

gdzie cyfra ésemek jest wspoélczynnik aq, cyfra jednosci jest wspolczynnik ag

Przyklad 9.26 Liczba dsemkowa x = (65)s

6%8+5%8" = (65)s.

Tytaj cyfrq osemek jest wspotczynnik a1x = 6, cyfra jednosci wspotczynnik ag = 5. Wartosé
tej liczby osemkowej w zapisie dziesietnym jest rowna 53.
Rzeczywidcie, obliczmy wartosé dziesigtng liczby dsemkowej (65)s

(65)s =6x8+5x1=>53
Liczby 6semkowe trzycyfrowe piszemy w ogdlnej postaci
as* 8%+ a; %8 + a9 8" = (azaiap)2
gdzie kolejne potegi semki
8x8 =82 8'=8, 8°=1.
Przyklad 9.27 Na przyktad liczbe dsemkowg x = (256)s w ogdlnym zapisie piszemy
as % 82 + ay * 8" + ag * 8° = (agayag)2,

2% 8% + 58" + 68" = (256)s,
gdzie cyfra ésemkowa az = 2 jest wpdtczynnikiem przy 82,
cyfra dsemkowa a1 =5 jest wpdtczynnikiem przy 8,
cyfra osemkowa jednosci ag = 6.
Wartosé tej liczby w systemie dziesienym

(256)s = 2% 22 + 5% 8" + 68" =174

4Liczby oktalne piszemy (g, a1, -, n_1)s W nawiasie z ideksem na dole 8
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Ogodlnie liczby n-cyfrowe w pozycyjnym systemie 6semkowym piszemy jako wspdlczynniki
wyrazenia algebraicznego

18"t + ap—28" "2+ + a18' + ag *8° = (an_1an—2...a1a0)s

Przyklad 9.28 Niech n =5, wtedy liczbe dsemkowq czterocyfowg x = (1024)s.
piszemy w postact wyrazenia arytmetycznego

183 4+ 0%8% 428 +4x8° = (1024)5

gdzie wpsétczynnik przy 8% jest réwny az = 1,
wpsdtczynnik przy 82 jest réwny as = 0,
wpsdtczynnik przy 8 jest réwny ay = 2,
wpsdtczynnik jednosdci przy 89 jest réwny ag = 4,
Obliczmy wartosé dziesietng tej liczby

1834+ 0%x82+2x8 +4%x8 =512+ 16+4 =536

9.6.1 Przeliczanie liczb dziesietnym na liczby 6semkow

Kazda liczbe dziesietna mozna przeliczy¢ na liczbe 6semkowa, oktalna. Tak jak dla systemu
binarnego to przeliczanie jest proste. Mianowicie, dzielimy liczbe dziesietna przez 8 i piszemy
reszte. Nastepnie cze$¢ calkowita tego dzielenia dzielimy przez 8 i piszemy reszte. Dalej
kontynuujemy dzielenie czgsci catkowitych przez 8 zapisujac ich reszty tak dtugo az w wyniku
dzielenia przez 8 otrzymamy czes¢ catkowita réwna 0.

Liczbe ésemkowa otrzymujemy piszac reszty z dzielenia w kolejnosci zaczynajac od ostatniej
reszty 1 koniczac na pierwszej reszcie jako cyfrze ésemkowej jednosci. Zobaczmy przeliczanie
liczb dziesigtnych na 6semkowe na przykladach.

Przyklad 9.29 Przelicz liczbe dziesietng x = 38 na liczbe dsemkowq

Wykonujemy dzielenia liczby dziesigtnej © = 38 przez 8

38—8:4—1-2 resztarg =6 bo 38=8%4+4+6
4
g:O resztar; =4 bo 4=0+4x1

Piszac reszty w kolejnosci od ostatniej do pierwszej otrzymamy liczbg ésemkowa

xTr = (TlTo)g = (46)8

Powtérzmy kolejne dzielenia liczby 38 przez 8 wedlug innego stosowanego schematu

Liczba x/2 | Reszta z dzielenia przez 2
38/8 =4 | 6
4/8 = |4

W wyniku otrzymujemy liczbe dsemkowsg piszac reszty w kolejnosci od ostatniej do pier-
wszej

xr = (46)8

Sprawdzenie:

r=(46)s =4+8+6%8° =8+ 1 = 38.
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9.6.2 Schemat ogdlny przeliczania liczb z sytemu dziesietnego na
6semkowy

Podobnie jak w wyzej w podanych przyktadach, w schemacie ogdélnym dzielimy liczbe

dziesietna z przez 8.

§:k0+%, {E:2*I€0+T0

gdzie kg to calos¢ i rg to reszta z dzielenia x przez 8

9.6.3 Algorytm

Zapiszmy powyzsze kolejne dzielenia przez 8 w nastepujacym schemacie

Liczba © Reszta
$/8:I€0+T0/8 To
k0/8:k1+7"1/8 T1

|
|
|
|
k1/8:l€2+7"2/8 | T2
|
|
|

k2/8:l€3+7"3/8 T3
km72/8 == kmfl + Tm71/8 Tm—1
km—1/8=041r,/8 Tm

W wyniku otrzymujemy liczbe ésemkowa piszac reszty w kolejnosci od ostatniej do pierwszej

T = (TmTm—1Tm—2---T170)8

9.6.4 Dowdd algorytmu

5 Zauwazmy, ze wyzej podany algorytm prowadzi do przeliczenia liczby dziesigtnej x na
liczbe 6smkows.
7Z tego algorytmu znajdujemy

X = 8]€0+T0 | k0:8k1+T1
= 8%y +8%ry +8r1+ 19 | ko =8ks+rs
= 8% + 83 + 8%y + 811 + 10 | ks = 8ka+ 74

e e | .........
= 8"k o+ 8" %1y o+ 4+ 8% o+ 8+ 10 | km—2 =8km_1+rm_1
= 8k, +8" lr, 1+ + 8%y + 8 + 1 | Kkm_1 = 8km +7m
= Sme-i-Smile,l+"'+82T2+8T1+T0 | km:Tm
= (Tmefle,Q...TQTlTo)g |

Zastosujmy powyzszy algorytm przeliczajac liczbe dziesietng z = 256 na ésemkowa.

Liczba ©/8 |  Reszta z dzielenia przez 8
256/8=32 | 0
32/8=4 | 0
4/8=0 | 4

5 7z . . , . s . . . . .
°Dowdéd mozna pominagé¢. Zanajomos$é dowodu algorytmu jest nie konieczna w przeliczaniu
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W wyniku otrzymujemy liczbe 6semkowsa piszac reszty z powyzszej tabeli w kolejnosci od
ostatniej do pierwszej
x = 256 = (400)g

Sprawdzenie:

z = (400)s = 4+ 8% + 0 x 8" + 0 % 8° = 256.

9.6.5 Operacje arytmetyczne w systemie 6semkowym

Operacje arytmetyczne w systemie 6semkowym dodawanie, odejmowanie, mnozenie i dzie-
lenie wykonujemy w podobny sposéb jak w systemie dziesigtnym. Przypominamy, ze w
systemie dziesigtnym uzupelmiamy do podstawy p = 10 wykonujac operacje na liczbach
(cyfrach dziesietnych),0,1,2,3,4,5,6,7,8,9. Podobnie w systemie binarnym uzupeliamy
do podstawy p = 2 wykonujac operacje na liczbach (cyfrach octalnych) 0,1,2,3,4,5,6,7.

9.6.6 Oktalne dodawanie

Tabliczka oktalnego dodawania

Dodawanie oktalnego |

+ |0 |1 2 3 4 5 6 7

0|0 |1 2 3 4 5 6 7
1 1] 2 3 4 5 6 7 10
2 21 3 4 5 6 7 10 | 11
3 3| 4 5 6 7 10 11| 12
4 41 5 6 7 10 11| 12| 13
) 5| 6 7 10 11| 12| 13| 14
6 6| 7 10| 11 10| 13| 14| 15
7 71 10| 11| 12| 13| 14| 15| 16

Dodawanie ésemkowe wyjasniamy na przykladach
Przyklad 9.30 Wykonaj dodawanie dsemkowe liczb dziesietnych 25 i 13

Liczba dziesigtna 25 w zapisie oktalnym 25 = (31)s, liczba dziesietna 13 w zapisie oktalnym
13 = (15)s.
Wykonujemy pisemne dsemkowe dodawanie (31)s + (13)s, stosujac tabliczke ésemkowego

dodawania.
31

+ 15

46

Sprawdzenie:

(46)s = 4 %8 + 6 x 8 = 38.

9.6.7 Oktalne odejmowanie

Tabliczka oktalnego odejmowania
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Odejmowanie oktalne |

-0 |1 2 3 4 5 6 7

00 |-1 2| -3 4| 5] 6| -7
1 110 -1 -2 -3| 4] 5| -6
21 2] 1 0| -14 2| -3| 4| -5
3 31 2 1 0 1) -2 3| 4
41 4| 3 2 1 0 -1 -2 -3
51 5| 4 3 2 1 0| -1] -2
6| 6| 5 4 3 2 1 0| -1
T 7| 6 5 4 3 2 1 0

Odejmowanie oktalne wyjasniamy na przyktadach
Przyklad 9.31 Wykonaj odejmowanie oktalne liczb dziesietnych 9 i 8

Liczba dziesigtna 9 w zapisie oktalnym 8 = (11)g, liczba dziesigtna 8 w zapisie oktalnym
8 = (10)s.
Wykonujemy pisemne oktalne odejmowanie (11)s — (10)s, stosujac tabliczke oktalnego ode-
jmowania.

11
— 10

1

Sprawdzenie:
9—-8=(11)s — (10)s = (1)s = 1.

9.6.8 Oktalne mnozenie

Tabliczka oktalnego mnozenia

Mmnozenie oktalne

1|2 3 4 5 6 7

2 3 4 5 6 7
4 6 10 12| 14| 16
6 11 14| 17| 22| 25
10| 14 20| 24| 30| 34
12| 17 24 | 31| 36| 43
14| 22 30 | 31| 36| 52
16 | 25 34| 43| 52| 61

N O UL W N %
N O U W N

Mnozenie oktalne wyjasniamy na przyktadach
Przyklad 9.32 Wykonaj mnozenie oktalne liczb dziesietnych 9 i 15
Liczba dziesigtna 9 w zapisie oktalnym 9 = (11)g, liczba dziesigtna 15 w zapisie oktalnym

15 = (17)s.
Wykonujemy pisemne oktalne mnozenie (11)g*(17)s, stosujac tabliczke oktalnego mnozenia
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i dodawania.

17
* 11
17
17
207
Sprawdzenie:
Mnozenie liczb dziesigtnych
9% 15 =135

Mnozenie liczb oktalnych

(207)s =2% 82+ 0% 8 +7%8Y =264+ 7=135

9.6.9 Oktalne dzielenie

Dzielenie oktalne wyjasniamy na przyktadach
Przyklad 9.33 Wykonaj dzielenie oktalne liczb dziesietnych 45 podziel przez 3

Liczba dziesietna 45 w zapisie oktalnym 45 = (55)g, liczba dziesigtna 3 w zapisie oktalnym
3= (3)s.
Wykonujemy pisemne oktalne dzielenie (17)s : (3)s.

Sprawdzenie:

45:3 =15
(55)s : (3)s = (17)s = 18 + 7 = 15.

9.7 Liczby oktalne parzyste i nieparzyste

Podobnie jak w systemie dziesigtnym, liczby oktalne parzyste i nie parzyste poznajemy po
cyfrze jednosci. Mianowicie, jezeli cyfra jednosci liczby oktalnej jest réwna 0 lub 2 lub 4
lub 6 to liczba oktalna jest parzysta, w przeciwnym przypadku, jezeli cyfra jednosci liczby
oktalnej jest 1 lub 3 lub 5 lub 7 to liczba oktalna jest nieparzysta.
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9.7.1 Liczby oktalne parzyste

1. Liczby oktalne parzyste maja cyfry jednosci 0.
Na przktad liczby oktalne

0, 2, 4, 6, 10, 12, 14, 16, 20, 22, 24

maja cyfre jednosci 0, 2 4, 6, dlatego sa parzyste.

2. Liczby oktalne parzyste sa podzielne przez oktalna 2, zatem maja ogélna postaé ©
n=2xk, dla k=0,1,2,3,4,5,6,7,10,12,14,...;
Na przyklad
k=0, n=2x0=0,

n=2x1=2
n=2x%2=4,
k=3, n=2%x3=06,
k;:4, n:2*4:10,
k=5 n=2x5=12,

3

3. Suma, réznica i iloczyn liczb oktalnych parzystych jest liczba oktalng parzysta
Na przyklad:

a=(12)s, b= (36)s,
a+b=(12)s + (36)s = (50)s,
a—b=(12)s — (50)s = —(24)s,
axb=(12)s * (36)s = (454)s

9.7.2 Liczby oktalne nieparzyste

Witasnosci liczb oktalnych nieparzystych

1. Liczby oktalne nieparzyste maja cyfry jednosci 1 lub 3 lub 5 lub 7.
Na przktad liczby binarne

123, 35, 47, 121, 123, 125, 127
maja odpowiednio cyfry jednosci 1, 3571, 357..

2. Liczby pktalne nieparzyste maja ogélna postaé

n=02)sxk+1, lubn=2)s*k—1, dla k=0,1,2,3,4,..;

Na przyklad

k=0, n=2x04+1=1, lub n=2x0—1=-1
, n=2x1+1=3, lub n=2x1—-1=1
k=2, n=2%x24+1=5, lub n=2%x2—-1=3
k=3, n=2x3+1=7, lub n=2%x3—-1=5
k=4, n=2x4+1=11, lub n=2x4—-1=7
k=5 n=2x5+1=13, lub n=2%x5—-1=11
k=6, n=2x6+1=15, lub n=2%x6—-1=13

6Tutaj oktalne liczby (1)s = 1, (2)s = 2, (3)g itd...; piszemy bez nawiaséw
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3. Suma lub réznica dwoch liczb oktalnych nieparzystych jest liczba parzysta.
(13)s + (11)s = (24)s, (13)s — (11)s =2
Podaj inny przykiad.

4. Tloczyn liczb oktalnych nieparzystych jest liczba nieparzysta
Na przyklad:
(13)8 * (11)8 = (143)8;

Podaj inny przykiad.

5. Natomiast suma liczby oktalnej nieparzystej i liczby oktalnej parzystej jest liczba
nieparzysta.

Na przyklad

(26)s + (15)s = (43)s.
Podaj inny przykiad

7. Podobnie, r6znica liczby oktalnej nieparzystej i liczby binarnej parzystej jest licbanieparzysta.
Na przyklad

(26)s — (15)s = (11)g
Podaj inny przykiad.

9.7.3 Przyklady

Zadanie 9.34 Przelicz liczby dziesietne na liczby oktalne
(a) =100
(b) y=500

Rozwiazanie (a):
Dzielimy liczbe dziesietna 100 przez 8 wedlug schematu

Liczba ©/8 |  Reszta z dzielenia przez 8
100/8=12 | 4
12/8=1 | 4
1/8=0 | 1

Zapis oktalny liczby dziesigtnej x = 100 otrzymamy piszac reszty tego dzielenie od ostatniej
do pierwszej
x = (144)g

Sprawdzenie:

r=(144)s = 1% 8% 4+ 4%8+4=64+32+4 =100
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Rozwiazanie (b):
Dzielimy liczbe dziesietna 500 przez 8 wedlug schemtatu

Liczba ©/8 |  Reszta z dzielenia przez 8
500/8=62 | 4
62/8=17 | 6
7/8=0 | 7

Zapis oktalny liczby dziesigtnej x = 500 otrzymamy piszac reszty tego dzielenie od ostatniej
do pierwszej
x = (764)s

Sprawdzenie:
x=(764)g = T+8% +6%x8+4=064+32+4 =448 + 48 + 4 = 500

Zadanie 9.35 Suma dwdch kolejnych liczb oktalnych nieparzystych réwna jest (500)s. Znajdz
te liczby binarne.

Rozwiazanie:
Dwie kolejne liczby oktalne nieparzyste to

(2)8*7’L—1, (2)8*7’L—|—1

Ich suma 7

2*n—1)+(2*n+1) =4%n=>500
Obliczamy n:
4%xn=>500, to n=>500:4=120

Obliczmy dwie kolejne liczby nieparzyste oktalne

(2)s xn—1=(2)s = (120)s — 1 = (237)s,

(2)s*n+1=(2)gx* (1205 + 1 = (241)s.
Sprawdzenie w systemie oktalnym:

(2)s#n — 1)+ ((2)s ¥ 1+ 1) = (237)s + (241)s = (500)s

Sprawdz rozwiazanie w systemie dziesigtnym.

Zadanie 9.36 Suma trzech kolejnych liczb oktalnych parzystych réwna jest (52)s. Znajdz
te liczby.

Rozwiazanie:
Kolejne trzy liczby oktalne parzyste to

(2)8 *n — (2)8; (2)8 * N, (2)8 * N+ (2)8

Ich suma
[(2)s*xn — (2)s] + (2)s xn +[(2)s * n + (2)s] = (6)8 * n = (52)s.

"Tutaj pomijamy nawias 2 = (2)s wykonujac operacje na liczbach oktalnych
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Obliczamy n:
(6)s xn=(52)s, n=(52)s:(6)s = (7)s.
Obliczmy trzy kolejnych liczb binarne parzyste
(2)s*n— (2)s = (2)s * (T)s — (2)s = (14)s,
(2)s *n = (2)s * (7)s = (16)s,
(2)s*n+ (2)s = (2)s * (T)s + (2)s = (20)s.

Sprawdzenie:
(14)s + (16)s + (20)s = (52)s.

Sprawdz rozwiazanie w systemie dziesietnym.
Zadanie 9.37 Oblicz sume liczb oktalnych
S =10+114+12+ 13+ 14+ 15+ 20
uzywajgc tylko jednej operacji mnozenia oktalnego i jednej operacji dzielenia oktalnego.

Rozwiazanie:
Zapiszmy skladniki sumy w odwrotnej kolejnosci i dodajmy stronami sktadniki sumy wykonujac
dodawanie oktalne na liczbach oktalnych, jak nizej:

Sy = 104+114+124+13+14+15+16+ 17+ 20
Sy = 204+174+164+15+14+13+12+11+10
2%S% = 30430+ 304 30+ 30+ 30+ 30+ 30+ 30

(11)s oktalnych skladnikow sumy

Skad obliczmy sume Szg uzywajac jednej operacji oktalnego mnozenia i jednej operacji
oktalnego dzielenia.

(2)8 * SQQ = (11)8 * (36)8 = (416)8

SQO = (416)8 : (2)8 = (207)8

Sprawdz rozwiazanie w systemie dziesietnym.

9.7.4 Zadania

Zadanie 9.38 Przelicz liczby dziesietne na liczby oktalne stosujgc algorytm oktalnego przelicza-
nia.

(a) x =53
(b) x =1025
Sprawdz otrzymane wyniki przeliczenia w systemie oktalnym i systemie dziesietnym.

Zadanie 9.39 .
(a)  Przelicz liczby dziesietne 513 i 25 na liczby oktalne.
(b) Dodaj liczby oktalne

(1003)g + (10005)s

Sprawdz wynik dodawania w systemie oktalnym i dziesietnym
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Zadanie 9.40 .
(a) Przelicz liczby dziesietne 256 i 16 na liczby oktalne.
(b) Odejmij liczby oktalnych

(10005)s — (1003)s

Sprawdz wynik odejmowanie w systemie oktalnym i dziesietnym.

Zadanie 9.41 .

(a) Przelicz liczby dziesietne 129 i 3 na liczby oktalne.

(b)  Pomndz liczby 129 i 3 w systemie oktalnym SprawdZ wynik mnoZenia w systemie
oktalnym i dziesetnym.

Zadanie 9.42 lle jest réznych liczb oktalnych dwucyfrywych?

Zadanie 9.43 Oblicz wartosé wyrazenia arytmetycznego liczb oktalnych zachowujgc kole-
Jnosc¢ operacji dodawania,odejmowania, mnozenia i dzielenia.

Zadanie 9.44 Oblicz wartosé wyrazenia arytmetycznego zachowujgc kolejnosé operacji aryt-
metycznych z nawiasams.

(a)
(2)s # [(10)s * (11)s + (11)s * (12)s]-

(b)
(3)s * [(160)s : (10)s — (20)s = (100)s]

Sprawdz wynik oktalnych obliczen w systemie dziesietnym.

Zadanie 9.45 Suma trzech kolejnych liczb oktalnych parzystych réwna jest (14)s. Znajdz
te liczby.

Zadanie 9.46 Oblicz sume liczb oktalnych nieparzystych

Sz = (11)s + (13)s + (15)s + (17)s + (21)s + (23)s

uzywajgc tylko jednej operacji mnozenia oktalnego.



Chapter 10

Wielomiany

Pod pojeciem wielomiany rozumiemy najprostrza klase funkcji o bardzo szerokim zakresie
zastosowan. W tym wielomiany stopnia n = 0,1, 2, 3, ..., m, jednej i wielu zmiennych, wielo-
miany interpolacyjne, wielomiany jako funkcje specjalne i dwumian Newtona.

Jasne, ze w programie szkoly podstawowe] nie wszystkie rodzaje wielomianéw wystgpuja, a
jezeli wystepuja to w bardzo elementarnej formie. W tym rozdziale wielomiany sa rozpa-
trywane w najprostrzej postaci.

10.1 Jednomiany, dwumiany i tréjmiany

Jednomianem nazywamy cigg liczb lub cigg liczb i liter lub cigg tylko liter potgczonych op-
eracjg mnozenia.
Wymienmy kilka jednomianow

125 247,  jedna liczba jest jednomianem
2%5%7, 3x4+5%6x%7,

3xaxb ax*xbxc,

dxxbxxxyxz, bHxa®*bdxct

5xadxy? 25 Tx9xa* b xx8xy7.

Kazdy jedomian jest szczegélnym wyrazeniem arytmetycznym lub algebraicznym, gdyz
wystepuja w ich okresleniu liczby lub litery polaczone tylko operacja mnozenia.
Dwumianem nazywamy sume dwdch jednomianow.
Na przyklad
a+b, a—b, a®+b* 32°+5y°.

Podobnie trojmianem nazywamy sume trzech jednomianow.
Na przyklad

a+b+c, 2xxz+4xyS +5*T Y,

a?+2%xa*xb+ b2 22— 2%z xy+ 9>

10.2 Funkcja liniowa.

Funkcja liniowa, czyli wielomian stopnia n = 1 jest dwumianem szczegélnej postaci:
wi(z)=ax+Db (10.1)
o wspolczynnikach a i b oraz zmiennej x.

Dwumian wi(x) = a  + b nazywamy funckcja liniowa, gdyz jej wykresem jest linia prosta.

115



116

Jezeli wspolczynnik a = 0 to funkcja liniowa jest stala, ktorej wykresem jest prosta réwnolegta
do osi . Funkcja liniowa ustala zalezno$¢ pomiedzy wspdtrzednymi z i y, ktéra piszemy

wi(z) =ax+b, ludb y=axr+b

-1/

Wykres funkcji liniowej y = x — 1, w uktadzie wspolrzednych x, vy

Zauwazmy, ze linia prosta o réwnaniu y = & — 1 przechodzi przez punkty (0,—1), (1,0) i
przez punkt (2,1). Wartosci tej funkcji liniowej obliczamy nizej dla argumentu z = 0, 1, 2

wi(0)=0-1=-1, wy(1)=1-1=0, wi(2)=2—-1=1.

Przez dwa rézne punkty przechodzi doktadnie jedna prosta.
Roéwnanie prostej przechodzacej przez dwa punkty o wspélrzednych

(‘IOa yo)a (:Cla yl)
piszemy jako nastepujaca zaleznosé¢ wspétrzednej y od wspdhrzednej x:

Tr— X r — X

Y= Yo + 1 (10.2)

Zo — T1 1 — Zo

Istotnie, gdy = = z¢ to y = yo lub gdy * = z1 to y = y1. To znaczy, ze punkty
(z0,90), (x1,y1) leza na prostej, gdyz ich wspdlrzedne speliaja réwnanie prostej.

Przyklad 10.1 Napisz réwnanie prostej przechodzgcej przez dwa punkty (xo,yo) = (—1,0)
i (z1,11) = (0,1). SprawdZ ktory z punktow (1,1), (1,2) lezy na prostej.

Rozwiazanie:
Piszemy réwnanie prostej przechodzacej przez punkty

(anyO) = (_15 O) i (xlayl) = (Oa 1)
podstwiajac do wzoru (10.2) ich wspélrzedne

T — T +x—x0 z—0 O+x+1 1 1
— = * * =T
Y {E()—.Ilyo xl—xoyl —-1-0 0+1

OdpowiedZ: Réwnanie prostej przechodzacej przez punkty (—1,0) 1 (0, 1)

y=x+1
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Punkt (1, 1) nie lezy na prostej y = x + 1 poniewaz jego wspélrzedne nie spelniaja réwnania
1 # 1+ 1. Natomiast punkt (1,2) lezy na prostej y = z + 1 poniewaz jego wspdlrzedne
speliaja 2 =1+ 1

Rownanie prostej y =z +1

Wykres funkcji liniowej y = x + 1, w uktadzie wspotrzednych x,y
1

10.2.1 Polozenie prostych na plaszczyznie.

Funkcja liniowa
y=axr+b

okresla polozenie prostej na plaszczyznie (x,y). To znaczy, ze punkt o wspérzednych (z, y)
lezy na prostej, jezeli y = ax + b.

—b

Funkcja liniowa y = ax + b przecina o$  w punkcie (—, 0) i przecina o$ y w punkcie (0, b).
a
Méwimy, ze liczba x jest proporcjonalna do liczby y, jezeli y = ax lub Y — a. Zatem pro-
x
porcjonalno$é dwéch wielkosci wyraza funkcja liniowa. Wtedy a # 0 jest wspdlczynnikiem
proporcjonalnosci.
Zauwazmy, ze prosta y = ax + b
e przecina o$ y, w punkcie (0,b), gdy = = 0, wtedy
y=ar+b=ax0+b=0

b b
e przecina o x, w punkcie (——,0), gdy z = ——, wtedy
a a

b
y=axr+b=a(——)+b=0.
a

jezeli a = 0 to y = b wtedy prosta jest réwnolegta do osi z
e dwie proste o réwnaniach
Yy = a1z + by, Yy = azx + be
przecinaja sie w punkcie (o, o), jezeli ten punkt spelia rénania tych prostych

Yo = a1To + by, i Yo = axTo + by

dwie proste sa réwnolegle, jezeli a3 = az. Wtedy proste nie maja punktu wspdlnego
lub pokrywaja sie.

Przyklad 10.2 Podaj polozenie na plaszczyznie (x,y) dwdch prostych o rénaniach
y=z, y=l-ux

Znajdz ich punkty przeciecia z osiami x 1y oraz punkt przeciecia tych prostych.
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Rozwiazanie. Prosta o réwnaniu y = x przecina o$ x i 0§ y w poczatku uktadu wspotrzednych
(0,0), wtedy x =01y = 0.
Podobnie, prosta o rownaniu y = 1 — z przecina o$ x, gdy y = 0, to znaczy 1 —x = 0, dla
x =1, w punkcie (1,0). Ta prosta przecina o$ y gdy x = 0, wtedy y =1 —0 =1 to jest w
punkcie (0, 1).
Dwie proste przecinaja sie w punkcie (z,y) gdy wspéhzedne tego punktu spelniaja oba
rownania, to znaczy

y=x, oraz y=1—=x

Skad przez podstawien y = x do drugiego réwnania znajdujemy

1 1
r=1-—u, 2¢0=1, z=-, y=—.
2 2
o .11
Zatem proste przecinaja sie w punkcie (5, 5)
y=1—=x y=x—1
11
400 -1 P L
Proste: y =2z, y=1-=z

Zadanie 10.1 Podaj polozenie na ptaszczyznie (x,y) dwdch prostych o rénaniach
y =2z —1, y=1-2zx
Znajdz ich punkty przeciecia z osiami x 1y oraz punkt przeciecia tych prostych.

Zadanie 10.2 Napisz réwnanie prostej przechodzgcej przez dwa punkty (zo,yo) = (=1, —1)
i (z1,11) = (1,1). SprawdZ ktory z punktow (0,1), (2,2) lezy na prostej.

Zadanie 10.3 W ktorych punktach prostay = —3x+6 przecina osie wspotrzednych. Oblicz
warto$¢ tej funkcji liniowej dla x = 1. Sprawd? ktéry z punktéw (0,3), (2,0) lezy na prostej.

10.3 Funkcja kwadratowa

Funkcja kwadratowa jest okreslona wzorem
wo(z) =ax®+bx+ec, lub y=az?+bx+ec, a#0. (10.3)

W przypadku gdy wspétczynnik a = 0 funkcja y = bz + ¢ jest liniowa.
Dziedzing funkcji kwadratowej jest zbidr liczb rzeczywistych R. Natomiast, zbiér wartosci
funkcji kwadratowej zalezy od wspoélczynnikéw a, b, ¢ i nie jest caltym zbiorem liczb rzeczy-
wistych.
Wyrdéznik funkcji kwadratowej. Wyrdznik funkeji kwadratowej oznaczamy duza litera
grecka A i okre$lamy wzorem

A=b—4xaxc,
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10.3.1 Rownanie kwadratowe

Funkcja kwadratowa ma wartos¢ zero w punkcie xg, jezeli x¢ jest rozwigzaniem réwnania
kwadratowego
az? +bx+c=0.

Pierwiastki rownania kwadratowego wyznaczamy metoda starozytnych uzupelnienia wyrazenia
az? + bx + ¢

do kwadratu.

Mianowicie, wyciagajac wspéczynnik a # 0 przed nawias otrzymamy

b
ax2+b:c+c:a(x2+—x+f).
a a

b b2
Nastepnie, dodajac i jednocze$nie odejmujac wyrazenie (2—)2 =1z piszemy wyrazenie
a a

kwadratowe w postaci kanonicznej

b b2 c b2 b b% — 4dac

2 _ 2 _ 2
axr +b£C+C—CL($ +Ex+@+a—@)—a[(x+%) _T]
——— ———— N———

W ten spodb otrzymalismy posta¢ kanoniczng funkcji kwadratowe;j:
Postaé¢ kanoniczna funkcji kwadratowej.

b A
y:axQ—i-b:c—i-c:a[(x—i-%)Q—@

J,

gdzie wyréznik A = b? — 4ac.

Pierwiastki réwnania kwadratowego. Z postaci kanonicznej funkcji kwadratowej tatwo
znajdujemy pierwiastki rownania kwadratowego.

Mianowicie, dla wyréznika A = b? — 4ac > 0 mozemy réznice kwadratéw napisaé w postaci
iloczynu

b A b A
2 _ 2 _ 2
ax +bx+c—a[(x+%) _E] = a[(x—i-%) —@]
b A b A
= (2 ——£)(x+— £):o
2a 2a 2a 2a
Skad wynikaja wzory na pierwiastki réwnania kwadratowego
b Vb2 —4 b Vb2 —4
xl—i-——iac:(), lub x2+——7a020
2a 2a 2a 2a
oraz
—b — /b% — 4ac —b+ Vb% — 4ac
=", lub 9= —————
2a 2a
Zauwazmy, ze w przypadku, gdy wyrdznik A = 0, funkcja kwadratowa jest pelnym kwadratem

b
2 2
ax xr C CL(.I B )

Wtedy z powyzszych wzoréow otrzymujemy pierwiastek podwdjny

b, —b
a(x—l—%) =0, T =T = o5
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10.3.2 Wzory Vieta
Pierwiastki réwnania kwadratowego
az’ +br+c=0, a#0,

spelniaja nastepujace wzory Vieta:
Suma i iloczyn pierwiastkow

c
ZC1+$2:——, 1 * T = —.
a a

Istotnie, obliczamy

—b— Vb2 —4ac —b+Vb% —4dac b
X1 —+ To = “+ —_
2a 2a a
Podobnie iloczyn
—b — Vb2 —4ac —b+ Vb2 — 4dac
1 xxy = ( JEX )

2a 2a

_i)Q B (\/b2—4ac
2a 2a
b2 b2—4aci c

4a? 4a? a

= )?

Przyklad 10.3 ZnajdZ rownanie kwadratowe, ktorego suma pierwiastkow rowna 3 @ iloczyn
pierwiastkow rowny 2.

Rozwiazanie. Stosujac wzory Vieta, piszemy
c
$1+$2:——:3, $1*$2:—:2.
a a

Skad znajdujemy

Zatem, mamy rodzine rownan kwadratowych
ar? —3ar+a =0

z parametrem a # 0, ktérych suma pierwiastkéw réwna jest 3, a iloczyn pierwiastkéw réwny
jest 2.

Zadanie 10.4 ZnajdZ rownanie kwadratowe ktorego suma pierwiastkow rowna 6 i iloczyn
pierwiastkow rowny 5.

10.3.3 Rozklad funkcji kwadratowej na czynniki pierwsze

Jezeli wyréznik A < 0 jest ujemny to réwnanie kwadratowe nie ma pierwiastkéw rzeczy-
wistych. Wtedy funkcja kwadratowa nie rozklada si¢ na czyniki liniowe.

W przypadku gdy wyréznik A > 0 funkcja kwadratowa rozklada sie¢ na czynniki liniowe.
Istotnie, wtedy mozemy przedstawi¢ funkcje kwadratowsa jako réznice kwadratéw

VA

2a

ax2+b:c+c:a[(:c+£)2—(

5a )?]
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Stosujac wzor na roznice kwadratéw otrzymamy rozklad funkcji kwadratowej na czynniki
liniowe
b VA b VA

ax2+bx+c:a[(x+%—E)(x—i-——i-—)]:a(:c—:cl)(x—:cg)

Polozenie funkcji kwadratowej na plaszczyznie. Polozenie wykresu funkcji kwadra-
towej na plaszczyZnie we wspéhrzednych (x,y) wyznaczymy w nastepujacych przypadkach:

(1) a>0, A>0, A=0, A<O
(2) a<0, A>0, A=0, A=<0.
W przypadku (1) polozenie wykresu funkgji kwadratowej zaznaczoone jest na nizej na ry-

sunku 4 a>0, A=0,
A >SO

L a>0 Pierwlastek pod Ic’)jny

x
xvl\/:cg 0 T1 = Ta

Funkcja kwadratdwa y = ax? + bz + ¢, a > 0.
W przypadku (2)

a<0, A>0, A=0, A<O

polozenie wykresu tréjmianu kwadratowego
A

Y
Pierwiastek podwdjny

an\A>O a<0, A=0

\\ II \\
Funkcja kwadratowa § = az? + bz + ¢, a < 0.

Z postaci kanonicznej funkcji kwadratowej wnioskujemy, ze

e funkcja kwadratowa osiaga minimum réwne “Ia jezeli wspolczynnik
a

a > 0 jest dodatni.

e funkcja kwadratowa osigga maksimum réwne 1o jezeli wspétezynnik a < 0 jest
a
ujemny.

A
—, —— funkcja kwadratowa osiaga mini-
2a°  4a

mum lub maksimum, gdyz wtedy w postaci kanonicznej

Istotnie, w punkcje minimum lub maksimum (—

b
y:axQ—i-bx—i-c:a(:c—i-%)Q—E,
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wyrazenie (z + %)2 =0dlazxz= —%, natomiast warto$¢ funkcji y = I
Przyklad 10.4 Dia danej funkcji kwadratowej
y=2x?—6x+4
wykonaj nastepujgce operacje:
(a) Znajdz mniejsca zerowe funkcji
(b) Roztéz funkcje na czynniki liniowe
(¢) ZnajZz minimum funkcji
(d) Podaj wykres funkcji

Rozwiazanie. Wspoélczynniki rownaia: a =2, b = —6, ¢ = 4.
Obliczmy wyréznik réwnania

A=0b*—dac=6°—-424=36—-32=4> 0.
(a) Stosujac wzory, obliczmy pierwiaski réwnia

b VA G-V

xrp = :1,
2a 4
-b=vVA 6+4
x2: = :2
2a 4

(b) Wedtug wzoru, funkcja kwadratowa rozklada sie na czynniki liniowe
y=a(zx—x1)(x —x2) = 2(x — 1)(z — 2).

(¢) Poniewaz wyréznik A =4 > 0 jest dodatni to funkcja kwadratowa ma minimum

A1
4a 2
-b A 3 1
w punkcie (2—, ——)=(z,—2).
a
Punkty (1,0) i (2,0) w ktdérych leza pierwiastki funkcji kwadratowej i punkt minimum
1
(=. — =) wyznaczaja potozenie jej wykresu na plaszczyznie (z,y).
22 a>0, A=4

d) W ykres funkcji = 2$2 —6x+4
Ny
Y

|
—
=]
8
=
\
—_
N

$2:2

minimum = —%

Funkcja kwadratowa y = 222 — 6z + 4.
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10.3.4 Nieréwnosci kwadratowe

Rozwiazanie nieréwnosci kwadratowych odczytujemy z polozenia wykresu funkcji kwadra-
towej. Mianowicie, mamy nastepujace przypadki:

1. Dla a > 0, A > 0 funkcja kwadratowa y = ax? + bx + ¢ > 0 jest dodatnia poza
pierwiastkami: x < x1 oraz x > o, natomiast jest ujemna y = ax? + bz + ¢ < 0
pomiedzy pierwiastkami: 1 < x < 9.

2. Dlaa < 0, A > 0 funkcja kwadratowa y = az? + bz + ¢ > 0 jest ujemna poza
pierwiastkami: x < z; oraz x > xo, natomiast jest dodatnia y = az? +bxr +c¢ > 0
pomiedzy pierwiastkami: 1 < z < 9.

3. Dlaa > 0, A < 0 funkcja kwadratowa y = ax? + bz + ¢ > 0 jest nieujemna na catym
zbiorze liczb rzeczywistych dla —oo < x < oo.

4. Dlaa < 0, A <0 funkcja kwadratowa y = ax? +bx + ¢ < 0 jest niedodatnia na catym
zbiorze liczb rzeczywistych dla —oo < x < oo.

Przyklad 10.5 Rozwigz nastepujgce nierownosci i znajdz maksimum lub minimum wskazanej

funkcgi:

(1) z224z+1>0, y=z2+z+1.
(2) —222422-1<0, y=-22%+42z—1,
(3) 22 —-5x+6>0, y =% — 5z + 6,
(4) —22242+1>0, y=-222+z+1

Rozwiazanie, (1). Okreslamy wspétczynniki i wyréznik funkcji

y=a?+z+1.

Wspblczynniki:
a=1, b=1, c=1.
Wyréznik:
A=V —4ac=1*—4%1x1=-3.

Poniewaz wspélczynnik @ = 1 > 0 jest dodatni i wyréznik A = —3 < 0 jest ujemny to
nierownosé

2 +x4+1>0,
jest prawdziwa dla —oo < = < 0.
Funkcja

y=a4+z+1

A 13
)= ().
Rozwiazanie, (2). Okreslamy wspétczynniki i wyréznik funkcji

. . 3 .
osigga minimum réwne 1 w punkcie (—

y=—22>+2zx—1.

Wspélczynniki: a = =2, b= 2, ¢ = —1.
Wyréimik: A = b? — dac =22 — 4% (=2) x (—1) = —4.
Poniewaz wspétczynnik a = —2 < 0 jest ujemny i wyrdznik A = —4 < 0 jest ujemny to
nieréwnosé
222422 -1<0
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tromia jest prawdziwa dla —oo < x < oo.
Funkcja y = —222 + 2z — 1 osiaga maksimum réwne 1 w punkcie (——, —
Rozwiazanie, (3). Okreslamy wspétczynniki i wyréznik funkcji

y=x* -5z +6.

Wspétczynniki: a =1, b = -5, ¢ = 6.
Wyréimik: A =b? — dac = (=5)2 —4x1%6 = 1.
Poniewaz wyréznik A =1 >0, /1 =1 jest dodatni to funkcja ma dwa rézne pierwiastki

-b—VA 5-1 —b+VA 5+1
xl = = = 2, x2 = = = 3
2a 2 2a 2
Zatem nieréwnosc¢
22 —5x+6>0
jest prawdziwa poza pierwiastkam to znaczy dla x < 2idlaxz > 3
-A -1 -b —A 5 —1

Funkcja y = 22 — 5z 4 6 osiaga minimu réwne -V punkcie (%, H) = (5, T)

Rozwiazanie, (4). Okreslamy wspétczynniki i wyréznik funkcji
y=—222+z+1,

Wspétczynniki: a = -2, b=1, ¢ = 1.
Wyréimik: A =% —dac =12 — 4% (=2)x1 =09.
Poniewaz wspélczynnik a = —2 < 0 wyréznik A =9 > 0, /9 = 3 jest dodatnia to funkcja

y=—2x%+ 2z — 1,
ma dwa rézne pierwiastki

-b— VA -1-3 —b+ VA —-1+3 1
xry = = :1, To = —
% 2% (=2)

20 2x(-2) 2

1
Zatem nieréwno$¢ jest prawdziwa pomiedzy pierwiastkami to znaczy dla —5 <z <l

-A 9 —b —A 19
Funkcja y = —22% 4+ + 1 osiaga maksimum réwne -8 punkcie (%, H) = (Z’ §>

Zadanie 10.5 Rozwigz nastepujgce nierownosci i znajdz maksimum lub minimum wskazanej
funkcgi:
) 22—xz+1>0, y=a?—xz+1.
2) —322+6x—-3<0, y=—-3z2+6z—3.
) 22—2-2>0, y=a2—xz—2.
4) —422+4+3z+1>0, y=—42?+ 3z + 1.
Zadanie 10.6 Dla jakich wartosci parametru m funkcja kwadratowa
y=a24+2mx+m+1
jest dodatnia dla wszystkich rzeczywistych wartosci x € R.

Przyklad 10.6 Dla tréjmianu kwadratowego

y=a>-52+6
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(i) wyprowadZ postaé kanoniczng trdjmianu
(i) znajdZ jego pierwiastki i oblicz minimum tréjmianu
(#ii) narysuj polozenie trdjmianu na plaszczyZnie kartezjariskiej.

Rozwiazanie:
(1) Wyréznik trémianu kwadratowego o wspétezynnikach a =1, b— =5, ¢ =6

A=0%—dac= (-5 —41%6=25-24=1.

Proste przeksztalcenie tego trojmianu prowdzi do postaci kanonicznej

-5 -5 5 1
2 2 2 2 2
=2"—-bz+6=2"-5 — 6—-(—)'=(@—=)"—-.
y=22—Br 6= —5r+ (S +6— ()P = (- 5P -
Skad postaé kanoniczna tego tréjmianu
5.5 1
y=(z— 5) B
(44) Obliczmy pierwiastki tréjmianu z postaci kanonicznej lub bezposrednio ze wzoré.
Mianowicie posta¢ kanoniczna jest réznia kwadratéw, ktéra rozktadamy na czynniki
B 5, 1 5.9 1, 5 1 5 1
y=(e- P —g=y=(-3P -Gl =55 +5)
Skad obliczamy pierwiastki réwnania kwadratowego
5 1 5 1
rmgglrmgtg)=0
5 1 5 1
5 1 5 1
Mgty TS mT3T3

Latwo obliczamy pierwiastki tréjmianu kwadratowego podstawiajac do wzoréw

b VA =5 VI b VA 5 VI

T 2a 5 2 0 T T ; Ty =8
Minimum tréjmianu kwadratowego obliczamy bezposrednio z postaci kanonicznej
5.9 1
y= (- 5) VS
Jasne, ze wartos$¢ tego tréjmianu jest najmniejsza, jezeli kwadrat
5.2
— 52
(-3)
Dlax = > wartosé¢ y = e Zatem minimum trojmianu kwadratowego réwne jest —.
L A =1> O, a =
=b _5
2a 2
-3 -1 0 1 2 3 .
_1 r
Minimum = %
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10.3.5 Przyklady
Przyklad 10.7 Rownanie kwadratowe

22 —4r+3=0

ma dwa pierwiastki rzeczywiste x1 1 x2. Korzystajoc ze wziréw Viete oblicz wartosci wyrazen
algebraicznych

1 1
2 2 2 T
({E1+$2) ’ 7 + T3, I +$2'
Rozwiazanie: wspdlczynniki réwnaniaa =1, b= —4, ¢ =3
Ze wzoréw Viete obliczmy sume i iloczyn pierwistkoow
b —(-4 3
$1+$2:—:¥:4, $1*$2:E:—:3.
1 a 1

Skad obliczamy wartosci wyrazen algebraicznych
(14 22)2 =42 =16, 27 4+ 23 = (z1 + 22)? — 22120 = 16 — 2% 3 = 10.

oraz
1 1 xr1 + 12 - 4

T T2 1 * T2 3

Przyklad 10.8 Dla ktorych wartosci parametru m réwnanie
2 —2r+m=0
ma dwa rozine pierwiastki

Rozwiazanie: Réwnie
2 —22+m=0

ma dwa rézne pierwiastki, jezeli wyréznik tego rowna jest dodatni

A =b%—dac=(—-2)% —4m > 0,
4—4m >0, 4m<4, m<l1.

Odpowieé: Réwnanie 22 — 2z + m ma dwa rézne pierwiastki dla parametru —oo < m < 1
Przyklad 10.9 Wyznacz wspotczynniki a, b, ¢ réownania kwadratowego
az? +br4+c=0
ktore posiada dwa rzeczywiste pierwiastki x1 i xo takie, Ze ich suma i iloczyn sq dane
T+ a2 =17, x1 *x x9 = 10.

Rozwiazanie: Korzystajac ze wzoréw Viete

—b

c
$1+{E2:—:7, $1*$2:—:10,
a a
znajdujemy nastepujace zwigzki
b= —Ta,; c = 10a.

Skad réwnanie
az® —Tax +10a =0, lub a(x® —T7x+10)=0

spelia warunki zadania dla kazdego a # 0.
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Przyklad 10.10 Wyznacz wspotczynniki a, b, ¢ réownania kwadratowego
az? +br4+c=0
ktore posiada dwa rzeczywiste pierwiastki xt1 =3 i o =8

Rozwiazanie: Korzystajac ze wzoréw Viete

Tt =3+48=11, — =11, ax2=3%8=24, 5:24,
znajdujemy nastepujace zwigzki

b= —1la, c = 24a.
Skad otrzymujemy rownanie

az? —1lar +24a =0, lub a(z?—11x+24)=0
ktére posiada pierwiastki x1 = 3, xo = 8 dla kazdego a # 0.

10.3.6 Zadania
Zadanie 10.7 ZnajdZ pierwiastki rownania

(i) 22 —3x+6 =0,

(ii) —22% 4+ 9z — 10 = 0,

(iii) 422 — 1224+ 9 = 0.
Zadanie 10.8 Dla ktorych wartosci parametru m rownanie

2?44 4+m—4=0
ma dwa rozZne pierwiastki
Zadanie 10.9 Dla ktorych wartosci zmiennej x trojmian kwadratowy
y=a>+4x+3

jest dodatni.
Oblicz nagmniejszg wartosé tego trojmiany kwadratowego.

Zadanie 10.10 Dla ktorych wartosci zmiennej x trojmian kwadratowy
y=—22>+52+3

jest ujemny.
Oblicz najwiekszg wartosé tego trojmiany kwadratowego.

Zadanie 10.11 Dla ktorych wartosci parametru m trojmian kwadratowy
y=2a>+4x+m?

jest dodatni dla wszystkich warto$ci zmiennej x.
Oblicz nagmniejszqg wartosé tego trojmiany kwadratowego.

Zadanie 10.12 Dla ktorych wartosci parametru m trojmian kwadratowy
y=—a>+3z—m,

jest ujemny dla wszystkich wartosci zmiennej x.
Oblicz najwiekszg wartosé tego trojmiany kwadratowego.

Zadanie 10.13 ZnajdZ rownanie kwadratowe ktorego suma pierwiastkow rowna 6 i iloczyn
pierwiastkow rowny 5.
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10.4 Wielomiany stopia n

Wielomiany maja prosta strukture i stanowia wazna klase funkcji w zastosowaniach matem-
atyki. W istocie, wielomianami mozna approksymowaé¢ kazda funkcje ciagla z dowolna
doktadnoscia.

Wielomianem stopnia n z miennej x nazywamy wyrazenie algebraiczne nastepujacej postaci:
-1 -2
pn(x> =" + ap_ 12" Fap_22" 4+ a1z + ao, (427 7£ 0.

Jezeli a,, = 0 to wielomian jest stopnia nizszego niz n

10.4.1 Przyklady wielomianéw
Wielomian stopnia n = 0 zmiennej x ma wartosé¢ stala réwna ag
po(z) = ap dla wszystkich wartosci x € (—00,00).
Na przyklad wielomian stopnia n =0
po(x) =8 dla wsztstkich x € (—o0,00).

ma wartosé¢ stala, ap = 8 dla wsztykich wartosci rzeczywistych .
Wielomian stopnia n = 1 zmiennej z, funkcja liniowa

p1(x) = a1z + ag dla wszystkich wartosci x(—00,00).
Na przyklad wielomian stopnia n =1
pi(x)=5z+7 dla z€ (—o00,00).

ma wspolczynniki a; = 5, ag = 7.
Wielomian stopnia n = 2 zmiennej z, funkcja kwadratowa

pa(z) = agr + ay2® +ag  dlax € (—o0, 00).
Na przyklad wielomian stopnia n = 2
po(z) =322 +4x+5  dla 2z € (—00,0).

ma wspolczynniki as = 3, a; =4, ag = 5.
Wielomian stopnia n = 3 zmiennej z, wielomian kubiczny

p3(z) = azz® 4+ asx? + a1z + a9 dla  x € (—00,00).
Na przyklad wielomian kubiczny
p3(z) =20 +32% + 42+ 5, dla x € (—o00,00).

ma wspolczynniki ag = 2, as = 3, a1 =4, ap = 5.
Podobnie wielomian stopnia n = 5 miennej z,

ps(z) = asx® + agz? + asz® + agx® + ayx + ag,  dlaz € (—o0, o).
Na przyklad wielomian stopnia n =5
ps(2) =225 =72 + 52242, dla 2 € (—o0,0).

ma wspotczynniki a5 = 2, ay = -7, a3 =0, az =5, a1 =0, ag = 2.
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10.4.2 Operacje arytmetyczne na wielomianach.
Nastepujace twierdzenie jest prawie oczywiste:

Twierdzenie 10.1 Zbior wielomianow stopnia nie wiekszego nizn jest zamkniety ze wzgledu
na operacje dodawania i odejmowania.

Istotnie, rozpatrzmy dwa nastepujace wielomiany
pn(x) = anxn + anflxnil + -+ a1z + ap, QH(:E) = bnxn + bnflxnil +-- 4+ bl«r + bO,

Znajdujemy sume lub réznice tych wielomiandéw przez grupowanie wyrazow przy tej samej
potedze

P () £ gn() = (an £ b,)z™ + (a1 £ by_1)z" F + -4 (a1 £b1)z + (ag £ by.)
Zauwazamy, ze w wyniku otrzymamy wielomian stopnia nie wigkszego niz n o wspéiczynnikachch
an by, ap_1%tby_1,....,a1 £ by, ap £ bg.
Zatem, suma lub réznica wielomianéw stopnia co najwyzej n jest wielomianem stopnia co
najwyzej n. To znaczy, ze zbiér wielomiandéw stopnia co najwyzej n jest zamknigty na
operacje dodawania i odejmowania wielomianéw stopnia co najwyzej n.
Przyklad 10.11 Dodaj nastepujgce wielomiany
pa(z) = 32" —22° + x4+ 5, g3(x) = 22° + 52’ + 22 + 1,
Wykonujac dodawanie, otrzymamy wielomian
ra(r) = B+0)2*+ (-2+2)23+(0+5)22+ (1+2)z+ (5+1)
= 32*+ 522432 +6.

stopnia n = 4 o wspotczynnikach ay = 3, a3 =0, as =5, a1 =3, ap = 6.

10.4.3 Dzielenie wielomianu p,(z) przez dwumian = — x

Wielomian p,,(z) stopnia n dzielimy przez dwumian x — xy stopnia n = 1 wedtug schematu
dzielenia podanego w nastepujacych przyktady:

Przyklad 10.12 Wykonaj dzielenie:

(@ —=1):(x—-1) = 22+a2+1
23 — 2?
2?2 -1
2? —x
z—1
z—1
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Zauwaz, ze wykonujemy odejmowanie pod kreska.
Zatem wielomian 23 — 1 dzieli sig¢ przez dwumian z — 1 i wynikiem dzielenia jest tréjmian
2?42+ 1.
Sprawdzamy dzielenie wykonujac operacje odwrotna do dzielenia, to jest operacje odwrotna,
mnozenie

(x—D(@*+z+1) =422 —2>-1=2%-1
Istotnie, w wyniku mnozenia dzielnika x — 1 przez wynik dzielenia 2% + x + 1 otrzymali$my
dzielna 2% — 1.

Przyklad 10.13 Wykonaj dzielenie:

(x* -2 —22—2-2):(x-2) = 22 +22+2+1
xt — 223

a2

% — 222

2% —x

% — 22

z—2

z—2

0

Zauwaz, ze wykonujemy odejmowanie pod kreska.
Zatem wielomian x4 — 23 — 22 — 2 — 2 dzieli sie przez dwumian x — 2 i wynikiem dzielenia,
ktérym jest wielomian x3 + 22 +x + 1.

Sprawdzamy, ze
(-2 +2? 44+ 1) =a'+23 42+ -223-22> — 20 —2=0at—2® — 22—z -2
Zadanie 10.14 Wykonaj dzielenie wedtug powyziszego schematu:

(z*=1): (z—1)

10.4.4 Dzielenie wielomianu p,(z) przez dwumian x — 7 z reszta.

Dzielenie wielomian6w jest rozszerzeniem algorytmu dzielenia liczb catkowitych. W powyzszych
przykladach wykonalismy dzielenie wielomianu 3-go i 4-go stopnia przez dwumian x — xg
bez reszty, czyli reszta r = 0. Jednak nie zawsze tak jest. Naogél wielomiany dziely sig
przez dwumian z reszta r.

Poniewaz rozpatrujemy dzielenie wielomianu

pn(x):anxn‘kanflxnil+"'+a1$+a05 n>1,

tylko przez dwumian x — x( to reszta r jest liczba, wielomianem stalym stopnia zero.
Podobnie jak przy dzieleniu liczb catkowitych piszemy
Pr(x) r

—— =)+ :
Tr — X Tr — X

n>1

ju 3

gdzie g,—1(z) jest wielomianem stopnia n — 1 i r jest reszta z dzielenia.
Zatem wielomian p, () mozna zapisaé

Pn(x) = qn-1(2)(z — 20) + 7

Z powyzszej réwnosci wynika wzor na reszte, mianowicie r = p,, (o).



131

Przyklad 10.14 Wykonaj dzielenie

(22% + 323 — 42® + 5z +6) : (z — 3)

(22 + 323 — 422 +52+6): (x —3) = 223+ 922+ 232+ 74
224 — 623
9x3 — 422
923 — 2722
2322 + 52
2322 — 69z
T4x + 6
Tdx — 222
226

Odpowiedz: Wielomian py(z) = 2z* + 323 — 422 + 52 4 6 podzielony przez dwumian 2 — 3
daje wynik g3(z) = 223 + 922 + 232 + 74 z reszta 1 = 226.

Piszemy

22
= (22 + 927 + 23z + 74) + x—_ﬁg

pa()
r—3

lub
pa(z) = 22 + 32% — 422 + 52 + 6 = (22° 4 922 + 23z 4 74)(z — 3) + 226.

Skad reszta z dzielenia r = p4(3) = 226.

10.4.5 Pierwiastki wielomianéw. Twierdzenie Bezouta

Zera funkcji liniowej czy kwadratowej, czyli wielomianéw stopnia pierwszego i stopnia drugiego,
fatwo znajdujemy stosujac znane wzory podane w poprzednich paragrafach. Znane sa
rowniez wzory na pierwiastki wielomianéw trzeciego stopnia i czwartego stopnia. Wiadomo
jednak, ze nie istnieja wzory na okreslenie pierwiastkéw dowolnego wielomianu stopnia
wigkszego lub réwnego niz 5. Natomiast, wiadome sa kryteria znajdowania pierwiastkow
niektorych wielomianéw stopni wyzszych. Na przyklad wiadomo, ze jezeli jakis wielomian
o wspotczynnikach calkowitych ma pierwiastki caltkowite, wtedy te pierwiastki sa dziel-
nikami jego wspétczynnika ag. To kryterium dotyczy tylko wielomianéw o wspdlczynnikach
catkowitych, ktére maja pierwiaski tez catkowite .

Usasadnienie tego kryterium jest proste. Mianowicie, niech catkowita liczba xg # 0 bedzie
pierwiastkiem wielomianu p,, (x) stopnia n o wspdlczynnikach tez catkowitych. Teraz pokazemy,
ze x¢ jest dzielnikiem wyrazu wolnego ag.

Zachodzi oczywista nastepujaca réwnosc:

pn(xo) = a;n«rgil + an71x872 + -+ ai +a_0 = 0 (104>
ZTo Zo

Pa(z0) =0,  oraz

2

Wyrazenie podkreslone nawiasem anngl +an_1xy "+ -+ aq jest liczba calkowita jako

suma iloczynéw liczb catkowitych. Z réwnoscei (10.4) wynika, ze iloraz 90 tes, jest liczba

o
catkowita, gdyz suma jest zerem. Zatem pierwiastek x¢ jest dzielnikiem wyrazu wolnego ag.
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Przyklad 10.15 ZnajdZ pierwiastki catkowite wielomianu

p3(z) =2® —2*+ -6

Rozwiazanie. Zera wielomianu p3(z) = 2% — 22 + 2 — 6 = 0 szukamy wéréd dzielnikéw 2
lub 3 wspétczynnika ag = —6.

Sprawdzamy czy xo = 2 jest zerem tego wielomianu
p3(2) =2 -224+2-6=8-4+2-6=0

Dzielnik g = 2 jest zerem wielomianu py(z).
Teraz sprawdzamy czy zo = 3 jest zerem tego wielomianu

p3(2) =33 -324+3-6=27-9+3-6=12+#0

Dzielnik zy = 3 nie jest zerem tego wielomianu.
Zauwazmy, ze sa wielomiany dla ktérych zaden z dzielnikow wspélczynnika ag nie jest zerem.
Na przyklad wielomian

pa(z) = 2%+ 22 +8

nie ma zer rzeczywistych, gdyz wyréznik A = —28 jest ujemny.
Podstawowa informacja o pierwiastkach wielomianéw jest twierdzenie Bezouta.

Twierdzenie 10.2 Liczba x¢ jest pierwiastkiem wielomianu
Po() = ant"™ + an_ 12" M+ Fayx+ag, n>1,
wtedy i tylko wtedy gdy ten wielomian dzieli sie przez dwumian x — xg.

Dowéd. Zauwazmy, ze twierdzenie Bezouta jest warunkiem koniecznym i dostatecznym na
to zeby liczba z¢ € R byla pierwiastkiem wielomianu.
Warunek konieczny znaczy:
Jezeli wielomian py,(x) jest podzielny przez dwumian x — g to liczba xq jest pierwiastkiem
wielomianu, to znaczy pp(xo) = 0 oraz reszta r = 0.
Zatem niech wielomian p,(z) bedzie podzielny przez dwumian x — xg bez reszty. wtedy ten
wielomian ma postaé

pn(@) = (2 — 20)qn-1(2)
gdzie g,—1(z) jest wielomianem stopnia co najwyzej n — 1.
Skad dla x = x¢ wynika ré6wnosé p,(xo) = 01 dlatego xq jest pierwiastkiem tego wielomianu.
Warunek dostateczny znaczy:
Jezeli liczba xg € R jest pierwiastekiem wielomian p,(x) to ten wielomian jest podzielny
przez dwumian x — xo z ressztg v = 0.
Wiadomo, ze dzielagc wielomia p,, (x) przez dwumian z — z¢ otrzymamy réwnosé

P(x) = qn-1(2)(z — z0) +7

gdzie ¢p—1(z) jest wielomianem stopnia n — 1.
Poniewaz x( jest zerem tego wielomianu, to znaczy pn(zo) = 0 oraz p,(z9) = r. Zatem
reszta 7 = 0. Wtedy z powyzszej réwnosci wynika posta¢ wielomianu

Pn(@) = qn-1(z)(x — 20)

w ktorej jest czynnik x — ¢ i dlatego wielomian p, () jest podzielny przez dwumian x — xg
z reszta v = 0.
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10.4.6 Rozklad wielomianu na czynniki

7 twierdzenia Bezouta wynika nastepujacy wniosek:
Whniosek. Niech liczby rzeczywiste x1, x2, ..., xx, k < n beda zerami wielomianu

pn(x> :anxn‘kanflxnil‘i‘"'+a1x+a05 n>1,
wtedy ten wielomian mozna zapisa¢ w postaci iloczynu
pn(e) = (z —a1)(x — 22) - - (& — Tk ) gn () (10.5)

n — k czynnikéw liniowych (x — 2;), i =1,2,..., k, 1 wielomianu ¢, _(x) stopnia n — k.
Istotnie dla k = 1 z tweierdzenia Bezouta wprost wynika iloczyn

Pn(®) = (& = 21)gn-1()

Stosujac powtérnie twierdzenie Bezouta do wielomianu ¢, —1(x) dla zera xo otrzymammy

rozklad
pn(2) = (. — z1) (2 — 22)qn—2(2)

Powtarzajac zastosowanie twierdzenia Bezouta dla nastepnych zer wielomianu p,,(z) otrzy-
mamy rozktad (10.5) wielomianu na czynniki liniowe i wielomianu g, —(x).
Zauwazmy, ze rozklad wielomianu stopnia n > 1

pn(x) = apx" + anflxnil + -+ a1z + aop, (27 7£ 0,
jest réwnowazny z rozkladem wielomianu
pn(@) =2"+ an12" '+ Farx+ag, n>1,

ze wspélezynnikiem a, = 1, gdyz wspélczynnik a, # 0 zawsze mozemy wyciagnaé przed
nawias.
Teraz z sformulujemy twierdzenie podstawowe o rozkladzie wielomianu naczynniki nierozkladalne:

Twierdzenie 10.3 Kazdy wielomian
pn(@)=2"+ an12" '+ Fax+ag, n>1,

rozktada si¢ na czynniki liniowe x —xq lub czynniki kwadratowe x° +ayx +ag z wyréznikiem
a? — 4ag < 0 wjemnym. Ten rozktad jest jednoznaczny.

Nizej wyliczmy nastepujace metody rozkladania wielomianéw na czynniki:
Sposoby rozkladania wielomianéw na czynniki.

1. Roklad trémianu kwadratowego ax? + bx + ¢
Wyciaganie wspdlnego czynnika przed nawias
Sposob grupowania wyrazow

Stosowanie wzoréw uproszczonego mnozenia

DR R

Znajdowanie zer wielomianu o wspolczynnikach catkowitych.
Przyklad 10.16 Roztoz na czynniki wielomian kwadratowy

pa(z) = ax® + bx +c
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Rozwiazanie. Wielomian kwadratowy rozklada si¢ na czynniki w zaleznosci od znaku
wyréznika A = b? — 4ac. Mianowicie, jezeli wyréznik A > 0 jest nieujemny, wtedy ten
trojmian ma dwa pierwiastki rzeczywiste i rozklada sig¢ na czynniki

ar? +bx+c=a(x — x1)(x — x2)
Ten przypadek obejmuje réwniez pierwiastek podwdjny kiedy A =01 1 = xs.
Jezeli wyréznik A < 0 jest ujemny to tréjmian ax? + bx + ¢ jest nie rozkladalny i wtedy

czynnikiem jest wyrazenie az? + bx + c.

Przyklad 10.17 Rozléz na czynniki nastepujgcy wielomian przez grupowanie wyrazow i
wycigganie wspolnego czynnika

p3(z) = 2® —22% — 42 +8
Rozwiazanie. Stosujemy kombinacje powyzszych sposobéw. W tym przypadku grupujemy
wyrazy pierwszy i drugi oraz trzeci i czwarty potem wyciagajaamy przed nawias x? oraz 4,
W ten sosob otrzymamy

p3(x) =23 —222 —4x+8 = 2%(x—2)—4(x—2)
— (-2 - 4)
Dalej, stosujac wzér na rénice kwadratéw 22 — 4 = (z — 2)(x + 2) dostajemy rozktad tego
wielomianu na czynniki
p3(xr) =23 —222 —42+8 = 2%(x—2)—4(xz—2)=(z—2)(z?—4)
= (z-2)(xz-2)(z+2)=(z—-2)2%(z+2).

Przyklad 10.18 Rozléz na czynniki nastepujocy wielomian

p3(z) = 2° 4+ 52% + 22 + 10

Rozwiazanie. Stosujemy kombinacje powyzszych sposobéw. W tym przypadku wyciagajac
przed nawias 22 oraz 5, otrzymamy

p3(x) =23 +522 +22+10 = 22%(z+5)+ 2(x + 10)
= (@+5)@*+2)
Poniewaz wyrazenie kwadratowe x2 +2 > 0 jest wszedzie dodatnie to rozklad tego wielomi-
anu na czynniki
p3(x) =23 +522 +22 —10 = 22%(z+5)+ 2(x + 10)

= (z+5)(a*+2)

zawiera czynnik liniowy z + 5 i czynnik kwadradratowy 2 + 2, ktéry jest nie rozkladalny.
Przyklad 10.19 Rozléz na czynniki nastepujgcy wielomian

pa(z) =zt — 423 — 2% + 162 — 12
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Rozwiazanie. W tym przypadku zer wielomianu o wspdlczynnikach catkowitych szukamy
wsréod dzielnikow —2,—1,1, 2, 3,4, 6 wyrazu wolnego ag = —12.
1. Sprawdzamy czy dzielnik zo = —2 jest zerem tego wielomianu
pa(—=2) = (=2)* —4(=2)* = (-2)2 +16(-2) —12=16+32-4-32—-12=10
Zatem xg = —2 jest zerem tego wielomianu i wielomian zawiera czynnik x + 2.
2. Sprawdzamy czy dzielnik o = —1 jest zerem tego wielomianu
pa(—=1) = (=1)* —4(=1)3 = (=1)? +16(-1) —12=1+4—-1—- 16— 12 = —32 # 0.
Zatem xg = —1 nie jest zerem tego wielomianu.
3. Sprawdzamy czy dzielnik x¢g = 1 jest zerem tego wielomianu
pa(1) = (1)* —4(1)®* = (1)* +16(1) - 12=1-4—-1416—-12=0
Zatem xg = 1 jest zerem tego wielomianu i wielomian zawiera czynnik x — 1.
4. Sprawdzamy czy dzielnik o = 2 jest zerem tego wielomianu
pa(2) = (2)2 —4(2)% = (2)2 +16(2) —12=16-32-4+32-12=0
Zatem xg = 2 jest zerem tego wielomianu i wielomian zawiera czynnik x — 2.
5. Sprawdzamy czy dzielnik x¢g = 3 jest zerem tego wielomianu
pa(3) =(3)* —4(3)> = (3)2+16(3) —12=81—-108 —9+48 —12=0
Zatem xg = 3 jest zerem tego wielomianu i wielomian zawiera czynnik x — 3.
Odpowiedz: Rozktad wielomian ps(x) na czynniki liniowe
pa(z) =2 — 423 — 22 +162 — 12 = (x + 2)(z — 1)(z — 2)(z — 3).
Zadanie 10.15 Roztoz na czynniki nastepujgce wielomiany:

1. Tréjmian kwadratowy
pa(z) = 222 + 62 + 4

2. Wielomian
p3(x) = (2 — 8) + (a® — 4)

3. Wielomian
pa(z) = 2 + 623 + 1222 + 11a + 6
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10.4.7 Nieréwnosci wielomianowe

W tematach funkcje liniowe i kwadratowe opisane zostaly sposoby rozwigzywania nieréwnosci
linowych i kwdratowych. Nizej podamy rozwigzanie nieréwnosci wyzszych stopni n > 3.
Rozpatrzmy nastepuja nieréwnosé:

Pn(2) = anz™ + ap_ 12" 4 dar+ag >0 n>1, a, #0.
Rozwiazujac powyzsza nieréwnosé wykonujemy nastepujace czynnosci:
1. Rozkladamy ten wielomian na czynniki
Pn(x) = an(r —21) (@ — 22)....(T — k) Gn-k(), an #0.

W powyzszym rozkladzie dopuszczamy k pierwiastkow rzeczywistych wiaczajac pier-
wiastki wielokrotne, x1,29,...., 2k Zauwazmy, ze jezeli k = n to wielomian p,(x)
rozklada sie na czynniki lioniowe i ma wszystkie pierwiastki rzeczywiste x1, 2, ...., Tp.
Tutaj ¢n—r(x) jest wielomianem stopnia n — k nie rozkladalnym na czynniki liniowe.
To znaczy, ze wielomian ¢, () zawiera tylko czynniki kwadratowe postaci 22+ bx +c
z wyréznikiem A = b? — 4¢ < 0 ujemnym.

2. Zuwazamy, ze nierownosc
Pn(x) = an(r —21)(x — 22)....(T — k) gn-i(z) >0, an #0.
jest réwnowazna z nieréwnoscia
pr(z) = (x — z1)(x — 22)....(x — 2k )gn—k(x) >0, gdy a, >0,
lub z réwnowazna z nieréwnoscia
pn(z) = (x — z1)(x — 22)....( — 2k ) gn—k(x) <0, gdy a, <DO0.

Poniewaz obie strony nieréwnoéci zawsze mozemy podzieli¢ przez liczbe a,, # 0 rézna
od zera zachowujac kierunek nieré6wnosci gdy liczba a,, > 0 jest dodatnia i zmieniajac
zwrot nieréwnosci gdy liczba a,, < 0 jest ujemna.

3. Rozwigzanie odczytujemy z wykresu funkcji

o Przypadek a,, > 01 wszystkie zera wielomianu 1, xo, ...,z sa rézne z; # x;, # j.
Na rysunku przyklad nieréwnosci dla wielomianu

ps(x) = 22° — 2t — 1023 + 52 + 82 -4 >0, a5=2>0.

Rozkladamy ten wielomian na czynniki. Przez grupowanie wyrazow i wylanie
przed nawias wpélnych dzielnikow znajdujemy pierwiastek %

ps(@) = 2ha—§ - 50z — ) + 4z~ 3)
— i) = @+ 2+ Do~ D= D —2)
= (-t -5+

= (z— %)(x— D+ 1(x—-2)(z+2)>0
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Nieréwnos$é¢ ps(x) > 0.

Z rysunku odczytujemy rozwiazanie, to znaczy, ze te przedzialy w ktorych wielomian
jest nieujemny:
Zatem, nieréwnos¢ ta jest prawdziwa dla z € [—-2, —1] U [5, 1] U [2, o0]

o Przypadek a, < 01 wszystkie zera wielomianu z1, x2, ...,z sa rézne z; # z; dla
i 7.
Na rysunku przyklad nieréwnosci dla wielomianu

ps(z) = =225 + 2% + 1023 — 52 —8x +4 >0, as5=-2<0.

Rozkladamy ten wielomian na czynniki

ps(z) = —2(z +2)(x + 1)z — )& — 1)z —2) >0

2
Drzielac obie strony tej nieréwnosci przez —2, otrzymamy nier6wnosé przeciwna
réwnowazna

1
ps() = (z +2)(z +1)(z — )z -1z -2) <0
Odczytujemy zera x1 = —2, x9 = —1, x3 = %, r4 =1, x5 = 2 1 zaznaczmy te
zera na nizej podanym rysunku
Y o
-~ g
P
/\ s AN
. - Ve \\___ ////// g
\\\\__,//

Nieréwnosé dla wielomianu ps(z) < 0.

Z rysunku odczytujemy rozwigzanie to znaczy, ze te przedzialy w ktorych wielo-
mian jest niedodatni:
Zatem nier6wno$¢ ta jest prawdziwa dla z € [—oo, —2] U [—1, 3] U [1,2].

e Przypadek gdy wielomian ma wielokrotne zera. Wtedy wykres wielomianu nie
przecina osi z, jezeli krotno$¢ jest parzysta 2,4,6...;
Natomiast, jezeli krotnosé jest nie parzysta to wykres wielomianu przcina o$ x.
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Przypadek wielokrotnych zer wyjasnimy na nastepujacym przykladzie:
Rozwiaz nier6wnosé:

p3(z) =2® =22 + 32— 1>0
Rozkladamy ten wielomian na czynniki
p3(z) = (z —1)(z+1)2>0

Nastepnie odczytujemy zera x1 = —1, oraz powdwdjne zero xo = 1. Zaznaczmy
te zera na rysunku Y

/ \podwéj ne zero
y A II
' W . /

0 .IQZ.CCg:l

Nieréwno$é dla wielomianu ps(x) > 0. Zero podwéjne w punkcie x = 1.

Z rysunku odczytujemy rozwigzanie to znaczy, ze te przedzialy w ktorych wielo-
mian jest nieujemny:
Zatem nier6wnosé ta jest prawdziwa dla z € [—1, 0]

10.5 Zadania

s

Zadanie 10.16 Rozwigz nikerpwnos
par) =a° —a? +4>0

Zaznacz na wykresie przedzialty w ktorych ta nierownosé jest prawdziwa.

Zadanie 10.17 Rozwiqz nikerpwnosé
paz) =x° —1<0

Zaznacz na wykresie przedzialty w ktorych ta nierownosé jest prawdziwa.



Chapter 11

Wzory uproszczonego mnozenia
i dwumian Newtona

11.1 Dwumiany i szeSciany

1. Dwumian, dwumian kwadratowy szescian sumy. Latwo sprawdzamy nastepujace
1

tozsamosci
(a+b)! = axb, dwumian stopnia n =1
(a+b)? = a?+£2ab+1? dwumian kwadratowy n = 2
(a+£b)® = a®>—-3a®>*b+3*axb?+b wielomian kubiczny n =3

Wzory na kwadrat sumy lub réznicy otrzymujemy przez mnozenie dwumianu a + b
przez siebie.
Mianowicie, obliczmy

(a+b)?=(a+b)(a+b) = ala+b)+bla+b)
= a*+ab+ba+b?
= a?+ 2ab+ b2,

(a—b?=(a—b)a—b) = ala—0b)—bla—>b)
= a?’—ab—ba+b?

= a?—2ab+ b2,

Przyklad 11.1 Dla ustalonej liczby naturalnnej n znajdZ naturalne liczby a i b takie
ze

n+a?® =0

Rozwiazanie

Przenoszac a? na prawa strone ze znakiem przeciwnym otrzymamy

n=1"0%—qa?

1 Tozsamoscia nazywamy réwnosé, ktéra jest prawdziwa dla wszystkich wartosci parametréw
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Poniewaz

b2 —a® = (b—a)(b+a)

to
n=(b—a)(b+a)

Nastepnie rozkltadamy dana liczbe n iloczyn
n=1%xn

Przyjmujac
b—a=1 i b+a=n

obliczamy rozwiazanie

n—1 . n+1
i b=

2 2

a =

Sprawdzamy, ze
n+1l, n—1,

Natepnie, jezeli n ma czennik p > 1 ¢ p < n to rozkladamy liczbe n na iloczyn

n=p*q

Przyjmujac
b—a=p i b+a=q

obliczamy rozwiazanie

Sprawdzamy, ze
(B2 — (L2 = pug=n

Natepnie, jezeli n ma inny czynnik czennik p; > p ¢ p; < n to rozkladamy liczbe n
na iloczyn
n=p1*q1

Przyjmujac

b—a=p1 i b+a=q
obliczamy rozwiazanie

P11 q1 . _nta

a@=— T b= ———
2 2

Sprawdzamy, ze

(pl + Q1)2 B (pl - q1)2

= ES =N
B B pir*xq1

Ogodlnie rozkladamy liczbe n na m czynnikéw pierwszych
T = Po ¥ P1 kP2 k- k P, po=1
i stosujac powyzszy rozklad na iloczyn
N = Pk * qk
obliczamy rozwiazanie

_ Pr — Gk p b:pk+Qk
2 2

a



Sprawdzamy, ze
(pk + Qk)z _ (pk — 4k

B B )2:pk*Qk:n

dlak=0,1,2,3,....,m
W ten sposéb otrzymujemy wszystkie m + 1 rozwigzan naturalnych.

Przyklad 11.2 Niech n = 15. Wtedy mamy rozktad na iloczyn
15=1%15 lub p=3x5

Zatem mamy pierwsze rozwigzanie dlap=11iqg =15

15+1 15-1

b 5 i a > 7
Sprawdazmy, Ze
1 1 15-1
2ogr= (Pl (Bole g g5
2 2
Nastepnie dla rozktadu
15=3%5

przyjmujemy p1 =3 ¢ q1 = 5.
Wtedy mamy
b+a=5 i b—a=3

Skqd otrzymujemy drugie rozwigzanie

543 5-3
b:—; =4 i a=— =1
Sprawdzamy, ze
b2—a2:(¥)2—(¥)2:16—1:15

(a+b) =a* +3a%b+ 3ab®> + 1%,  (a—b)* = a® — 3a%b + 3ab® — b°.

Podobnie sprawdzamy sze$cian sumy lub réznicy.
Mianowicie, obliczmy

(a+b)3=(a+b)(a+b)? = ala+b)?+bla+b)?
= a(a® 4 2ab + b?) + b(a® + 2ab + b?)
= (a®+2a®b+ ab?®) + (ba® + 2ab* + b?)
= a® + 3a%b + 3ab? + b3,
(a—b)2=(a—b)(a—0b)? = ala—b)?—bla—10b)?
= a(a® —2ab+ b?) — b(a® — 2ab + b?)
= (a® —2a%b+ ab?) — (ba® — 2ab* + b?)

= a® —3a%b + 3ab? — b3,
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3. Suma kwadratéow.
Suma kwadratéw dwoéch liczb rzeczywistych réznych od zera jest dodatnia i rowna
sig zero wtedy i tylko wtedy, gdy obie liczby sa réwne zero.
Mianowicie, piszemy

a?+b2>0, gdy a#0 lub b#0,

a?+b2=0, gdy a=01ib=0.

4. Réznica kwadratéw.
Roéznica kwadratow dwoch liczb rzeczywistych rozklada sig na czynniki liniowe. Mi-
anowicie, mamy

a’® —b* = (a —b)(a +0).

Sprawdzamy ten wzér wykonujac mnozenie
(a—b)(a+Db) =a(a+b) —bla+b) = (a®+ ab) — (ba + b*) = a® — b,

5. Suma szescianéw.
Suma szescianéw dwoch liczb rzeczywistych rozktada sig¢ na iloczyn

a® +b* = (a+b))(a® — ab + b?).
Sprawdzamy ten wzér wykonujac mnozenie
(a+b)(a? —ab+1b?) = a(a®?—ab+b?) +b(a? — ab+b?)

= (a® — a?b+ ab?) + (ba? — ab® + b3) = a® + b3.

6. Réznica szesScianow.
Roéznica szescianéw dwoch liczb rzeczywistych rozktada sig¢ na iloczyn

a® —b* = (a —b))(a® + ab + b?).
Sprawdzamy ten wzér wykonujac mnozenie
(a—0b)(a®+ab+b?) = a(a®+ ab+b*) — b(a® + ab + b?)
= (a®+ a®b+ ab?) — (ba® + ab® + b3) = a® — b3.
11.1.1 Przykiady
Przyklad 11.3 Wykonaj dziatanie

() Qa+3% @) (G-
(i1)  (3a+ 2)3, (iv) (22 — 3y)3,

Rozwiazanie. Stosujac wzory, obliczamy

ad.(i)  (2a+3)* = (2a)*+2(2a)3 +3? = 4a® + 12a + 9.
sd i) (5-47 = (5P =25+ (-4

2
- %—43:—1—16.



ad. (iii) (Ba+2)® = (3a)®+3(3a)22 + 3(3a)2% 4 28

= 27a® + 54a? + 36a + 27.

ad.(iv) (2r —3y)®> = (22)% - 3(22)%(3y) + 3(22)(—3y)? — (3y)?

= 823 — 3622y + bdxy® — 27y>.

Zadanie 11.1 Wykonaj dziatania

. (5a + 2)? B x2 9
(4) (2a—3) (i7) (g -1)7
() Ga+2P () (G

Zadanie 11.2 Upro$¢ wyrazenie

(a® + b%)(a® — b3)(a® + b3)
[(a+b)%+ (a —b)?](a® + ab + b?)(a® — ab+ b?)
l+x+22+23

1+ 22

(4)
(i)

11.2 Dwumian Newtona (1642-1727).
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Jednym z najwazniejszych i szeroko stosowanym wzoréw jest Dwumian Newtona:

n_ (™Y ni0o, (™) n;l Y n—2:2 n Tin—1_ (™) 0;n
(a+Db) —(O>a b +(1>a b +(2>a b+ +(n_1>a b +(n>a b™ (11.1)

Dwumian Newtona piszemy réwniez w % (sigma) notacji
" /n
s =3 ()
k=0
Napiszmy Dwumian Newtona dla n =1, 2, 3, 4, 5,

1

1
(a+b)t = Z (k>a1kbk =a+b,
k=0
2, (2
(a+b)? = Z (k>a2kbk =a® + 2ab + b,
k§0 5
(a+0b)3 = Z (k>a3kbk =a® +3a® b+ 3ab® + b,
kjo A
(a+b)?* = Z (k) a?™FbF = a* + 4a3b + 6470 + 4ab® + b,
k?o 5
(@+0)° = Y (k> a®7FbF = a® + 5a*b 4 10a3b* + 104?03 + 5ab* + b°,
k=0

Witasnosci wspélczynnikow Newtona (:)

(11.2)
n=1
n=2
n=3
n=4
n=>5
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“ (o) ()

. Symetria wspélczynnikéw Newtona

n\ n
k) \n—k
Istotnie, obliczamy, ze

(nﬁk> N <n—k>!<r7i (n— k)~ k!(nni DI (Z>

. Suma wspdlczynnikow Newtona

(Z>+(kil> - (Zﬁ)

Zauwazmy, ze

n B n! B n! k+1
(k) - K(n— k) T Gt Dn—k—1)! n—k

(kil) Tkt 1)!(2!_ k—1)!

Sumujac stronami powyzsze réwnosci, otrzymamy

n n n! k+1 n!
(k>+(k+1> B (O T oy T ey VR PSR ] gy P
n! k+1

= G-y GoE Y

B n! n+1

T G Dn—k-1)! n—k

B (n+1)!

T G+ Dln—k)

- n-+1
o\k+1

4. Suma wspdlczynnikow dwumianu Newtona

n n N
> ()=
k=0

Sprawdzamy

2" = (14+1)" = zn: (Z) 17—k = zn: (Z)

k=0 k=0
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11.3 Tréjkat Pascala (1623-1662).

Tréjkat Pascala tworza wspélczynnniki dwumianu Newtona.

(a+b)° (o)

(a+D)" A R (YA

(a +0)* N (0) . (3) 5 (2) 5

(a+ b)z : . 0) . (1) . (2) . (3) .

(a+b) 5 ' (0) 5 (1) 5 (2) 5 (3) 5 (4) 5

(a+b)° 6 (0) 6 () 6 (2) 6 (3) 6 (1) 6 (5) 6

(a+ b)ﬁ 7 (0) . (1) . (2) . (3) . (4) . (5) . (6) .
(@a+b)" (o) (1) (2) (3) (1) (5) (6) (7)

4

Obliczajac wartosci wspotczynnikéw dwumianu Newtona ze wzoru

(1) = e

ktore podane sa nizej w tabeli

(a+0b)° 1

(a+0b)t - 1 1

(a+b)? 1 2 1
(a+b)? - 1 3 3 1
(a+0b)* - 1 4 6 4 1
(a+0b)°> -

Wiasnosci wspélczynnikow Newtona mozna tatwo odczytac z powyzszych tabeli. Mianowicie,

wilasnosé 1
n n
= =1.

jest widoczna, poniewaz skrajne wartosci w kazdym wierszy rownaja sie¢ 1. Rowniez jest
widoczna w tabeli wlasnosé 2, symetria

()= ()

Tabelg wartosdci wspolczynnikéw Newtona w n — tym wierszu tworzymay stosujac wlasnosc

3, to jest wzor.
n n n+1
+ =
() =G

Na przyklad, z wartosci juz obliczonych w wierszu n — 1 obliczmy wartosci w wierszu n, jak
nizej

nen k0 o)+ (1) = = ()
nen ko (o4 (1) - e = ()
e e (4 (2) - 2eas - ()
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11.3.1 Zadania

Zadanie 11.3 Oblicz wartosé wyrazenia algebraicznego dla v = 2
@) (@+3)? (@) (@+3)°
(iii) (x —3)?, (iv) (z—3)3.

Zadanie 11.4 Oblicz wartosé wyrazenia algebraicznego dla a = 3
@) (a+D' @) (a—1DY
(iii)  (a+2)5, (iv)  (a—2)°.

Zadanie 11.5 Oblicz wyrazenie ze wspotczynnikami Newtona
o (3). i (7)
5 6 . 7 8
@ (@6 @ 66



Chapter 12

Funkcje liniowe

12.1 Proste na plaszczyznie

Ly 1Y Ly

N[

=1—x X

400 -1 0 N

11
Punkt przeciecia (5, 5) prostych prostopadtych: L1 : y=1—x, Ly: y==x

N [=

Polozenie figur geometrycznych i ich ksztalt, w tym polozenie prostych na plaszczyznie
kartezjariskiej sa wyznaczane we wspdlrzednych z, y.

Proste na plaszczyznie kartezjanskiej okreslamy przez réwnania liniowe, ktore ustalaja zaleznoscé
wspolrzednej y od wspdélrzednej x punktéw lezacych na prostych.

Rozpatrzymy nastepujace cztery formy réwnan prostych:

e Rownanie prostej w postaci funkcji liniowej

e Rownanie prostej przechodzej przez dwa punkty

e Rownanie ogdlne proste;j.

e Rownanie parametryczne prostej

12.2 Funkcja liniowa.

Zaleznosé liniowg
ylx) =ax+Db, (12.1)

wspolrzenej y od wspdtrzednej r nazywamy funkcjg liniowg o wspotczynnikach a © b oraz
zmiennej x.

Funkcjg y(x) = a x + b jest liniowa, gdyz jej wykresem jest linia prosta o wspdtczynniku
kierunkowym a i wyrazie wolnym b.

Roéwnania prostej okreslonej przez funkcje liniowa

ylx) =ax+b

147



148

nie obejmuje prostych réwnoleglych do osi y.

Przykiad 12.1 .
(1) Narysuj linie prostg na plaszczyzZnie, w uktadzie wspdlrzednych x,y, przechodzgcg przez
dwa punkty (0,—1) 7 (2,1)

(#4) Oblicz wspdtezynniki funkcji liniowej
y(z) = az +b,
przechodzgceej przez punkty (0,—1) ¢ (2,1)

Rozwiazanie (7)

Wykres funkcji liniowej y(x) = x — 1, w uktadzie wspotrzednych x,y

Rozwiazanie (i)
Wykres funkcji y(z) = ax + b przechodzi przez punkty (0, —1), (2,1), jezeli

y(0)=-1, y(2) =1
Wtedy wspdirzedne tych punktow spelniaja réwnania
y(0)=ax0+b=-1, b=-1,
y2)=ax2+b=1, ax2-1=1,
2%xa =2, a=1
Skad otrzymujemy réwnanie prostej
yle) =z —1

w formie funkcji liniowej o wspdtczynnikach @ = 1, b = —1, na ktorej leza dane punkty

Przykiad 12.2 .
(1) Sprawdz, ktére z punktdw

Plz(0,0), P2:(1a1)a
P;=(0,1), P,=(1,0)
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lezg ma prostych Ly lub Lo o réwnaniach
Li: wyi(z)=2, La: gyolx)=1-—=za. (12.2)
(#1) ZnajdZ punkt przeciecia prostych Ly, Lo. Podaj wykres tych prostych.

Rozwiazanie (i). Punkty P; = (0,0), P» = (1,1) leza na prostej L;, poniewaz ich
wspolrzedne spelniaja rownanie prostej Ly : y ==

y(0) =0, y(1)=1

Punkty P; = (0,1), P> = (1,0) leza na prostej Lo poniewaz ich wspdhrzedne spehiaja
rownanie prostej Lo : y =1 —z,

Rozwiazanie (ii).
Punkt przeciecia (xg,yo) lezy na obu prostych, jezeli

y1(®o) = yo, i y2(w0) = Yo-
Wtedy mamy réwnania
yi(xo) =20 =yo 1 y2(x0) =1— 0= Y0,

.CC():l—ZCO ) 2.?60:1,

1 . 1
$0:§ (3 y0:§

Odpowiedz: Proste y1(z) = x i y2(x) = 1 — x przecinaja si¢ w punkcie (1, 1)

ya(2) =1—2 yi(z) ==z

[=
-

N[ =

N [=

400

Punkt przeciecia prostych prostopadlych : y1(z) =z, y2(x) =1— .

12.3 Roéwnania prostych rownoleglych

Rozpatrzmy dwie proste L; i Ly o réwnaniach !

Ly: y=ax+ by,

12.
Ly y=agsx+ bs. (12.3)

IDalej uzywamy uproszconych oznaczeri y zamiast y(x)
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Warunek konieczny i dostateczny.
Proste Ly i Ly o réwnananiach (12.3) sqg réwnolegte, wtedy i tylko wtedy, jezeli wspdtczynniki
ai, as S¢ rowne a; = as

Przyklad 12.3 Sprawd? czy proste

Li: y=z+1,
Ln: y=z—1 (12.4)
sq rownolegle.
Podaj wykresy prostej Ly i Lo.
Rozwiazanie.
Proste L i Ly o wspolczynnikach
ap = 1, bl = 1,
as = 1, b2 =1

sa rownolegle poniewaz ich wspélczynniki a1, a2 spelja warunek konieczny i dostateczny
rownoleglosci prostych na plaszczyznie.

CL1:CL2:1.

Wykresy réwnan (12.4)

Li: y=z+1 Ly: y=x-1

400

A1

Przyklad 12.4 Wyznacz rownanie prostej L rownolegtej do prostej

Ly: y=z+1
przechodzgcej przez punkt

P=(3,1).

Podaj wykres prostej Ly i prostej L.
Rozwiazanie.
Prosta L réwnolegta do prostej Ly ma wspdlczynnik kierunkowy ten sam co prosta Ly,
mianowicie a = 1.

Wtedy réwnanie prostej
L: y=z+b.
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Poniewaz prosta L przechodzi przez punkt P = (3,1) to po podstawieniu wspétrzednych
punktku otrzymamy réwnanie

1=3+b,

z ktérego obliczamy wyraz wolny

Skad otrzymujemy réwnanie prostej
L: y=2-2

Wykres prostych réwnolegtych Lo: y=2+1, L:y=x—2

200

12.4 Roéwnania prostychi prostopadtych
Rozpatrzmy dwie proste Ly i Lo o réwnaniach

Ly: y=ax+ by,

12.
Ly y=agx+ bs. (12.5)

Warunek konieczny i dostateczny.
Prosta Ly jest prostpadta do prostej Lo, wtedy i tylko wtedy, jezeli wspdotczynnik as prostej
Ly réwny jest negatywnej odwrotno$ci wspotczynnika ay prostej Ly

ag = ——.
ai

Wtedy kazda prosta o rownaniu

1
y=——x+b (12.6)
a1

jest prostopadata do prostej Ly dla dowolnej wartosci wyrazu wolnego b.

Przyklad 12.5 Sprawd? czy proste

Li: y=z—-1,

Lo: y—1-s (12.7)

sq prostopadte.
Podaj wykresy prostej L1 @ Lo.
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Rozwiazanie.
Proste L i Ly o wspolczynnikach

CL1:1, blzl,
CL2:—1, b2:1

sa prostopadle poniewaz ich wspoétczynniki a;, as spelniaja warunek konieczny i dostateczny
(12.6) prostopadlosci prostych na plaszczyZnie.

Wykresy prostych Lq, Lo o réwnan (12.7
y

400

Przyklad 12.6 Wyznacz réownanie pro§ ejIlpmstopadlej do prostej
Ly: y=xz+2

przechodzgcej przez punkt
P =(2,-2).

Podaj wykres prostej Lg i prostej L.

Rozwiazanie.

Prosta L prostopadta do prostej Ly ma wspélczynnik kierunkowy rowny negatywnej odwrotnosci
wspdlczynnika a = 1 prostej Lg.

Wtedy réwnanie prostej

1
L: y=——z+4+b=0b—=x.
(1)
Poniewaz prosta L przechodzi przez punkt P = (2,0) to wspélrzedne tego punktu spehiaja
réwnanie

0=2+5b
z ktorego obliczmay wyraz wolny
b=2
Skad otrzymujemy réwnanie prostej
L: y=2—-=x

Zadanie 12.1 Podaj wykres prostej prostopadtej Ly o rownaniu y = x + 2 do prostej L o
rownaniu y = x — 2.
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12.5 Rownanie prostej przechodzacej przez dwa punkty

2 Réwnania prostej przechodzacej przez dwa dane punkty nie obejmuje prostych prostopadiych
do osi z.

Roéwnanie prostej przechodzacej przez dwa rézne punkty o wspéirzednych

(z0:y0), (z1,91), dla  xo# 1
piszemy jako nastepujaca zaleznosé¢ wspétrzednej y od wspdhrzednej x:

r—x r—x
Y= Lo + LI (12.8)

To— T Tr1 — To

Istotnie, gdy * =29 toy =yo lub gdy x = z; toy = y1.
To znaczy, ze punkty (o, o), (1,y1) leza na prostej.

Przyklad 12.7 Napisz réownanie prostej, ktora przechodzi przez dwa punkty
(anyO) = (_150) i (xlayl) = (Oa 1)
Sprawdz, ktdry z punktdw (1,1), (1,2) lezy na prostej.

Rozwiazanie:
Piszemy réwnanie prostej przechodzacej przez punkty

(xoayo) = (_L O) i (xlayl) = (Oa 1)

podstwiajac do wzoru (12.8) ich wspétrzedne znajdujemy réwnanie prostej

Tr— X Tr — X
+

y = Yo Y1
Tro— T Tr1 — To
z—0 r+1
o o1t
= x+1

OdpowiedZ: Réwnanie prostej przechodzacej przez punkty (—1,0) 1 (0, 1)
y=x+1

Punkt (1, 1) nie lezy na prostej y = x + 1 poniewaz jego wspélrzedne nie spelniaja réwnania
tej prostej bo
1£1+1

Natomiast punkt (1,2) lezy na prostej y = = + 1 poniewaz jego wspélrzedne spehiaja
rownanie tej prostej bo
2=1+1

2Tutaj uzywamy uproszczonych oznaczeii y = y(x), yo = y(xo), y1 = y(x1)
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Wykres funkcji liniowelj y = x + 1
1 4

Zauwazmy, ze rownania prostej okreslonej przez funkcje liniowa

ylx) =ax+b
lub prostej wyznaczonej przez dwa rézne punkty nie obojmuja potozenia prostych prostopadtych
do osi . Natomiast rownanie ogdlne prostej, ktore obejmuje wszystkie mozliwe polozenia
prostej na plaszczyznie rozpatrujemy w nastepnej sekcji.
12.6 Roéwnanie ogoblne prostej na plaszczyznie
Ogdlne réwnanie prostej na plaszczyznie

az +by +c=0, a® +b* >0, (12.9)

gdzie wspélczynniki a, b nie znikaja jednoczeénie dla a? + b2 > 0.
Przyklad 12.8 wspdtczynniki réwnania

r+y—1=0
a=1,b=1, ¢ = —1 nie znikajg jednoczesnie

A+ =1"+1"=2>0.
Rownanie tej prostej mozemy napisaé w postaci funkcji liniowej
y=1—=x

ktorej wykres podajemy nizej

<

1 4
Wykres funkcji liniowej y =1 —x
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Rozpatrzmy trzy pozycje polozenia prostej L o réwnaniu
ar +by+c=0, a4+ b >0

1. Prosta L jest réwnolegla do osi x, jezeli wspoétczynnik a = 0, natomiast wspolczynnik

b#0.

Wtedy prosta o réwnaniu
by+c=0 lub y=—-

AY b
jest rownolegta do osi x
x
-3 -2 -1 0 1 2 3
_1 <
c
Wykres funkcji liniowej § = 3 dla —o0o<x <0

2. Prosta L jest prostopadia do osi z, jezeli wspétczynnik b = 0, natomiast wspdtczynnik

a#0.

Wtedy prosta o réwnaniu
ar+c=0 lub :c:—g, dla —o0o<y<oo
jest prostopadta do osi x.

3
Wykres prostej L o réwnaniu 2z +3 =0 lub x = 5 dla — oo <y < oo podajemy nizej

4y L: |z =—

[\Sl[eY)

1

Prosta L prostopadla do osi T

3. Prosta L o réwnaniu
ar + by +c=0, gdy a#0, i b#0
przecina o$ x w punkcie (—2, 0) oraz o$ y w punkcie (0, —g)
Przyklad 12.9 Podaj wykres i znajdz punkty przeciecia prostej
r+y—1=0

Z 081G T 1 2 081G Y
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Rozwiazanie.
Dla prostej L o wspélczynnikach a = 1, b = 1, ¢ = —1 obliczamy wspdlrzedna x punktu
przeciecia prostej x +y —1 =0 z osiag x, gdy y =0

(=1

x:——:——:l

a 1

wspolrzedna punktu przecigcia prostej x +y —1 =02z osia y, gdy x =0

__e__ (=)
y=—p=- 1

12.7 Proste rownolegle. R6wnanie ogdlne.
Rozpatrzmy dwie proste L; i Lo o réwnaniach w formie ogdlnej

Li: agz+biy+c1=0

12.1
L2 : a2x+b2y+02:0 ( 0)

Proste Ly i Ly o réwnananiach (12.10) sa réwnolegle, jezeli wspdlezynniki a1, by sa propor-
cjonalne do wspétczynnikéw i by, be, to znaczy

a1 =kxaz, by =kxby (12.11)
dla pewnej liczby k # 0, ktéra nazywamy wspétczynnikiem proporcji.
Przyklad 12.10 Sprawl? czy proste

Li: z—y+1=0

Ly: z—y—1=0 (12.12)

sq rownolegle.
Podaj wykresy prostej Ly i Lo.
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Rozwiazanie.
Proste L i Ly sa rownolegte poniewaz ich wspdlezynniki

ap = 1, bl = —1,
ag = 1, b2 = —1,
speliaja warunek proporcji (12.11)

1=1%1, —1=-1x%1

dla wspolczynnika proporcji k = 1
Wykresy réwnan (12.12)

400

Zauwazmy, ze prosta o rownaniu

ar+by+c=0

e przecina o$ y, w punkcie (0, —g), gdy z = 0, wtedy prosta jest réwnolegta do oisi x

by+c=0, i y:—g, dla b#0, —oo <y < o0.

e przecina o$ x, w punkcie (—E, 0), gdy y = 0, wtedy prosta jest réwnoleglta do osi y
a
ar+c=0, 1 r=-5 dla a#0, —oo<z<oo.
a

e dwie proste o réwnaniach

Li: ajz+biy+c1=0

L2 : CL2£C+b2y+C2 — 0 (1213)

przecinaja sie w punkcie (o, o), jezeli ten punkt spelia réwnania tych prostych
Ll L a1y + blyO +c1 = 0

12.14
L2 NN X0 o) + b2y0 + co = 0 ( )
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Przyklad 12.11 Podaj polozenie na ptaszczyznie (x,y) dwdch prostych o rénaniach
z—1y=0,
z+y—1=0

Znajdz ich punkty przeciecia z osiamy x 1y oraz punkt przeciecia tych prostych.

Rozwiazanie. Prosta o réwnaniu « —y = 0 przecina o$ z i 0§ y, gdy y = 0, lub x = 0,
wtedyr = y = 0. Zatem ta prosta przechodzi przez poczatek ukladu wspolrzednych, przez
punkt (0, 0).
Prosta o réwnaniu x +y — 1 = 0 przecina o$ z, gdy y = 0. Wtedy mamy réwnanie
r—1=0, ¢ x=1.
Prosta o réwnaniu x +y — 1 = 0 przecina o8 y, gdy z = 0. Wtedy mamy réwnanie
y—1= 1 y=1.

Zatem prosta ta przecina o$ x w punkcie (1,0) i przecina o$ y w punkcie (0, 1).
Dwie proste przecinaja sie w punkcie (zg, o), gdy wspéhrzedne tego punktu spelniaja oba
rownania, to znaczy

zo — Yo =0, Yo =20

To+yo—1=0

Podstawiajac yo = z¢ do drugiego réwnania znajdujemy

1 1
—1=0, 22=1, z=>, y=-.
Zo +y0 ) z ) x 25 Yy 2
o .11
Zatem proste przecinaja si¢ w punkcie ( 3’ 5)
Y
y=1—=x y=x—1
11
400 —1 0 1

Proste: y =2z, y=1-=z
12.8 Proste prostopadle. Réwnanie ogélne

Rozpatrzmy dwie proste L; i Lo o réwnaniach w formie ogdlnej

Li: ajz+biy+c1=0

L2 : a2x+b2y+02 =0 (1215)

Proste L; i Lo o réwnananiach (12.15) sa prostopadte, wtedy i tylko wtedy, jezeli wspétezynniki
a.by i ag, bs spelniaja réwnanie
aq * bl + ag * b2 =0 (1216)
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Przyklad 12.12 Sprawl? czy proste

Li: 22—y—2=0

Ly: z4+2y4+2=0 (12.17)
sq prostopadte.
Podaj wykresy prostych Ly i Ls.
Rozwiazanie.
Proste L i Ly sa prostopadle poniewaz ich wspoétczynniki
a; = 2, bl = —1,
az = 1; b2 = 25
speliaja warunek proporcji (12.16)
21+ (-1)%x2=0
Wykresy prostych L i Lo okreslonych przez réwnania (12.27)
3
2
Li:2c—y—2=0
Lo: z+4+2y+2=0 ol
. .\. . 0 . . . .
400 -3 -2 —T _ 1 2 3 4 5
2
/|r3
Wykres prostych prostopsdtych: Ly L Lo
12.9 Rownanie parametryczne prostej
Roéwnanie parametryczne prostej L przechodzacej przez dwa punkty
P=(z1,51) i Q= (z2,92)
piszemy w postaci
L(t) = P+ (Q - P, —00 < t < +00 (12.18)
lub w postaci

Zauwazmy, ze punkty P i @ leza na prostej L(t), poniewaz dla parametru ¢ = 0 mamy punkt

L(0)=P



i dla parametru ¢ = 1 mamy punkt

L(1) = Q.
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Jezeli parametr ¢ zmienia si¢ od 0 do 1 to punkt L(¢) zmienia si¢ wzdtuz odcinka o poczatku
w punkcie P i koricu w punkcie Q). Natomiast, jezeli parametr ¢ zmienia sie¢ od —oo do +00,

to punkt L(t) przebiega cala prosta L.
Wtedy prosta L jest rownolegta do wektora

F=Q-P

o wspolrzednych
U= (r2 — 21,92 — ¥1)

Parametryczne réwnanie prostej L(t) piszemy réwniez we wspdlrzednych
z(t) = a1+t * 22
y(t) =1+t =y,

dla parametru t € (—oo, +00).

Przyklad 12.13 .

(1) ZnajdZ réwnanie parametryczne prostej L(t) przechodzqcej przez dwa punkty P =

i Q=1(2,1)
(#3) Podaj wykres prostej L(t).

Rozwiazanie (7)
Podstawiajac do parametrycznego réwnania prostej (12.19) dane punkty

otrzymamy réwnanie

L(t) = Lt)=(21)t+ (1 —1)0,-1)

Réwnanie (12.20) piszemy we wspéirzednych
z(t) =2t
y(t) =2t —1,

dla parametru t € (—oo, +00).
Rozwiazanie (ii).

(12.20)

(Oa _1)

(12.21)

(12.22)

Wykres prostej L(t) okreslonej przez parametryczne réwnanie (12.22) podajemy nizej
A

Q= (2a 1)
L) =Qet+(1—t)xP

-3 -2 (-1 0 1 2

P=(0,-1) ;

Wykres prostej L(t) przechodzgcej przez punkty P i Q
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12.10 Zadania

Zadanie 12.2 .
(1) Narysuj prostg w ukladzie wspdlrzednych x,y, przechodzgcq przez dwa punkty (—1, —2)
i (2,1)
(i) Oblicz wspdtezynniki funkcji liniowej
y(z) = az +b,
przechodzqceej przez punkty (—1,—-2) i (2,1)
Zadanie 12.3 Podaj polozenie na ptaszczyznie (x,y) dwdch prostych Ly i Lo o rénaniach
Li: y=2z—1, Ly: y=1-2z
Znajdz punkt przeciecia prostych Ly i Lo.

Zadanie 12.4 Napisz réwnanie prostej przechodzgcej przez dwa punkty (zo,yo) = (=1, —1)
i (z1,11) = (1,1). SprawdZ ktory z punktow (0,1), (2,2) lezy na prostej.

Zadanie 12.5 .
(1) Sprawdz, ktére z punktdw

Pi=(0,0), P=(1,1),
P; =(0,2), Py =(2,0)
lezg na prostych Ly lub Lo o réwnaniach
Li: yi(z) = 2z, Ly: yp(z)=2-—=x (12.23)
(#1) Znajdz punkt przeciecia prostych Ly, Lo. Podaj wykres tych prostych.
Zadanie 12.6 SprawdZ czy proste

Li: y=3z+1, Lz3: 2x+3

Ly: y=3x—1, Ly: 3x-3 (12.24)
sq@ rownolegte.
Podaj wykresy prostej L1 @ Lo.
Zadanie 12.7 Wyznacz rownanie prostej L rownolegtej do prostej
Ly: y=1—=x
przechodzgcej przez punkt
P=(-1,1),

Podaj wykres prostej Ly i prostej L
Zadanie 12.8 SprawdZ czy proste

Ly: y=05z—-1, i Ly: y=1-2z (12.25)

sq prostopadte.
Podaj wykresy prostej L1 @ Lo.
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Zadanie 12.9 Wyznacz rownanie prostej L prostopadtej do prostej
Ly: y=2—-=x
przechodzgcej przez punkt
P=(-1,-1),
Podaj wykres prostej Ly i prostej L
Zadanie 12.10 Napisz rownanie prostej, ktora przechodzi przez dwa punkty
(zo,y0) = (=1,2) @ (x1,51) = (0,1).
Sprawdz, ktdry z punktdw (1,0), (2,—1) lezy na prostej.
Zadanie 12.11 ZnajdZ wspotczynniki a, b, c rownania prostej L w forme ogdlnej
L: ar+by+c=0
przechodzgcej przez punkty
P =(-2,2), Q= (1,0)
Zadanie 12.12 Podaj wykres i znajdz punkty przeciecia prostej
2z+y—4=0
Z 081G T 1 2 081G Y
Zadanie 12.13 Sprawl? czy proste
Li: 20—y+1=0 ¢ Ly: 4do—-2y—1=0 (12.26)

sq@ rownolegte.
Podaj wykresy prostej L1 @ Lo.

Zadanie 12.14 Podaj polozenie na plaszczyznie (x,y) dwdch prostych o rénaniach
Li: 20—y=0, 1 Ly: z4+2y—1=0
Znajdz ich punkty przeciecia z osiamy x iy oraz punkt przeciecia tych prostych.
Zadanie 12.15 Sprawl? czy proste
Li: 32—y—1=0 1 Ly: z+3y+1=0 (12.27)
sq prostopadte.
Podaj wykresy prostych L1 @ L.

Zadanie 12.16 .

(1) ZnajdZ réwnanie parametryczne prostej L(t) przechodzgcej przez dwa punkty P = (1, —1)
i Q= (2a _1)

(#3) Podaj wykres prostej L(t).

Zadanie 12.17 ZnajdZ rownanie parametryczne prostej o rownaniu
y==x
danym w uktadzie wspdtrzednych x,y.
Zadanie 12.18 ZnajdZ punkt przeciecia prostych o réownaniach parametrycznych
Li(t): z(t)=t¢t, ylt)=t,  —oco<t<o0.
Lo(t) : z(t) =t, y(t)=-t, —oo<t<o0.

na ptaszczyinie we wspotrzednych x,y.



Chapter 13

Funkcje wymierne

1
Hyperbola y = —
x

13.1 Okreslenie funkcji wymiernej

Naturalnym rozszrzeniem pojecia wielomiandw sq¢ funkcje wymierne. Mianowicie, iloraz
wielomianow

pn(7) anx™ + ap_12" "+ + a1z + ag
= = m 1 -1
wie) = L G L P @) A0 (13)

stopni n i m jest jest funkcjg wymierng.

Zauwazmy, ze jezeli mianownik ¢, (z) = constant # 0 jest liczba rézna od zera, to funkcja
wymierna jest wielomianem stopnia n.

Zatem dziedzina funkeji wymiernych w(z) jest zbidr tych liczb rzeczywistych
x € R=(—00,00),
dla ktérych mianownik ¢, (z) # 0 jest rézny od zera, piszemy

Dziedzina w(z): D ={z € (—00,00): takich ze gm(x)# 0}

13.2 Przyklady funkcji wymiernych

Nizej rozpatrzymy kilka przykladow standardowych funkcji wymiernych.
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13.2.1 Hyperbola

Najprostrza funkcja wymierng jest hyperbola w polozeniu kanonicznym na plaszczyznie
kartezjanskie w uktadzie wspoélrzednych x,y

Podamy nastepujace whasnosci tej hyperboli, ktéra dalej oznaczamy y = w(x) :

1. dziedzine,

2. zbidér wartosci,

3. asymptoty hyperboli y = w(z),

4. wykres hypeboli y = w(x).
Dziedzing funkeji wymiernej w(x) jest zbiér liczb rzeczywistych réznych od zera.

Dziedzina funkcji w(z): D ={x € (—oco0,00): xz#0.}
Zbiorem wartosci funkcji wymiernej w(x) jest réwniez zbidr liczb rzezywistych réznych od
zera bez punktu z = 0, gdyz i # 0 jest okreslona dla x # 0.
Zbior wartosci funkcjiy =w(z): {y € (—o0,00), takich ze x #0 i y#0.}

Zatem funkcja w(z) nie osiaga wartosci zero, w(z) # 0 dla wszystkich wartosci argumentu
x # 0 dla ktérych jest okreslona. Wykres Hyperboli w postaci kanonicznej

Asymptota pozioma: 0§ x, gdy y

=0
symptota pionowa: osy, gdy x =0

1
Hyperbola y = —
x

Zauwazmy, ze ta hyperbola ma dwie asymptoty pozioma o$ = i pionowa o$ y.
Istotnie, gdy argument = dazy do dodatniej lub ujemnej nieskonczonosci, piszemy
T — Fo00

to wartosci hyperboli daza do zera

1
w(x)=——0, gdy x— Foo
x
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Przyklad 13.1 Rozpatrzmy funkcje wymierng

r—1

y =
Dla tej funkcji wymiernej, ktdrg dalej oznaczamy y = w(x), znajdziemy

1. dziedzine ,

2. zbior wartosci,

3. rozldz funkcje y = w(x) na utamki proste,

4. asymptoty asymptoty funkcji y = w(x),

5. wykres funkcji y = w(zx).
Dziedzing tej funkcji wymiernej jest zbiér liczb rzeczywistych dla ktérych mianownik

x+1#0

jest rézny od zera.
Jasne, ze mianownik jest rézny od zera dla x # —1. Zatem, zbiorem okreslonosci funkcji
wymiernej w(z) jest zbidr zwany dziedzing

Dziedzinay =w(z): D ={z € (-0, ) takich, ze x # —1.}

Funkcje wymierng w(z) tatwo zapiszmy wpostaci utamkéw prostych. Mianowicie, dodajac
i oddemujac w liczniku liczbe 2, sprawdzamy, ze

r—1
T+ 1
r—142-2
r+1
(x+1)—2
T+ 1
2

= 1- = ~1.
o '

y=w(r) =

Zbiorem wartosci funkcji

2
r+1

y=w(x)=1- #1, x#-1.
jest zbior liczb rzezywistych réznych od 1.
Zbior wartosci funkcji y = w(z) = {w € (—o00,00), takich, ze w # 1}
Ponadto funkcja wymierna w(z) osiaga wszystkie wartosci rzeczywiste rézne od 1.
Asymptoty funkcji y = w(x):
Asymptotg poziomg jest prosta réwnolegta do osi x
y=w(z)=1 dla wszystkich rzeczywistych = # —1.

Jezeli x dazy do nieskoniczosci dodatniej lub ujemmnej to wartosci funkeji w(z) daza do 1.

Jezeli x — +oo, to y=w(z)=1-— — 1.

r+1
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Asymptotg pionowg jest prosta réwnolegta do osi y przechodzaca przez punk osobliwy x =
—1.

Jezeli x dazy do —1 z lewej lub z prawej strony punktu x = —1, to wartosci funkeji w(x)
daza do plus nieskoniczonosci lub minus nieskonczonosci.

Pl to g =) =wl) = 1- ko
Wykresem tej funkcji wymiernej jest hyperbola
Y
Asymptota pionowa: réwnolegta do osiy, gdy x = —1

) Asymptota pozioma: réwnolegta do osi x, gdy y =1

Zauwazmy, ze ta hyperbola ma dwie asymptoty pozioma y = 1 dla kazdej rzeczywistej
wartodci zmiennej z € (—o0, 00) 1 pionowa przechodzaca przez punkt z = —1, to jest punkt
w ktorym funkcja jest nieokreslona.

Przyklad 13.2 Rozpatrzmy funkcje wymierng

1
y:w(x):m, y=w(z), —oo<zx<o0.

Dla funkcji wymiernej y = w(x) znajdziemy
1. dziedzine,
2. zbior wartosci ,
3. asymptoty funkcji y = w(x),
4. wykres funkcji y = w(x).
Dziedzing tej funkcji wymiernej jest zbidr liczb rzeczywistych.
Dziedzina funkcji w(z): D = (—oc0 <z <,00).

Zbiorem wartosci tej funkceji jest przedzial [1, 00) liczb rzeczywistych wigkszych lub réwnych
od 1. Istotnie, zauwazamy, ze wartosci tej funkcji spelniajg nieréwnosé

mgl, dla —oo <z < oo.

Wykresem tej funkcji wymiernej jest krzywa
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y = w(x)

1

Funkcja wymierna : y = w(x) = 62 71

Funkcja wymierna

() = 12
=w(r) = —5—
4 1622 + 1
ma jedng asymptote pozioma o x, gdy y = 0.
Przyklad 13.3 Rozpatrzmy funkcje wymierng
_rol = w(x) 0o << 0o
y - ZI)Z _|_ 17 ZJ - ’ .

Dla funkcji w(z) znajdziemy
dziedzine ,
zbior wartosci,

asymptoty funkciy = w(zx),

e v o~

wykres funkcji y = w(x).

Drziedzina tej funkcji wymiernej jest zbiér wszystkich liczb rzeczywistych, gdyz mianownik z2+1 > 1
jest dodatni dla kazdego rzeczywistego

z € (—00,00).

Zbiorem wartosci funkcji jest przedziat [—1,1) liczb rzczywistych. Mianowicie, latwo sprawdzamy

nier6wnosc: )
1< 1

—x24+1

Istotnie, funkcje w(z) mozna napisa¢ w postaci réznicy

<1 (13.2)

:c2—1_1 2
x24+1 2 +1

Dodatnia warto$¢ wyrazenia

2 <2

0
<:02—|—1_

jest mniejsza od 2, réwna 2 dla z = 0.

Ponadto

0< 1—>O, gdy x — Foo,

x2 +

dazy do zera, jezeli z — +oo.
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Skad otrzymujemy nieréwnosé (13.2) przez nastepujace oszacowanie
2’ —1 ) 2
241 x2+1
< 1, gdy z — Foo,

oraz
-1 2
x24+1 2+ 1’
> -1, gdy z==0.
Wykresem funkcji wymiernej
(@) z?—1
=w(x) =
Y 2 +1

jest nastepujaca krzywa:
Y

Asymptota pozioma: 7"0’}1 molegta do osi x, gdyy =1

13.2.2 Rozklad funkcji wymiernych na utamki proste
Utamkiem prostym nazywamy jedna z nastepujacych funkcji wymiernych:

A A Ax+ B Ax+ B
z—a’ (z—a)l’ 2 +pr+q (22 +pr+ )k’

A=p*—4¢<0.

dla ustalonej liczby naturalnej k, i o odpowiednich wspétczynnikach A, B, p,q, gdy wyréznik
A =p? — 4¢ < 0 jest ujemnym.

Przyklad 13.4 Rozitoz funkcje wymierng na utamki proste

2z -1
o2 —1

w(x)

Dla funkcji w(z) podaj

dziedzine,

zbior wartoéci ,

postad utamka prostego funkcji y = w(x),

asymptoty funkcji y = w(zx),

SAN NI

wykres funkcji y = w(x).
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Rozwiazanie. Dziedzing tej funkcji wymiernej jest zbidr liczb rzeczywistych dla ktérych mi-
anownik jest rézny od zera. To znaczy

D = {ze(-00,00): 22 —1=(z—1)(z+1)#0}
= {z€(-00,00): (x#1)N(z#-1)}

Rozkladu funkcji wymiernej na ulamki proste szukamy metoda wspélczynnikéw nieoznaczonych.
Mianowicie, znajdziemy A i B takie, ze nastepujaca réwnos¢ zachodzi
2z — 1 2z — 1 A B

xz—lz(:c—l)(:c—kl)::c—l_'—:c—kl

w(x) =

dla kazdego = € D z dziedziny funkeji w(x), to znaczy dla kazdego z # —1 1z # 1.
Zatem, wspolczynniki A i B wyznaczamy z tozsamosci

2 — 1 A B

(z—1D(x+1) :c—1+:c—|—1

ktéra jest speliona dla kazdego « # —1 1 x # 1.
Napiszemy ta tozsamosé o wspdélnym mianowniku

2z —1 A(x+1)+B(xz—-1 (A+B)x+(A-B)

(x —1)(z+1) (x —1)(z+1) T (z=1)(z+1)

Poréwnujac wspodlczynniki przy x i wyrazy wolne w liczniku, otrzymamy réwnania na niewiadome
AiB
A+B=2, A-B=-1.
Obliczamy
A=B-1, (B-1)+B=2, 2B=3.

Skad znajdujemy

3 3 1

Odpowiedz: Rozklad funkcji wymiernej w(z) na utamki proste

20 + 1 3 1
w@) =TT T 3o 2,

13.3 Zadania

Zadanie 13.1 Dla danej funckcji wymiernej

podaj
1. dziedzine funkcji w(x),
2. zbidr wartodci funkcji w(zx),
3. postaé utamka prostego funkcji w(x),
4. asymptoty funkcji w(x),
5. Naszkicuj wykres funkcji y = w(x).

Zadanie 13.2 Dla nastepujgcej funkcji wymiernej:

(i) we) =22
(i) ww) =522,

podaj



dziedzine dunkcji w(z),
2bidr wartosci funkcji w(x),

asymptoty funkcji w(x),

e o~

Roztéz na utamki proste funkcje w(x),

5. Naszkicuj wykres funkcji y = w(zx).

Zadanie 13.3 Rozloz funkcje wymierng na utamki proste
2 —
w(z) = z© -9

podaj
1. dziedzine funkcji w(x),
2bidr wartosci funkcji w(x),

asymptoty funkcji w(x),

™ e e

Naszkicuj wykres funkcji y = w(x).

(z = 3) (2% +4)
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Chapter 14

Pierwiastki arytmetyczne {/a.
Funkcja pierwiastek
kwadratowy y = \/x

Operacja wyciaganie pierwiastka stopnia n z liczby a jest odwrotna operacja do potegowania, jezeli
operacja odwrotna jest wykonalna w liczbach rzeczywistych.

Zacznijmy od okreslenia pierwiastka kwadratowego.
Defimnicja 14.1 Pierwiestkiem kwadratowym z liczby nieujemnej a > 0 nazywamy liczbe nieu-
jemng b > 0, ktora spelnia réwnosé
b’ = a.
Pierwiastek kwadratowy z liczby a > 0 oznaczamy symbolem

b= a.

Przyklad 14.1 Pierwiastekiem kwadratowym z liczby a = 4 jest liczba b = 2, poniewaz liczba 2
jest dodatnia i spelnia rownosé
2’ =4.

Piszemy

Rowniez liczba ujemna —2 spetnia rownosé

Jednak z definicji liczba ujemna —2 nie jest pierwiastkiem kwadratowym z liczby 4.

Ogdlnie, rzeczywiste pierwiastki stopni parzystych
n=2k, k=1,2,3,...:

nie istniejg z liczb ujemnych. W szczegolnosci, pierwiastek kwadratowy z liczb ujemnych nie istnieje
w zbiorze liczb rzczywistych.

171
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14.1 Funkcja pierwiastek kwadratowy

Podobnie okreslamy funkcje pierwiastek kwadratowy.

Defimnicja 14.2 Wartosé nieujemnay > 0 funkcji pierwiastek kwadratowy
Y=z,

rowna jest pierwiastkowi kwadratowemu z liczby nieujemnej x > 0.
Zatem funkcja piewrwiastek kwadratowy jest dobrze okreslona dla argumentu x € [0,00) & wartosci
y € [0,00) nalezgcych do pdtproste; [0, 00).

Y
Pierwiastek V4 = 2
2
y 1
-2 —1 X
O 1 2 3 4
Wykres funkcja y(z) = x

Przyklad 14.2 Uprosé wyrazenie przez rozktad liczby pod pierwiastkiem na czynniki pierwsze
(1) V200, (it) V144

Rozwiazanie.

(i)

V200 = V2 % 100 = V2 % 102 = 10v2
(ii)

V432 = /3 % 144 = V3% 122 = 12V/3

Przyklad 14.3 Oblicz wartosé wyrazenia

(10 — v10)(10 ++/10) 100 — 10
V10 V10

Przyklad 14.4 Uprosé wyrazenie przez rozklad na czynniki pierwsze liczby pod pierwiastekiem

V432 — V48



Rozwiazanie.
Rozklad liczb 432 ¢ 48 na czynniki pierwsze

432 | 2 48 | 2
216 | 2 24 | 2
108 | 2 12 | 2
54 | 2 6 | 2
27 | 3 3 ] 3
9 | 3 1
3 ] 3
1

Skad otrzymujemy rozklad liczb na czynniki piewrwsze
432 =2"%3% 48=12"x3
Uproszczenie wyrazenia
V24433 — V2453
= 3/16%3—-V16%3 =2V3

V432 — V48

Przyklad 14.5 Uprosé wyrazenie

V90 — V40 V9*10 —v4 %10

V10 B V10
V32510 — V22 %10
V10
3v10 — 2v/10
V10
_ VI,

V10
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14.2 Algorytm cyfra po cyfrze obliczania pierwiastka

kwadratowego

Zacznijmy opis algorytmu od przykladéw.

Przyklad 14.6 oblicz przyblizong wartosé pierwiastaka /2 z doktadnoscig 4 znaki po przecinku.

Schemat algorytmu obliczania pierwiastaka kwadratowego z liczby a = 2.0 > 0 dodatniej jest

podobny do schemtu dzielenia liczb catkowitych.

1. W pierwszym kroku, cyfry liczby a = 2,0 uzupelniamy zerami i dzielimy na grupy po dwie w

lewo od przecinka i w prawo od przecinka, jak nizej

4/ 02,00 00 00 00

2. Znajdujemy najwieksza liczbe p taka, ze p® jest mniejszy od liczby o dwéch pierszych cyfrach

liczby a. W tym przykladzie
p2 <a=2.

Jasne, ze dla a = 2 liczba p = 1, poniewaz p° = 12 < 2.

Natomiast liczba p = 2 juz jest za duza, p? = 2% = 4 jest wieksza od a = 2.

Zatem, liczbe p = 1 piszemy nad kreska, jak nizej

1. cyfry

4/02,00 00 00 00 | 1
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Iloczyn px1 =1%1 =1 odejmujemy od liczby 02, jak w pisemnym dzieleniu

L. cyfry va
+/02,00 00 00 00 |
01 | |
- | r=100 |1
0100 | |

2. Nastepna cyfre liczby v/2 znajdujemy dopisujac do liczby 2% p = 21 cyfre jednosci « dla ktérej
iloczyn
y= (20p + z) xz <7y = 100. (14.1)

W ten sposéb cyfry liczby p zwigkszamy o jedna cyfre x, ktéra obliczamy, w tym przykladzie, przez
podstawienie p = 4 do réwnania (14.1)

y=(20%4+4) x4 =96.

Cyfre 4 dopisujemy do cyfry 1. nad kreska po przecinku, dalej wykonujemy operacje odejmowania
jak w dzieleniu pisemnym

1.4 cyfry Va
1/ 02,00 00 00 00 |
01 | |
N | 71 =100 | z=1
100 | |
096 | =20%4+4=96 | z—=4
|
|

000400

3. Nastepna cyfre liczby p = 1.4 znajdujemy w podobny sposéb.
Mianowicie, liczbe p = 14 mnozymy przez 2 i dopisujemy do iloczynu cyfre = dla ktérej wartosé
wyrazenia

(20p+z)*xx = (2014 + 1) * 1 = 281 < 400

jest najwieksza, a mniejsza od 400. Latwo sprawdzimy, ze x = 1.

Cyfre x = 1 dopisujemy do liczby p = 1.4 nad kreska. Dalej wykonujemy operacje odejmowania
jak w dzieleniu pisemnym

1.41 cyfry va
1/ 02,00 00 00 00 |
01 | |
—_ | =100 | z=1
100 | |
96 | r2=20%x4+4=96 | z=4
- | |
400 | |
281 | r3=(20%14+1)%1=281 | z=1
- | |
191 | |

4. Nastepna cyfre liczby p = 1.41 znajdujemy w podobny sposéb.
Mianowicie, liczbe p = 141 mnozymy przez 2 i dopisujemy do iloczynu cyfre = dla ktérej wartosé
wyrazenia

(20p + ) * & = (20 * 141 + 4) » 4 = 11256 < 11900
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jest najwieksza, a mniejsza od 11900. Latwo sprawdzimy, ze z = 4.
Cyfre © = 4 dopisujemy do liczby p = 1.41 nad kreska. Dalej wykonujemy operacje odejmowania
jak w dzieleniu pisemnym

1.414 cyfry va
1/ 02,00 00 00 00 |
01 | |
- | r =100 | o=1
100 | |
96 | r2=20%x4+4=96 | z=4
—— - | |
400 | |
281 | r3=(20%14+1)%1=281 | z=1
——- | |
11900 | |
11296 | r3=(20%14+1)%1=281 | z=4
-~ | |
604 | |

5. Nastepna cyfre liczby p = 1.414 znajdujemy w podobny sposéb.
Mianowicie, liczbe p = 1414 mnozymy przez 2 i dopisujemy do iloczynu cyfre x dla ktérej wartosé
wyrazenia

(20p + ) * © = (20 * 1414 4 2) * 2 = 56564 < 60400

jest najwieksza, a mniejsza od 60400. Latwo sprawdzimy, ze z = 2.

Cyfre x = 2 dopisujemy do liczby p = 1.414 nad kreska. Dalej wykonujemy operacje odejmowania
jak w dzieleniu pisemnym

1.4142 cyfry va

/02,00 00 00 00 |
01 | |

[ | 71 =100 | 2 =1
100 | |

96 | ro=20%x4+4=96 | z=4
- | |
400 | |

281 | rs=(20%14+ 1)1 =281 | 2 =1
- | |
11900 | |

11296 | 73 =(20%1414+1) %1 = 281 | 2 =4
-—= | |
60400 | |

56564 | r3=(20%1414 +2) x2=56564 | = =2
—-—= | |
3836 | |

Korniczac obliczenia z dokladnoécia 4 cyfry po przecinku, otrzymujemy przyblizona warto$é pier-
wiastka /2 ~ 1.4142.
Jasne, ze mozemy kontynuowaé ten proces obliczenia v/2, zeby otrzymaé wieksza dokladnosé niz 4.

14.2.1 Réwnaia z wyrazeniem /x
Rozwigzywanie réwnan z wyrazeniem +/r wyjasniamy w nastgpujacych przyktadach:
Przyklad 14.7 Rozwigz réwnanie:

r =z, z > 0.
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Rozwiazanie. Naturalnie rozwiazania szukamy w dziedzinie tego réwnania, to jest w przedziale
[0, 00) liczb nieujemnych. Podnoszgc stronami do kwadratu to réwnanie, otrzymamy réwnanie nie
réwnowazne

2? =1z, —o0 <z < 00, (14.2)
ktore ma sens liczbowy dla wszystkich liczb rzeczywistych wlaczajac liczby ujemne.
Latwo znajdujemy rozwiazanie

r—22=0, ax(z—1)=0, =0,
lub (14.3)

rz—1=0, r=1.

Sprawdzmy, ze oba pierwiastki = 0 lub x = 1 naleza do dziedziny [0, c0). Zatem to réwnanie ma
dwa rozwiazania x =0, z = 1.

Przyklad 14.8 Rozwigz réownanie

Vor =z —1 (14.4)

Rozwiazanie.

Zauwazamy, ze rOwnanie (14.4) jest okreslone dla wyrazenia pod pierwiastkiem 2z > 0, gdy = > 0
oraz dla wyrazenia po prawej stronie z —1 > 0, gdy = > 1.

Zatem dziedzing tego réwnania jest pélprosta [1,00).

Podnoszac stronami réwnanie (14.4) do kwadratu otrzymamy réwnanie nie réwnowazne

20 =x —1,
ktorego rozwiazanie
r=—1
nie nalezy do dziedziny réwnania (14.4), piszemy x = —1 ¢ [1, c0).

Odpowiedz: Réwnanie (14.4) nie ma rozwigzan w liczbach rzeczywistych.
Przyklad 14.9 Rozwigz réwnanie:
Ve+l—vz—-1=1, x> 1. (14.5)

Rozwiazanie. Naturalnie rozwiazania szukamy w dziedzinie tego réwnania, to jest w przedziale
(1,00),gdy x+1>0iz—1>0.
Podnoszac stronami do kwadratu to réwnanie, otrzymamy réwnanie nie rownowazne

(z+1)—-2y/(z+D)(z-1)+(z—-1)=1

lub (14.6)

20 —2¢/x2 —-1=1

ktore ma sens liczbowy dla wszystkich liczb rzeczywistych x < —1 lub = > 1 wlaczajac liczby
ujemne mniejsze od —1. Zatem réwnanie (14.5) ma rézna dziedzine od dziedziny réwnan (14.6).
Réwnanie (14.6) napiszmy w postaci

\/502—1:1—:0, x> 1.
2

Dalej, podnoszac jeszcze raz ostatnie réwnanie stronami do kwadratu, otrzymamy réwnanie réwniez
nie réwnowazne

2 1 2
1=(= =

2 —1= (5 ),

lub

:cz—lzi—:c—kscz,

lub,

:c—§:(),
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ktore ma sens liczbowy dla wszystkich liczb rzeczywistych.

Rozwigzaniem ostatniego réwnania jest liczba x = 1 > 1, ktéra nalezy do dziedzny réwnania.

. 5, . . . .
Sprawdzamy, ze © = — jest rozwigzaniem réwnania (14.5)

4
5 5 9 1 3
Viti-yz-t=b \/;‘\/;r

14.3 Pierwiastek szes$cienny. Kubiczny /a

=1

NO| —

W odréznieniu od pierwiastkéw stopni parzystych, istnieja rzeczywiste ujmne pierwiastki stopni
nieparzystych
n=2k+1, k=1,2,3,...,

z liczb ujemnych.

Mianowicie, rozpatrzmy pierwiastek kubiczny, gdy n = 3.

Defimnicja 14.3 Pierwiastekiem kubicznym (n = 3) z liczby a dodatnie lub ujemnej jest liczba
b=¥a lub b=a?

ktora spetnia réwnosé
3
b =a

Na przykiad dla a = 8 lub a = —8 pierwiastek kubiczny
b=1V8=2, bo b =2°=35,
b= y—8= -2 bo b= (-2)%=-8

Nizej w tabeli podane sa pierwiastki kubiczne niektérych liczb

a 125 | 64 | 27 | 8 [ -1]0]1]8]27 64125
y=a S5 4| 321|012 3] a| >

14.4 Funkcja pierwiastek szesScienny. Kubiczny y = /=
Podobnie jak funkcje pierwiastek kwadratowy, okreslamy funkcje pierwiastek kubiczny.
Defimnicja 14.4 Wartosé y funkcji pierwiastek kubiczny

y="Vz,

réwna jest pierwiastkows kubicznemu z liczby x € (—o0, 00).
Zatem funkcja piewrwiastek kubicznywy jest dobrze okreslona dla argumentu x € [—o0, 00) 1 wartosci
y € (—00,00) nalezgeych do zbioru liczb rzeczywistych (—oo, 00).

Zauwazmy, ze funkcja pierwiastek jest rosnaca, to znaczy ma wieksze wartosci dla wiekszych argu-
mentow, piszemy

Jezeli argumenty x1, x2 spelniaja nieréwnosé
xr1 < T2
to odpowiednie wartosci y1, y2 speliaja nieréwnosé

y1 < y2.
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Y
44 Pierwiastek V/8 = 2
Pierwiastek \3/__ — _9
2 e
_s e » | x
o . . . . : |
-2
Wykres funkcja y(z) = &z

14.5 Przyklady wyrazen z pierwiastakami stopnia n = 3

Przyklad 14.10 Oblicz wartosé wyrazenia

V/81
V64
Rozwiazanie.
Zauwazamy, ze 81 = 3% i 64 = 2°,
Obliczamy

Przyklad 14.11 Oblicz wartosé wyrazenia

/81 — /64
V3 —4

Rozawiazanie.
Wiadomo, ze
81=3" 64=2°

Zatem warto$¢ wyrazenia
V81— V64 V33— V26  3V3-4 )
3V/3—4 3V3-4  3V3-4
Przyklad 14.12 Upro$é wyrazenie przez rozktad liczby pod pierwiastkiem na czynniki pierwsze

(i) V192, (i) V648

Rozwiazanie.
@)

V192 = /3564 = V326 = V343 =43
(ii)

V648 = V8% 81 = V23 %31 =2V33 %3 =2%3V3=6V3
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Przyklad 14.13 Oblicz wartosé wyrazenia

(100 — ¥/1000)(100 + /1000)
/1000

Rozwiazanie.
Zauwazamy, ze v/1000 = 10 oraz stosujemy wzdr na rzni¢ kwadratéw

(100 — {/1000)(100 + /1000) (100 — V/10%)(100 + V/10%)

¥/1000 10
(100 — 10)(100 + 10)
- 10
1002 — 102 10000 — 100
o 10 o 10 =990

14.6 Pierwiastek arytmetyczny stopnia n

Ogdlnie, pierwiastek arytmetyczny stopnia n okredlamy jako operacje odwrotna do operacji potegowania
okreslong dla liczb rzeczywistych nieujemnych.

Defimnicja 14.5 Pierwiestkiem arytmetycznym n-tego stopnia z liczby nieujemnej a > 0 nazy-
wamy liczbe nieujemng b > 0, ktora spelnia réwnosé

" =a, n=23,4,..;
Pierwiastek arytmetyczny z liczby a > 0 oznaczamy symbolem
b= Va.
Nizej podajemey pierwiastki arytmetyczne z niektérych liczb nieujemnych.
Przyklad 14.14

Dlan=2, a=256, +/256=16, b= 16, 16% = 256,

Dlan=3, a=512, <512=8, b=358, 8% =512,
Dian=4, a=256, +v256=4, b=4, 4* = 256,
Dlan=5, a=1024, V1024=4, b=4, 4% = 1024,

14.7 Dzialania na pierwiastkach

Nizej w tabeli podane sa wzory operacji na pierwiastkach

Yar =a a>0 an =a
(L/a*b:{‘/a*% a>0 b>0
/2 Ve a>0 b>0
b~
Vam = (Ya)™ a>0| ¥Var=ar

Na przyktad
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Yon =2 a=2>0 2n =21 =2
J4x9=/4xY9=2+3=6 a=4>0 b=9>0
5/125 Y125 5
== == =125> b=64
ol ol — 1 a 5>0 64 >0
V38 = (V/3)® a=3>0| V3 =31=3>=9

Przyklad 14.15 Obliczamy wartosé wyrazenia

14.8

Zadanie

Zadanie

Zadanie

Zadanie

Zadanie

Zadanie

Zadanie

Zadanie

Zadanie

Zadanie

Zadanie

a0 = V2 = Vo F = VT = Y@y =2 =4

Zadania

14.1 Oblicz warto$é wyrazenia przez rozktad liczby pod pierwiastkiem na czynniki pierwsze
(1) V300, (it) V169
Oblicz wartosé wyrazenia

(20 — V10)(20 + V10)
V3

Oblicz wartos¢ wyrazenia przez rozktad na czynniki pierwsze liczby pod pierwiastekiem

V3072

14.2

14.3

14.4 Uprosé wyrazenie

§‘
D
o

V90

V10

o

14.5 Oblicz wartosé wyrazenia

/72

512

Oblicz warto$¢ wyrazenia przez rozktad liczby pod pierwiastkiem na czynniki pierwsze
(i) /384, (i) V1296
Oblicz wartosé wyrazenia

(20 — ¥/1000)(20 + /1000)
/1000

Nej

14.6

14.7

14.8 Oblicz wartosé wyrazenia

3 \/3_6

14.9 RozwigZ rownanie

14.10 Rozwigz réwnanie

14.11 Rozwigz réwnanie



Chapter 15

Funkcja wykladnicza

Funkcje wykladnicza okres§lamy nastepujacym wzorem:
y = f(z) =a", a>0, a#1l.

Liczbe rzeczywista a > 0, a # 1 dodatnia i rézna od jeden nazywamy podstawa funkcji wykladnicze;j.
Dziedzing funkcji wykladniczej jest caly zbiér liczb rzczywistych

D={z€eR: —oco<z< 0}
Zbiorem wartosci funkcji wykladniczej jest zbidr liczb dodatnich

Ry ={yeR, 0<y< oo}

Y
: ---""'ﬂlnkcja wyktadnicza = y = 2”
e
74 ......... Bt g - x
0 f ! - 4
®—1
Wrykres funkcjl wykladniczejj, gdy a =2 > 1

Zauwazmy z wykresu, ze funkcja wyktadnicza ma jedna asymptote, ktora jest o§ x. To sa punkty
(z,0) gdy wspéhrzedna —oco < x < oo i wspélrzedna y = 0.

Funkcja wyktadnicza
y=f(z)=a"

jest rosnaca, jezeli jej podstawa a > 1, natomiast jest malejaca, jezeli jej podstawa 0 < a < 1.

Na rysunku funkcja y = f(z) = 2% jest rosngca poniewaz jej wykres wzrasta gdy argument z tez
wzrasta.
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Wykres funkcji wyktadniczej y = f(x) = (l)z, gdy jej podstawa 0< a = % < 1.

2
Y
. . 1.,
4° Funkcja wykladnicza y = (5)
—4 —3 —2 L z
R
¢t

Widzimy z powyzszego wykresu, ze, funkcja wykladnicza

y=(3)"

1
jest malejaca, jej wartoéé (=)” maleje, podczas gdy jej argument x roénie.
J jaca, jej D) ] gdy jej arg

15.0.1 Wiasnosci funkcji wykladniczej

1. Wartosé¢ funkeji wykladniczej w zerze, gdy x = 0 réwna jest jeden.

y=f(0)=1, poniewaz a’ =1,
dla kazdej podstawy a > 0.
Wartosé funkcji wykladniczej dla x = 1 réwna jest podstawie a.
y=f(1)=a, poniewaz a' = a,

funkcja wykladnicza y = f(x) od sumy argumentéw réwna jest iloczynowi wartosci

fle+1t) = f(x) = f(t)

Istotnie sprawdzamy, ze
fle+t)=a"" =a"xa" = f(z) * f(1)
funkcja wyktadnicza od réznicy argumentéw réwna jest ilorazowi wartosci

p_ J@

Rzeczywiscie sprawdzamy, ze

¢ a’ f(z)

f(x—t):azit:az*af = =

at  f(t)

funkcja wykladnicza od iloczynu argumentéw réwna jest potedze

flaxt) = (f(z))'

Sprawdzamy, ze
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6. funkcja wyktadnicza od argumentu 7 réwna jest pierwiastkowi n-tego stopnia z wartosci

m-tej potegi m
72y = /70m)

) =a® = Vam = {/f(m)

Przyklad 15.1 Oblicz wartosé wyraZenia

Mianowicie

38 % 37"
Rozwiazanie:
W tym przykladzie stosujemy wiasnosé 2 do funkeji wykladniczej
f() =a”
gdy podstawa a = 3 i argumenty x = 8 i x = —5. Zatem stosujac wlasnos¢ 2, obliczamy

fB)* f(=5)=3%%37°=3"°=3"=27

Przyklad 15.2 Oblicz wartosé wyrazZenia

Rozwiazanie:
Korzystajac z wlasnosci funkcji wyktadniczej, obliczamy

[N

5 1 5
32 %122 = 32 x(3x4)

]

= 3%*3%*4

= 33T544=3242=18.

0 63 G 2Fe2iac
Zadanie 15.2 Rozpatrz funkcje wyktadniczg
flz) =27, —00 <z < 0.
Naszkicuj wykres funkcji wyktadniczej
y=flz-1)+1, —00 < T < o0.

w uktadzie wspolrzednych z,y
Oblicz wartosé funkcji f(x — 1) + 1 dla x = 3.

15.0.2 Roéwnania wykladnicze
Roéwnania wykladnicze i nieréwnosci wkladnicze rozwiazujemy korzystaja z nastepujacych wlasnosci:
e funkcja wykladnicza f(z) = a” > 0 jest dodatnia na calej osi liczbowej dla —oo < z < 0.

e zbidrem wartosci funkcji wyktadniczej sa wszystkie liczby dodatnie,
R+ = (O, OO)
e funkcja wykladnicza f(0) = 0 dla kazdej podstawy a > 0, a # 1

e funkcja wykladnicza f(z) = a” jest rosnaca na calej osi liczbowej
—o0 < x < 00, jezel podstawa a > 1.



e funkcja wykladnicza f(z) = a” jest malejaca na calej osi liczbowej

—o00 < x < 00, jezel podstawa 0 < a < 1.

Nizej podajemy przyklady rozwigzan réwnan wykladniczych

Przyklad 15.3 Rozwigz réwnanie

22 _3%2°4+2=0
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Rozwiazanie. Dziedzing tego réwnania jest caly zbiér liczb rzczywistych R. Teraz, to réwnanie

napiszemy w postaci

(2°) —=3%2"+2=0

Stosujac podstawienie ¢t = 2, otrzymamy réwnanie kwadratowe

2 —3t+2=0, A=(-3)-4x2=1.

Oblicczamy pierwiastki tego réwnania

Wracajac do zmiennej z, obliczamy rozawiazanie:
Jezeli 2° =1, to = =0.
Jezeli 2° =2, to z = 1.

Przyklad 15.4 Rozwigz réownanie

Rozwiazanie. Dziedzina tego réwnania jest zbior liczb rzczywistych réznych od % to znaczy

2x—1
33:—1 =9
1
Teraz, to rownanie napiszemy w postaci
35T — 32
Skad mamy réwnie
20 —1 9
3r—1

Obliczamy rozwiazanie

2 —1=23z—-1), 2z—1=06x—2,

Zadanie 15.3 Rozwigz réwnanie

3" 4+27Tx37 7" —-12=0.

Zadanie 15.4 Rozwigz réwnanie

537 — 95,

dr =1,



Chapter 16

Funkcja logarytmiczna

Funkcja logarytmiczna jest funkcja odwrotna do funkcji wykladniczej. To znaczy, ze jezeli funkcja
wykladnicza ustala zalezno$¢ zmiennej y od zmiennej z wzorem

y=a", a>0, a#1
to funkcja odwrotna ustala zaleznos¢ zmiennej x od zmiennej y wzorem
z = loga vy, y > 0.

Wtedy stala a >0, a # 1 1lub 0 < a < 1 nazywamy podstawa logarytmu.
Zatem dziedzing funkcji logarymicznej jest zbior wartosci fynkcji wykladniczej

D={y: 0<y<oo}
natomiast zbiorem wartosci fnkcji logarytmicznej jest dziedzina funkcji wykladnczej
R={z: 0< 2z < oo}
Na przyktad logarytm dziesigtny, gdy a = 10 piszemy
x = logio v, dla y>0

Logarytm dziesietny jest zwiazany z systemem liczbowym pozycyjnym dziesietnym standardowym.
Bez istotnej zmiany, mozemy zamieni¢ role zmiennych = i y. Mianowicie, zmienna niezalezng oz-
naczamy litera x, natomiast zmienna zalezna oznaczamy litera y, ktéra zalezy od =x.

Logarytm dziesigtny, jako standardowy, oznaczamy symbolem
y = log x, x>0,
bez pisania podstawy logarytmy 10.
Funkcja logarytmiczna jest rosna dla podstawy wiekszej od jednosci a > 1, jest malejaca, jezeli

podstawa 0 < a < 1.
Rozpatrzmy wykres funkcji odwrotnej

y =logs x, O0<z<oo

do funkcji wykladniczej
y=2", —oc0o <z < 0o
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Y
¢° Funkcja logarytmiczna y = log, «
p 1
x
'74 '7'5 '72 '71 0 '1 § . 4
¢ -1
Wykres funkcj logarytmicznej, gdy a > 1

Wykres funkcji logarytmicznej malejaca dla podstawy logarytmu 0 < a = %

Y
y 2 Funkcja logarytmiczna y = log 1
[ 11‘
-4 -3 -2 -1 x
0 '1 2 3 4
®—1
Wykres funkcji logarytmicznej, gdy 0 < a = % <1
16.1 Logarytm naturalny
Logarytme naturalny jest odwrota funkcja do funkcj potegowe;j
y=-ce", lub y = Explz], —00 < T < 00.

Tutaj podstawa
e = 2,71828182845904523536028747135266249775724709369995...;

jest liczba rzeczywista o nieskoniczonej ilosci cyfr.

16.1.1 Wiasnosci funkcji logarytmicznej

1. Wartosé¢ funkcji logarytmiczne;j
y=g(x) =log, =

dla x = 1 réwna jest zero.

g(1) =logo 1 =0, ponicwaz ®=1, a>0, a#1.
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2. Warto$¢ funkcji logarytmicznej
y=g(a) =log, =
dla x = a réwna jest jeden.

g(a) =logs =1, poniewaz a'=a, a>0, a#l.
3. funkcja logarytmiczna od iloczynu argumentéw réwna jest sumie wartosci
loge x xt =logex + loga t, © >0, t>0, a>0, a#1.
W symbolach ogdlnych ta wlasno$¢ piszemy
g(z) =log, =, g(x«t)=g(x)+g(t), >0, t>0.

Istotnie sprawdzamy, ze

y1 = log, , to z=a"", a>0, a#1,
yo = loga t, to t=a¥?, a>0, a#L
Skad znajdujemy
Tt = a¥'xa¥? =a¥'"V2, 4> 0, a#1l.
logo zxt = log, a¥*™¥2 =y +yo = log, = + log, t

4. funkcja logarytmiczna od ilorazu argumentéw réwna jest réznicy wartosci
x
loga, ?:logax—logat, x>0, t>0, a>0, a# 1.

W symbolach ogdlnych ta wlasno$¢ piszemy

9(@) = log, @, g(7) =g(&) = g(t), >0, t>0.
Istotnie sprawdzamy, ze
y1 = log, , to z=a"", a>0, a#1,
yo = loga t, to t=a¥?, a>0, a#L

Skad znajdujemy

Y1
z = a—:ayl*”7 a>0, a# 1.
t ay2
loga, % = log, a'7¥2 =y1 —y2 =logs * — loga t

5. funkcja logarytmiczna od argumentu z*, k = 0,1,2,3, ...,; réwna jest iloczynowi wykladnika

potegi k razy logarytm podstawy potegi x
loga, 2" =k« logax, x>0, k=0,1,2,3,..;
Wiasnosé ta bezposrednio wynika z wlasnosci 2 o logarytmie z iloczynu. Mianowicie

loga:ck:loga rxxrx---xx =log, v+log, v+ -+ +logs x =k =xlog, =

k k
6. funkcja logarytmiczna od argumentu z™ réwna jest logarytmowi
log T =mxlog {x
Mianowicie sprawdzamy korzystajac z wlasnosci funkcji logarytmiczej i wykladnicze;j

=log, ¥z +log, Vx4 - +logs ¥/ =m=xlog, V.

m

m
n

log, «
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7. Przy zalozeniach a > 0, a # 1, ¢ >0, ¢ # 1, b > 0, mozemy zmieni¢ podastawe a logarytmu

loga b na podstawe ¢ wedlug wzoru

logcb

logs b=
g logc a

Dla sprawdzenia tego wzoru wprowadzmy oznaczenia
p=log, b, g=log,. b, r=log, a

Z definicji logarytmu mamy

Skad wynika réwnosé

b= (c")?, b=c"",
log, b=p=xrlog.c, log.c=1,
log.b=px*r, log,. b = log, b *log, a,
log, b= —lchb ,

log, a

8. W przypadku ¢ = b zamiana podstawy z liczba logarytminowana b prowadzi do odwrotnosci

logarytmu
1

logab =
log, a

Rzeczywiscie z wlasnosci 7, dla ¢ = b mamy

logab = log, b = ;, bo log,b=1
log,a log,a

Przyklad 16.1 Oblicz logarytm
(1) log, 64, (13) logs 125
Prosto z definicji logarytmu obliczamy
(i)  log,64 =log,2° =6, bo 25 =64,
(id)  logy 125 =logs5° =5 bo 5° =125.

Przyklad 16.2 Oblicz warto$¢ wyrazen logarytmicznych

. logs 625
(4) 1377
0gs3 5
. logg 5
(i) .

(iii)  logy(logy V/5) — logy(log, 5),

Korzystajac z wlasnosci logarytméw, obliczamy

(i) log; 625  logy5*  4logs5 4
logs5  logs5  logsb

(i) logg5  logy b _ 1 1
log,5 log,8log,5 log, 23 3
log, \/3

log, 5

log, \/3
log, \/3

1
(#d1)  log,(log, \/5) — log, (log, 5) = log, =5

Przyklad 16.3 Oblicz wartosé wyrazern logarytmicznych
(1) log,(log, 16),

(43) logs(logs 125).

= log, % =-1
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Korzystajac z wlasnosci logarytméw, obliczamy
(¢) log,(log, 16) = log,2log, 4 =log,2 =1,

(i5) logy(logs 125) = log, logs 5° = log, 3logs 5 = logy 3 = 1,

Zadanie 16.1 Oblicz logarytm
(1) logs 81, (i) log, 16807

Zadanie 16.2 Oblicz wartosé wyrazern logarytmicznych

. log, 3125
(i R
g log, 8
() oy

(iii)  logs(logs V'T) — logs(log; 7),

Zadanie 16.3 Oblicz wartosé wyrazern logarytmicznych
(i)  logs(logs 3125),

(#3) log,(logs 6561).

16.2 Rownania logarytmiczne

Réwnanie w ktérym niewiadoma wystepuje pod znakiem logarytmu nazywa sie¢ réwnaniem loga-
rytmicznym. Rozwiazujac réwnanie logarytmiczne w pierwszej kolejnosci nalezy okresli¢ dziedzine
réwnania. To jest ten zbidr argumentu x dla ktérego réwnanie logarytmiczne ma sense liczbowy.
W dziedzinie réwnania logarytmicznego szukamy jego pierwiastaka. Okreslenie dziedziny réwnania
jest istotne, poniewaz rozwiazujac réwnanie orginalne przeksztalcamy to réwnania w réwnania o
prosztrzej strukturze, ktére moga mieé pierwiastki spoza dziedziny réwnania orginalnego, nazywane
pierwiastkami obcymi. Metody rozwiazywania rownan logarytmicznych oparte sa na wlasnosciach
funkcji logarytmicznej i wyktadniczej. Nizej na przykladach wyjasniamy sposoby rozwiazywania
réwnan logarytmicznych.

Przyklad 16.4 Rozwigz réwnanie
log, x =4

Rozwiazanie:
Najpierw okreslamy dziedzine réwnania logarytmicznego. Mianowicie, logarytm jest okreslony tylko
dla dodatnich wartosci argumentu x. Zatem dziedzing tego réwnania jest zbiér x > 0. piszemy

0<z<oo lub z€(0,00).
Z definicji logarytmu jako funkcji odwrotnej do funkcji wykladniczej wynika réwnosé
z=2"=16.
Sprawdzamy, ze rozwigzanie x = 16 € (0, 00) nalezy do dziedziny réwnania oraz
log, 2t = 4log,2 =4, log,2=1.
Przyklad 16.5 Rozwigz réownanie

logs (5 — z) + logs (5 + x) =2



190

Rozwiazanie:
Najpierw okreslamy dziedzine réwnania logarytmicznego. Mianowicie, logarytm jest okreslony tylko
dla dodatnich wartosci argumentu

5—xz>0 ¢ 5+x2>0.
Zatem dziedzing tego réwnania jest zbiér
<5 lub x> —b.
Wtedy piszemy dziedzing tego réwnania jako odcinek otwarty
—5<z<5 lub z € (-5,5).

Z wtasnosci sumy logarytmoéw wynika réwnosé

logs(5 — z) + log(5 + x) = logs(5 — z)(5 + z) = 2.
7 definicji logarytmu mamy réwnosé

(5-z)(54+x)=3% lub 25—2>=9 lub z*> = 16.
Obliczamy pierwiastki kwadratowe

Va2 = |z|, V16 =4.

Skad mamy dwa rozwigzania

gdy |z| =4 to x1=—-4 lub z2=4.

Sprawdzamy, ze rozwiazanie 1 = —4 € (=5,5) i z2 = 4 € (—5,5) nalezy do dziedziny réwnania
logs(5+4) +logs(5—4) = log;9# 1 =log;3* =2
oraz
logy(5 —4) +logs(5+4) = logy1#9=1log,3* = 2.

Zauwazamy, ze oba rozwiazania 1 = —4 € (=5,5) 1 2 = 4 € (—5,5) naleza do dziedziny tego

réwnania. Zaznaczmy dziedzine i rozwigzanie na osi liczbowej

—5 :E1:—4 O :E2:4 5

Of liczbowa. Dziedzina réwnania przedzial otwarty (—5,5)

Przyklad 16.6 Rozwigz réownanie
logs(z — —2) +logg(z — 4) =1

Rozwiazanie:
Najpierw okreslamy dziedzine réwnania logarytmicznego. Mianowicie, logarytm jest okreslony tylko
dla dodatnich wartosci argumentu

z—2>0 i xz—4>0.
Zatem dziedzing tego réwnania jest zbiér
x>2 lub x> 4.
Wtedy piszemy dziedzing tego réwnania jako odcinek nieskoriczony lewo stronnie otwarty

x>4 lub z € (4,00).
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Z wtasnosci sumy logarytmoéw wynika réwnosé

logs(z — 2) + logs(x — 4) = logg(x — 2)(x —4) = 1.
7 definicji logarytmu mamy réwnosé

(x—2)(x—4)=3", lub 2* —6x+8=3 lub 2° — 62 +5 = 0.
Obliczamy pierwiastki réwnania:
Wyréznik réwnania
a® —6z+5=0

o wspdtczynnikach a = 1,=—6, c=5

A=b" —dxaxc=6"—4%1%5=236—20= 16.
Skad obliczamy pierwiastki réwnania

6-vie) =0 =1 m= 6+ VD) =

6+4

5 5.

N —

xr1 =

Sprawdzamy, ze obcy pierwiastek 1 = 1 ¢ (4,00) nie nalezy do dziedziny réwnania, natomiast
pierwiastek 2 = 5 € (4, 00) nalezy do dziedziny réwnania. Zatem sprawdzamy, ze drugi pierwiastek
r2 = b spelia réwnanie

logs(5 —2) +1logs (5 —4) = logz3x1=1logs3=1

Zauwazamy, ze tylko pierwiastek xo = 5 € (4, 00) nalezy do dziedziny tego réwnania. Zaznaczmy
dziedzing i rozwiazanie na osi liczbowej

—1 0 1 2 3 4 T2 =05

04 liczbowa. Dziedzina réwnania przedzial otwarty (4, co)

Przyklad 16.7 Rozwigz réwnanie
log,(log, =) = 1.

Rozwiazanie:
Dziedzina tego réwnania jest zbdr tych x dla ktérych

log, x >1, x>4, z€ (4,00)

7Z definicji logarytmu wiemy, ze jezeli
log, = =2"

to
z=4%  z=16.

Rozwiazanie x = 16 € (4, 00) nalezy do dziedziny.
Sprawdzamy, ze x = 16 spelnia réwnanie
log(log, 16) = logy(log, 4%)
= log,(2log, 4)

= logy,2=1
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16.2.1 Zadania

Zadanie 16.4 Podaj dziedzine i znajdZ rozwigzanie réwnania
log,z =3
Zadanie 16.5 Podaj dziedzine i znajdZ rozwigzanie réwnania
log,(1 — z) —log, (14 z) = 0.
Zadanie 16.6 Rozwigz réwnanie
log,(z — 1) +log,(z —2) =1

Zadanie 16.7 Rozwigz réwnanie
2log(x —1) =1

Zadanie 16.8 Rozwigz réwnanie
log,(logg z) = 1.



Chapter 17

Geometria plaska. Planimetria

17.1 Wstep

Geometria Euklidesowa, ktéra obejmje geometri¢ ptaska i geometrie przestrzenna wchodzi do pod-
stawy programu nauczania na poziomie podstawowym i Srednim. W szkole podstawowej do pro-
gramu rozszerzonnego matematyki wchodza tylko niektére tematy wsparte ¢wiczeniami, ktére sa
opisane w tym rozdziale.

Zakres geometrii plaskiej obejmuje konstrukcje z linijka i cyrklem figur ptaskich oraz zwiazki mi-
arowe w trojkatach, prostokatach, rownoleglobokach, w okregach i w wielokatach foremnych.

17.2 Punkty, odcinki i wektory na plaszczyznie

Punkty, proste i plaszczyzny sa pojeciami pierwotnymi, nie wymagaja definicji. Punkt rozumiany
jest jako figura geometryczna bezwymiarowa. Prosta to przestrzen euklidesowa jednowymiarowa,
ktora skltada sie z punktéw wspolliniowych. Podobnie plszczyzna tworzy przestrzen euklidesowa
zlozong z punktéw wspdlplaszczyznowych. Punkty polozone na prostej lub na plaszczyznie oz-
naczamy duzymy literami A, B, C,...; Odcinek o poczatku w punkcie A i konicu w punkcie B oz-
naczamy symbolem [A, B]. Dlugo$é odcinka [A, B] o poczatku A i koricu B oznaczamy symbolem
|AB].

Wektorem o paczatku w punkcie A i koricu w punkcie B nazywamy odcinek skierowany AB o
zwrocie od A do B. Diugoéé¢ wektora |AB| réwna jest dtugosci odcinka |AB].

prosta L
. punkt F D
. punkt E N wektor AB 5 odcinek [C, D]
. punkt H
C

193
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17.3 Polozenie fiugur geometrycznych na plaszczyznie.

Polozenie figur geometrycznych na plaszczyznie okreslamy we wspdirzednych kartezjriskich.
W kartezjanskim ukladzie wspéirzednych wspélrzedne punktéw

A= (al,ag) 7 B= (bl,bz)
piszemy w nawiasach zwyklych. Natomiast wektor
A_B = [az —ai, bz — bl]

o wspohrzednych réznicy wspétrzednych punktéw A i B piszemy w nawiasach kwadratowych.

Przyklad 17.1 Niech punkty A = (3,1.5) ¢« B = (5,3.5) tworzq wektor AB o puczgtku A i koricu
B. Wtedy wektor
AB=1[5-3,35-15=[22]

ma wspotrzedne x1 =2, x2 = 2.

Kartetezjanski uklad wspéirzednych

X2
b B = (b1, b2)
A= (al,ag)
0 al by 1

17.3.1 Operacje arytmetyczne na punktach
Dodawanie punktéw. Suma dwéch punktéw
A= (al,ag) 7 B = (bl,bz)

réwna jest punktowi
P = (p1,p2) = (a1 + b1, a2 + b2)

o wspétrzednych p1 = a1 +b1 @ p2 = a2 + ba.
Przyklad 17.2 Oblicz sume punktow
A=(1,2) ¢ B=(2,1)

Rozwigzanie. Suma
A+B=(1,2)+(2,1)=(14+2,24+1) =(3,3)

OdpowiedZ: Suma danych punktéw A = (1,2) i B = (2,1) jest trzeci punkt P = (3,3). o
wspdlrzednych x1 = 3, x2 = 3.
Nizej na rysunku podana jest geometryczna interpretacja sumy pnktéw

A+B=(1,2)+(21)
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5 P=(3,3)
A : 195
D . : B=(2,1)
!
0 1 2 3 o

Odejmowanie punktow. Rdznica dwéch punktow
A: (al,ag) 7 B = (bl,bz)

réwna jest punktowi P = (p1,p2) = (a1 — b1, a2 — be)
o wspétrzednych p1 = a1 — b1 @ p2 = a2 — ba.

Przyklad 17.3 Oblicz rézZnice punktow
A=(1,2) ¢ B=(2,1)
Rozwigzanie. Réznica
A-B=(3,3)—(2,1)=3-2,3-1) =(1,2)

OdpowiedZ: Réznica danych punktéw A = (3,3) 1 B = (2,1) jest punkt

P=(1,2).
T2
5 A= (3,3)
: ; P=(1,2)
2 B=(21)
1
0 1 2 3 -

17.3.2 Wektory na plaszczyznie

Niech dane beda punkty A = (a1,a2) i B = (b1, b2).
Wektor AB o paczatku w punkcie A = (a1,a2) i koticu w punkcie B = (b1, b2) okreslamy jako
réznica punktéw
A_B:B—A: [bl—al,bz —az].
2 3 Na przyklad wektor zwiazany o poczatku w punkcie A = (0,1) i koficu w punkcie B = (2,0)
ma wspélrzedne
AB=b—a=(2,0)—(0,1) = [2,—1].

17.3.3 Operacje arytmetyczne na wektorach

Dodawanie wektoréw

Suma dwéch wektoréw
- . -
U=[v1,v2] i W= [wi,ws]

réwna jest wektorowi
Q = [#1, 22] = [v1 + w1, v2 + wo]

o wspétrzednych z1 = vi +w1 @ 22 = v2 + wa.

INie ma pojecia iloczynu lub ilorazu punktéw

2wsp6irzedne vy, vo wektora swobodnego @ = [v1, v2] piszemy w nawiasach kwadrawtowych.

3Wektor swobodny okreslony jest przez jego diugosé, kierunek i zwrot, nie zalezy od polozenia na
plaszczyZnie.
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Przyklad 17.4 Oblicz sume wektoréow
v=[1,2] i wW=][2,1]

Rozwigzanie. Suma
T4+ =[1,2]4+(2,1)=[1+2,2+1] =[3,3]
OdpowiedZ: Suma danych pt}nktéw v=[1,2] i & = [2,1] jest wektor
X2

—

Q=[3,3]. B
K T Q=[3,3]
=2
U :
1 /
w
0 1 2 z1

Odejmowanie wektoréw

Réznica dwéch wektordw @ = [vi,v2] ¢ W = [wi, w2] réwna jest wektorowi
e — —
Q= [z1,22] =T — W = [v1 — w1, v2 — wa]

o wspétrzednych z1 = vi —w1 @ 22 = v2 — wa.

Przyklad 17.5 Oblicz réznice wektordw v =[1,2] ¢ o =[2,1]

Rozwigzanie. Oblkiczamy réznice wektoréow

OdpowiedZ: Wynikiem odej‘mowania danych wektoréw @ = [1,2] i @ = [2,1] jest wektor @ =
z -
[~1,1]. 317 Q=[-11]
...................................... F=[1,2]
2 E— Q ’Jf — [27 1]
;
0 1 2 3 o

17.3.4 Tloczyn skalarny wektoréw

4 Tloczyn skalarny wektoréw jest wazna operacja na wektorach stosowana w matematyce stosowanej,
w fizyce, chemii i w innych przedmiotach Scistych.

Defimnicja 17.1 Iloczynem skalarnym wektordw ¢ = [v1,v2] 1 W = [w1, wa] nazywamy liczbe
(U,0) = v1 % w1 + v2 * w2 (17.1)
Wartos¢ iloczynu skalarnego wektorédw nie jest wektorem, natomiast jest liczba

Przyklad 17.6 Oblicz iloczyn skalarny wektorow

7=[25 i w=I73].

4Wieloko$é skalarna to znaczy, ze jej wartoéé jest liczba
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Rozwigzanie. Stosujac wzér (17.1) obliczamy iloczyn skalarny danych wektoréw, piszemy
(U,w) = ([2,5] % [7,3]) =2+ T+ 5+3 =14+ 15 = 29.

OdpowiedZ: Warto$é iloczynu skalarnego danych wektoréw ¥ = [2,5] 1 @ = [7,3] jest liczba 29,
piszemy
(v, W) = 29.
Iloczyn skalarny wektoréw zachowuje wszystkie wlasnosci operacji mnozenia.
Rozpatrzmy dwa wektory
17: [1)1,1)2] 7 7,3 = [wl,wg]

e iloczn skalarny jest przemienny
Istotnie, sprawdzamy, ze
(U, W) = v1 * w1 + v2 * w2 = w1 * v1 + w2 * v2 = (W, D)
e mnozenie skalarne wektoréow jest rozdzielne wzgledem dodawania
(@, (@ + Q) = (¥,%) + (5,Q)
Istotnie sprawdzamy, ze
T+ Q) = v (w14 21) 4 ve* (wa + 22)
= wvixwy+vixz+v2kw+ 2+ v %29

= V1 *w1+ V2 kw24 V1 * 21+ V2 *k 22

(@@ @.Q)
(7, @) + (¥,Q)

e Tloczyn skalarny wektora @' przez siebie réwny jest kwadratowi jego dlugosci
2 2 2
(U,0) = v1 *v1 + v2 xv2 = v] + v3 = |7]
Teraz podamy twierdzenie wazne w zastosowniach.

Twierdzenie 17.1 Wektory U ¢ @ sg prostopadte wtedy i tylko wtedy, jezeli ich iloczyn skalarny
rowny jest zero, piszmy
U1l <= (U,@) = 0.

Dowéd. Istnieje kilka dowoddéw tego twierdzenia. Tutaj podamy dowdd oparty na twierdzeniu
Pitagorasa. Mianowicie, udowodnimy, ze tréjkat o ramionach ¥ i @ jest prostokatny wtedy i tylko
wtedy, jezeli iloczyn skalarny

Zauwazmy, ze jezeli iloczyn skalarny jest réwny zero

(7,) = 0
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to boki tréjkata AABC
|[AB| = |0], |AC| =], |BC|=|7—d

X2
A
- -
w U — W
C v B

x1

spelniaja réwnosé
|91* + @] = Jo = w|® (17.2)
wtedy i tylko wtedy, jezeli iloczyn skalarny

(v, W) = 0.
Z drugiej strony suma kwadratéw dwéch bokéw tréjkata jest réwna kwadratowi dlugosci boku
trzeciego wtedy i tylko wtedy, jezeli ten tréjkat jest prostokatny.
Zatem kat £/ AC B pomiedzy wektorami ¥/ i W jest prosty wtedy i tylko wtedy, jezeli iloczyn skalarny
tych wektoréw réwny jest zero.
Koniec dowodu.
Zauwazmy, ze iloczyn skalarny wektoréw jest zwiazany z twierdzeniem Pitagorasa, Istotnie, warunek
prostopadioéci wektoréw ° ¢
(v, @) =0
jest rownowazny z teza twierdzenia Pitagorasa o tréjkacie prostokatnym.
2 ~12 -2
|97 + |@]” = |v —wl.
Przyklad 17.7 Oblicz iloczyn skalarny ¢ diugosé wektorow
v=106,8], @=1I9,12].
Rozwigzanie. Obliczamy iloczyn skalarny stosujac wzér (17.1) dla wektoréw

7= [1)1,1)2] = [6, 8], 7 w = [wl,wg] = [9, 12]

Zatem iloczyn skalarny
(U,W) =69+ 8x*12 =54 4+ 96 = 150.

réwny jest 100.
Wiemy, ze kwadrat dtugosci wektora ¥ = [6, 8] jest réwny iloczynowi skalarnemu tego wektora przez
siebie.

|5]° = (7,0) = 6 %6 + 8% 8 = 36 + 64 = 100

5Wartosé iloczynu skalarnego wektoréw nie jest wektorem, natomiast jest liczba.
6Zauwazmy, ze znikanie iloczynu skalarnego (#,%) = 0 jest warunkiem koniecznym i wystarczajacym
prostopadlosci wektoréw v, @ , w symbolach piszemy ¥ 1w <= (¥, W) = 0.
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Skad dlugosé wektora
|v] = v100 = 10.
Podobnie obliczamy diugo$é wektora @ = [9, 12]

] = \/(, @) = VO * 9+ 12 12 = /81 + 144 = /225 = 15.

Przyklad 17.8 Dla jakiej wartosci parametru m wektory

U =[m,6], @=]I3,2]
sq prostopadte?
Rozwigzanie. Obliczamy iloczyn skalarny stosujac wzoér (17.1) dla wektoréw
U= [v,v2] = [m,6], ¢ W= [w,w]=]3,2]
Wektory sa prostopadle jezeli ich iloczyn skalarny réwny jest zero. Obliczamy iloczyn skalarny
(U,0) =m*3+6%2=3m+12=0.

Skad iloczyn skalarny réwny jest zero

6m+12=0, dla m:—13—2:—4.
Istotnie sprawdzamy, ze dla m = —4 iloczyn skalarny wektora ¥ = [m, 6] przez wektor @ = [3, 2]
réwny jest zero
(V,W) = —4%3+6%x2=0
OdpowiedZ: Wektory
T = [’01,1)2] = [m7 6]7 { W= [wlvwz] = [37 2]

sa prostopadle dla parametru m = —4.
Zadanie 17.1 Oblicz iloczyn skalarny i dlugosé wektorow
v =[12,16], @ =[15,20].
Zadanie 17.2 Dla jakiej wartosci parametru m wektory
U =[m,15], @ =]I5,3].

sq prostopadte?

17.4 Konstrukcje podstawowe z cyrklem i linijka

Do konstrukeji podstawowych przy pomocy cyrkla i linijki zaliczamy tutaj 7
e konstrukcja symetralnej danego odcinka,

e konstrukcja prostej prostopadlej do danej prostej, ktora przechodzi przez dany punkt
poza prosta,

konstrukcja dwusiecznej danego kata,

konstrukcja prostych réwnolegtych,

konstrukcja trojkat o danch bokach,

e konstrukcja czworokata o danych bokach.

"Dlugo$é odcineka [A, B] o poczatku A i koficu B oznaczamy symbolem |AB|
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17.4.1 Konstrukcja symetralnej odcinka.

Niech dany bedzie odcinek [A, B] o dlugoséci a = |AB|. Stawiamy cyrkiel w punkcie A i
rozwartoscia cyrkla wieksza od polowy odcinka [A, B] zakreslamy dwa tuki nad odcinkiem i
pod odcinkiem. Rysujemy prosta L przez punkty przeci¢ tukéw. Prosta L jest symetralna
odcinka [A, B].

Zadanie 17.3 Narusuj odcinek o podzgtku w punkcie A dlugosci 6cm i o koricu w punkcie
B. poprowadZ symetralng odcinka [A, B] przy pomocy cyrkla i linijki.

17.4.2 Konstrukcja prostej prostopadlej do danej prostej

Niech dana bedzie prosta L i punkt P. Stawiamy cyrkiel w danym punkcie P i zakreslamy
tuk przeciajacy prosta L w punktach A i B. Stawiamy cyrkiel w punkcie A i zakreslamy
tuk. Nastepnie stawiamy cyrkiel w punkcie B i zakreslamy tuk. Punkt przeciecia tukdéw
oznaczamy litera P*. Przez punkty P* i P rysujemy prosta L*, jak na rysunku nizej.

P
L*
A B L
P*
Zadanie 17.4 Narusuj prostqg L. Poprowadz prostg prostopadtg do prostej L przez dowolnie

wybrany punkt P lezgcy poza prostg L, przy pomocy cyrkla i linijki.

17.4.3 Konstrukcja dwusiecznej danego kata

Niech bedzie dany kat a o wierzcholtku w punkcie O i ramionach Ly i L. 8
Lo

A
8Kat o o wierzchotku O@ ramionach Ly i Lo okroglqmych przez punkty A i B oznaczamy symbolem
LAOB
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Stawiamy cyrkiel w wierzchotku O kata « i zakreslamy luk przecinajacy ramiona Lp i Lo
w punktach A i B. Punkty A i B sa réwno odlegle od punktu O, piszemy |OA| = |OB].
Nastepnie stawiamy cyrkiel w punkcie A i zakreslamy tuk. Podobnie stawiammy cyrkiel w
punkcie B i zakreslamy tuk. Punkt przecie cia tukéw oznaczamy litera P. Przez punkty O i
P prowadzimy dwusieczna kata

L
B

A\Ll

Zadanie 17.5 Poprowad? dwusieczng kgta o danego mizej na rysunku przy pomocy cyrkla
i linigki.

Konstrukcja prostej ré6wnoleglej do danej prostej L. Konstrukcja prostej réwnoleglej
do danej prostej L i przechodzace]j przez dany punkt P oparta jest na rysowaniu rownolegtoboku.
‘P

Opis konstrukcji. W pierwszym kroku konstrukcji stawiamy cyrkiel w danym punkcje P
i zakreslamy tuk, ktéry przecina dang prosta L w dwéch punktach A i B.
°P

AW /

A\_/B

W drugim kroku konstrukcji laczymy punkt A przeciecia z danym punktem P linijka.
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Nastepnie stawiamy cyrkiel w punkcie B i rozwartoscia cyrkla réwna odlegtosci | AP| punktu
A od punktu P zakre$lamy tuk.

P

o

PN S

W trzecim kroku konstrukcji stawiamy cyrkiel w punkcie P i rozwartoscia cyrkla réwna
odlegtoéci |AB| punktu A od punktu B zakreslamy drugi tuk. Punkt przeciecia tukéw

oznaczamy litera P*.
P P
L

W czwartym kroku konstrukcji, rysyjemy z linijka prosta przez punkty P i P*. W koncu
konstrukeji taczymy z linijka punkty B i P*.

» \P* I*

7

Widzimy, ze w ten sposéb narysowaliémy réwnolegtobok ABP P*, ktérego bok [P, P*] lezy
na prostej L* rownoleglej do prostej L przechodzacej przez dany punkt P.
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Zadanie 17.6 Narysuj prostg rownolegte do prostej na rysunku i przechodzgcej przez dany
ponkt

17.4.4 Dwie proste réwnolegle przeciete trzecia prosta

Rozpatrzmy dwie proste réwnoleglte L; i Lo przeciete trzecia prosta L. Nizej na rysunku
mamy zaznaczone katy parami réwne

L L
1.4 2

5.6 Ly

Duwie linie proste rownolegte L1 i Lo przeciete trzecig prostg L

e katy wierzchotkowe parami rowne

[1=/4, L2=1/3, L5=1/18, L6=LT

katy odpowiadajace parami réwne

[1=1/5, [3=/7, L2=106, L4A=1/8

katy naprzemianlegle wewnetrzne parami rowne

[3=1/6, L4=1/5,

katy naprzemianlegle zewnetrzne parami réwne

[1=1/8, L2=1/T,

katy przylegte, ktorych suma réwna jest 180°

L1 przylega do £ 2, [ 3przylegodo L4, L1 przylega do /3,
L2 przylega do L4, L5 przylega do L6, LT przylega do L 8,
L5 przylega do L7, L6 przylega do L8

Zadanie 17.7 Jeden z kqgtow wierzchotkowych réwny jest 30°.

i3 L
1.2 g

56 Ly

Duwie linie proste réwnolegle przeciete trzecig prostq
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Oblicz wszystkie kgty

(a) wierzchotkowe

(b) naprzemian legte

(¢) odpowiadajgce

(d) przylegte wewnetrzne

(e) przylegte zewnetrzne

Zaznacz wartosci wszystkich kgtow na rysunku

17.5 Okrag i kolo

Obszar wewnatrz okregu nazywamy kolem.

Obwdd okregu

Oobwod = 2% Tx r,

pole kota
14
Pogregu = m* T2, T~ fm = 3.14.

Obwod okregu = 27 * 7

2

A
o e Pole okregu = w1

$rednica okregu réwna jest 2 razy promien okregu.

Zadanie 17.8 Narysuj cyrklem okrgg o promieniu 3cm. Zaznacz kredkq wnetrze okregu
jako koto o promieniu 3cm.
Oblicz srednice okregu, obwdd okregu, pole kota.

17.5.1 Miara lukowa kata

Rozpatrzmy okrag o promieniu R

|=AB
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Miare tukows kata o = LBC A opartym na tuku | = AB okreslamy jako stosunek diugosci
tuku ! do promienia R

l
o= =

R
Kat pelny, ktéry w mierze katowej ma 360° oparty jest na tuku

l=21x R

réwnym obwodowi okregu.
Zatem miara tukowa kata pelnego réwna jest
2 * R
o = =
R

2

Podobnie kat péipelny, ktéry w mierze katowej ma 180° oparty jest na tuku
l=7mxR

rownym polowie obwodu okregu. To znaczy, ze miara tukowa kata pdéipelnego réwna jest

Tx R
7=

o = m

Réwniez kat prosty, ktéry w mierze katowej ma 90° oparty jest na tuku

_2nx R mx R

l
4 2

rownym czwartej czedci obwodu okregu. To znaczy, ze miara tukowa kata prostego rowna
jest

TR m

2R 2

W istocie, miara lukowa kata nie zalezy od dtugo
‘sci promienia R. Dlatego mozemy przyja¢ promien okregu R = 1.
Jednostka miary tukowej kata jest 1 radian. Kat pelny ma 2*7 radianéw, ktéremu w mierze
katowej odpowiada kat 360°. Zatem, jeden stopnier

2
19 = 325 = %T&dianow
natomiast o
1 radian = stopni

Przykiad 17.1 Oblicz miare tukowg kgta 30°.

Rozwiazanie. Korzytamy z proporcji, ketowi 180° odpowiada miara tukowa tego kgta m
radianéw. Zatema kgtowi 30° odpowiada miara tukowa x radiandw. Tg proporcje piszemy
rownaniem

Skad obliczamy miare tukowg kgta 30°
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Zadanie 17.9 Oblicz miare tukwg kgta «, jezeli jego miara kgtowa réwna jest
() a = 30°
(i4) a = 60°

(#ii)  a=120°

Zadanie 17.10 Ile stopni ma kgt o, jezeli jego miara tukowa réwna jest

(i) a= ?jf (i) a= %”
1) o= — W o= —
4; Sér
.. T
(#it) o= 5

17.5.2 Kat wpisany w okrag i kat srodkowy

Katem wpisanym w okrag o promieniu R i srodku w punkcie O nazywamy kat «, ktorego
wierzchotek C' lezy na okregu a ramiona AC i BC przecinaja okrag w punktach A i B
C

7 okreSlenia miary tukowej i miary katowej wiemy, ze warto$¢ kata wpisanego LBCA = «
nie zalezy od wielkosci promienia R. Zatem zakladamy, ze promien R = 1.

Lemma 17.1 Wartosé kgta /BC A = « wpisanego w okrqg jest stata niezalezna od polozenia
wierzchotka C' i promienia R okregu ocs/mdku w punkcie O.
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Polozenie kata /BCA = « wpisanego w okrag w pozycji C* = /BC*A = «, nie zmienia
wartosci a kata wpiesanego w okrag.

Istotnie kat wpisany o o wierzchotku w punkcie C' i o ramionach AC' i BC przecina okrag
w punktach A i B. Kat «a oparty jest na tuku | = AB radianéw, w mierze katowej réwny
jest

s
@7 18007
l
Jezeli wierzchotek C porusza sie po okregu w kierunku punktu A to kat wpisany a = %,

nie zmienia warotosci, poniewaz dlugos¢ tuku [ = AB pozostaje ta sama.

Jednak, jezeli wierzcholek C pokryje sie z punktem A to ramie AC zredukuje sie do punktu
A. Wtedy kat wierzcholkowy « jest nieokreslony. Jezeli wierzchotek C przekroczy punt A
i dalej porusza sie w kierunku punktu B to wtedy kat wpisany « bedzie oparty na tuku o
dlugosci 2w — [, a jego miara katowa

(27 — 1) % 180°

s

o =

Kat $rodkowy. Katem srodkowym nazywamy kat pomiedzy promieniami okregu R = |AO)|
i R = |BO| o wierzchotku w srodku okregu O.

|=AB

17.5.3 Zwiazek pomiedzy katem srodkowym i katem wpisanym

Twierdzenie 17.2 Kqgt srodkowy oparty na tym samym tuku co kgt wpisany w okrgg jest
dwa razy wiekszy od kgta wpisanego. Zatem mamy rownosé

LBCAE «, /BOA =2«
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Podamy dwa dowody twierdzenia o kacie wpisanym i kacie srodkowym.

Dowéd 1. Z lematu 1 wiemy, ze wartos¢ kata wpisanego « nie zalezy od polozenia jego
wierzchotka C na okregu.

Zatem mozemy przyja¢ polozenie wierzchotka C' na Srednicy okregu przechodzacej przez
wierzcholek C'i srodek okregu O.

Promienie okregu AO, BO i CO tworza tréjkaty AAOC i ABCO réwnorammienne i przys-
tajace.

Zatem ich katy [, v i kat srodkowy ZBOA = )\ speliaja réwnania

a =20,
y+286=m
2y + X\ =27.

Skad obliczamy kat srodkowy

A=21— 2y =21 —2(m—20) =48 = 2a.
——
¥

Dowéd 2. Najpierw dowdd podamy w przypadku, gdy srodek okregu O lezy pomiedzy
ramionami AC i BC kata wpisanego /BCA = «, nastepnie w przypadku, gdy $rodek
okregu O lezy poza ramionami kata wpisanego.

W przypadku pierwszym zauwazamy, ze tréjkaty réwnoramienne AAOC, A BC'O o ramionach
réwnych promieniowi okregu R maja katy przy podstawach katy réwne. Tréjkat AAOC
ma przy podstawie AC katy réwne 6 i tréjkat ABCO ma przy podstawie BC' katy réwne
(. Kat wpisany ZBC A = « oznaczamy litera grecka «, a kat srodkowy ZAOB oznaczamy
literg grecka A, jak na rysunku.

Nastepnie zauwazamy, ze katy «, 3,7, d, €, A spelniaja uktad réwnan liniowych

a=p+4, L BC A wpisany «
28+ =m, suma katow w trojkacie A BCO rowna m
20 +e=m, suma katow w trokacie A AOC rowna m (17.3)

Y+ e+ A=2m, kat pelny rowny 2w

Uktad réwnan liniowych (17.3) rozwiazemy metoda podstawiania.
Mianowicie, z réwnanania drugiego i trzeciego w uktadzie (17.3) obliczamy

FY:W_265
e=m—20

Skad suma katow
v+e=2m—2(0+9)

Z réwnania czwartego w ukladzie réwna(17.3) obliczamy kat srodkowy
A=2r—(y+e)=2r— 27 —2(B8+9)) =2(8+0) =2«
— ~——
y+e€ «
Zatem, obliczylismy, ze kat Srodkowy A jest dwa razy wigkszy od kata wpisanego o, piszemy

A =2«
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Koniec dowodu przypadku pierwszego.

Dowéd. Dowéd w przypadku drugim, gdy srodek okregu O lezy poza ramionami AC' i BC
kata wpisanego /BCA = «.

|0B| = |0C| = |0A| = R

LOCA=a+p
C 4
LCAO=a+p
§ ,
LAOC =9 A B

Zauwazamy, ze tréjkaty réwnoramienne AAOC i ABOC o ramionach réwnych promieniowi
okregu R maja przy podstawach [AC] i [C'B] katy réwne, odpowiednio

LOCA=/CAO=a+p i LCBO=/.0OCB=2g.
Suma katéw w tréjkatach AAOC i BOC réwna jest 180° lub 7, piszemy

LOCA+ LCAO+ LAOC =7 2+ p)+d=m
—_—

2a+h) ’ (17.4)
LOBC + LOCB+/BOC.=n  23+d0+\=n '
O+
26

Uktad réwnan liniowych (17.4) rozwiazemy metoda podstawiania.
Mianowicie, z pierweszgo réwnania obliczamy

d=m—2(a+p)
i podstawiamy do réwnania drugiego
28+ (m—2(a+p))+A=m, A—2a=0.

Skad kat srodkowy ZBOA = 2« jest dwa razy wigkszy od kata wpisanego ZOCA = «,
piszemy
A =2«

lub
/LBOA=2/0CA.

Koniec dowodu przypadku 2.

Whiosek: Kat wpisany oparty na srednicy okregu jest prosty, ma 90°, w mierze tukowej

™ . .
ma 5 radianéw.
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17.6 Trojkaty

17.6.1 Konstrukcja tréjkata o danych bokach
Niech beda dane trzy odcinki [A, B], [B,C], 1[4, C]

A B

B c
A c

Wybierzmy odcinek [AB] jako podstawe tréjkata AABC. Rozwartoscia cyrkla réwna diu
gosci odcinka [A, C) zakreSlamy tuk stawiajac cyrkiel w punkcie A. Nastepnie rozwartoscia
cyrkla réwng dhugosci odcinka [B, C| zakreslamy tuk stawiajac cyrkiel w punkcie B. Punkt
przeciecia lukéw C* laczymy z punktami A i B podstawy téjkata AABC* ?

*

A B

B C
A C A B

Zauwazmy, ze tréjkat mozna zbudowaé z odcinkéw, ktore spetniaja nastepujaca nieréwnosé
trojkata
Suma dtugosci dwoch bokow trijkgta jest wieksza od dtugosci boku trzeciego, piszemy

[AB| + |BC| = |AC],
|AB| + |AC| > |BC]|,
AC| + |BC| > |AB]

17.6.2 Suma katow tréjkata

Suma katéw kazdego tréjkata réwna jest 180°, w mierze lukowej 7 radianéw. Nizej rozpa-
trzmy geometryczng interpretaje sumy katow tréjkata.

a”yﬂ

o B
A B

c
7Z rysunku, zauwazamy, ze suma katéw kazdego tréjkata réwna jest 180°. Rzeczywidcie,
prosta DC' jest réwnolegla do podstawy AB tréjkata ABC . Katy naprzemianlegle wewnetrzne
« przy podstawie i a przy odcinku DC' sa réwne, podobnie 8 przy podstawie AB i 3 przy

90dcinek o poczatku w punkcie A i koficu w punkcie B oznaczamy symbolem [A, B]
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odcinku DC' sa réwne. Widzmy, ze
a+ B+ =180°

To znaczy, ze suma katéw kazdego tréjkata réwna jest 180°.

17.6.3 Konstrukcja tréjkata o tych samych katach i o bokach pro-
porcjonalnych.

Na plaszczyznie wybieram trzy r6zne punkty A, B i C'ilaczymy te punkty uzywajac linijki.
W ten sposéb narysowaliSmy tréjkat. Boki AB i1 AC przedluzamy. Na przedluzonych bokach
odkladamy odcinki réwne dlugoséci bokéw AB i AC, odpowiednio. Laczymy zaznaczone
konce odcinkéw. Widzimy, ze w ten sposéb narysowalismy drugi tréjkat ktéry ma katy te
same co wczesniej narysowny trojkat, natomiast boki ma dwa razy diluzsze. Rzeczywiscie,
oba trojkaty maja te same katy, poniewaz bok BC' jest rownolegly do odpowiedniego boku
wiekszego trojkata, jako katy odpowiadajace.

Przyklad 17.2 Narysuj trojkgt o tych samych kgtach @ o bokach dwa razy diuzszych uzywajgc
linigki i cyrkla. Zmierz kqty tego trojkgta. Oblicz sume kgtow tego trojkgta.

C
gl

c
Trojkata AABC

axh

2

Pole trajkgta

PA =

Obwad trojkgta
Oba =a+b+ec.

Rozrézniamy nastepujace trojkaty: trojkaty réwnoboczne, tréjkaty rownoramienne, trojkaty
prostokatne i tréjkaty dowolne.

17.6.4 Tréjkat réwnoboczny.

Tréjkat réwnoboczny ma wszystkie boki réwne i wszystkie katy réwne a = 60°, w mierze
tukowej a = g jak na rysunku

Konstrukcja tréjkata ré6wnobocznego. Rysujemy odcinek o ustalonej diugosci bokow
tréjkata. Stawiamy nézke cyrkla na poczatku odcinka i zakre$lamy okrag o promieniu
rownym dlugosci odcinka. Nastepnie stawiamy nézke cyrkla na drugim koncu odcinka i
tym samym promieniem zakreslamy okrag. Laczymy punkt przecigcia okregéw z koncami
odcinka. Widzimy, ze w ten spodb powstal tréjkat o réwnych bokach i réwnych katach.
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60°
B

Trojkat rownoboczny AABC

Wysokosé h tréjkata A ABC jest dwusieczna kata « i dzieli podstawe a na potowe w punkcie
D. Podobnie wysokosci trojkata réwnobocznego spuszczone na pozostate boki dzielg ich
na polowy i przecinaja sie w jednym punkcie O. Punkt przeciecia wysokosci O dzieli te
wysokosci w stosunku 1 : 3. To znaczy, ze zachodzi nastepujaca proporcja

po| 1
:DC:_§’ DO =h

Stad mamy
1 2
DO|=zh, i |OC|==h
DO|=1h i [00)=2

Z twierdzenia Pitagorasa obliczamy wysoko$¢ h tréjkats A ABC
a 3
22— (%222
@ (57 = e,

Wysokosé trojkata réwnobocznego

Obliczamy pole tréjkata réwnobocznego

Pop o a3 a_

2 2 2 4
P:a2\/§

4

Pole tréjkata rownobocznego o boku a
a2\/§
4
Zadanie 17.11 Zmierz boki i kgty tréjketa AABC nizej na rysunku

P =

C

(&

(1)  Oblicz pole i obwdd trdjkgt réwnoramiennego AABC, o boku a = 3cm.

(i) Narysuj trdjkgt o tych samych kgtach i o bokach dwa razy dtuzszych uzywajge linijki i
cyrkla.

(#i1) Zmierz kgty i oblicz sume kgtow tego trdjkgta.
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17.6.5 Tréjkat ré6wnoramienny

Tréjkat réwnoramienny o podstawie réwnej odcinkowi [A, B] i réwnych ramionach [A4, C| =
[B, C] ma przy podstawie [A, B] katy réwne LCAB = LABC = a. Wysoko$¢ h = |CD|
dzieli podstawe [A, B] na potowe.

Kat przy wierzchotku C' w mierze katowej

B=180"-2xa

lub w mierze tukowej

B=7m—2%x«
Wysoko$é h = |CD| dzieli podstawe [Ab] na potowe
C
Y
b b
h=|CD|
a D e
A : : B
a=|AB]|

Pole tréjkata réwnoramiennego AABC' obliczamy stosujac wzér ogdlny
1 1
Paapc = = |AB|*|CD| = zax h.
2 e—_—— 2
axh

Zadanie 17.12 Zmierz boki i kqty trdjkgta réwnoramiennego AABC. Oblicz obwdd, pole
i sume kgtow trdjkgta réwnoramiennego, jezeli dtugo$é jego podstawy |AB| = 3cm, a réwne
ramiona |AC| = |BC| = 4cem.

17.6.6 Tréjkat prostokatny

W tréjkacie prostokatnym wyrézniamy przyprostokatne AB i AC, o dtugosci a i b, przeci-
wprostokatna BC', o dlugodci ¢, kat prosty o = 90Y i dwa katy przylegle 3, ~

C
Y

a B
A B

a
Tréjkat prostokatny AABC
b
Pole tréjkata = % obwéd tréjkata =a + b + ¢
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Zadanie 17.13 Narysuj trdjkgt o tych samych kgtach i o bokach dwa razy krotszych uzywajgc
linigki i cyrkla. Oblicz sume kgtow tego trojkgta

17.7 Cechy przystawania trdjkatow

Dwa trojkaty sa przystajace, jezeli maja wszystkie boki rowne i wszystkie katy réwne. Jasne,
ze na to zeby dwa tréjkaty byly przystajace wystarczy, zeby spelniona byta jedna z trzech
cech przystawania tréjkatéw.

Pierwsza checha przystawania tréjkatéw. Duwa trdjkgty sq przystajgce, jezeli majq
wszystkie boki rowne.

Druga cecha przystawania tréjkatéw. Dwa trojkgty sq przystajgce, jezeli majg jeden
bok rowny i kgty przylegte do tego boku réowne:

Trzecia cecha przystawania tréojkatéw. Dwa trojkgty sq przystajgce, jezeli majg dwa
boki rowne i kgt pomiedzy tymi bokami rowny.

17.8 Podobienstwo tréojkatow
Dwa tréjkaty AABC' i A'BC sa podobne, piszemy
AABC ~AA'B'C
jezeli maja odpowiednie boki proporcjonalne w skali proporcji k, to znaczy

[AB| _ |AC| _ |BC| _

= = =k
|A/B/| |A/C/| |B/C/| )
|AB| =k« |A'B'|,
|AC| =k« |A'C'|,
|BC| =k x*|B'C'|.

Rozpatrzmy tréjkat AABC o bokach
|AB| = ¢ =4cm, |BC|=c=2cm, |AC|=b=3.5¢cm
i trojkat AA'B'C" o bokach
|A/B/| =¢ =8cm, |B/C/| =c =4cm, |A/C/| =b="Tcm

Zauwazmy, ze skala proporcji tréjkatéw AABC' i AA'B'C’ Jest rowna k =2.

c=4cm A

’
c =8cm

Nizej podamy trzy cechy podobienstwa tréojkatéw.
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Pierwsza checha podobienstwa tréjkatéw. Dwa tréjkaty AABC i AA'B'C’ sq podobne,
jezeli majg wszystkie boki proporcjonalne w skali proporcji k, to znaczy

|AB| =k« |A'B'|,
|AC| =k« |A'C'|,
|BC| =k *|B'C'|.

Zadanie 17.14 Narysuj trojkgt AABC o bokach
|AB| = ¢ = 5cm, |AC| = b= 4em, |BC| = a = 3cm
uzywagjgc linigki © cyrkla.
Narysuj drugi trojkat AA'B'C" o bokach dwa razy wiekszych od bokdéw trdjketa AABC.

Druga cecha podobienstwa tréjkatéw.Dwa trdjkgty AABC i AA'B'C sq podobne,
jezeli majg dwa boki proporcjonalne w skali proporcji k i kgty pomiedzy tymi bokami rown,
to znaczy o = «

AB| _ |Ac| _

|A/B/|_|A/C/|_ I
|AB| =k |A'B'|,
|AC| =k« |A'C'|,

Zadanie 17.15 Narysuj trojkgt AABC o bokach
|AB| = ¢ = 3cm, |AC| = b = 5em,

danym kgcie o = 45°

o = 459

uzywagjgc linigki © cyrkla.
Narysuj drugi tréjkgt AA'B'C" o bokach dwa razy wiekszych od bokéw tréjketa AABC.

Trzecia cecha przystawania tréjkatéw. Dwa trojkety AABC i AA'B'C" sq podobne,
jezeli majg boki AB iA'B proporcjonalne w skali k @ kgty do nich przylegte rowne, to znaczy
a=«a 1= oraz boki AB i A B w skali k
[AB| _
|A/B/| - )
|AB| = k= |A'B'|.
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Zadanie 17.16 Narysuj trojkgt AABC o boku
|AB| = ¢ = 6cm,
i danych kgtach przyleglych /o = 30°, /3 = 60° do boku AB.

Narysuj drugi trojkat AA'B'C" o bokach dwa razy wiekszych od bokdéw trdjketa AABC.

17.8.1 Twierdzenie Talesa

Jezeli ramiona kata przetniemy dwiema prostymi rownoleglymi, to dlugosci odcinkéw wyz-
naczonych przez te proste na jednym ramieniu kata sa proporcjonalne do dtugosci odcinkow
wyznaczonych przez te proste na drugim ramieniu kata

Jezeli prosta; jest réwnolegta do prostej prostas, piszemy prosta; || prostas to wtedy
spelnione sa proporcje

Q|8 e

a—i—b:c—l—d:

Interpretacja geometryczna powyzszej proporcji podana jest nizej na rysunku

prostas

prostay

b
Przyklad 17.3 Oblicz wysokos¢ drzewa\z odlegtosci
obliczamy wysoko$¢ drzewa y z proporcji

m. Stosujgc twierdzenie Tualesa

a x (a+b)xx

3

a—i—b:y 4 a

Dane: a+ b = 50m, Dokonujemy pomiarow a = 2m, x = 0.bm do proporcji, zobacz na
rysunku.

(a+b)xx  50%0.5

=12.
a 2 >

Podstawiajge dane obliczamy wysokosé drzewa y =
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Twierdzenie Talesa stosujemy w zadaniach dzielenia odcinka w danej proporcji.

Przykiad 17.4 Podzieli¢ odcinek AB w stosunku 2 : 3

Rozwiazanie. Na ramieniu AC zaznaczamy dowolng rozwartoscig cyrkla trzy punkty D, E
i punkt C. Nastepnie, tgczymy punkt C z punktem B uzywajgc linijki. Rysujemy rownolegte
do odcinka BC' przechodzgce przez punkty D i E. W ten sposob dostajemy podziat odcinka
AB punktem F w stsunku 2 : 3, Zatem, z twierdzenia Talesa mamy proporcje

|AF| 2
|AB| 3
Interpretacja geometryczna tej proporcyi podana jest nizej na rysunku
C
E
D
A F B

Zadanie 17.17 Oblicz wysokos¢ drzewa z odlegtosci 150m, wiedzge, ze wysoko$é listwy
geodezyjnej rowna jest 2m i jej odlegtosé od punktu pomiaru 10m.

Zadanie 17.18 Podzieli¢ odcinek AB w stosunku 1 :3

A B

17.8.2 Twierdzenie Pitagorasa

Figury ptaskie, twierdzenie Pitagorasa, wielokaty foremne, okrag: kat srodkowy i kat wpisany
w okrag, miara tukowa k atow, konsrukcje figur ptaskich, figury przestrzenne granastostupy
proste, walce, stozki, ostrostupy, sfery i kule, obliczanie objetosci i pola powierzchni.
Zwiagzki miarowe w trojkacie prostokatnym wynikaja z twierdzenia Pitagorasa.

C

A B

a

Tréjkat prostokatny AABC
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Twierdzenie 17.3 W trojkgcie prostokgtnym suma kwadratow przyprostokgtnych réwna
jest kwadratowsi przeciwprostokgtnej

a® +b* = (17.5)
Tutaj przez a i b oznaczone sg¢ przyprostokgine, literqg ¢ oznaczona jest przeciwprostokgtna

Przyklad 17.5 Obligz bok x trojkgta prostokgtnego

A

Tréjket prostokgtny AABC

Przykiad 17.6 Obligz bok y trajkgta prostokgtnego

10 6

A B
Y

Tréjket prostokgtny AABC

Przyklad 17.7 Oblicz przeciwprostokgtng trojkgta prostokgtnego, wiedzgc, ze przyprostokgine
a=9,b=12

A B

a
Tréjket prostokgtny AABC
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Przyklad 17.8 Oblicz wszystkie boki trojkgta prostokgtnego, wiedzgce, zZe przyprostokgtna
a = 12cm, przyprostokgtna b jest o 4dem diuzsza od przyprostokginej a, natomiast przeciw-
prostokgtna c jest dluisza o 8cm od przyprostokgtnej a.

A B

a
Tréjket prostokgtny AABC
17.8.3 Wzér Herona. Zwiazek pomiedzy obwodem i polem tréjkata.
Obwdéd tréjkata AABC réwny jest sumie dlugosci jego bokéw
Ob=|AB|+|AC|+ |CA| lub Ob=a+b+c

Pole tréjkata AABC obliczmy stosujac wzér Herona. 19

Wzér Herona.

Paapc = /p(p—a)(p—b)(p— o),

b

gdzie potowa obwodu p = #.
Dowdd. Rozpatrzmy dwa tréjkaty identyczneC AABC i ABA'C, jak na r};f/unku

x = |DB|

¢c—x=|AD| b @

h
cC—XT D x
A

Zauwazmy, ze pole rownolegloboku ABA'C réwne jest

Pyparc=cxh
Wysoko$¢é h = |DC| obliczamy z twierdzenienia Pitagorasa. Mianowiecie, z twierdzenia
Pitagorasa wynikaja nastepujace zwiazki

7 tréjkata prostokatnego AADC mamy réwnosé

h* =b* - (c — z)?

10Wz6r Herona stosujemy do tréjkata AABC o réznej dlugosci bokéw
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Podobnie z tréjkata prostokatnego ADA'C
h? =a?— 22

Skad obliczamy diugosé odcinka x = |AD)|
b2 — (c— )% = a? — 22
b2 —c? +2cxx— 2% =a® — 22
2k =a? — b+ 2

a® — b2+

2c

xr =

Teraz obliczamy kwadrat wysokosci réwnolegloboku ABA'C stosujac wzory uproszczonego
mnozenia

a? —b% +¢?

h2:a2—x2 — CL2—( )2

2c
 4a2P — (@ — B+ 2)?
N 4c?
_ (2a¢)® = (a® —b* + ?)?
N 4c?
 (2ac—a® 4+ b* — *)(2ac + a® — b* + )
N 4c?
G
N 4c?
 (b=a+c)b+a—c)((a+c—Db)(a+c+b)
N 4c?
~ (a+b+c—2a)(a+b+c—2c)((a+b+c—2b)(a+c+D)
N 4c?
 2(p—a)2(p—c)2(p—0)2p _at+b+c
- ic? P
_ Aplp—a)(p—b)(p—c) _atb+tc
N c? ’ P= 2

Pole tréjkata AABC o danej dlugosci bokéw réwne jest polowie pola réwnolegtoboku
ABA C. Zatem mamy wzér Herona na pole tréjkata AABC

dp(p —a)(p —b)(p—¢)

1 c
PAABC:§C*h = 5\/
= Volp—a)lp—b)(p-c)
Przykiad 17.9 Oblicz obwdd i pole trdjkgta AABC o dlugosci bokdéw

a=|AB| =3cm, b=|CA|=4cm, ¢ = |AB| = 5cm

Rozwiazanie. Obwdd tréjkata AABC réwny jest sumie dlugosci jego bokéw
Ob=a+b+c=3cm+ 4ecm + 5ecm = 12em,

polowa obwodu

a+b+c 3em+4em + dem
p= 5 = 5 = 6Gcm,
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Pole tréjkata AABC obliczamy stosujac wzrér Herona

Papc = +/plp—a)(p—"b)(p—-c)

= /6em(6cm — 3cm)(6cm — 4em)(6em — 5em)

= =V6%3%2x1lemt =36cm* = 6em?.
Zadanie 17.19 Oblicz obwdd i pole tréjkgta AABC o diugosci bokow

a=|AB|=6cm, b=|CAl=8cm, c¢=]|AB|=10cm

17.9 Czworokaty

Rozpatrzmy czworokat ABCD o wierzchotkach A, B, C, D o czterech bokach dlugosci
a, b, ¢, d, iokacie LZABC o wierzchotku B, katcie ZBC'D o wierzchotku C, katcie ZCDA
o wierzchotku D.

Suma diugosci dowolnie wybranych trzech bokéw czworokata jest nie mniejsza od dlugosci

boku czwartego, piszemy
|AB| +|BC| +|CD| > |AD]|.

Suma katéw czworokata réwna jest 360°, w mierze tukowej 27, piszemy

L/ABC + /BCD + /CDA + /DAB = 360°

A a B

Zadanie 17.20 Zmierz boki i kqty tego czworokgta. Oblicz obwdd i sume kgtéow czworokgta
czworokgt ABCD.

Rozpatrzymy nastepujace czworokaty
e kwadrat

e prostokat

e trapez

e rownolegtobok

e romb

e deltoid
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e czworokat dowolny

e okrag wpisany i okrag opisany na czworokacie

11

17.9.1 Czworokat foremny. Kwadrat.

Kwadrat ABCD jest figura foremng o czterych bokach réwnych a i o czterech katach
prostych réwnych 90° lub w mierze hukowej g

D a C
=900 ~ =902

a a
=90 B=9

A a B

Kwadrat ma dwie przekatne AC i BD, ktére przecinaja sie pod katem prostym réwnym
90° lub w mierze tukowej g 7 twordzenia Pitagorasa obliczamy diugosé przekatnej

|AC|? = |BC|? = a® + a® = 242, |AC|=|BC| = aV2.
Promien okregu wpisanego w kwadrat réwny jestpolowie boku

r=—

2

Promien okregu opisanego na kwadracie réwny jest polowie przekatnej

av/2
2

R =

Pole kwadratu
Pipep = a * a2, obwod kwadratu Ob =4 *a.

Zadanie 17.21 Oblicz obwéd Ob i pole P kwadratu, dtugosé przekgtnych, promien r okregu
wpisanego w kwadrat i promien R okregu opisanego na kwadracie, jezeli bok kwadratu ma
dtugosc a = 4..

17.9.2 Prostokat.
Prostokat ABC' D ma cztery boki parami réwne

a=c, b=d,

11 Konstrukcja kwadratu przy pomocy cyrkla i linijki opisana jest w projekcie Figury podstawowe.
Konstrukcja.
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7 twierdzenia Pitagorasa obliczmy przekatne prostokata

|AC| = |BD| = /a2 + b2

Pole prostokata

PABCD =ax*b.

Obwdéd prostokata Ob =2%a 4+ 2% b

D C
6 =90° vy=9
d b
< 909 B =90°
A a B

Okrag opisany na prostokacie ma promient R réwny polowie przekatnych

Yo Yo~ L2 o
R = Z|AC| == 5|BC| = 5(a® +1?)

Natomiast nie istnieje okrag wpisany w prostokat, z wyjatkiem kwadratu, ktéry jest szczegdlnym

prostokatem o bokach réwnych.

17.9.3 Roéwnoleglobok.

Réwnoleglobok ABC' D ma cztery boki parami réwne

a==~c

i cztery katy parami rowne

o= /DAB = /BCD,

D

3

b=d

180° — o = LABC = /CDA.

c=a C

180«

180° —

A

Wysokosé rownolegloboku oznavezamy literg h.

Pole réwnolegtoboku

PABCD =ax*h.
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Istotnie, zauwazmy, ze pole réwnolegloboku ABCD réwne jest polu prostokata EBCD. To
ZNnaczy, ze
PABCD = PABCD =ax*h.

i obwéd réwnolegtoboku
Ob=2xa+2xb.

17.9.4 Romb.
Romb ABCD ma cztery boki réwne
a=|AB| = BC|=|CD|

i cztery katy parami rowne
a =", 8=24.

Wysokosé rombu oznaczamy literg h.
Zauwazmy, ze obwéd rombu

Ob=4xa.
Pole rombu
P =axh.
D
5 =180° —
a h
B = 1800 —
A a
17.9.5 Trapez
Trapez ABCD
D b=|CD| C
a = |AB]
o
A — B
A E

jest czworokatem o dtugosci podstawy dolnej a = |AB| réwnoleglym do podstawy gérnej o
dtugosci b = |CD|.
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Pole trapezu

1
Papcp = 5(&4—()) * .
Istotnie, zauwazmy, ze pole trapezu P4pcp rowne jest sumie pola réwnolegloboku
Papcp = (bxh

i pola tréjkata
1

Zatem pole trapezu
Papcp = Pagcp+ Pige

1
= b*h+§(a—b)*h

= %(a—i—b)*h

Obwéd trapezu
Ob = |AB| + |BC| + |CD| + |AC|.
12

17.9.6 Deltoid.

Deltoid jest czworokatem o réwnych bokach parami
|AB| = |AD], |CD| = |AD|

i o katach ZADC = AABC
Deltoid ma dwie prostopadte przekatne L i Lo, jedna z nich jest symetrala drugiej, jak
nizej na rysunku

C

Ly = |DB] przekatna pozioma
B

L; = |AC| przekatna pionowa

Pole deltoidu réwne jest polowie iloczyny przekatnych

1
Ppeitoid = §L1 * Lo

12Twierdzenie o okregu opisanym na czworokacie i wpisanym w czworokat jest opisane w paragrafie o
czworokatach Twierdzenie to dotyczy wszystkich czworokatéw w tym trapezéw
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Istotnie, zauwazamy, ze pole deltoidu Papcp réwne jest sumie pdl tréjkatéw AABD i
ABCD

Ppeitoia = Papp + Pppc = 3L *|AO|+ 3Ly + |OC|

= 1(JA0|+|0C))
N——

Ly
= %*Ll*LQ.

13

17.9.7 Okrag opisany na czworokacie.

Nie na kadym czworokacie mozna opisa¢ okrag i nie w kazdy czworokat mozna wpisaé¢ okrag.
Warunki istnienia okregu opisanego na czworokacie i okregu wpisanego w czworokat podamy
nizej. Mianowicie rozpatrzmy czworokat ABC D wpisany okregu o promieniu R i srodku w
punkcie O.

¢ =1 katy LBCA = /BDA oparte na tuku AB
n =~ katy LBDA = LACD oparte na tuku AD

0 =a katy LABD = LACD oparte na tuku DC

B=¢ katy LCAB = /CDB oparte na tuku BC

Jak wiemy, katy srodkowe oparte na tym samym tuku sa réwne.
Zatem zauwazamy na rysunku, ze

(=% oparte na luku AB

n=r+ oparte na luku AD
- (17.6)
0 =a oparte na luku DC

B =¢ oparte na luku BC

Warunek konieczny i wystarczajacy na to, zeby mozna bylo opisa¢ okrag na danym cz-
worokacie o wierzchotkach A, B, C, D podamy w formie nastepujacego twierdzenia

Twierdzenie 17.4 Na czworokgcie ABCD o wierzchotach A, B,C, D mozna opisaé okrgg
wtedy i tylko wtedy, jezeli suma kgtow naprzeciwleglych jest réwna

L/ABC + /CDA = (BCA+ /DAB (17.7)

13 Twierdzenie o okregu opisanym na czworokacie i wpisanym w czworokat jest opisane w paragrafie o
czworokatach Twierdzenie to dotyczy wszystkich czworokatéw w tym deltoidu



227

14 Dowéd. Dowdéd twierdzenia wytnika z réwnosci (17.6) katow a, 3,7, 6,7, ¢ , ktére tworza
przekatne z bokami czworokata. Teraz sprawdzamy réwnosé (17.7)

LABC + LCDA = (0+7)+(¢+1)
/ABC /CDA

= (a+n)+ B+

= (a+B8)+(n+¢)
——— N —

/DAC BCD
= [(BCA+ (DAB

Wzér na pole czworokata opisanego na okregu

Papcp =/ (p—a)(p—b)(p—c)(p — d)

gdzie dtugosci bokéw
a=|AB|, b=|BC|, ¢=|CD|, d=|DAl,

a litera p oznacza potowe obwodu czworokata
1 1
p= 5(a +b+c+d) = 5(|AB| + |BC|+|CD + |AD]).

17.9.8 Okrag wpisany w czworokat

Opis okregu wpisanego w czworokat o wierzchotkach A, B, C, D zacznijmy od nastepujacych
obserwacji:

(a) Boki czworokata sa styczne do okregu wpisanego w punktach stycznosci A*, B*, C*, D*
(b) Styczne do okregu poprowadzone z wierzchotkéw czworokata wyznaczaja odcinki parami
rownej dlugosci, piszemy

x=|A A =|AD*|,  y=|A"B|=|BC"|
(17.8)

»=|B*C|=|CC*|,  t=|C*D|=|DD"|

Warunek konieczny i wystarczajacy na to, zeby mozna bylo wpisa¢ okrag w danym czworokat
o wierzchotkach A, B, C, D podamy w formie nastepujacego twierdzenia

MTutaj LABC oznacza kat o wierzchotku B i ramionach [A, B] i [A, D].
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Twierdzenie 17.5 W czworokgt ABCD o wierzchotach A, B,C, D mozna wpisaé okrgg
wtedy i tylko wtedy, jezeli sumy dlugosci bokow naprzeciwlegtych sq rowna

|AB| + |CD| = AD| + |BC| (17.9)

Dowéd. Dowdd twierdzenia wynika z wlasnosci (a) i (b) stycznej do okregu i z réwnosci
(17.8), parami réwnych bokéw naprzeciwlegtych. Mianowicie, sprawdzamy, ze lewa strona
réwnosci (17.9)

|AB| + |C D] (x+y)+ (z+1)

—— =
bok |AB|  bok |CD|

= (@+t)+y+2)
—— =
bok |AD|  bok BC|

= |AD|+|BC]|,

réwna jest prawej stronie réwnosci (17.9).15
Pole czworokata i promien okregu wpisanego w czworokat. Zauwazmy, ze promien
r okregu wpisanego w czworokat jest rowny z wysokosdciami tréjkatow

AAOB, ABCO, ADCO, ADAO

spuszconymi na boki
[A’ B]’ [B’ C]’ [C’ D]’ [D’ A]

czworokata ABCD.
Zatem pola tych tréjkatéw sa rowne odpowiednio

Paago = %r * |AB]|
Pagco = %r * | BC|
Pacpo = 51 #|CD|
Papao = %r x |DA|
Pole czworokata ABC'D réwne jest sumie pdl czterech tréjkatéw, piszemy

Pspcp = Paapo + Papco + Pacpo + Papao
L 1aB)+ Lr i 1BCl + v v 10D+ 20 4 D4
= =T * =T * =T * =T *
2" 2" 2" 2"

1
= 5r(|AB|+|BC|+|CD|+|DA|)
= T*xp

gdzie litera p oznacza potowe obwodu czworokata ABCD.

1
p= 5(|AB| +|BC| + |CD| + |DA)|).

17.10 Zastosowanienie iloczynu wektorowego
do obliczania pola czworokata dowolnego.

Pole dowolnego czworokata ABCD o danych wierzchotkach A, B, C, D we wsp6trzednych

kartezjaniskich mozemy obliczy¢ stosujac iloczyn wektorowy w przestrzeni kartezjanskiej R>
cf. (17.10)

15Tutaj korzystamy z lacznosci dodawania
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17.10.1 TIloczyn wektorowy w przestrzeni tréjwymiarowej R*

Naturalnie iloczyn wektorowy wykonalny jest w przestrzeni kartezjanskiej trojwymiarowej
i opisany jest w rozdziale geometrii przestrzennej. W tym rozdziale, geometrii plaskiej,
stosujemy iloczyn wektorowy do obliczania pola czorokata dowolnego.

Rozpatrzmy dwa wektory

U= (v1,v2,v3), & W= (wi,ws, ws)
w przestrzeni trojwymiarowej
3 .
R’ ={z = (x1,22,23) : —00 < T1,%2,T3 < 0 }
U X W
w
0]

Wynikiem mnozenia wektorowego wektora o przez wektor w jest trzeci wector ¥/ x W, ktérego
wpoélrzedne obliczamy z rozwiniecia Laplace’a macierzy utworzenej ze wspolrzednych wek-
torow

1 1 1

U1 V2 U3

w1 w2 w3

Mianowicie iloczyn

wa_[Det{ vz s },—Det({ v s }),Det{ U1 v }]
w2 w3 wp w3 w1 w2

gdzie wyznaczniki -determinants

v v
Det 2 3 = Vg * W3 — V3 * Wa,
wgo W3

U1 U3
—Det = —(v] * w3 — vz *x W
w w3 (v1 3 3 1)

U1 V2
Det = V1 * W2 — Vg * W1
w1 w2

Skad otzymamy wzér na wspoélrzedne iloczynu wektorowego

U X W= [vg * w3 — v3 % wa, —(v] * W3 — V3 * W), V] * Wo — Vg * Wi (17.10)
Wektor ¥ x i jest prostopadlty do wektoréw ¢'i W, piszemy
U x YL, W X UL

Wiemy, ze wektory sa prostopadle wtedy i tylko wtedy, jezeli ich iloczy skalarny
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rowny jest zero.
Zatem, sprawdzamy iloczyn skalarny

(U, x W) = ([v1,v2,vs], [v2 % wg — vg * wa, —(V1 * W3 — V3 * W1), V1 * Wo — V2 * W1])
= ’Ul(’UQ * W3 — V3 * ’LUQ) - ’UQ(’Ul * W3 — V3 * wl) + ’Ug(’Ul * Wo — Vg * ’LUl)
= (’Ul’UQ’LUg + vovzwy + ’Ug’Ul’LUQ) — (’Ul’Ug’LUQ + voviws + 'Ug'UQ'(Ul) =0

Dtugos¢ wektora o X @ réwna jest polu réwnolegtoboku o bokach ¥ 1 0.
16 Zatem dlugoéé wektora

|7 x @] = \/|vg * w3 — v3 * wa|2 + | — (v1 * w3 — vz * w1)|2 + |v1 * Wy — vy * w2

17.10.2 Pole czworokata. Przyklady
Rozpatrzymy czworokat ABCD

D
@ Q
C
F
A
v
B

o wierzcholkach

A= (a’laa25a3)a B = (b15b25b3)

02(01502503)5 D= (d15d25d3)
rozpiety na wektorach

U = [v1,v2, v3) :A@, W = [wy, wa, ws] :Ab,

— — —

Q = [21,22,23] = OB, t'=[t1,t2,t3] = CD,

gdzie wspélrzedne wektoréw v, w, Q, i okreslamy przez réznice wspéirzednych wierz-
chotkéw A, B, C, D czworokata ABC D

v1=br—a1, v2=by—a v3=bz—as,
wy =di —a1, wz=dz—a, wz=d3— as,
z1=b1—c1, 22=by—c2, z3=0b3—cs,
t1=di—c1, to=dy—co, t3=d3—cs.
Stosujac iloczyn wektorowy (cf. (17.10)) mozemy obliczy¢ pole dowolnego czworokata o

danych wspétrzednych jego wierzchotkéw. Mianowicie, pole czworokata wypuktego ABC' D
réwne jest polowie sumy iloczynu wektorowego wektoréw 17

16Dlugosé iloczynu wektorowego [T x @ = |#] * || * cosa, gdzie a oznacza kat pomigdzy wektorami @, 1.
Pole czworokata Paogcp = |V X @ = |¥] * |W] * cosa réwne jest dlugosci iloczynu wektorowego.
17Pole czworokata wkleslego réwne jest réznicy iloczynéw wektorowych Pagop = %17 X W — %Q Xt
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1 -
UX W+ -Q xt (17.11)

—

7=1[3,0,0] = AB, @ =1[0,3,0] = AD,

— —

QG=1[0,-6,00=CB, t=[-3,-3,00=CD

€2
, A =(0,0,0)
Tloczyn wektorowy 6 B =(3,0,0)
U x @ =[0,0,9] C=(3,6,0)
Q xt=10,0,—18] D = (0,3,0)
Dludosc iloczynu .
wektorowego 3 v=AB =[3,0,0]
15 x @ =9 B} W = AD = [0,3,0)
- w Q -
1@ x 1] =18 Q@=CB=10,-6,0]
t=CD=[-3,-3,0|
A B
7 3 T
z3

Obliczamy iloczyny wektorowe 7 x i i @ x t stosujac wzory (cf. (17.10))
vxw = [0x0—3%0,—(3%x0—-0%0),3%x3—0x0]
= 1[0,0,9]
i illoczyn wektoréw
Qxt = [-6%x0—3%0,—(0%0—3%0),0%3—6%3]

= [0,0,—18]

Obliczamy pole czworokata ABC D jako sume potowy iloczynu wektorowego wektoréw v, w

g, 7

Mianowicie

<

T
PABCD = ><w|+§|Q><ﬂ

1
V02 402 492 + 5IV02 402+ (-18)2

Il — N~ N~

= 2*9—1—%*18

= 45+9=135
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18

Rozpatrzmy inny przyktad obliczania pola czworokata stosujac iloczyn wektorowy.

Przykiad 17.11 Oblicz pole czworokgta ABC D rozpietego na wektorach

—

7 =[4.0,0,0] = AB,

A= (

B =(5.5,0.8,0
C = (4.5,5.0,0
D

=(1.0,3.1,0

@ = AD = [-0.5,2.4,0)
Q=CB=[-1.0,4.2,0]
B t=CD=[-3.5,—-1.8,0]
10 :1.5 .4.5 :5.5 xr1

Obliczamy iloczyny wektorowe 7 x i i @ x t stosujac wzory (cf. (17.10))
UxwW = [0%x0—0%24,—(4%0+0.5%0),4%2.44 0.5x0]
= 1[0,0,9.6]
i illoczyn wektoréw
Qxt = [4.2%0+1.8%0,—((—=1) %0 — (=3.5) % 0), 1% 1.8 + 4.2 % 3.5]

= [0,0,16.5]

Obliczamy pole czworokata ABC'D jako sumg polowy iloczynu wektorowego wektoréw o, o

g, 7

Mianowicie

1. 1 -~
PABCD = §|v><w|+§|Q><ﬂ
1 1
= 5\/02+02+9.62+5\/02+02+16.52
= %*9.6—1—%*16.5

= 4.8+8.25=13.05

8Dlugosé wektora 7 = [v1,v2,v3] 0 wspdlrzednych v1,v2,v3 W przestrzeni kartezjiskiej R? obliczmy ze

wzoru 7] = y/v? + 03 + v2
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19
Zadanie 17.22 Oblicz dtugosci wektorow
(1) ¥=13,0,4], w = [8,—6,0]
(78)  Oblicz iloczyn wektorowy U X & wektordw
v =13,0,4], w = [8,—6,0]

(73i) Sprawdz, Ze wektory
CERTEE]

sq prostopadte.
Zadanie 17.23 Sprawd?, ze wektor
’LF) = [wl, wa, 0]

jest prostopadty do wektora
U X W,
gdzie wektor
7 = [v1,02,0]

17.11 Figury plaskie foremne

Figurami foremnymi na plaszczyznie nazywamy figury plaskie, ktore maja wszystkie boki i
wszystkie katy réwne.

17.11.1 Tréjkat foremnym

Trojkat rownoboczny jest trojkatem foremnym
Tréjkat réwnoboczny ma wszystkie boki réwne i wszystkie katy réwne a = 60°, w mierze

tukowej a = g jak na rysunku

60°

Tréjkat réwnoboczny AABC

Wysokosé h tréojkata A ABC jest dwusieczna kata « i dzieli podstawe a na polowe w
punkcie D. Podobnie wysokosci trojkata rownobocznego spuszcone na pozostate boki dziela
podstawe na polowy i przecinaja sie w punkcie O, to jest w $rodku okregu wpisanego w

YDlugosé wektora 7 = [v1,v2,v3] 0 wspdlrzednych v1,v2,v3 W przestrzeni kartezjiskiej R? obliczmy ze

wzoru 7] = y/v? + 03 + v2
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trojkat rownoboczny. Punkt przecigcia wysokosci O dzieli te wysokosci w stosunku 1 : 3.
To znaczy, ze zachodzi nastepujaca proporcja

Dpo| 1
:DC:_§’ el =h

Stad mamy
1 2
DO|==h, i |OC|==h
DO|=1h i [00]=>

Z twierdzenia Pitagorasa obliczamy wysoko$¢ h tréjkats A ABC
3
h2 — CL2 _ (_)2 — —CL2,

Wysokosé trojkata réwnobocznego

h=—
2
Obliczamy pole tréjkata réwnobocznego
2
Popeto W3 0OV
2 2 2 4
po V3
4

Pole tréjkata rownobocznego o boku a

17.11.2 Czworokat foremny

Kwadrat ABCD jest figura foremng o czterych bokach réwnych a i o czterech katach
prostych réwnych 90° lub w mierze hukowej g

D a C
=900 ~ =902

a a
=90 B=9

A a B

Kwadrat ma dwie przekatne AC i BD, ktére przecinaja sie pod katem prostym réwnym
90° lub w mierze tukowej g 7 twierdzenia Pitagorasa obliczamy diugosé przekatnej

|AC|? = |BC|? = a® +a®? =24%, |AC|=|BC|=aV2.
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Promien okregu wpisanego w kwadrat réwny jestpolowie boku

T =

a
2
Promien okregu opisanego na kwadracie réwny jest polowie przekatnej

a3

R:
2

Pole kwadratu
S =ax*a?, obwod kwadratu Ob =4 x* a.

Zadanie 17.24 Oblicz obwdd, dtugosé przekgtnych i pole kwadratu o boku a = 4

17.11.3 Pieciokat foremny

Pieciokat foremny o bokach réwnych a i katach réwnych
LEAB = o =108"

3
lub w mierze tukowej o = ?ﬂ' ma 5 réwnych przekatnych.

LAOF = 36°

/EAB = /ABC = /BCD = /CDE = /DEA = o = 108"

Pole pieciokata foremnego.Pole pieciokata foremnego sktada si¢ z 5 — ciu pdl trojkatow
rownoramiennych i przystajacych o wysokosci h i podstawie a.
Pola jednego z pieciu tréjkatéow AAOFE

1
Praoe = 50 h
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gdzie wysokos¢

1

h=42axctg36® = . S
’ 2 \5-2/5
_oa V525
2 25 — 20

a

= — %
2

I
|
*

e
= S

Zatem pole pieciokata foremnego o boku a obliczamy ze wzoru

1 2
P=5%Pasop =5%5*axh= %\/25“0*\/5

Pole pieciokata foremnego

Promieni okregu opisanego na pieciokacie foremnym. Promiei R = |AO| okregu
opisanego na pieciokacie foremnym, obliczymy z tréjkcata prostokatnego AAOF stosujac
twierdzenie Pitagoroasa.

Mianowicie, kwadrat promienie R? réwny jest sumie kwadratéw przyprostokatnych |FO|? +
[FAP|, pisamy

R = |FOP+|FAP
——
h2
a

= M+’

= (35 * VB +10VE) +(5)?

h2
a? 25a2
= —(2 1
o2+ 0v5) + 00

2
a

— L5041
100(50 0v/5)

Skad obliczmy promient okregu opisanego na pigciokacie foremnym

a2

1
To5 (%0 + 0v/5)

a
- 1—0\/50+10\/5

|
R

R =

Promien okregu wpisanego w pigeciokat foremny. Promieri r = |FO| okregu wpisanego

w pieciokat foremny, obliczymy z tréjkcata prostokatnego A AOF stosujac twierdzenie Pitagoroasa.
Mianowicie, kwadrat promienie R? réwny jest sumie kwadratéw przyprostokatnych |FO|? +

|F A|?|, pisamy Zauwazmy, ze promiefi r = |[FO| = h okregu wpisanego w pigciokat foremny

rowny jest
a
= — 25+1
r=1g* V25 +10V5

Przekatne pieciokata foremnego. Pieciokat foremny ma 5 przekatnych réwnych o
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dlugosci

d=|EC|

2 ™
v cos ™
a 0055
1++5
4
= g(1+\/5)

= 2a*

17.11.4 Szesciokat foremny
Szesciokat foremny o szesciu bokach a réwnych
|AB| = |BC|=|CD|=|DE|=|EF|=|FE|=a=R
promieniowi R okregu opisanego na sze$ciokacie i szesciu rownych katach

/ABC = /BCD = /CDE = /DEF = /EFC = /FAB = o = 120°.

. . 27
w mierze tukowej a = 3

Konstrukcja sze$ciokata formnego przy pomocy cyrkla i linijki. Konstrukcja
szedciokata formmnego przy pomocy cyrkla i linijki jest bardzo prosta, najbardziej prosta
ze wszystkich konstrukceji figur foremnych.

Mianowicie, niech bedzie dany bok széciokata jako odcinek [A, B]

A B

Stawiamy cyrkiel w dowolniie wybranym punkcie O, $rodku okregu i rozwartoscig cyrkla
réwna odcinkowi [A, B] zakreslamy okrag o promieniu R = |AB| = a réwnym bokowi
szesciokata ABCDEF.

Nastepnie, stawiamy cyrkiel w dowolnym punkcie okregu A i rozwartoscia cyrkla R = a
zakredlamy tuk przecinajacy okrag w punkcie B,dalej stawiamy cyrkiel w punkcie B i za-
kreslamy tuk przecinajacy okrag w punkcie C, dalej stawiamy cyrkiel w punkcie C' i za-
kreslamy tuk przecinajacy okrag w punkcie D, dalej stawiamy cyrkiel w punkcie D i za-
kreslamy tuk przecinajacy okrag w punkcie F, ,dalej stawiamy cyrkiel w punkcie E i za-
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kreslamy tuk przecinajacy okrag w punkcie F.

Laczymy punkty A, B, C, D, E, F na okregu przy pomocy linijki. W ten sposéb narysowalismy
szesciokat foremny ABCDEF.

Zauwazmy, ze szesciokat foremny sklada sig z 6—ciu trojkatéw przystajacych i réwnobocznych
obokach réwnych R i o wszystkich katach réwnych 60° ~ 3
Wszystkie z 6 — ciu trojkatow

AABO, ABCO, ACDO, ADEO, AEFO,

maja wysokosci rtéwne h = r = |OG| promieniowi okregu wpisanego w szesciokat.
Wysokosé h obliczamy stosujac twierdzenie Pitagorasa do tréjkata prostokatnego AAGO.
Mianowicie )

h2:R2—(§)2:£, h:R_\/g_

2 4 2

Pole szesciokata foremnego sklada sig z 6-ciu pdl trojkatéw rownobocznych o bokach réwnych
a= R =|A0|.
Pole jednego trojkata réwnobocznego rowne jest

1 2
Pa=tacn-2ya

Zatem, pole szeSciokata réwne jest

2 2
P:G*PA:()’*%\@: 3% 3
——

pole P szesciokata

Obwdéd szesciokata foremnego réowny jest

Ob=6xa lub Ob=6xR, bo a=R.

17.11.5 Os$miokat foremny
O$miokat foremny o osmiu bokach réwnych
|AB| = |BC|=|CD|=|DE|=|EF|=|FE|=|FG|=a
i 0 osmiu rownych katach réwmych
LABC = /BCD = (CDE = [/DEF

= (EFG=/.FGH
= (GHA=/HAB
= a=135"

. . ™
w mierze tukowej a = i
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17.11.6 Konstrukcja osmiokata foremnego.

Konstrukcja osmiokata formnego o danym boku wykonamy przy pomocy cyrkla i linijki.
1. Konstruujemy kwadrat o danym boku a = |AB| przy pomocy cyrkla i linijki. 2°

A B

a

2. Rysujemy przekatne i symetralne bokéw kwadratu. Przekatne i symetralne bokow
kwadratu przecinaja sie w jednym punkcie O.

A B

a
3. Na przdluzeniu symetralnej podstawy kwadratu odktadamy rozwartoscia cyrkla réwna
potowie przekatnej, to jest odcinek |AO|, stawiajac cyrkel w punkcie O przecigcia przekatnych.
Litera E oznaczamy wierzcholek o$miokata.

E
P O
S
A B
a
4. Rozwartoscia cyrkla réwna promieniowi R = |PE| rysujemy okrag stawiajac cyrkiel

w punkcie O. Nastepnie przedtuzamy przekatne kwadratu i srodkowe bokéw do punktow
przeciecia A*, B*,C, D, E., F, G, H z okregiem, to jest do wierzchotkéw osmiokata formnego
A*B*CDEFH o danym boku a = |AB|.

20Konstukcje elementarne opisane w oprzednich paragrafach
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Laczymy wierzhotki A*, B*, C, D, E, F, G, H osmiokata przy pomocy linijki. W ten spo6b
skonstruowalismy o$miokat foremny

A*B*CDEFGH
o promeniu okregu opisanego R = |PE)|.
E

>

2+

RpromienR = a

B

prom.okr. opisan.

a
Tpromien, = 5(1 + \/5)
S

prom. okr.wpisan.

C Ppole = 2@2(1 + \/5)
———

pole osmiok.

*
7Z konstrukcji osmiokata foremnego V\‘%fnika, ze promien R = |FO| okregu opisanego na
o$miokacie réwny jest przeciwprostokatnej R = |FO] tréjkata prostokatnego AQEO.
3
zOEpzzzyhvg, LEPO:6T§Awg.
Pole osmiokata foremnego. Zauwazmy, ze g$miokat foremny sktada sie z 8 — miu
trojkatéw przystajacych i rownoramiennych o réwnych rammionach promieniowi R okregu

3
opisanego na oémiokacie i o wszystkich katach réwnych 1359 ~ Iﬂ

Wszystkie z 8 — miu trojkatow
AA*B*O, AB*CO, ACDO, ADEO,
AFEFO, AFGO, AGHO, AHA*O
maja wysokosci réwne h = r = |OQ)| promieniowi r = h okregu wpisanego w osmiokat.
Stosujac twierdzenia Pitagorasa do tréjkata prostokatnego AOQFE obliczamy kwadrat wysokosci
a

W =|OEF - |QE? = (3+ 5\/5)2 +G) -3

R2
a? 9
= Zu+¢®.
Skad obliczamy wysoko$ci i promien okrego wpisanego w osmiokat

h=r=31+V2)



241

Promien R okregu opisanego na o$smiokacie. Promien okregu opisanego na osmiokacie
wynika z konstrukcji osmiokata foremnego. Jego wartos¢ obliczamy stosujac twierdzenie
Pitagorasa do tréjkat prostokatnego AOQ E. Mianowicie kwadrat przeciwprostokatnej R =
|EO| réwmny jest
a
R®=|EOF = |QO*+|ES|* ="+ (5)*

= 7

2
CL2 CL2 2 a
= TB+2V)+=d’+V2

a

(1+\/§))2+(2

a*(1+ %\/5)

Skad obliczamy promien okregu opisanego na o$miokacie foremnym

2+2
2

R=a

Pole o$miokata foremnego. Pole osmiokata foremnego sktada sie z 8 —miu pdl tréojkatow
rownoramiennych o podstawie dlugosci a i bokach dlugosci R.
Pole jednego trdjkata réwnoramiennego réwne jest

1 a?

Zatem, pole osmiokata réwne jest

2
P=8%Pa=8%—(14+v2) = 2a3(1+2) .
4 —_———
pole P osmiokata

Obwdd o$miokata foremnego réwny jest Ob = 8 x a.

Promien r okregu wpisanego w osmiokat i promienn R okregu opisanego na $miokacie forem-
nym o danym boku, obliczymy réwniez stosujac zwigzki trygonometryczne w tréjkacie pros-
tokatnym AOQFE. Mianowicie, promieni okregu wpisanego w osmiokat

1

tTr
T = —Qa *C —
g™ I

Wartos¢ funkeji ctgg obliczamy stosujac tozsamos¢ trygonometryczng
1
ctgo — —— = ctg2a
ctga

T
dlaa= -
aa=g

0T g cos% sin%
ctgZ —tgE = - - —=
I8 I8 szn% cos%
2T _ i T

_ cos”§ —sing

- us us

sing * cosyg

2*005% s

= —— =2ctg~

sin% 4
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Skad mamy réwnosé

T 1 T T T
tg— — — =ctg— lub ctg®?= —2ctg— —1=0
WY gz ~ Wy MY g TR

Dla z = ctgg znajdujemy wartos¢ z rozwigzujac réwnanie kwadratowe

2+2\/§:1+\/§

22 —22—-1=0, wyroznik A=8, wartosc z=

Zatem ctgg =1+ V/2 i promieni okregu wpisanego w o$miokat foremny

1 T
r=—-ax*xctg= =

a
5 T =51+V2)
|
Zadanie 17.25 Oblicz obwdd i pole osmiokgta foremnego ABCDCEFG o dtugosci boku
|AB| =2

Zadanie 17.26 Majgc promienn v = 8 osmiokgta foremmnego, oblicz promienn R okregu
opisanego na osmiokgcie foremnym.

Zadanie 17.27 Majgc dany bok a = 3cm oblicz promien r okregu wpisanego i promien R
okregu opisanego na o$miokgcie foremnym.

Zadanie 17.28 Skonstruuj oSmiokgt fororemny o boku a = 3cm przy pomocy cyrkla i linigki.
Zmierz promien r okregu wpisanego w osmiokgt i promien R kregu opisanego na osmiokgcie
foremnym.

Zadanie 17.29 (i) Oblicz obwdd i pole tr.ojkgta AABC o dtugosci bokdw

|AB| =10, |BC|=8, |AC|=6

(i) Sprawdz czy trdjket AABC jest prostokgtny.
Zadanie 17.30 Oblicz obwdd i pole trdjkgta AABC o diugosci bokow

|AB| =3, |BC|=5, |AC|=1

stosujgc wzor Herona
Zadanie 17.31 Oblicz obwdd i pole réwnolegtoboku ABCD o dtugosci bokdw

|AB| = |CD| =4, |BC|=|AD|=>5,

stosujgc wzor Herona

Zadanie 17.32 Oblicz obwdd i pole szesciokgta foremnego ABCDCE o dlugosci boku |AB| =
5



Chapter 18

Geometria w przestrzeni.
Stereometria

18.1 Wstep.

W tym rozdziale zajmiemy si¢ nastgpujacymi tematami:
1. Kartezjanski uktad wspotrzednych.
Punkty i wektory w przestrzeni.
2. Parametryczne rownanie prostej

3. Graniastostupy i prostopadlosciany,
objetosé i pole powierzchni

4. Ostrostupy, objetosé i pole powierzchni

5. Bryly obrotowe: walec, kula, stozek,
objetosé i pole powierzchni.

Wirod bryt w przestrzeni, wyrézniamy bryly foremne i bryly platonskie. Bryly formne maja
wszystkie $ciany przystajace. Bryly platonskie, do ktérych naleza czworoscian, szescian,
o$mioscian, dwunastoscian i dwudziesto$cian, uwazane byly w czasach starozytnych w Akademi
Platona (427-347, B.C.) za figury idealne.

18.2 Punkty i wektory w przestrzeni kartezjanskiej

Polozenie punktow i wektoréw w przestrzeni okreslamy we wspélrzednych kartezjanskich.

Podobnie jak na plaszczyznie polozenie figur geometrycznych w przestrzeni okreslamy we
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wspdélrzednych kartezjanskich.

€2

B A= (al,az,ag)

az

zs3

Na osiach liczbowych o kierunku i zwrocie osi x1, =2, 3 odkladamy wspdtrzedne punktow
w przestrzeni kartezjanskiej

R® = {(x1, 20, 22) : —00 < 21,2, 23 < 00.}
Punkt A = (a1, as, ag) w uktadzie wspélrzednych kartezjariskich x1, xo, 3 ma wspéhrzedne
ry = ag, T2 = az, xr3 = as.

Na punktach
A= (a1,a2,a3) 1 B=(by,bz,b3)

wykonujemy nastepujace operacje:
e Dodawanie punktow
A+ B = (a1,a9,a3)+ (b1,be,bs)
= (a1 + b1,az + b, as + b3).

Zatem suma punktow

A+B=C

jest réwna punktowi C' = (¢1, co, ¢3) 0 wspélrzednych
ci=a1+b;, ca=as+by, c3=az+ bs.
e Odejmowanie punktéw
A—B = (a1,a9,a3)— (b1,be,bs3)
= (a1 —b1,as — b, a3 — b3).

Zatem réznica punktéw

A-B=C
jest réwna punktowi C' = (¢1, co, ¢3) 0 wspélrzednych

co=a1—bi, cx=ax—by, c3=az—"0bs.
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e Mnozenie punktu przez liczbe ¢
tx A=tx*(a1,az2,a3) = (t x a1, t xag,t*as).
Zatem iloczyn punktu przez liczbe t jest rowny punktowi
C = (c1,c2,c3)

0 wspotrzednych
C1 :t*al, CQZt*CLQ, C3 :t*ag.

Przyklad 18.1 Niech dane bedg punkty A = (2,-3,4) i B=(2,—1,3).
Oblicz
(i) A+B, (i1) a—0b, (i) 2xA+3x*B.

Rozwiazanie. Obliczamy

(i) A+ B = (2,-3,4)+(2,-1,3)
= (2+42,-3-1,4+3)
= (4,-4,7).
Odpowiedz: A+ B = C, C=(4,-4,7).
(i) A—B = (2,-3,4)—(2,-1,3)

= (2-2,-3—-(-1),4-3)
= (0,-2,1)
Odpowiedz: A—B = C, C=(0,-2,1).
(15i) 2% A+3+xB = 2x(2,-3,4)+3%(2,-1,3)
= (2%243%2,2%(=3)+3%(—1),2%«4+3%3)
= (10,-9,17).
Odpowiedz: 2x A+3«B=C, C=(10,-9,17).
Zadanie 18.1 Niech dane bedg punkty
A=(3,2,-1), B=(1,-1,2).
Oblicz
(i) A+B, (i) A—DB, (iti) 3*A+5xB.

18.2.1 Wektory w przestrzeni
Niech dane beda punkty

A:(al,CLQ,CLg), B:(bl,bg,bg).
Wektor AB o paczatku w punkcie

A= (a’la az, a3)
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i konicu w punkcie

B = (bla b2; b3)
okreslamy jako réznica punktéw
A@ZB—A: [bl—al,bQ—QQ,bg—ag].

12 Na przykltad wektor zwiazany o poczatku w punkcie A = (0,1,3) i koicu w punkcie
B = (2,0,5) ma wspélrzedne

AB=B—-A=(2,0,5)—(0,1,3) = [2,-1,2].

Dodawanie wektoréw
Suma dwdoch wektorow

U= [v,v9,v3] 1 W= [wy,ws, ws]
rowna jest wektorowi
Q = [21, 22, 23] = [v1 + w1, V2 + w2, v3 + W3]
o wspolrzednych
21 = U1 +wy1, 29 = V2 + wa, 23 = V3 + ws.
Przyklad 18.2 Oblicz sume wektorow
v=[1,2,1] i W=12,1,2]
Rozwigzanie. Suma
v+w=1[1,2,1]4(2,1,2)=[14+2,24+ 1,14+ 2] = [3,3, 3]

Odpowied?: Suma danych punktéw ¢ = [1,2,1] i & = [2, 1, 2] jest wektor

@=13,33].
Odejmowanie wektoréw
Réznica dwoch wektordéw

7= [’Ul,’UQ,’Ug] ) W= [U]l,’LUQ,’LUg]

rowna jest wektorowi

—

Q = [z1,22,23] =T — W = [v1 — w1, V2 — wa, V3 — W3]
o wspolrzednych
Z1 =V — W1 1 29 =0y — Wy, 23=UVUsz—W3.
Przyklad 18.3 Oblicz roznie wektorow
v=[1,2,6] i @W=1[2,1,5]
Rozwigzanie. Obliczamy réznice wektordw
v—w=1[1,2,6]—1[2,1,5|=[1-2,2—1,6—5] =[-1,1,1]

Odpowied?: Wynikiem odejmowania danych wektoréw ¢ = [1,2,6] 1 @ = [2, 1, 5] jest wektor

—

Q = [_15 15 1]

Lwspéirzedne vy, va, v3 wektora swobodnego ¥ = [v1,v2,v3] piszemy w nawiasach kwadrwtowych.
2Wektor swobodny okreslony jest przez jego dlugosé, kierunek i zwrot, nie zalezy od polozenia na
plaszczyznie lub w przestrzeni.




247

18.2.2 Tloczyn skalarny wektoréw

3 Tloczyn skalarny wektoréw jest wazna operacja na wektorach stosowana w matematyce
stosowanej, w fizyce, chemii i w innych przedmiotach $cistych.

Defimnicja 18.1 Iloczynem skalarnym wektoréw © = [v1,ve,v3] @ W = [wy, we, w3] nazy-
wamy liczbe
(U, W) = vy x w1 + v * wa + v3 * w3

Zatem, iloczyn skalarny wektoréw nie jest wektorem, natomiast jest liczba
Przyklad 18.4 Oblicz iloczyn skalarny wektorow
v=102,5,3] i W=][7,3,-2]. (18.1)

Rozwigzanie. Stosujac wzér (18.1) obliczamy iloczyn skalarny danych wektoréw, piszemy

(v,w) = ([2,5,3]%]7,3,—-2])

= 2%x74+5%x34+3%(—2)=14+15-6=23.
Odpowied?: Tloczyn skalarny danych wektoréw ¢ = [2,5,3] 1 & = [7,3, —2] jest liczba 23,
piszemy
(U, W) = 23.

Tloczyn skalarny wektoréw zachowuje wszystkie wlasnosci operacji arytmetycznej mnozenia.
Rozpatrzmy dwa wektory

’U: [’Ul,’UQ,’Ug] 7 ’LF) - [w1;w2;w3]

e iloczn skalarny jest przemienny

Istotnie, sprawdzamy,ze
(U,W) = w1 *xws+ vy *ws + v3*ws
= Wi * V1 + W * Vg + W3 * U3
= (4, 0)
e mnozenie skalarne wektorow jest rozdzielne wzgledem dodawania
(@, (5 +Q)) = (7, @) + (5,Q)
Istotnie sprawdzamy, ze
@0 +Q) = vi*(wi+21)+vs* (wa+ 2) + vs(ws + 23)
= vy kwp+v k21 +V2xw+ 2+ vg k2o + U3 * w3 + U3 * 23

= V1 * W1+ Vg *x Wg + V3 * 23 + V1 *x 2] + V2 * 29 + VU3 * 23

(5:9) Q)
= (0,7)+ (V,Q)

3Wieloko$¢ skalarna to znaczy, ze wielkoéé okreslona, liczba
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e Jloczyn skalarny wektora ¥/ przez siebie réwny jest kwadratowi jego dtugosci
(U,0) = w1 %01+ v9%ve+ v3 %03
= v} +0+03 =10~
Teraz podamy wazne twierdzenie w postaci warunku dostatecznego i koniecznego

Twierdzenie 18.1 .
Warunek dostateczny: Jezeli iloczyn skalarny jest réwny zero

wektordw U i W jest réwny zero to wektory U, W sq¢ prostopadle, piszemy
vLw

Warunek konieczny: Jezeli wektory ¥ i 10 sq¢ prostopadle
vLw

to ich iloczyn sklarny jest rowny zero

Razem warunek konieczny i dostateczny piszmy w symbolach
U1 = (v, W) = 0.

Istnieje kilka dowoddéw tego twierdzenia. Tutaj podamy dowdd oparty na twierdzeniu
Pitagorasa. Mianowicie, udowodnimy, ze tréjkat o ramionach ¢ i  jest prostokatny wtedy
i tylko wtedy, jezeli iloczyn skalarny

Dowéd warunku dostatecznego. Zakladamy, ze iloczyn skalarny wektoréw ¢ i w jest
réwny zero

(%) = 0

Udowodnimy, ze wektory ¢' i W sa prostopadte.
Obliczamy kwadrat dlugosci réznicy wektordw o i w

ot = (- @)

= |0 —2(v, @) + @]

Zauwazmy, ze jezeli iloczyn skalarny

to boki tréjkata AABC

|AB| = |v|, |AC|=|w|, |BC|=|v—d]
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<y

x1

spetniaja rownosé
9% + |@)? = |v = w|? (18.2)

7 drugiej strony z twierdzenia Pitagorasa wynika, ze suma kwadratow dwoch bokéw tréjkata
jest réwna kwadratowi dlugosci boku trzeciego (cf. (17.5),77) wtedy i tylko wtedy, jezeli
ten trojkat jest prostokatny.

Zatem kat LACB pomiedzy wektorami @' i w0 jest prosty, jezeli iloczyn skalarny tych wek-
toréw rowny jest zero. Koniec dowodu warunku dostatecznego.

Dowéd warunku koniecznego. Zauwazmy, ze wektory ¢ i w sa prostopadte.

ARV

Udowodnimy, ze iloczyn skalarny (¢,@) = 0. W tym celu obliczmy poraz drugi kwadrat
dtudodci réznicy wektoréw o/ i .

7—w? = (¥—w,7—w)
= (0,70) — 2(¥, W) + (F, W) (18.3)
= | —2(¢, W) + @]
7. zalozenia wektory U i W sa prostopadle. Zatem boki AB i AC tréjkata AABC sa
prostopadte. Wobec tego tréjkat AABC jest tréjkatem prostym.

Z twierdzenia Pitagorasa wiemy, ze kwadrat dtugosci przeciwprostokatnej [B, C| réwny jest
sumie kwadratéw dtugosci przyprostokatnych [A, B] i [A, O], piszemy

|BC|* = |AB* + |[AC)? b |v—d|* = |0 + |@]?, (18.4)
gdzie
AB| = |8, |AC| =@, |BC|=|7-udl.

Z réwnodci (18.3) 1 (18.4) wynika réwnosé stron

|0 —@i]* = [9]? — 2(7, W) + ||

|0 —@i]? = 9% + | ],

|0]% = 2(, @) + |w]* = 0] + |@]?,

—2(7,w) =0
Zatem iloczyn skalarny wektoréw o' i i jest réwny zero

(5,) = 0,

jezeli wektory @i sa prostopadie. Koniec dowodu warunku koniecznego. *

4Tloczyn skalarny (7, @) = 0, wtedy i tylko wtedy, jezeli L, w symbolach piszemy

U1l < (0,%W) = 0.
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Przyklad 18.5 Oblicz iloczyn skalarny i ditugosé wektorow
v =16,8,0], w=19,12,0].
Rozwigzanie. Obliczamy iloczyn skalarny stosujac wzér (18.1) dla wektoréw
U= [v1,v9,v3] =[6,8,0], @ W= [wy,ws,ws]=19,12,0]
Zatem iloczyn skalarny
(U,W) =6%«9+8%12+ 0% 0 =544 96 = 150.

rowny jest 100.
Wiemy, ze kwadrat dtugosci wektora v = [6,8,0] jest réwny iloczynowi skalarnemu tego
wektora przez siebie.

|U]? = (0,7) =6%6+8%8+0%0 =364 64 =100
Skad dlugosé¢ wektora
5] = v/100 = 10.
Podobnie obliczamy dtugosé wektora w = [9, 12, 0]

—

@] = /(@)

= V9%9+12%12+0%0
V81 + 144 = /225 = 15.

Przyklad 18.6 Dla jakiej wartosci parametru m wektory
v=[m,6,3], w=]I3,2,4].

sq prostopadte?
Rozwigzanie. Obliczamy iloczyn skalarny stosujac wzér (18.1) dla wektoréw
U= [v1,09] = [m,6,3], i W =[w,ws]=][3,2,4]

Wektory sa prostopadle jezeli ich iloczyn skalarny réowny jest zero. Obliczamy iloczyn
skalarny
(U, W) =m*3+6%24+3%x4=3m+24=0.

Skad iloczyn skalarny réwny jest zero

24
6m+24=0, dla m:—;:—&
Istotnie sprawdzamy, ze dla m = —8 iloczyn skalarny wektora ¥ = [m, 6, 3] przez wektor

w = [3,2,4] réwny jest zero
(U, W) = —8%x34+6%x2+3x4=24—-24=0
Odpowiedz: Wektory
U= [v1,v9,v3] = [Mm,6,3], ¢ W= [w,ws,ws]=]3,2,4]
sa prostopadle dla parametru m = —8.
Zadanie 18.2 Oblicz iloczyn skalarny i dlugosé wektorow
v =[12,16,0], & =[15,20,0].
Zadanie 18.3 Dla jakiej wartosci parametru m wektory
v=[m,15,2], W =]I5,3,4].
sq prostopadte?
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18.2.3 Iloczyn wektorowy w przestrzen tréjwymiarowej R3

Rozpatrzmy dwa wektory
U= (v1,v2,v3), & W= (w,ws, ws)
w przestrzeni trojwymiarowej

R® = {2 = (21, 29,23) : —00 < 21,T2,73 < 00 }

<y
X
g

g

<y

Wynikiem mnozenia wektorowego wektora o przez wektor w jest trzeci wector ¥ x W, ktérego
wpolrzedne obliczamy z rozwiniecia Laplace’a macierzy utworzenej ze wspolrzednych wek-
torow

1 1 1
v U2 U3
w1 W2 W3

Mianowicie iloczyn

wa_[Det{ vz s },—Det({ U1 }),Det{ vr w2 }]
w2 w3 w1 w3 w1 w2

gdzie wyznaczniki -determinants

V2 v
Det 3 = Vg * W3 — V3 * Wa,
w2 W3

U1 U3
—Det = —(v1 *x w3 — v3 * Wy
wy  ws ( 3 3 )a

U1 V2
Det = V1 * W2 — Vg * W1
w1 w2

Skad otzymamy wzér na wspolrzedne iloczynu wektorowy
U X W = [vg * w3 — v3 % wa, — (V] * W3 — V3 * W), V] * Wo — Vg * wi. (18.5)

Wektor ¢ x @ jest prostopadly do wektoréw o i w, a jego o dlugosé réwna jest polu
réwnolegloboku o bokach ¢/ i w. Zatem dlugo$é wektora

|7 x W] = \/|vg * w3 — vz % wa|2 4 | — (v1 % ws — vz *wy)|2 + |vg * wg — vy * w2
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18.2.4 Pole czworokata. Przyklady

Rozpatrzymy czworokat ABCD
D

w

o wierzcholkach

A = (CLl,CLQ,CLg), B = (bl,bQ,bg)

C = (Cla C2, 03)5 D= (dla d25 d3)

rozpiety na wektorach

— —

U = [v1,v9,v3] = AB, W = w1, we, ws] = AD,

— — —

Q = [21, 22, 23] = OB, t=[t1,t2,t3] = CD,

gdzie wspélrzedne wektoréw v, w, Q, f okre$lamy przez roznice wspdlrzednych wierz-
chotkéw A, B, C, D czworokata ABC D

v1=br—a1, v2=by—a v3=bz—as,
wy =di —a1, wz=dz—a, wz=d3— as,
z1=b1—c1, 22=by—c2, z3=0b3—cs,
th=dy—c1, ta=dy—co t3=d3z—cs.
Stosujac iloczyn wektorowy (cf. (18.5)) mozemy obliczy¢ pole dowolnego czworokata o

danych wspélrzednych jego wierzchotkéw. Mianowicie, pole czworokata ABCD réwne jest
polowie iloczynu wektorowego wektoréw

—

7=1[3,0,0] = AB, @ =1[0,3,0] = AD,

— —

QG=1[0,-6,00=CB, t=[-3,-3,00=CD
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€2
) A=1(0,0,0)
Tloczyn wektorowy 6 B =(3,0,0)
U x @ =[0,0,9] C=(3,6,0)
Q xt=10,0,-18] D = (0,3,0)
Dludosc iloczynu .
wektorowego 3 v=AB =[3,0,0]
15 x @ =9 B} W = AD = [0,3,0)
- w Q -
1@ x 1] =18 Q@=CB=10,-6,0]
t=CD=[-3,-3,0|
A B
v 3 T
z3

Obliczamy iloczyny wektorowe 7 x @ i @ x t stosujac wzory (cf. (18.5))
vxwW = [0x0—3%0,—(3%x0—-0%0),3%x3—0x0]
= 1[0,0,9]
i illoczyn wektoréw
Qxt = [-6%x0—3%0,—(0%0—3%0),0%3—6%3]

= [0,0,—18]

Obliczamy pole czworokata ABC D jako sume potowy iloczynu wektorowego wektoréw v, w

g, 7

Mianowicie 1 1
PABCD = §|’L7>< 117|+5|Q><ﬂ
1 1
= 5\/o2 +02 492 4 [1/07 + 02 + (~18)2
= %*9—1—%*18
= 4549=13.5
5

Rozpatrzmy inny przyktad obliczania pola czworokata stosujac iloczyn wektorowy.

5Diugo$é wektora ¥ = [v1,ve,v3] o wspdirzednych v1,vs,vs W przestrzeni kartezjnskiej R® obliczmy ze

wzoru |7 = /v? + v2 + v2
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5.0

3.2

0.8

Przykiad 18.8 Oblicz pole czworokgta ABC D rozpietego na wektorach

7= 1[4.0,0,0] = AB,

7 =1[-05,2.4,0]= AD,

Q=1[-1.0,4.2,0)= CB,

t=[-3.5,-1.8,0]=CD

= (1.5,0.8,0)
= (5.5,0.8,0
= (

UQUU

)
4.5,5.0,0)
=(1.0,3.1,0)

1.0

1.5 4.5

@ = AD = [—0.5,2.4,0)

Q=CB=[-1.0,4.2,0]

f=CD =[-3.5,-1.8,0|
:5.5 xr1

Obliczamy iloczyny wektorowe 7 x @ i @ X t stosujac wzory (cf. (18.5))
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UxwW = [0x0—-0%24,—(4%0+0.5%0),4%2.44 0.5%0]
= 1[0,0,9.6]
i illoczyn wektoréw
Qxt = [42%0+1.8%0,—((—=1)%0—(—3.5) %0),1 1.8+ 4.2 3.5]
= [0,0,16.5]
Obliczamy pole czworokata ABC'D jako sumg polowy iloczynu wektorowego wektoréw @, o
iQ, t
Mianowicie 1 1
PABCD = 5|’L7><U7|+5|Q><ﬂ
1 1

= 5\/02 +0% +9.6% + 5\/02 +0? 4 16.52

= %*9.6—1—%*165

= 4.8+48.25=13.05
6

6Dlugosé¢ wektora ¢ = [v1,v2,v3] 0 wspdlrzednych v1,v2,v3 W przestrzeni kartezjiskiej R? obliczmy ze

wzoru |7] =

/)2 2 2
v1+v2+v3
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18.2.5 Parametryczne ré6wnanie prostej w przestrzeni

Proste operacje na punktach i wektorach w przestrzeni prowadza do parametrycznego okreslenia
rownania proste;j.
Mianowicie, rozpatrzmy dwa punkty

A:(a’laa/Q;aﬁ)a A:(blab25b3)a

i wektor .
AB =B — A.

Wtedy latwo piszemy réwnanie parametryczne prostej L
L(t)=A+t+AB

lub
Lit)=(1—-t)x A+ Bxt.

Tutaj parametrem jest liczba t przebiegajaca caly zbidr liczb rzeczywisty od minus nieskonocznosci
do plus nieskonocznosci, piszemy —oo < t < co.

€2

Parametryczne rownanie prostej

Lit)=(1—t)+ A+ Bt

dlat=0, L(0)=A

wektor AB dlat=1, L(1)=B

1

zs3

auwazmy, ze jezeli parametr ¢ zmienia sie od minus nieskonczonosci —oo do plus nieskonczonosci
00, to punkt L(t) poruszasza si¢ wzdtuz prostej L.
Parametryczne réwnanie prostej, wyrazamy réwniez w terminach danych punktéw A i B.
Poniewaz wektor AB = B — A, to réwnanie parametryczne prostej przechodzacej przez
punkty A i B ma nastepujaca postac:

L(t) = A+ (B — A) *t,
lub  L(t) = A+ AB xt,

lub L{t)=(1—-t)x A+ Bxt, —oo<t< 0.

Przyklad 18.9 Napisz parametryczne rownanie prostej

(i) o poczgku w punkcie A= (1,2, —1) i kierunku wektora ¥ = [2,—1, 4]
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(i) przechodzqcej przez punkty A = (1,—1,2) i B = (2,1,2)
Rozwiazanie.
(i) Podstawiamy dane:
1. punkt A = (1, —1,2) i wektor ¥ = (2, —1,4) do ogdlnego réwnania

L) = A+txv
= (15_152)+t*(25_154)
= (142t,—1—1t2+4t).

Odpowiedz: L(t) = (1+2t,—1 —t,2+4t), —oo<t< 0.
(ii) Podstawiamy dane: punkt a = (1, —1,2) i punkt B = (2, 1,2) do ogdlnego réwnania

L(t) = (1—-t)A+t«B=(1—t)1,-1,2)+t*(2,—1,4)
= (A=t +2t(1—1t)—t,2(1—t) +4t)
= (1+t1-2t2+2)

Odpowiedz: L(t) = (1 +t,1—2t,2+2t), —oo<t< 0.
Zadanie 18.4 Napisz parametryczne rownanie prostej
(i) o poczgtku w punkcie A = (0,1, —1) 7 kierunku wektora v = [2,1, 3]
(ii) przechodzqcej przez punkty A = (3,1,2) i B =(0,2,2)

18.2.6 Graniastostup o podstawie tréjkata réwnobocznego

Prostopadloscian o wierzchotkach A, B, C, D, E, F'i podstawie tréjkata A ABC réwnobocznego
o boku podstawy dlugosci a.

F
D E
h

C
A |AB|=a B

Graniastostup o podstawie tréjkata foremnego AABC, o dtugosci bokéw
|AB| = |AC|=BC|=a

i o0 wysokosci h ma pole powierzchni catkowitej sktadajace sie z dwéch podstaw i trzech Scian

bocznych.
a*\V/3 a’\/3
4

P.=2 +3a*xh = 5 +3ax*xh
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Objetos¢ tego graniastostupa obliczamy z prostego wzoru
a2\/§
2

Przyklad 18.10 Dia graniastostupa o podstawie trojkgta foremnego o boku podstawy a = 4,
i wysokosci graniastostupa h = 6, oblicz

V= )xh

(i) pole catkowitej powierzchni,

(i) objetosé.
Rozwiazanie. Podstawiajac dane a =4 i h = 6 do wzordéw na pole catkowitej powierzchni
i objetosc¢, obliczamy

(i) pole catkowitej powierzchni graniastostupa

2V3 42./3
a\/_+3a ;/_

P. = 5 *h = +3%x4%x6=8V3+72

(ii) objetosé¢ graniastostupa

a3 42./3

)*h:(T)*ﬁzzxsx/ﬁ.

Zadanie 18.5 Dla graniastostupa o podstawie trojkata foremnego o boku podstawy a = 2,
i wysokosci graniastostupa h =5, oblicz

(i) pole catkowitej powierzchni,

(ii) objetosé.

18.2.7 Prostopadloscian o podstawie prostokata

Prostopadlodcian o podstawie prostokata ABCD o dlugosci bokéw prostokata |AB| =
a, |BC| = b1 wysokosci prostopadioscianu |BF| = h

H G
E F
h
D C
IIBC[=b
A |AB|=a B

Pole catkowitej powierzchni prostopadioscianu sklada sie z dwoch podstaw i czterech Scian
bocznych.
P.=2a*xb+2a*h+2bxh.

Objetos¢ prostopadloscianu obliczamy z prostego wzoru

V=axbxh
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Przyklad 18.11 Dia prostopadtoscianu o podstawie prostokgta o wymiarach
a=4, b=1>5 i wysokosci h = 6, oblicz

(i) pole catkowitej powierzchni prostopadtoscianu,
(ii) objetosé prostopadtoscianu.
Rozwiazanie. Podstawiajac do wzorow, obliczamy

(i) pole catkowitej powierzchni prostopadtodcianu

P.=2axb+2axh+2bxh=2x4%x5+2%4%x6+2%x5*06=148.

(ii) objetosé prostopadloscianu V =axbxh =4x5%6 = 120.

Zadanie 18.6 Dla prostopadtoscianu o podstawie prostokgta o wymiarach
a=2,b=3 i wysokosci h =5, oblicz

(i) pole catkowitej powierzchni prostopadtoscianu,

(ii) objetosé prostopadtoscianu.

18.2.8 Szescian foremny

Szescian foremny jest prostopadloscianem, ktory ma wszystkie szes¢ $cian kwadratami o
boku a.

ay/2

a

Szescian Foremny o boku a

Powierzchnia P, = 64>
Objetosé V = a3
Przekatna podstawy = av/2

Przekatna szeScianu = av'3
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W sposob oczywisty znajdujemy, ze

Pole powierzchni calkowitej P, = 6a°.
Objetosc V. = ad.
Przekatna podstawy dp = av2.
Przekatna szescianu d = aV3.

Przyklad 18.12 Dia szescianu o boku a = 4, oblicz
(i) pole catkowitej powierzchni szescianu,

(ii) objetosé szescianu.
(#ii) przekgtng podstawy szescianu.
(iv) przekgtna sze$cianu.

Rozwiazanie. Podstawiajac do wzorow, obliczamy
(i) pole catkowitej powierzchni szescianu P. = 6a? = 6 x 42 = 96,
(ii) objetosé szescianu V. = a3 = 43 = 64.

(iii) przekatna podstawy szescianu d, = av/2 = 4v/2.
(iv) przekatna szedcianu d = av/3 = 41/3.
Zadanie 18.7 Dla szescianu o boku a = 5, oblicz

(i) pole catkowitej powierzchni szescianu,
(i) objetosé szescianu.
(#ii) przekgtng podstawy szescianu.

(iv) przekgtna sze$cianu.

18.2.9 Graniastostup o podstawie szesciokata foremnego

Powierzchnia catkowita i objeto$¢ graniastostupa o podstawie szesciokata foremnego sklada
sie z dwoch podstaw i szesciu $cian. Latwo obliczamy pole calkowitej powierzchni i objetosc
graniastostupa o podstawie szedciokata formnego znajac bok podstawy a i wysokosc h.

L K
G J
h = |AG]
F Lo E.
Al D
B ®

a

Pole podstawy tego graniastostupa sklada sig¢ z pdl 6-ciu tréjkatow réwnocznych

a2\/§ 3a2\/§
Ppodstawy =6x* 4 = 5 .
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Pole catkowite powierzchni graniastostupa o podstawie szesciokata foremnego

3a2V/3
2

P. =2Ppodstawy +6xaxh = 2 + 6a * h,

P.=3a*>V/3+6axh
Objetos¢ graniastostupa o pdstawie szesciokata foremnego

3a2v/3

5 xR

V= Ppodstawy *h =

Przyklad 18.13 Dia graniastostupa o podstawie szesciokgta foremnego o boku a = 2 wysokosci
h =4, oblicz

(i) pole catkowitej powierzchni,
(ii) objetosé.
Rozwiazanie. Podstawiajac do wzoréw na catkowita powierzchie i objetos$¢, obliczamy

(i) pole catkowitej powierzchni

P.=3d°V3+6axh = 3x22V/3+6%2x4=12V3+48.
(ii) objetosé tego graniastostupa

2 2
3a°V3 ., 3x2%V3 \/5*4:6\/5

1% 1 * B B

Zadanie 18.8 Dla graniastostupa o podstawie szesciokgta foremnego o boku a = 4 wysokosci
h =5, oblicz

(i) pole catkowitej powierzchni,

(ii) objetosé.

18.3 Ostrostupy

Ostrostupem nazywamy wieloscian, ktérego podstawg jest dowolny wielokat a Sciany boczne
sa trojkami o wspolnym wierzchotku. Wsrédd ostrostupdéw wyrdzniamy ostrostupy foremne,
ktérych podstawa jest wielokad foremny i spodek wysokosci lezy w $rodku okregu opisanego
na podstawie ostrostupa.

18.3.1 Czworoscian foremny

Czworoscian foremny ma wszystkie cztery $ciany, ktore sa trojkatami réwnobocznymi. Za-
tem, katy Scian maja 60° lub w mierze tukowej 3 radianéw. Pole powierzchni kazdej ze
a2
Scian ——, gdzie a oznacza dlugosc kazdej z krawedzi czworoscianu.
Pole powierzchni catkowitej czwroscianu foremnego réwna sie¢ czterem razy pole powierzchni
jednej ze Scian.
P. = a’V/3.
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Krawedz [ czworoscianu obliczamy z twierdzenia Pitagorasa. Mianowicie, wiemy, ze wysokosc¢

3
$ciany bocznej h = g. Jej spodek lezey w potowie krawedzi podstawy g. Zatem obliczamy

a

2

a\/§2 a?

I? =hn?
* 2 )t

)? = (
Objetos¢ czworoécianu formnego réwna jest jednej trzeciej pola podstawy razy wysoko$¢ H

2
:la\/g*H
3 4

|4

Wysokosé H obliczamy w zaleznosci od danej krawedzi a. Mianowicie, spodek wysokosci
h $ciany bocznej lezy na przecigciu wysokosci podstawy w punkcie odlegltym od wierz-

2 2
cholka tréjkata o —h = - * a_\/§
3 3 2

obliczamy wysokos¢ czworoscianu

. Krawedz czworoscianu | = a. Z twierdzenia Pitagorasa,

H2:a2—(gh)2:a2—(g*@

2
2 =Zd?, H=ay/=.
3 32 3

’ 3
Zatem objetos¢ czworoscianu

1a%V3 1a%V3 \/5 a®
V=31 rH=3m ra3= V2

3

Czworoscian Foremny P, = a®V3, V= ?—2\/5

18.3.2 Ostrostup prawidlowy o podstawie kwadratu
Oznaczenia:

e ¢ bok kwadratu w podstawie ostrostupa

e H wysokosé¢ ostrostupa

e ) wysokos¢ Sciany bocznej ostrostupa

l krawedz boczna ostrostupa

P, pole podstawy ostrostupa
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e P, pole Sciany bocznej ostrostupa
e P, pole powierzchni catkowitej ostrostupa
e 1/ objetosé¢ ostrostupa

Jasne, ze pole podstawy ostrostupa foremnego réwna sie polu kwadratu P, = a? o boku a.
Pole pobocznicy ostrostupa foremnego P, rowne jest polu czterech tréjkatow réwnoramiennych
o podstawie a i wysokosci h. Natomiast, pole Sciany bocznej ostrostupa Py réwne jest polu
trojkata réwnoramiennego o podstwie a i wysokosci h.

1
P0:§a>kh.

Wysoks¢ $ciany bocznej wyrazamy w zaleznosci od boku a i krawedzi I. Mianowicie, z
twierdzenia Pitagorasa obliczamy wysokosé

1
R2 =12 - (%)2, h=q2-% h= SVAP — a2,
Wtedy pole sciany bocznej
1
Py = i VA2 — a2,

Pole catkowitej powierzchni ostrostupa réwne jest polu czterech trojkatow w podstawie o
boku a plus pola cztery tréjkatéw rownoramiennych o podstawie a i ramionach .
Pole powierzchni catkowitej ostrostupa foremnego

P.=a?>+ 4Py, P.=d>+ aV4? - a2

i objetos¢ ostrostupa foremnego

1
Ostrostup Foremny o Podstawie Kwadratu P, = a2 + a\/412 — a2, V = gaz * H
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18.3.3 Ostrostup foremny o podstawie szesciokata

Oznaczenia:
e a bok szesciokata w podstawie ostrostupa

e H wysokosé¢ ostrostupa

h wysokos¢ §ciany bocznej ostrostupa

e | krawedz boczna ostrostupa

P, pole podstawy ostrostupa

e P, pole Sciany bocznej ostrostupa

P, pole powierzchni catkowitej ostrostupa

V objetosé ostrostupa

Jasne, ze pole podstawy ostrostupa foremnego réwna si¢ polu P, szeSciokata foremnego o

boku a
a’V3 - 3a*V/3
4 2
Pole pobocznicy ostrostupa foremnego P, réwne jest polu szesciu tréjkatéow réwnoramiennych
o podstawie a i wysokosci h. Pole sciany bocznej ostrostupa Py rowne jest polu tréjkata
rownoramiennego o podstwie a i wysokosci h.

P,=6

1
P, 0= 5@ * .
Wysoks¢ $ciany bocznej wyrazamy w zaleznosci od boku a i krawedzi [. Mianowicie, z
twierdzenia Pitagorasa obliczamy wysokosé

2
2 oh=y2-L polympoa

h’2:l2_( 3
4 2

a
2
Wtedy pole sciany bocznej

1
Py = i VA2 — a2,

Pole catkowitej powierzchni ostrostupa réwne jest polu szeSciokata foremnego w podstawie
o boku a plus pola sze{sciu tréjkatéw réwnoramiennych o podstawie a i ramionach .
Pole powierzchni catkowitej ostrostupa foremnego

2
P.=P,+6P,, P.= 3a2\/§ + ga\/ 412 - a2 P, = g[QQ\/g—l- ar/41%2 — a?].

i objetos¢ ostrostupa foremnego

1 3a2\/§ a2\/§
= — ES H =

V32 2

x H
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a

1
Ostrostup P, = g[a2x/§+ av 4?2 —a?], V = §a2\/§ x H

18.4 Bryly obrotowe

Wiréd bryl obrotowych wyrézniamy walec, stozek i kule.

18.4.1 Walec

Walec powstaje z obrotu prostokata wokoél jednego z jego bokéw. Prosty ksztalt walca
prowadzi do oczywistych wzoréw na jego calkowita powierzchnie i objetosé.

Na nizej podanym rysunku mamy zaznaczony promien r i wysokos¢ h walca o $rednicy pod-
stawy AB = 2R oraz promirniu gérnej podstawy O*B* = R. Literami O* i B* oznaczone
sa $rodki okregéw w dolnej i gérnej podstawie.

7 O * R \\\.‘ B *
‘..-
| /
H l
A O~/ B

Powierzchnia catkowita walca wyrazona jest przez promien R i wysokos¢ H.

P.=2mrRH.



265

i objetos¢ walca
V =nR* H.

18.4.2 Stozek

Stozek powstaje z obrotu tréjkata prostokatnego wokoél jednej z jego przyprostokatnych.
Oznaczenia:

e R promien podstawy stozka
e [ tworzaca stozka
o H wysoks¢ stozka

e drednica AB = 2R podstawy stozka

$rodek O podastawy stozka o wierzchotku C'

e P, powierzchnia boczna stozka

P, powierzchnia catkowita stozka

V objetosé¢ stozka
C

e powierzchnia podstawy stozka Py = mR2,

powierzchnia boczna stozka P, = 27 R [

e powierzchnia catkowita stozka P, = mR(R + H)

1
objetos¢ stozka §7TR2H .
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18.4.3 Kula

4
Kula o $rodku O promieniu R ma powierzchnie P = 47 R? i objetoéé V = §7TR3

Przyklad 18.1 Oblicz powierzchnie i objetos¢ kuli o promieniu R = 5.

Rozwiazanie. Podstawiajac R = 5 do wzoru na powierzchnie kuli

S = 4nR?
i do wzoru na objeto$¢ kuli
4
V= grR’

obliczamy powirzchnie kuli
S = 4r 5% = 1007

i objetos$¢ kuli
4
V = §7T53 = ?Tf



Chapter 19

Trygonometria

Trygonometria to wiedza o zwiazkach miarowych pomiedzy bokami i katami tréjkatow.
Takie znaczenie stowa Trygonometria bylo uzywane w czasach starozytnych w Babilonie,
Egipcie i Grecji.

19.1 Funkcje trygonometryczne
e sin «, czytamy sinus «, cos «, czytamy cosinus «,
e tg a lub tan o, czytamy tangens «,

e ctg a lub ctg o, czytamy cotangence «,

e sec o, czytamy secant o, csc «, czytamy cosecant c,
. € € . . .
e sinh &« = ————, czytamy sinus hiperboliczny «,
e . . .
e cosha= — czytamy cosinus hiperboliczny «

Funkcje trygonometryczne okreslamy w tréjkacie prostokatnym lub na kole trygonome-
trycznym.

Rozpatrzmy trdjkat prostokatny AABC o wierzchotkach A, B, C przyprostpkatnych AC' i
BC oraz przeciwprostokatnej AB.
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C
przyprostokatna — b Y :g a « przyprostokatna
o s B

przeciwprostokatna c

Diugosci przyprostokatnych i przeciwprostokatnej oznaczamy malymi literami, piszemy
a=|BC|, b=|AC|, c¢=|AB].

Defimnicja 19.1 Sinus kgta « to stosunek przyprostokgtnej a lezgcej naprzeciw kgta o do

przeciwprostokgtnej ¢
a
sin o = —

Defimnicja 19.2 Cosinus kgta « to stosunek przyprostokgtnej b przyleglej do kgta o do
przeciwprostokgtnej ¢

COs @ = —
C

Defimnicja 19.3 Tangens kgta a to stosunek przyprostokgtnej a lezgcej naprzeciw kgta o
do przyprostokgtnej b przyleglej do kgta o

tga = % lub tana = %

Defimnicja 19.4 Cotangens kgta a to stosunek przyprostokgtnej b lezgcej przylegtej do kgta
«a do przyprostokgtnej a leZgcej na przeciw kgta o

b b
ctga = — lub ctana = —
a a
Defimnicja 19.5 Secant kgta o to odwrotnosé sinusa kgta o. Zatem

seco =

ISH e

Defimnicja 19.6 Cosecant kgta o to odwrotnosé cosinusa kgta . Zatem

C
secox = +

b

Zauwazmy, ze odwrotnos¢ tangensa kata a rowna jest cotangensowi kata o i odwrotnosé
cotangensa kata o réwna jest tangensowi kata «

1
— =ctga, —— =tga
tga ctga

W matematyce wyzszej funkcje trygonometrytczne okeslane sa przez szeregi potegowe
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Przyklad 19.1 Podaj wartosci funkcji trygonometrycznych okreslonych w tréjkgcie pros-
tokgtnym o bokach a =3, b=4, c=5

Rozwiazanie. Katy tego trojkata prostokatnego o = 30°, 8 = 60°, v = 90°

sina=—, cosa= tga = —,

4
t = — = —
ctg o 3 seco 3

CSCtx =

| ot | o

Zauwazmy, ze okreslenie funkcji trygonometrycznych w tréjkacie prostokatnym dotyczy
tylko katéw

0<a<90° lubw mierzelukowej 0 < a <

£ ool

Poniewaz katy « i 8 w tréjkacie prostokatnym zmieniaja sie od zer
tym dla a = 0 cotangens i secant sa nieokreslone.

do kata prostego. W

Réwniez dla o = — tangens i cosecant nie sa okreslone.

Nizej podamy deficje funkcji trygonometrycznych na kole trygonometrycznym. Funkcje si-

nus i cosinus okreslone sa dla wszystkich wartosci rzeczywistych argumentu « € {—o00, c0}.
™

Natomiast funkcje tangens okreslona jest dla rzeczwistych wartosci argumentu o # 5 k=0,1,2,...;

a funkcja cotangens okreslna jest dla wszystkich rzeczywistych warto.sci agumentu « #
km, k=0,1,2,3,...;

Wartosci funkeji sinus i cosinus leza w przedziel domkingtym [—1,1]. wartosci funkcji tan-
gens i cotanges przebiegaja caly zbid liczb rzeczywistych od minus nieskonczonosci —oo do
plus nieskonczonodci oco.

Znak wartosci fukcji trugonometrycznych zalezy od ¢wiartki pierwszej I, drugiej 11, trzeciej
lub czwartej IV do ktorej nalezy argument o.
Dla okeslenia znaku wartosci funkcji trygonometrycznych stosujemy heurystyczna zasade:

W pierwszej cwiarte wszystkie sq dodatnie sinus, cosinus, tangens i cotangens, w drugie tylko
sinus jest dodatni, w trzeciej tangens i cotangens sg dodatnie, a w czwartej tylko cosinus
jest dodatns.

Zadanie 19.1 Oblicz wartosé wyrazenia trygonometrycznego

. . T
(7) sing + cos—

6
(i) ¢ 7 " 7
n 96+096

Zadanie 19.2 Oblicz wartosé wyrazenia trygonometrycznego

) _ A4m 4ar
(7) sin—- + cos—

3

() ' 47T+ " 47
¥ —_— ctg—
I3 Ty

Zadanie 19.3 Oblicz wartosé wyrazenia trygonometrycznego

. us us
sy + cosy

tgg +ctgh
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19.2 Kolo trygonometryczne.

Dla wszystkich katéw o wartosciach rzeczywistych, ujemnych lub dodatnich, funkcje try-
gonometryczne definiujemy w kole trygonometrycznym.

WY
Koto trygonometryczne
pierwsza ¢wiartka I 5 5
sin a = |AB)|
cos a = |OA] N\
0 «
R=1 cos a A

Kotlo trygonometryczne

druga ¢wiartka 11

sin(a 4 90°) = |AB|
cos(a +90°) = —|OA]

sin(a 4+90Q)

-A

cos(a + 90°) X
Kolo trygonometryczne LY
trzecia ¢wiartka I11
cos (o +180°) = —|OA|
sin (a4 180°) = —|AB]

cos(a + 1809

A 0] « A
) )
sim(a + 180%) X

a + 18(°

punkt B = (z1,y1)
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Kolo trygonometryczne

czwarta ¢wiartka IV

sin(a 4 270°) = —|AB]
cos(a + 270°) = |OA]

cosYa + 270°)
0 A

sin(a + 270°) X

1 270°

punkt B = (z1,y1)

Defimnicja 19.7 Sinus kgta o to stosunek wspotrzednej y1 do promienia R

. 1
Sin O[:y—

R
Defimnicja 19.8 Cosinus kgta a to stosunek wspdotrzednej x1 do promienia R

x1
CcosS @ = —

R

Defimnicja 19.9 Tangens kgta « to stosunek wspdlrzednej y1 do wpsdtrzednej x;

tga:y_la $17£0,
x1

Defimnicja 19.10 Cotangens kgta o to stosunek wspdtrzednej x1 do wpsdtrzednej yi

ctg a = ﬂa y13£0,
n

Defimnicja 19.11 Secant kgta o to odwrotno$¢ sinusa kgta o. Zatem

R
seC & = —, Y1 # Oa
Y1
Defimnicja 19.12 Cosecant kgta o to odwrotnosé cosinusa kgta o. Zatem
R
csca=—, x1#0.
T

1

Poniewaz secant i cosecant okreslone sa przez sinus i cosinus, dlatego dalej wystarczy roz-
patrywac cztery funkcje trygonometryczne sinus, cosinus, tangens i cotangens.

19.2.1 Wzory redykcyjne

Whprost z definicji funkcji trygonometrycznych zauwazamy, ze wszystkie funkcje sa nieujemne
w pierwszej ¢wiartce kola trygonometrycznego, gdyz dla kata

0< a <90°
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wspétrzedne punktu p = (x1,¥1) sa nieujemne, to jest z; > 0, y; > 0 i promiei R > 0.
W drugiej éwiartce tylko sinus (sin a > 0), jest nieujemny, gdyz wspétrzedna y; > 0.
W trzeciej ¢éwiartce tangens i cotanges (tga > 0, ctgae > 0), sa nieujemne, gdyz obie
wspéhrzedne 1 < 0,91 < 0 sa ujemne i wtedy iloraz (y—l >0) lub (ﬂ >0).
Z1 Y1

W czwartej ¢éwiartce tylko cosinus (cos a > 0) jest nieujemny, gdyz wspdlrzedna 1 > 0.
W tej pozycji kata a, z wykresu kola trygonometrycznego odczytujemy wartosci funkcji
trygonometrycznych zapisane w nizej podanej tabeli

0<a<90° sin >0 |cosa>0| tga>0 | ctgaa >0
90° < o < 180° sin >0 |cosa<0|tga<0 | ctga<O
180° < <270° | sin @« <0 | cos a <0 | tga>0 | ctga >0
270 < a < 360° sin a <0 |cosa>0|tga<0 | ctga<O0

Funkcje trygonometryczne dowolnego kata « osiagaja juz w pierwszej ¢wiartce kola try-
gonometrycznego wszystkie mozliwe wartosci bezwzgledne ( z dokladnoscia do znaku). Za-
tem, inne wartosci réznia sie od nich jedynie znakiem. Te réznice ustalaja wzory redukcyjne,
ktore podajemy nizej.

Najpierw, zauwazmy, ze jezeli kat 0 < o < 90° lezy w pierwszej ¢wiartce to kat 90° — « tez
lezy w pierwszej ¢wiartce oraz kat 90°+« lezy w drugiej ¢wiartce. Natomiast, kat —a lezy w
czwartej ¢wiartce. W tej pozycji kata «a, z wykresu kola trygonometrycznego odczytujemy
wartosci funkcji trygonometrycznych zapisane w nizej podanej tabeli

sin(90° — a) = cos a | sin(90° + ) = cos « sin(—a) = —sin «
cos(90° — ) = sin « | c0s(90° + o) = —sin « | cos(—a) = cos «
tg(90° — a) = ctga tg(90° + o) = —ctga | tg(—a) = —tga
ctg(909 — a) = tga | ctg(90° + o) = —tga | ctg(—a) = —ctga

Teraz, zauwazmy, ze jezeli kat 0 < a < 90° lezy w pierwszej ¢wiartce to kat 180° — a lezy
w drugiej ¢wiartce oraz kat 180° + « lezy w trzeciej ¢wiartce.

sin(180° — o) = sin « sin(180° + o) = —sin «
cos(180° — a) = —cos « | cos(180° + a) = —cos «
tg(180° — a) = —tga tg(1809 + ) = tga
ctg(1809 — a) = —ctga | ctg(180° + ) = ctga

Zauwazmy podobnie, ze jezeli kat 0 < a < 90° lezy w pierwszej ¢wiartce to kat 270° — « lezy
w trzeciej ¢wiartce oraz kat 180° 4+ « lezy w czwartej ¢wiartce. Zatem, mamy nastepujace
wzory redukcyjne:

sin(270° — a)) = —cos « | sin(270° + a) = —cos «
c0s(270° — o) = —sin « | cos(270° + ) = sin «
tg(270° — a) = —tga (2709 + a) = —ctga
ctg(270° — a) = —ctga | ctg(270° + a) = —tga




Nizej w tablicy podajemy zebrane wzory redukcyjne w mierze tukowej katow.
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Kat sinus cosinus tangens cotangens

5 —a | sin(§ —a)=cos a cos(g ) =sin « tg(5 — a) = ctga ctg(5 — a) = tgo
Z4+a |sin(f+a)=cos « cos(f +a)=—sin a | tg(5 +a) = —ctga | ctg(§ +a) = —tga
m—a | sin(r —«a) = sina (cos7r —a)=—cosa | tg(m —a) = —tga ctg(m — a) = —ctga
m+a | sin(r+a) = —sina cos(7r + ) = —cosa tg(m + a) = tga ctg(w + a) = tga

I — o [ sin(Z —a) = —cosa | cos(Z — a) = —sina | tg(3F — a) = ctga tg(2F ) =tga

Z +o | sin(3E +a) = —cosa | cos(Z i3 + a) = sina tg(2F + o) = —ctgo ctg((’zfr + a) = —tga
2r —a | sin(2r — ) = —sina cos(27r a) = cosa tg(2m — a) = —tga | ctg(2m — a) = —ctga

19.3 Zadania

Zadanie 19.4 Diugosci bokéw trdjkgta prostokgtnego AABC sg réwne, odpowiednio
a=|BC|=6,

Oblicz wartosci funkcji trygonometrycznych

sin a,

tg o,

b=|AC| =8,

sin (3,

g B,

c=|AB|=10
cos a, cos f3,
ctg a, ctg

kgtow «, B lezZgcych naprzeciw odpowiednich bokéw BC, AC.

Zadanie 19.5 (i) Narysuj polozenie punktdw

(V3,1),

na kole trygonometrycznych o promieniu R = 2.
Oblicz wartosci funkcji trygonometrycznych

p=(p1,p2) =

(i)

(a) sin30° =
(b) cos30° =
(¢) tg30° =

(d) ctg30° =

(iii)
(a) sin 210°
(0)

(¢) tg210° =

cos 210° =

(d) ctg210° =

P2
R
p
R
P2
p1
p1
p2

a2
R
@
R
e
a
@
a2

q=(q,q) =

sin 60°
cos 60°
tg 60°

ctg 60°

Oblicz wartosci funkcji trygonometrycznych

sin 240°
cos 240°
tg 240°

ctg 240°

(—\/37 _1)'

@
R
2
R
@
a2
e
a

Zadanie 19.6 Korzystajgc ze wzorow redukcyjnych oblicz wartosci funkcji trygonometrycznych

(a) sin 120°
(b) cos 120°
(¢) tg120°
(

d) ctg 120°

sin 150°

cos 150°

tg 150°

ctg

150°
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Zadanie 19.7 Korzystajgc ze wzorow redukcyjnych oblicz wartosci funkcji trygonometrycznych

(a) sin 210° sin 240°
(b) cos 210° cos 240°
(¢) tg210° tg 240°

(d) ctg 210° ctg 240°

Zadanie 19.8 Korzystajgc ze wzorow redukcyjnych oblicz wartosci funkcji trygonometrycznych

(a) sin 300° sin 330°
(b) cos 300° cos 330°
(¢) tg 300° tg 330°

(d) ctg 300° ctg 330°

Zadanie 19.9 (i) Oblicz okres nastepujgcej funkcji:
(a) f(z)=sinzx, o flx) = cosé:c.

(¢) flz)=tgsm, @ flz) = ctgéx.

(#) f(z)=tg-=x dla -3 <xz<3rm

™

> w

(tit) f(z)=ctgsz dla 0<z<

19.3.1 Funkcje periodyczne

Funkcja f(x) jest periodyczna, jezeli istnieje liczba dodatnia w > 0 taka, ze

flz+w) = f(x), (19.1)

dla kazdej rzeczywistej wartosci argumentu nalezacego do dziedziny x € D. 2
Jasne, ze jezeli funkcja f(z) jest periodyczna o okresie w > 0, to zachodzi nastepujaca
tozsamosé:

fe+kw)=f@), weD,

dla kazdego catkowitego k = 0, +£1,£2, .....

Okresem funkcji f(z) nazywamy najmiejsza z liczb w > 0, ktéra spelia tozsamosé (19.1).
3

2Dziedzina funakcji f(x) nazywamy zbiér argumentéw = dla ktérych f(x) jest okreélona
3Tozsamosé znaczy, ze réwnosé zachodzi dla wszystkich wartosci  w dziedzinie tozsamosci z € D.
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Nizej sprawdzimy, ze funkcje trygonometryczne sq periodyczne.
Mianowicie, zauwazamy, ze jezeli promiet R obrdci sie o 360° lub w mierze tukowej o 2,
to punkt p = (z1,y1) wréci do pozycji wyjéciowej. Co wiecej, jezeli promieri R obrdci sie w
kierunku dodatnim lub ujemnym o wielokrotno$¢ okresu w = 360° lub w mierze tukowej o
wielokrotnos$é w = 27, to punkt p = (x1,y1) tez wréci do pozycji wyjsciowej.
Okresem funkcji sinus i cosinus jest liczba w = 360° lub w mierze tukowej liczba w = 2.
Natomiast, dla funkcji tanges i cotangens okresem jest liczba miejsza w = 180° lub w mierze
tukowej w = 7. Istotnie, funkcje tangens i cotangens osiagaja te same wartosci w pierwszej
i w trzeciej ¢wiartce kota trygonometrycznego, gdyz

N —Y1 L1 —Z1

tgo = = =—=, oraz ctga=—=—— xz1#0, y1 #0.
T —I At —h

Przyklad 19.2 Oblicz okres nastepujgcej funkcji:

f(z) =sin gx

Rozawiazanie. Wiemy, ze funkcja sinus ma okres 27. Zatem okresem funkcji f(x) jest
liczba w taka, ze

3 3 3 3
flz +w) =sin i(x—i-w) = sin(§x+ iw) =sin 3% = f(z)

dla kazdego rzeczywistego x.

Skad obliczamy okres
3 4

—w=2T, w==-T

2 3

4
Sprawdzamy, ze okresem funkcji f(z) jest liczba w = 3™ Istotnie, mamy réwnosé

flz+w)= f(z+ %w) = sin g(x—l- %w)
= sin(gz + 5 o7).

= sin(gx—i-%r) =sin gx = f(x).

19.3.2 Zadania
Zadanie 19.11 Oblicz okres funkcji

, . T
(1) sin—-
3 X
(44) cos—
Zadanie 19.12 Podaj wykres funkcji
(7) sin%, —dr <z <Arw
(17) cos 0<z<8m.

4 3
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Zadanie 19.13 Oblicz okres funkcji

) . 2mx
(i) sin 3
.. 2mx
(44) cos—2=
Zadanie 19.14 Podaj wykres funkcji
(0) . 2mx 3m <4< 3m
i) sin—, 5 ST
2
(17) cos%, 0<z<3m.
Zadanie 19.15 Oblicz okres funkcji
T
NP
(@) tg—
T
tqg—
(@) ctg~
Zadanie 19.16 Podaj wykres funkcji
(7) tg%, 2 <z <27
(17) ctg%, 0<z<Ar.

19.3.3 Wykresy funkcji trygonometrycznych

Funkcje trygonometryczne sinus i cosinus okreslone sa na calej osi liczbowej, dla wszystkich
wartodci rzeczywistych @ € (—o0,00). Réwniez sa funkcjami periodycznymi o tym samym
okresie w = 27.

To znaczy, ze te funkcje spelniaja tozsamogé 4

f(z +2m)sin(x + 27) = sin z) = f(x),

g(x + 27) = cos(x + 27)cos x = g(x)

dla kazdego = € (—o0, 0).

4Tozsamosé to znaczy, ze zachodzi réwnoéé pomiedzy lewa i prawa strona réwnania dla wszytstkich
wartosci zmiennej x.
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Wykreslajac funkcje trygonometryczne argument odkladamy na osi z, jak na rysunku.

Wykres funkcji sinx

7Z okreslenia funkcji sinus
|sinz| = |y—]%| <1, gdyz R>|yi|, dla —oco<z<o0.

Wartosci funkcji sinus nie przekraczaja przedziatu [—1,1]. To znaczy, ze dla wszystkich
wartosci argumentu —oo < z < 0o spelniona jest nieréwnosé

—1 <sinz <1.
Istotnie, z okreslenia funkcji sinus
|sinz| = |%| <1, gdyz R> |y, dla —oo<z<o0.
Podobnie, funkcja cosinus jest periodyczna o okresie 27 i okreslona dla wszystkich rzeczy-
wistych wartosci kata —oo < & < 0o. Jej warotosci nie przekraczaja przedziatu [—1.1], gdyz
z okresslenia funkcji cosinusa

|cosx|:|%|§1, gdyz R>|zi], dla —oo <z < o0.

A
Y
Wykres funkcji cosx

1

................................................................ L PO U PP P PR PPPPRUPPRPPP
N
3 P cos\y w przedziale [(2m]
2 2

Funkcje trygonometryczne tangens i cotangens sa periodyczne o okresie w = 7. Istotnie,
kat x + 7 lezy w trzeciej ¢wiartce kola trygonometrycznego. Z tabeli odczytujeme wartosc
tg(x + 7) = tgx. Zatem, prawdziwa jest nastepujaca tozsamosé:

fl@ +m) = tg(x +m) = tgz = f(2),



278

dla kazdego argumentu w dziedzinie funkcji tangens

zeD={x :x;ﬁ(2k+1)g, k=0,41+2 ..},

Y
Wykres funkcji tgz
dlax e (-5,5%)
1
tgx
_r _r 0 = s x
2 ) 4 2

Wykres funkcji cotangens dla x # km, k =0,£1,£2,...;

Y
Wykres funkcji ctgz,
w przedziale (0, )
1
ctgww dla x€(0,m)
* * * * * T
s s 0 =
T2 T4 11 4

19.4 Tozsamosci trygonometryczne

Tozsamoscig trygonometryczng nazywamy réownosé, ktora jest prawdziwa dla wszystkich
wartosci katow w dziedzinie tozsamosci. W odréznieniu od tozsamosci, réwnanie trygonom-
etryczne jest spelnione tylko dla niektérych wartosci katow z dziedziny réwnania.

Podobnie, wzory trygonometryczne sa tozsamosciami dla wszystkich wartosci katow z dziedziny

ich okreslenia.

19.4.1 Jedynka trygonometryczna
Jedynka trygonometryczna to jest tozsamosé
sin®a + cos’a =1

dla wszystkich wartosci rzeczywistych kata o € (—o0, 00).
Whprost z definicji funkcji sinus i cosinus obliczamy przyprostokatne a i b tréjkata pros-
tokatnego AABC

a=csin o, b=-ccos a.
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przyprostokatna — b v = a « przyprostokatna

NS

przeciwprostokatna c

7 twierdzenia Pitagorasa wiemy, ze suma kwadratéow przyprostokatnych réwna jest kwadra-
towi przeciwprostokatnej

a?+ b2 =c2,
Po podstawieniu a = c* sin a, b= c*cos a otrzymamy

(esin a)? + (ccos a)? = ¢?

3

A(sin®a + cos?a) = 2 |: ¢

3

Skad wynika tozsamosc¢
sin? a4 cos’a =1

dla kazdej wartosci o € (—o00, 00). To jest jedynka trygonometryczna.

7Z jedynki trygonometrycznej wynikaja nastepujace tozsamosci:

(2k+1)m
2 3

Istotnie, z definicji funkcji tangens wynika réwnosc

1
1 +tg?a = =csta, a#

- k=0,%1,+2, +3,..;
COS“ (v

sin? o cos® o+ sin? « 1

1 +tg?a=1+ 7 = 5 = 5 = csca.
cos? o cos? « cos’a

dla kazdego kata o # (27 + 1)%, k=0,4+1,4£2, £3,...; dla ktérego
cos a # 0.
5

Podobnie z defincji funkcji cotangens wynika réwnosé

9 cos? a sina + cos’« 1 9
I+ctgia=14+——= — = — = sec .
sin” « s o sin” «

dla kazdego kata o £ kxm, k=0,+1,+2, £3,...; dla ktérego
sin a # 0.

To znaczy dla kata a ze zbioru okreslonosci funkcji cotangens. ©

5Nieparzysta wielokrotnoéé kata prostego piszemy (27 + 1) g, k=,+1,42,43, ...
6 Parzysta wielokrotnosé kata prostego piszemy 2k % =km, k=0,£1,£2,43,..;
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19.4.2 Zadania
Zadanie 19.17 Sprawd? tozsamowsé
sin*z — cos*rz =1 — 2cos’x 00 < x < oQ.

s

Zadanie 19.18 Sprawd? tozsamows

k
(14 tg*x)cos’s = 1 T #£ %, k=0,+1,£2,..;
Zadanie 19.19 Sprawd? tozsamowsé

1+ tg?x 9 km
— =t —, k=0,£1,4+2, ..
1+Ct92x g &€ x# 2 Y 3 3 3 )

Zadanie 19.20 Wykaz, ze

sin(a + B) + sin(a + 3) = 2sin « cosf

dla kazdej rzeczyczywistej wrtosci kgtow « i (.

19.4.3 Funkcje sinus i cosinus sumy i réznicy katéw o, 3
Nizej wyprowadzimy wzory na sume i rézni¢ dwéch katéw

sin(a+ f) =sin a cos B +sin S cos «,

sin(e — B) =sin « cos 3 —sinf§ cos «,

cos(a+ (3) = cos a cos 3 —sin 3 sin «, (19.2)

( )
cos(a— ) = cos « cos B +sinf sin a,

Rozpatrzmy rysunek C

Py =pole N ACD

Wysokosé h trdjkgta AABC

Zauwazamy, ze

sin a = @ sin 8 = | DB
|AC| |BC|’

h h
COS O[:m, COSB:W,

h=]AC|cos o, h=|BC|cosf
Pole P tréjkata AABC jest suma pola Py tréjkata AADC i pola Py tréjkata ADBC

1
P = P+ P = 5|AC| |BC|sin((a + ) (19.3)
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7 drugiej strony, wiemy, ze
1 . 1 .
P = §|AC| hsin a, Pp= §|BC| h sin j3, (19.4)

Poréwnujac pola okreslone przez réwnosci (19.3) i (19.4) otrzymamy wzdr na sinus sumy
dwoch katéw a i g

1 1 1

§|AC| |BC|sin((ae + 8) = §|AC| h sin o+ §|BC| h sin g,

|AC| |BC|sin(a + ) = |AC| |BC| cos 8 sin a + |AC||BC]| cos «,
Skad sinus sumy

sin(a+ ) =sin « cos 3 +sin S cos «,

sin (a+P3)
Pozostale wzory wyprowadzamy korzystajac ze wzorow redukcyjnych.
sin((a — 8) =sin(a + (=03)) = sin « cos(—03) +sin(—3) cos «

= sin «a cosf3 —sinfg cos «

sin (a—p)

cos(a + ) =sin(90° — (a+ B)) = sin((90° — a) — G)
= sin(90° — ) cos  — sin Scos(90° — «)

= cosacosfl — sinasin

cos (alpha+3)
cos(a— 3) = sin(90° — (o« — 8)) = sin((90° — @) + )
= sin(90° — a)cosfB + sinfcos(90° — a),

= cosacosf + sin asing .

cos (a—p3)
Wzory na tangens i cotangens sumy i réznicy dwéch katéw wynikaja bezposrednio z powyzych

WZOTrOw

sin(a+ () sin a cosf+sinf cos o  tga +tgf

cos(a+ )  cos a cosfB—sinfB sin a 1 — tgatgl
—_————

tg(a+ ) =

- tg (a+p)
dla a+67é(2k+1)§, k=0,£1,£2,43,....;

cos(¢+ ) cos acosfB —sinf sin o ctgactgh — 1

t - - _
ctg(a+5) sinfa+ 3) sin « cosB+sinf cos a ctga + ctgf
—_———

ctg (a+p)
dla a+0#kn, k=0,+1,42,43 ...;
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Podobnie wyprowadzamy wzory na tangens i cotangens réznicy dwéch katdw.

_ sin(a—f) sin o cosf—sinf cos a  tga —tgf
telo =) = cos(a — B)

cos a cosf+sinf3 sin a 1+ tgatgl
—_———

- tg (a—p)
dla a—ﬁ;ﬁ(%—l—l)i, k=0,£1,£2,43,....;

cos(a — ) cos a cosB+sinf sin a  ctgactgf +1
sinfa — ) sin a cosB —sinf cos @  ctgh — ctga
—_———

ctg(a — f) =

ctg (a—0)
dla a—0#kn, k=0,+1,42,43 ...;

19.4.4 Wzory kata podwdjonego

Wzory kata podwdéjnego wynikaja bezposrednio z powyzszych wzoréw na sume. Mianowicie,
dlaa=0

sin2a = 2sin @ cos o, dla « € (—00,00)

cos2a = cos? a —sina, dla «a € (—o00,00)

2tga T
20 = ———, dl 2k+1) —, k=0,£1,4+2,43,..;
tg o 1—tg2a, a « ;é( + ) 4’ 0’ Y 3 35 )
tg20 = B Ak, k=0,+1,42 43, ..
C g o = 2Ctg201 ) a « T, ] ) ) PR

19.4.5 Wzory kata poléwkowego

Wzory kata poléwkowego otrzymujemy przez podstawienie do powyzszych wzoréw zamiast

« polowe kata 3% wtedy otrzymamy

sin a = 2sin Jacosza,  a€ (=00, 0),

2

1 1 1 1
cos a = cos? 504 — sin? 50[, cos a =1 — 2sin? 50[, cos a = 2cos? 504 —1

o€ (—OO, OO),

1

2tg1

tgo = —220 dla o (2k+1) T, k=0,+1,42 £3, .;
tg?5a—1

ctga = S 22X lg aAkm k=0,4+1,42 £3, .
2ctg? 5o

19.4.6 Funkcje trygonometryczne polowy kata

7 powyzszych wzorow kata poléwkowego bezposrednio wynikaja wzory polowy kata. Mi-
anowicie, obliczajac cosinus i sinus ze wzoréw

1 1
cos a = 2cos? 50[— 1, cos a=1—2sin’ 504
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otrzymamy wzdry cosinusa i sinusa na polowe kata «

1 1+ cos « 1 1 —cos «
|cos—a| =4/ ————, |sin-a|=4/—F—
2 2 2 2

Wzory polowy kata dla tangensa i cotangensa wynikaja bezposrednio z defincji tych funkcji
i wzoréw dla sinusa i cosinusa

dla o € (—00, 00).

1—cos
|tgla|:|sin%a|: 2 _ /1 —cos «

2 cos%a /1 + cos o 1+ cos «
2

dla a# (2k+1)m, k=0,+1,42 43, .;

Cotangens jest odwrotnoscia tangensa, zatem

¢ 1 1+ cos o
ctg-a =4/ ———
g2 1—cos «

dla o #2kw, k=0,41,£2 43, ..,

1
19.4.7 Wpyrazenie funkcji trygonometrycznych przez tgga
Oznaczmy przez
t= tg%a dla a# (2k+ ), k=0,£1,+£2,43, ...;.

Wtedy funkcje trygonometryczne kata o mozna zapisaé¢ w postaci nastepujacych wymierazen
wymiernych zmiennej ¢.

. 2t 1—t? e
sin @« = —— cos @ = —— 00 00
14 t2’ 142’ ’
t 1—t?
t =— t#£-1,1 t = t#0.
Istotnie, wiemy, ze
sin @ = 2sin%a cos %a

.1 1
2s1n2a COS 5
1

in? L 2
s 2a+cos 5

(0%

1
2sin —« cos —«
2 2

91
COS 50[ 21

1 T~ 2
sin? 504—1—0052 —« 141

2

1
cos? 3¢
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Podobnie funkcja cosinus

21

cos & = cos? §a —sin” s
cos? —a — gin? %a
cos? % + sin? %a
21, 21
cos® sa — sin® o
cos? % 1—¢2
cos? —+s1n §a 142
21,
cos? s

Dla funkcji tangens i cotangens wzory plowy kata wynikaja wprost z ich definicji i wyzej
podanych wzoréw dla funkcji sinus i cosinus

2t
sin « 14 ¢2 2t
tga = = = t#—-1,1
8= osa 1-£ 1—t2’ 7L
14 ¢2

Cotanges jest odwrotnoscia tangnsa. Zatem wzor dla cotangensa

19.4.8 Suma i réznica funkcji trygonometrycznych

Nizej podajemy nastepujace wzory na sume i ré znicg funkcji trygonometrycznych

sina + sin § = 2sin O‘Jrﬁ cos O‘—;ﬁ,

sina —sin § = 2s1nTﬁcos =

+ﬁ

cosa + cos 3 = 2 cos 242 cos 22,

cosa — cos = —2sin O‘Jrﬁ sin Tﬁ,
tga + tgl = sin(a + 6) (19.5)
cos acosf3
tgor — tgf = sin(a — )
cos acosf3
ctga + ctgf = fﬁlgiiiﬁl
sin asin 8
ctga — ctgfh = M
sin asin 8

Powyzsze wzory wynikaja ze wzoréw (19.4) sinusa i cosinusa sumy i réznicy katéw. Mi-
anowicie, wprowadzamy nowe zmienne

a=z+y f=z-y x=



Korzystajac ze wzoréw (19.4) na sinus i cosinus sumy i réznicy katéw zauwazamy, ze

sin a +sinfg =

sin @« —sinf =

cos a+cosff =

cos a—cosfl =

sin(x + y) + sin(z — y)
(sinzcosy +sinycosx) + (sinz cosy — siny cos )

a+6cosa_6
2 2
sin(x + y) — sin(z — y)

2sinx cosy = 2sin

(sinx cosy +sinycosz) — (sinx cosy — siny cos )
a+p

a—p
cos .

2si = 2si
siny cos x sin 5 >

cos(z + y) + cos(z — )

(coszcosy — sinx siny) + (cosz cosy + sin x siny)

_ +5 g 2=
2cos x cosy = 2 cos 5 cos T,

cos(z + y) — cos(z —y)

(cosx cosy — sinxsiny) — (cosx cosy + sinx siny)

—92si iny = —2sin 28 gin 2=£
2sinzsiny = —2sin =5~ sin =5
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Wzory sumy i réznicy tangensa i cotangensa wynikaja wprost z definicji powyzszych wzorow

dla sinusa cosinusa.

tga + tgls

tga — tgl

sina  sinf
T cos a + cosf3’

sin acos B +sinfBcos o  sin(a+ 3)
N cos «cos 3 ~ cos acosf3
_ sina sinp
T cosa cosf
_ sin acosf—sinfBcos o sin(a — )
n cos acos 3 ~ cos acosf3

Podobnie wprowadzamy wzor dla sumy i réznicy cotangenséw

sin(a + )
ctgar+ ctgfi = sin asin 8
sin(a — )
ctgar — ctgfi = sin asin 8

19.5 Roéwnania trygonometryczne

(19.6)

Zacznijmy od najprostrzych rownan trygonometrycznych, rozwigzania ktérych sa czescia
rozwigzan bardziej ztozonych réwnan.

Przyklad 19.3 ZnajdZ wszystkie rozwigzania rownania

(1) sinz =0,

(i)

|sinz| = 1.
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Rozwiazanie (i). Gléwnymi pierwiastami tego réwnania, to znaczy, ze zerami funkcji sinus
w jej okresie od 0 do 360° lub w mierze tukowej w zakresie od 0 < o < 27 sg rozwigzania

r=0, lub z=m.

To rozwigzanie jest zaznaczo na wykresie funkcji y = sin x.

Wykres funkcji sinx

sinz w okresie [0,27]

Wizystkie rozwigzanie dostaniemy lodajac do pierwiastkow gléwnych wielokrotnosé okresu
funkcji sinus. Zatem wszystkie rozwigzania maja nastepujaca postac:

xp = 2km, lub 1z =7+ 2kw = (2k + D)7,

dla parzystych i dla nieparzystych k. To znaczy, ze wszystkie rozwiazania sa wielokrotnoscia
liczby r,
zp=km, k=0,£1,+2 ..;

Rozwiazanie (ii). Giéwnymi pierwiastkami réwnania

|sinz| =1, lub sinz =1 lub sinz=-1.
sa liczby
3
x:g, lub ng.

Wizystkie rozwigzanie dostaniemy dodajac do pierwiastkow gléwnych wielokrotnosé okresu
funkcji sinus. Zatem wszystkie rozwiazania maja nastepujaca postac:

xk:g—i-ka, lub xk:%r—i-w—i-ka

dla parzystych i dla nieparzystych k. To znaczy, ze wszystkie rozwigzania sa nastepujacej
postaci:

xk:g—i-kw, k=0,41,42, ..

Przyklad 19.4 ZnajdZ wszystkie rozwigzania rownania
(1) cosz=0, (i) |cosz|=1.

Rozwiazanie (i). Gléwnymi pierwiastami tego réwnania, to znaczy, ze zerami funkcji
cosinus w jej okresie od 0 do 360° lub w mierze lukowej w zakresie od 0 < a < 27 s3
rozwiazania

x:g lub x:%.



To rozwianie jest zaznaczone na wykresie funkcji y = cos z.

Wykres funkcji cosx

Y

1

.

& w przedziale [%
2 e
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Wiszystkie rozwigzanie dostaniemy dodajac do pierwiastkow gléwnych wielokrotnosé okresu
funkcji cosinus. Zatem wszystkie rozwiazania maja nastepujaca postac:

T
Te =5 + 2k,

lub =z, = 37# + 2k,

To znaczy, ze wszystkie rozwiazania sa nastepujacej postaci:

ap = (2k + 1) g k=0,+1,+2, ..

Rozwiazanie (ii). Gléwnymi pierwiastkami réwnania

|cosz| =1,

sa liczby

Iub cosz=1 lub ¢

r=0, lub z=m.

osr = —1.

Wizystkie rozwigzania dostaniemy dodajac do pierwiastkow gléwnych wielokrotnosé okresu
funkcji cosinus. Zatem wszystkie rozwiazania maja nastepujaca postac:

Ty = 2km,

lub  z =7+ 2kr = (2k + D)7,

To znaczy, ze wszystkie rozwiazania dla parzystych i nieparzystych k, sa nastepujacej

postaci:

rp =k,

Zauwazmy, ze sinus i cosinus katow i = km lub ay

nastepujej postaci potegi minus jedynki:

sin(2k + 1)% =(-1)

ko coskr = (—1)k,

Przyklad 19.5 ZnajdZ wszystkie rozwigzania réwnania

k=0,%1,=£2, ..

el

k=0,%1,+2,...;

(i) tgz=0, (i) |tgz|=1.

(73i) ctgx =0,

() ctgz| = 1.

(2k + 1) mozemy napisaé¢ w
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Rozwiazanie (i). Poniewaz okresem funkcji tangens jest liczab m, to gléwnym pier-
wiastkiem rownania
tgx =0,

jest x = 0. Wtedy réwniez sin « = 0.

Y
Wykres funkcji tgz
dlax e (-5,5%)

1

tgx
_r _r 0 = s x
2 2
-1

Wizystkie rozwigzania dostaniemy dodajac do pierwiastka gléwnego wielokrotnosé okresu
funkcji tangens. Zatem wszystkie rozwiazania maja nastepujaca postac:

xp=kmr, k=0,£1,+2 ..

Rozwiazanie (ii). W zakresie okresu funkeji tangens od —g do g sa dwa pierwiastki

gléwne réwnania
[tglz=1, lub tgz=1, tga=-1.

s s
xry = ——, T2 = —.
4’ 4

Wizystkie rozwigzania dostaniemy dodajac do pierwiastka gléwnego wielokrotnosé okresu
funkcji tangens. Zatem wszystkie rozwiazania maja nastepujaca postac:

xk:—g+kﬂ, xk:g‘i‘kﬂ, k:();:l:l;:l:Zav

lub zapisane w postaci jednego wzoru

™
R

we=(2k+1)g, k=0,£L%2 .

Rozwiazanie (iii). Zauwazmy, ze z = g jest pierwiastkiem gléwnym réwnania
ctg x =0,

Ten pierwiastek gtéwny zaznaczony zostal na wykresie funkcji
y=ctgx

w przediale (0, )



289

Y
Wykres funkcji ctgz
w przedziale (0, )
14
ctgww dla x€(0,m)
* * ¢ ¢ ¢ T
T _r 0 =
2 4 19 4

Wizystkie rozwigzania dostaniemy dodajac do pierwiastka gléwnego wielokrotnosé okresu
funkcji cotangens. Zatem wszystkie rozwiazania maja nastepujaca postac:

To= 5kt = (Qk+1)Z, k=0£1%2 .

Rozwiazanie (iv). Giéwnymi pierwiastkami réwnania

|ctga| =1,

lub réwnan réwnowaznych
ctg x=1, ¢ ctgr=—-1

sa liczby rzeczywiste
T 3m
Tl = 4; T2 = 4 .
Wizystkie rozwigzania dostaniemy dodajac do pierwiastkow gléwnych wielokrotnosé okresu
funkcji cotangens.
Zatem wszystkie rozwiazania maja nastepujaca postac:
T

v
Tk 4+7r ( +)4
lub

3m T

dla k=0,£1,4£2,...;

3
Sprawdzenie. Podatawiajac do rowniania xj = g + km lub zp, = f + k7 otrzymamy

ctgxk:ctg(g—i-kw):ctgg:l, k=0, +1,+2 +3,..;
3T 3m
ctgxk:ctg(z—i-kw):ctgzz—l, k=0, +1,+2 +3,..;



290

Nizej w tablicy podane sg wartosci funkcji trygonometrycznych katéw wybranych.

o sin a | cos a | tga | ctga
a=0 0 1 0 00
S N N N R
a=7 72 72 1 1
_ 3 1 3
a=3z |5 |3 V3 | B
a=7 |1 0 00 0
3 | /2 V2
a= % |—% | -1 -1
a=T 0 -1 0 —00
a=51 | 2 [ 2 [1 |1
a=321-1 |0 o |0
a=Tn [ 2 [ 2 -1 | -1
a=2m |0 1 0 00

Przyklad 19.6 Znajd? wszystkie rozwigzania réwnania
sinz — cosz = 0.

Rozwiazanie. W pierwszej kolejnosci zauwazmy, ze dziedzing D = R wyrazenia trygonom-
etrycznego w rownaniu jest zior R wszystkich liczb rzeczywisych.
7Z tablicy odczytujemy pierwiastki rownania w przedziale 0 < z < 27 okresu w = 27 funkcji
sinus i cosinus
sinx = cosz.
o o . . T o™ .
Zatem widzimy, ze sinus rowny jest cosinus dla katéw x = 1 oraz T = R ktére leza w

pierwszej lub trzeciej ¢wiartce kota trygonometrycznego.
Wizystkie rozwigzania dostajemy dodajac okres w = 27 do tych rozwigzann

Ty = g + 2kw, lub zp = %T +2kn k=0,%1,42,...;

Rozwiazanie tego rownania znajdziemy innym sposobem rozkladajac wyrazenie trygonom-
etryczne na czynniki. Mianowicie, lewa strone rowniania zapiszmy w postaci

sinx — sin(g —xz)=0.

Stosujac wzér na réznice sinuséw, otrzymamy iloczn

T—z)—x T —z)+x
sinz —sin(§ —z) = 2sin(2 2) cos(2 )
= 2coszsin(z—x)
4 4

= ﬁsin(g —xz)=0.

Skad pierwiastki gtéwne w przedziale [0, 27] okresu funkcji sinus

E—x:O, lub g—x:ﬂ'

4

Dodaja okres w = 27 funkcji sinus, otrzymamy wszystkie rozwigzania

T = g+2k7r, lub :ck:g—l-@k—l)ﬂ', k=0,+1,42, ..
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Przyklad 19.7 ZnajdZ wszystkie rozwigzania rownania

tgr + ctgr = 2.
Rozwiazanie. Z tablicy wartosci funkcji tangens i cotangens, widzimy, ze suma tangensa i
cotangensa kata x jest rowna 2, jezeli tgx =1lictgr =1dlax = T lub z = % Wizystkie

rozwigzania otrzymamy dodajac do gléwnych pierwiastkow wielokrotnosc ich okresu.
To znaczy

5
xk:g—i-kw, lub xsz—i-kﬂ, k=0,£1£2,.;

Te same rozwigzania otrzymamy innym sposobem. Mianowicie, napiszmy to réwnanie w

postaci ekwiwaletnej
sinx =~ cosx

cosr sinz
Zauwazmy, ze dziedzing wyrazenia trygonometrycznego w tym rownaniu jest zbiér liczb
rzeczywistych z € R dla ktérych sin x # 01 cos x # 0

k
D={zeR: 3:7&7#,}

dla catkowitych liczb k = 0, £1,+£2, ...;
Przeksztalcamy to rownanie korzystajac z jedynki trygonometrycznej i z sinusa podwojonego
kata

sinx N cosx cosix+sin’x 1 5
cosxr sinx sinx cosx sinx cosx

Skad wynika rownanie
2sinx cosx =1, lub sin2zx =1.

7Z tablicy wartosci funkcji trygonometrycznych pamigtamy, ze sin 2 = 1 dla pierwiastka x =
Tlubz = %’T w kole trygonometrycznym. Dodajac do pierwiastkow gléwnych wielokrotnosé
okresu w = 7 funkcji sin 2z otrzymamy wszystkie rozwiazania tego réwnania.

xk:g—i-kw, lub xk:%—i-kﬂ k=0,%1,+2,..;

Zauwazmy, ze powyzesze pierwiastki réwnania sa takie same jak w pierwszym sposobie
rozwigzania i naleza do dziedziny réwnania.
Przyklad 19.8 Rozwigz rownanie

2sin*z — 3sinz +1=0.

Rozwiazanie. Tej postaci rownia rozwigzujemy przez podstawienie nowej niewiadomej
t = sinx, zeby otrzymac¢ réwnanie kwadratowe

262 —3t+1=0.

Wyéznik tego r'ownania A = (—3)% — 4% 2 x 1 = 1. Zatem rozwiazania

3—-1 1 3+1
t = — = — t = = 1
1 4 2 3 2 4
Wracajac do niewiadomej z, znajdujemy wszystkie rozwiazania
sinx:%, r = § + 2k,
lub

sinz =1, =5 + 2k,

dla catkowitych k = 0,+1,+2...;
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Zadanie 19.21 Rozwigz rownanie
2cos?x +cosz — 1 =0.

Jednym ze skutecznych sposobéw rozwigzywania rownan trygonometrycznych jest rozktad
na czynniki wyrazenia trygonometrycznego. Nizej podajemy przyklad takiego sposobu.

Przyklad 19.9 Rozwigz rownanie
cosx + 3 cos 3z + cosbx = 0.

Rozwiazanie. Zastosujmy wzor do nawiasu na suma cosinuséw

5 -2
(cosz + cosbx) 4+ cos3z = 2cosx—; T cos 2 5 T 4 cos3z

= 2cos3z cos(—2x) + cos3x

= cos3z(2cos2z+ 1) =0.

Zatem, wyrazenie trygonometryczne rozlozylismy na dwa czynniki, ktére przyréwnujemy do
zera

. 1
cos3x =0, 1 2cos2x+1=0, cosx— 3
Rozwiazujac powyzesze proste réwnania, otrzymamy nastepujace serie rozwigzan: Gdy
cos3x =0,

to rozwigzanie

1 2
32 =~ 4 2km, wp = w4+ +okm, k=0,+1,42, ..

2 6 3
3 1 2
3x:§7r+2k7r, xkziw—i-gkw, k=0,£1,£2,..;

1 . .
oraz gdy cos 3z = 5 to rozwigzanie

2
Sr=g42km ap=gbgkn k=042

2
3r = gw+2k7r, T = %T + gkﬂ, k=0,+1,+£2,..;

Przyklad 19.10 Rozwig? rownanie
sinz + 2sinz — 3 =0.

Rozwiazanie. Oznaczmy przez ¢ = sinz. Wtedy dostajemy réwnanie kwadratowe dla
niewiadomej ¢
2 +2t—-3=0,

ktorego rozwiazanie jest t1 = —3 i to = 1. Poniewaz —1 < sinz < 1, dlatego ¢ = —3 nalezy
udrzuci¢. Pozostaje wartos¢ ¢t = 1. Dla tej wartosci

sinz =1, gdy xk:g—l—ka, k=0,+1,+2, ..
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19.5.1 Zadania

Zadanie 19.22 Rozwigz rownanie

(7) szn% =0, (ir) cos% =0.

Zadanie 19.23 Rozwigz rownanie

(i) tg% =0, (i) ctge =0.

Zadanie 19.24 Rozwigz rownanie
(1) sinz+cosx =0, (i) sinx=cosw.
Zadanie 19.25 Rozwigz rownanie
(1) tgx—ctgz=0 (ii) tgz=sinz.
Zadanie 19.26 Rozwigz rownanie
2cos’x —5cosz +2=0.
Zadanie 19.27 Rozwigz rownanie

3¢ —sin?z — 2sinz +1=0.

2sin
Zadanie 19.28 Rozwigz rownanie

tg3x 4 3tg’r — 3tgx = 1.

19.6 Nierownosci trygonometryczne

Podobnie jak réwnania trygonometryczne, rozwiazujemy nieréwnosci trygonometryczne ko-
rzystajac z wzorow redukcyjnych, wzoréw sumy i réznicy funkcji trygonometrycznych.

19.6.1 Nierownosci podstawowe dla funkcji sinus
Przyklad 19.11 RozwigZ nieréwndwnosé w przedziala [0, 27].
() sz <z, (i) sine> g
i) sinx < = i) sinx > —.
-2’ 2
. s o . . 1 T . .
Rozwiazanie (i). Funkcja sinus osiagga warto$é¢ sinx = 3 dla kata = = 5 W pierwszej

5T
éwiartee, lub dlakata x = 3 w drugiej ¢wiartce. Zatem nieréwno$c jest prawdziwa przedziale
[0,27] dla

o
IN
8
IN
S

lub

ot
®|>\
IA
8
IA
[\
3
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Zobaczmy to rozwiazanie na wykresie funkcji sinus.

WY
1
1 \
1 s 1
sin SE sinz<5
3 A
T s s s 51
3 I o _r jus jus om 3
- 6 ™ 2 0 6 2 6 5 2m
—1

Zauwazmy, ze rozwiazaniem nieréwnosci sinx <
punkty z € R, ktére naleza do odcinkéw

% na calej osi liczb rzeczywistych sa te

v e [ak,bk]:[%—i-%w,%—l-%w], gdy k=0,+1,4+2, +3...

5

gdzie a = % + 2kmw, b = 3 + 2k,

(1)  Podobnie znajdujemy rozwiazanie nieréwnosci przeciwnej sin z > 3

ty

1

Rozwiazaniem nieréwnosci sinx > §, na calej osi liczb rzeczywistych, sa odcinki

Ot

[ak, bi] = [% 1 2%, ‘%T +2%kn], k=0,£1,+£2, £3..; (19.7)

5
o poczatku w punkcie ar = % + 2k i koncu w punkcie by = o +2kn. 7T
19.6.2 Nierownosci podstawowe dla funkcji cosinus
Przyklad 19.12 Rozwigz nierdwnosé
(1) cosxz <

3

(i) cos x>

ARl T

. < . . . > 1 @ . .
Rozwiazanie (i). Funkcja cosinus osiaga warto$é cosx = 3 dla kata x = 3 W pierwszej

o
¢wiartce kota trygonometrycznego lub dla kata © = — w czwartej ¢wiartce kola trygonom-

etrycznego. Zatem nier6wnosé

cosr < —
2

"Tutaj indeks k € C' = {0,+£1, +2, £3,... :} przebiega caly zbiér liczb catkowitych.
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5
jest prawdziwa w przedziale [0, 27] dla wartosci kata x € [g, —].

Zobaczmy to na wykresie funkcji y = cos x

W Y

Rozwiazaniem nieréwnosci cosx < %, na calej osi liczb rzeczywistych, sa odcinki

5
[ax, b] = [g + 2%k, % 1 o%kn], k=0,+1,+£2 +3.. (19.8)

s 5T
o poczatku w punkcie ar = 5 + 2k i koncu w punkcie by = - + 2km.
1 T
Rozwiazanie (ii). Funkcja cosinus osigga wartos$é cosz = 3 dla kata = = 3 W pierwszej

5
¢wiartce kota trygonometrycznego lub dla kata = = ?ﬂ' w czwartej ¢wiartce kota trygonom-

etrycznego. Zatem nier6wnosé

coS T > —
2

jest prawdziwa w przedziale [0, 27] dla wartosci kata

™ 5
g] Ul+

z €0, , 27]

3

Zobaczmy to na wykresie funkcji Yy Fycos ©

Rozwiazaniem nieréwnosci cosz > %, na calej osi liczb rzeczywistych, sa przedziaty

lan, b] = [2k, g +2%n], k=0,£1,£2, £3..;
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o poczatku w punkcie ar = g + 2k i koncu w punkcie by = 5% + 2km.
lub przedzialy
[ck,dk]:(%+2kw,2kw], k=0,+1,+2, +3..;

5
o poczatku w punkcie ¢, = g + 2k 1 konicu w punkcie dj = % + 2km. 8

19.6.3 Nierownosci podstawowe dla funkcji tangens i cotangens

Funkcja Tangens. Jak wiemy, funkcja tanges jest okreslona dla argumentu

v # (2k + 1)%, k=0,+1, £2,..;

s

réznego od nieparzystej wielokrotnosci kata prostego 7.

Y
Wykres funkcji tgz
dlax e (-5,5%)

1

tgx
_r _r 0 = s x
2 2
-1

Funkcja tangens jest rosnaca. To znaczy dla wigkszych wartodci argumentu z warotosci
funkcji tanges sa wieksze, piszemy

jezeli 1 < x2 to wartosci tg x1 < tg zo. Funkcja tangens jest okresowa o kresie
w = T, piszemy

(2k+ )m

tgx =tg(x+ ) dla kazdego x # 5

, k=0,+1, £2 £3,..;
Rozpatrzmy wykres funkcji tangens na calej osi liczbowej z wyjatkiem punktow
oy (2k+1)g dla k=041, +2 +3,..;

w ktorych watro$¢ funkcji tangens jest nieokreslona.
Przesuwajac wykres funkcji

m T
—¢ dl -z
y=tgw az € ( 2,2)

o okres w = 7 otzymamy wykesy funkcji tangens w kolejnych przedziatach okreslonosci

7T7T) G(W 37r) 6(37T 57r) 6(57T Ve
g TSl TR TR

8Tutaj indeks k € C' = {0,+£1, +2, £3,... :} przebiega caly zbiér liczb catkowitych.

xe(
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Nizej na wykresie zaznaczone sa wartosci argumentu x funkcji tangens dla ktérych wartosci
tg x sa wieksze lub réwne jeden, to znaczy, ze spelniona jest nieréwnos¢ tg = > 1.

/ Yy i
/ / /
gr>1 tdr>1 tgr>1
e 1
*"'*5*%?02 L e A
/
Przykiad 19.13 .
(1)  ZnajdZ rozwigzanie nieréwnosci
tgx >1
w przedziale otwartym (=%, % ).

(i)  ZnajdZ wszystkie rzeczywiste rozwigzania nierdwnosci
tgx > 1,

dla ©# (2k—-1)5, k=0,+£1, £2, £3,...:
Rozwiazanie(i). Funkcja y = tg x jest rosnaca w przedziale (=%, 7).
Wartos¢ jeden funkcja tangens osiaga w punkcie z = 7, toznaczy, ze tg 7 = 1.
Zatem nier6wnosc
tgx >1
jest oprawdziwa w przedziale (-5, %) dla z € (§, ).
Roozwiazanie (ii). Z wykresu funkcji y = tg  widzimy, ze w przedziale (-7, §)
T

tgxr <1 dl €(—=,—).

gz az€(~5,7)
Wizystkie rzeczywiste rozwigzania nieréwnosci tg * < 1 latwo odczytamy z wykresu. Mi-
anowicie wartos¢ funkcji tangens jest mniejsza od jeden tg x < 1 dla wszystkich rzeczy-
wistych wartosci argumentu nalezacych do przedzialow

—z—i-kw,z—i-kw , dla k=0,pml, £2,...;
2 4

s

Zadanie 19.29 Rozwigz nierownos
(i) tgx > /3, (ii) tgx < /3
dla wszystkich rzeczywistych wartosci  x # 2k +1)%, k=0,%£1, £2,...;
Funkcja cotangens. Jak wiemy, funkcja cotanges jest okreslona dla argumentu

x#£kr, k=0,£1, £2,..;
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réznego od wielokrotnosci kata pétpelnego .
Y

Wykres funkcjiy = ":‘_tg:c
w przedziale (0,7) i

oo
o
N ¢

|
B g

(=]

Funkcja cotangens jest malejaca i okresowa o okresie w = w. To znaczy dla wigkszych
wartosci argumentu x warotosci funkcji cotanges sa mniejsze, piszemy

jezeli 1 < x2 to wartosci ctg x1 > ctg xo
Funkcja cotangens jest okresowa o okresie w = m, piszemy

ctgx = ctg(x + ) dla kazdego x # km, k=0,%+1, +2,..;

Przykiad 19.14 .
(1)  ZnajdZ rozwigzanie nieréwnosci

ctgxr > 1

w przedziale otwartym (0, ).
(i)  ZnajdZ wszystkie rzeczywiste rozwigzania nierdwnosci

ctgx > 1,
dla ¢ # kn, k=0,+1, +£2, £3,...:

Rozwiazanie (i). Funkcja y = ctg = jest malejaca w przedziale (0, 7). Watos$¢ ctg x = 1
osiaga dla x = 7.
Zatem

ctgx >1 dla z € (0, g)

Rozwiazanie (ii) Z wykresu funkcji okresowej cotangens o okresie w = 7 znajdujemy
wszystkie przedzialy
(kr, g +kr), dla k=0,+1, £2, ..

w ktorych nieréwnosé ctg x > 1 jest prawdziwa.

Zadanie 19.30 .
(1)  ZnajdZ rozwigzanie nieréwnosci

ctg x <

S
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w przedziale otwartym (0, ).
(i)  ZnajdZ wszystkie rzeczywiste rozwigzania nierdwnosci

1
ctgx > —

V3
dla xz € (0, ).

Zadanie 19.31 .
(1)  ZnajdZ rozwigzanie nieréwnosci

ctng\/g

w przedziale otwartym (0, ).
(i)  ZnajdZ wszystkie rzeczywiste rozwigzania nierdwnosci

ctg x > \/g,
dla © # kn, k=0,+1, +£2, £3,...:
Zadanie 19.32 .
(1)  ZnajdZ rozwigzanie nieréwnosci

ctgxr > tgx

w przedziale otwartym (0, g)

(i)  ZnajdZ wszystkie rzeczywiste rozwigzania nierdwnosci

tgx > ctg x,
km
dla x;ﬁ;, k=0,£1, £2, £3,...:
Zadanie 19.33 .
Znajdz rozwigzanie nierownosci
thx —1>0

w przedziale otwartym (—g, g)

19.7 Twierdzenie sinusow

Twierdzenie 19.1 W dowolnym trojkgcie stosunek dtugosci bokéw do sinusow kgtow lezZgcych
na przeciw bokow jest staty © rowny srednicy okregu opisanego na tym trojecie. To znaczy

a b c

= = =2R 19.9

sin @« sinf  siny ( )
Istnie kilka dowodéw twierdzenia sinuséw. Tutaj podamy dwa dowody zwigzane relacja
pomiedzy katem wpisanym w okrag i katem srodkowym, ktérre sa opartym na tym samym
tuku.

Dowdéd I. Rozpatrujemy okrag opisany na tréjkacie AABC o promieniu R. Z wierzchotka
A prowadzimy Srednicg okrcggu do przecigeia z okregiem w punkcie D. Zauwazmy, ze katy
wpisane w okrag/ABC = i LADC = § sa oparte na tym samym tuku AC. Zatem sa
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réowne 5 = 0. Tréjkat AADC jest prostokatny, gdyz kat ZDC A o wierzchotku C opraty na
$rednicy jest prosty.

Okrag opisany na tréjkacie AABC

A b b
sin5—%—ﬁ, oraz sinﬂzﬁ dla =9
Skat obliczamy
b
- =2R (19.10)
sin 3

Podobnie dowodzimy tezy dla kata « tréjkata AABC. Jedynie zmieniamy potozenie srednicy,
jak na rysunku

Dla kata a prowadzimy érednice CD z wierzchotka C' trdjkata AABC do przeciecia z
okrggiem w punkcie D. Zauwazmy, ze katy wpisane w okrag LCAD = a i LADB = ¢
sa oparte na tym samym tuku BC. Zatem sa réwne o = §. Tréjkat ABCD jest pros-
tokatny, gdyz kat ZDBC' o wierzchotku B oparaty na $rednicy jest prosty.

C

Okrag opisany na tréjkacie AABC

Z tego prostokatnego trojkata ABCD, znajdujemy sinus kata §. Mianowicie

sind = —— = — oraz sin a:% dla =96

Skat obliczamy

= 2R (19.11)

sin o



301

Dla kata + prowadzimy srednice BD z wierzchotka B trdjkata AABC do przeciecia z
okregiem w punkcie D, jak na rysunku

C

Okrag opisany na tréjkacie AABC

Zauwazmy, ze katy wpisane w okrag ZBCA =i LBDA = § s3 oparte na tym samym huku
AB. Zatem sg réwne v = 9. Tréjkat ABDA jest prostokatny, gdyz kat ZDAB o wierzchotku
A oparaty na $rednicy jest prosty. Z tego prostokatnego trojkata ABC D, znajdujemy sinus
kata 0. Mianowicie

|AB| ¢

sind = BD[ ~ 3R oraz siny = % dla v=9

Skat obliczamy
¢

=2R (19.12)

stn 7y
Z réwnodci (19.10, 19.11, 19.12) wynika teza twierdzenia (19.9)

a b c

=2R (19.13)

sina  sin B sinvy

Dowéd II. Rozpatrzmy tréjkat AABC. PoprowadZzmy wysokosé h z wierzchotka C tréjkata
AABC na podstawe AB. C

h=a sin «
h=bsinp
skad otrzymamy

a sina=>bsin 3

a b

sina sin (8

Wykonujac proste obliczenia

h=">sin «
h="bsinp

bsin a =a sin B, dzielimy obie strony przez sin a % sin (3



otrzymujemy oczekiwana réwnosé

a b

sin a  sin 8

W podobny sposéb otrzymamy réwnosé

c b
sin vy sin f3

302

(19.14)

Mianowicie, W tréjkacie AABC prowadzimy wysokos$¢ h z wierzchotka B na podstaweAC

C

h=a sin~y
h = c sin a
skad otrzymamy

a sin vy =csin o
a c

siny  sin a

Wykonujac proste obliczenia

h=asin~y
h = csin a
bsin a=a sin B, dzielimy obie strony przez sin a * sin vy

otrzymujemy oczekiwana réwnosé

a C

sin @  sin 7y

Poréwnujac réwnosci (19.14) i (19.15) otrzymamy réwnosé podwéjna

a b c

sin @ sin 3 siny

(19.15)

(19.16)

Pozostaje udowodnié, ze stosunek dlugosci bokéw tréjkata AABC do sinuséw odpowiednich

katow jest staly i réwny 2R, to znaczy

a b c

=2R

sin @ sin 8 sinvy

Jeszcze raz rozpatrzmy trojkat AABC i okrag opisany na tym tréjkajkacie o promieniu R
i srodku w punkcie O. Ze $rodka tego tréjkata poprowdzzmy promienie do wierzchotkow
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A, B, C orac wysokos$¢ h = |OD| tréjkata ABCO, jak na rysunku

C

D
Okrag opisany na tréjkacie AABC

Zauwazmy, ze trojkat ABCO jest réwnoramienny o dlugodci ramion réwnej promienowi
okregu R
|OB| =|0C| =R

Zatem punkt D, to jest koniec wysokosci h = |OD|, dzieli bok BC' na polowe
Z twierdzenia o kacie srodkowym i kacie wpisanym w okrag opartych na tym samym tuku
BC' wynika ze kat srodkowy jest dwa razy wiekszy od kata wpisanego,

kat wpisany LBAC =« i kat srodkowy LBOC =2«

Wysokosé h tréjkata réwnoramiennego ABCO dzieli kat srokowy ZCOB = 2« na potowe.
Zatem kat /COB = « w tréjkacie prostokatnym ADCO o przeciwprostokatnej CO i

przyprostokatnych h = |OD| i |DC| = g.

7 tréjkata prostokatnego ADCO znajdujemy

) a
sina=—
2R
Skad otrzymujemy réwnosé
4 _9R (19.17)
sin «

Z réwnosci (19.16) i (19.17) wynika teza twierdzenia (19.9)

a b c

=2R

sin @ sin 3 - sin 7y
Twierdzenia sinuséw stosujemy w prost do wyznaczania bokéw i katéw tréjkata, na pod-
stawie nastepujacych dawanych

1. dwoch bokoéw i kata naprzeci w jednego z nich,

2. boku i dwéch katéw przyleglych do tego boku,

Przyklad 19.15 Oblicz boki i kgty trdjkgta AABC, majgc dtugosci dwdch bokéw |AB| =
c=41|BCl=a=2kgta= % lezgcy na przeciw boku [BC].
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Rozwiazanie. Zaznaczamy dane i niewiadoxée boki i katy na rysunku

Tréjkat AABC

7 twierdzenia sinus6w obliczamy promien R okregu opisanego na trdjkacie

a 2
. =2R, —
sin « sin &

= 2R, =2R, R=2.

NN

Nastepnie rowniez z twierdzenia sinuséw obliczamy sinus kata ~ lezacego naprzeciw boku
|[AB|=c=2
c c 2 1

:2R, SIHVZEZZ:§

i kat 8 z sumy katow w tréjkacie

sin vy
Skad znajdujemy kat v = ¢
a+f+y=7 f=n1m—Q—7=T—=—==—.

Pozostaly bok |AC| = b obliczamy z twierdzenia sinuséw

b 2
b on b—oRsmA—2x2esin 2 —4¥3 _ 03
sin 3 3 2

19.8 Twierdzenie cosinusow

Podobnie jak twierdzenie sinuséw, twierdzenie cosinuséw stosujemy do obliczanie bokéw i
katow dowolnych trojkatow.

Twierdzenie 19.2 W dowolnym trdjkgcie AABC
C

A c D B
Trajkgt ANABC
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o bokach i kgtach zaznaczonych na rysunku zachodzg nastepujgce zwigzki pomiedzy bokamsi
i kgtami

(i) a®>=0b*>+c*>—2bccos a

(ii) b* = a® + c* — 2a ccos 3

(iii) ¢ = a® + b* — 2a beosy

Dowéd. Udowodnimy pierwsza z wymienionych wyzej réwnosci. Zauwazmy, ze W przy-

padku tréjkata prostokatnego, gdy a = g wzér (i) jest prawdziwy, gdyz wtedy cos o = 0 i
stosuje twierdzenie Pitagorasa. Dla o < g Punkt D, spodek wysoksci h, dzieli bok [AB]
na dwie czgsci |[AD| i DB, gdzie °

|AD| =b cos a, i |DB|=a cosf.
Stosujac twierdzenie Pitagorasa do tréjkatéw AADC i ADBC, obliczamy
h? =]AC|?* — |AD|?
oraz
h? = |BC|? — |BD|?
Poréwnujac prawe strony powyzszych réwnosci otrzymamy réwnosé
|AC|? — |AD|? = |BC|* — |DB|? (19.18)
Nastepnie podstawiajac do réwnosci (19.18)
a = |BC/|, b=|AC], c=|AB],
|AD| =bcosa, |DB|=c—|AD|, |DB|=c—bcosa
otrzymamy zwiazek (i), w forminie nieuproszczonej, pomiedzy bokami i katami tréjkata

AABC

b?> — (b cos @)* = a* — (c — b cos a)?

|[AC|?—|AD|? |BC|>—|DBJ?

(19.19)

Uproaszcajac powyzsze wyrazenia algebraiczne
b2 — (bcos a)? = a? — (c® — 2b ¢ cos a + b*cos? )
otrzymamy pierwsza teze (i) twierdzenia cosinuséw
a?=b>+c®—2bccosa

Pozostale wzory (ii) oraz (iii) dowodziemy podobnie. Mianowicie, zeby wyprowadzi¢ wzér
(i) nalezy poprowadzié¢ wysokosé¢ h z wierzchotka A na bok BC'. Natomiast dla dowodu tezy
(#i7) nalezy poprowadzi¢ wysokos$é h z wierzchotka B tréjkata AABC na bok AC.

9Przypominamy ze |AD| oznacza dlugoéé odcinka [A, D]
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Przyklad 19.16 W trdjkgcie AABC, dana jest diugosci boku |AB| = 3 i boku |AC| = 3
T

oraz waro$¢ kgta miedzy nimi o = 3 jak na rysunku, oblicz dlugosé bok a i kgty 5, ~.

C
v 7?
b=3 a?

T
a=g B?

Trajkgt ANABC

Rozwiazanie. Z twierdzenia cosinuséw obliczamy
a?=b>+c?—2bccos a = 32+3%—2%3%3x1

9+9-9=09.

Ska dlugoéé boku a = /9 = 3.
Majac boki tréjkata, a, b, c obliczamy cosinus katéw (i .

a?+ c? —b? 732—1-32—32 1

COSf = T 933 2
7a2+b2—02732+32—327 1
COST= o0 T T 2+3%3 2
. 1. 1 T . T
Jezehcosﬁ:§1cosvz§tok@t6:§1k@t~y:§.

19.8.1 Zadania
Zadanie 19.34 Oblicz boki i kgty trdjkgta AABC majgce dtugosé dwdch bokow

|AB| =5, |AC|=5 i kat/ ABC = 30°
Zadanie 19.35 Oblicz boki trdjkgta AABC majgce ditugosé boku |BC| = 25 i kgty
LCAB =30°, [ ABC =60°
Zadanie 19.36 Oblicz kgty tréjketa AABC majgc dtugoséi bokdw

|AB| = 15m, |BC|=30m, |AC|=45m

19.9 Funkcje cyklometryczne

Funkcje cyklometryczne inaczej funkcje kolowe arcsin a,arccos o, arctan o i arcctg a sa
funkcjami odwrotnymi do funkcji trygonometrycznych w przedzialach w ktorych funkcje
sin a, cos a, tg a, ctg a sa rosnace lub malejace.
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Na przyktad, funkcja odwrotng do funkcji sin « jest funkcja arcsin o okreslona w przedziale
m T

otwartym dla a € (=%, ) lub ogdlnie dla

ac (—g 1 2%k, g +2xkm), k=0,+1,+2 43, ..
Funkcja odwrotng do funkcji cos a jest funkcja arccos a okreslona w przedziale otwartym
dla « € (0, 7) lub ogdlnie dla

Q€ (=5 +2km T 2ukm), k= 0,£1 52,53,

Podobnie, funkcje odwrotne do funkcji tg o i ctg o sa funkcje arctg a i arcctg o okreslone
w przedzialach otwartych
tangens dla

o€ (_g Tk, g +km), k=0,+1,+2 43, ..

i cotangens dla
a€ (kr,(k+1)m), k=0,%1,4£2,4+3,...;

19.9.1 Arcus sinus

Funkcja y = sinx jest rosnaca w przedziale domknigtym [—g, g] Zbiorem wartosci tej
funkcji jest przedziat [—1, 1]. Zatem funkcja odwrotna
T = arcsiny

do funkcji y = sinz istnieje i jest okreslona w przedziale domknietym [—1,1]. To znaczy,
ze dziedzing funkcji odwrotnej x = arcsiny do funkcji y = sinx jest zbiér wartosci funkcji
y =sinz.

Zatem dla funkcji odwrotnej x = arcsin y zmienna niezalezng jest y € [—1, 1], a zmienng

T

zalez jest x € [—5, 5]

Nizej na wykresie w funkcji arcus sinus zmieniamy role zmiennych x, y przyjmujac

) -7
y = arcsin x, y € [7,5], gdy zel[-1,1]
Y
5 e aresin 1 = 3
Wykres funkgji
y =arcsin z dlax € [-1,1
arcsin 0 =0
-1 0 1 *
.+~ % arcsin(—1) = =%

Wartosci funkcji y = arcsin x dla wybranych wartosci argumentu z sg podane w tablicy
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o

T radian | y =sinzx || x = arcsiny
0 0
—90° _Z -1 _Z
90 5 5
eoe | LT | V2 K
3 2 3
I R I
4 % 4
0 T - T
3 G 2 G
0° 0 0 0
s 1 s
30° — = —
g o G,
45° — 0 ——
4 4
6o | T V2 m
P 3
90° — 1 —
2 2

Zauwazmy, ze zachodza nastepujace tozsamosci
. . _ x x
(i) arcsin(sinz) =2z, dla —F<z<7%

(#i) sin(arcsinz) =z dla —1<z<1

Rzeczywiscie, niech
T

“33)

Wtedy funkcja sinx jest rosnaca i funkcja do niej odwrotna x = arcsiny istnieje i jest
okreslona dla y € [—1, 1].

Podstawiajac do lewej strony (i) y = sinx, otrzymujemy tozsamosé (i).

Podobnie, niech

y=sinz dla =x€]|

y=arcsinx dla x€[-1,1].

Wtedy funkcja arcsinz, jest rosngce i funkcja do niej odwrotna x = siny istnieje i jest
okreslona dla y € [—1, 1].
Podstawiajac y = arcsinz do réwnosci « = siny, otrzymujemy tozsamosé (ii).

19.9.2 Arcus cosinus

Funkcja y = cosz jest malejaca w przedziale [0, 7]. Zbiorem wartosci funkcji cosinus jest
przedzial [—1,1]. Zatem funkcja odwrotna & = arccosy do funkcji y = cosx istnieje i jest
okreslona w przedziale [—1, 1]. To znaczy, ze dziedzing funkcji odwrotnej

T = arccosy

do funkcji
Yy =coszw

jest zbidér wartosci funkcji y = cosx. Natomiast zbiorem wartosci funkcji x = arccosy jest
przedziat [0, 7].
Nizej na wykresie w funkcji arcus cosinus zmieniamy role zmiennych x, y przyjmujac

Yy = arccos x, yel0,n], gdy xel[-1,1]



arccos(—1) =g ... 4.

SIE]

arccos 0 = 5 i

arccos 1 =0
-1 0 1

Tabela wartosci funkcj y = arccos x
dla wybranych wartosci argumentu x.

o

T radian | y =cosx | x = arccosy
0 0 1 0
500 | T V3 m
6 2 6
pso | T V2 m
4 12 4
o | T z il
60 3 > 3
90 5 0 - 5
e | 0| VB
4 \3_ 4
s || V8o
6 2 6
180° | = -1 m

Zachodzi prosty zawiazek pomiedzy arcus sinus i arcus cosinus
) 7r
arcsin x + arccos x = 3
Rzeczywiscie, zauwazamy, ze prawdziwa jest nieréwnosé
7T .
0< 5~ arcsinx < 7.

7 nieréwnosci

T .
-3 < arcsinx <

[N

i z réwnosé
™ . .
005(5 — arccos x) = sin(arcsin x)

wynika tozsamosé (19.20).

Wykresfunkcja y = arccos z dla x € [—1,1]

309

(19.20)
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19.9.3 Arcus tangens

Funkcja tangens y = tg x jest okresowa o okresie w = 7 i okreslona dla argumentu réznego

od nieparzystej wielokrotnoci kata prostego 7.

v £ (2k + 1)%, k=0,+1,+2, ..

Przedzialem wartosci funkcji tangens jest zbidr liczb rzeczywistych R = (—o0, 00).
Funkcja y = tg « jest rosnaca od —oo do oo w przedziale otwartym

€(—=, =
v€(=5:5)
Dlatego istnieje funkcja odwrotna
T = arctg vy,
do funkcji y = tg x w przedziale otwartym (—g, g) Bez zmiany wiasnosci funkcji arcus

tangens mozemy zamieni¢ zmienne x, y miejscami, piszac
y = arctan x.

T
Wartosci funkcji arcus tangens naleza do przedziatu (—5, 5), piszemy

m m
—§<arctgx<§, —00 < & < 0.

Rozpatrzmy jeszcze raz wykres funkcji tangens. Zauwazmy, ze wykres funkcji arcus tangens
odwrotnej do funkcji tangens otrzymamy przez obrot wykresu funckeji tangens w kierunku
przeciwnym do ruch wskazowek zegara patrzac na wykres z odwrotnej strony.

Y
Wykres funkcji tgz
dlaz e (-%5,5%)

1

tgx
_r _r 0 = s x
2 2
-1

Na wykresie zaznaczony jest zakres wartosci funkcji

y=arctgz dla z € (—00,00).
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Y
Wykres funkcji arctg x
dla x € (—o0,0) 5 Lo
——————————————————————— @ - e e e e e mnm e -
s
4 arctgl = 7
-1 o 1 x
T
4
................................................. L
e e T L e e e e e e e O o e o e e
s
2

Funkcja arctage ma dwie asymptoty L1 i L1 rownolegle do osi x
19.9.4 Arcus cotangens

Funkcja y = ctg x jest malejaca w przedziale otwartym (0,7) i jej zbiorem wartosci sa
wszystkie liczby rzeczywiste —oo < y < oo. Zatem funkcja odwrotna x = arcctg y istnieje
i jest okreslona dla wszystkich liczb rzeczywistych —oo < y < oco. Natomiast jej zbior
wartosci zmienia si¢ w zakresie od 0 do 7, to znaczy

0 < arcctg y <, —00 <y < 00.

Podobnie jak w przypadku funkcji arcu tanges, bez zmiany wlasnosci funkcji arcus cotan-
gens, zamieniamy zmienne x, y miejscami, piszac

y=arcctgx, dla —oo <z <0

Rozpatrzmy jeszcze raz wykres funkcji cotangens. Zauwazmy, ze wykres funkcji arcus cotan-
gens odwrotnej do funkcji cotangens otrzymamy przez obrot wykresu funckeji cotangens w
kierunku przeciwnym do ruch wskazowek zegara patrzac na wykres z odwrotnej strony.

Y Wykres funkcjiy = ctgx
w przedziale (0,7) i

Z wykresu funkcji cotangens tworzymy wykres funkcji odwrotnej arcus cotangens

y=arcctgzr, dla —oo <z <0
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Wykres funkcji arcctg x

vl

arcctg 1 = %

]

0 1 L

Funkcja arcctg x ma dwie asymptoty L1 to jest os x i La rownolegla do osi

Zachodzi nastepujacy zawiazek pomiedzy arcus tangens i arcus cotangens, piszac

arctg  + arcctg x = g (19.21)

Rzeczywiscie, zauwazamy, ze kat

T
0< 5 — arctgx <,

gdyz kat —g < arctgr < -. Zatem mamy tozsamosc

o3

ctg(g — arctgr) = arctgx

Skad wynika tozsamosé (19.21).

19.9.5 Przyklady

Przyklad 19.17 Rozwigz rwnanie
. T
arcsin x = —

Zaznacz na wykresie te wartosci argumentu x dla ktorych

arcsin r > B

Rozwiazanie Z definicji funkcji arcus sininus wiemy, ze jezeli

. T
arcsin T = 5
to wtedy
oo 1
r = stn E = 5
Nieréwnosé

arcsin r >

N~
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zachodzi, jezeli
.o 1
1>z>sn—-—=-
6 2

Wartosci funckeji arcsin @ > 1 zaznaczamy na nizej podanym wykresie

W Y
G @i aresinl = 3
Wykres funkdji
y = arcsin x dla x € [—1,1
arcsin 0 =0
1
-1 0 b) 1 T
4~ %5 arcsin(—1) = =%

Przyklad 19.18 Rozwigz rwnanie i nierinosé

arccos r =

w3 ol

arccos r <

Rozwiazanie Z definicji funkcji arcus cosinus wiemy, ze jezeli

.
arccos T = 3
to wtedy
- T 1
T = cos 353
Nierownosé -
arccos r < —
3
zachodzi, jezeli
1> x>cos - = %

19.9.6 Zadania

Zadanie 19.37 Oblicza wartos$¢ wyrazenia

arcsin§ + arcsinT

Zadanie 19.38 Oblicza wartos$¢ wyrazenia

CLTCCOS§ + CLTCSCOST
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Zadanie 19.39 Oblicza wartos¢ wyrazenia

1
arctg— + arctg\/i

V2

Zadanie 19.40 Podaj wykres funkcji
f(z) = sin(arcsin x)
dla argumentu © € [—1,1].
Zadanie 19.41 Podaj wykres funkcji
f(x) = cos(arcsin x)
dla argumentu © € [—1,1].
Zadanie 19.42 Rozwigz rownanie
arcsin x — arccos x =0
Zadanie 19.43 Rozwigz rownanie
2arcsin T — arccos T =T
Zadanie 19.44 Rozwigz rownanie
arctg x —arcctgx =0
Zadanie 19.45 Rozwigz rownanie

3arctg x — 2arcctgx =T



Chapter 20

Kombinatoryka

Kombinatoryka obejmuje takie pojecia jak silnia liczby naturalnej n, permutacje, wariacje
bez powtorzen i wariacje z powtérzeniami, kombinacje.

Nizej podany jest opis tych pojeé z licznymi przyktadami i éwiczeniami.

20.0.7 Silnia liczby naturalnej n!

Tloczyn kolejnych liczb naturalnych az do liczby n wlacznie nazywamy silnia liczby n i
oznaczmy symbolem n!. Zatem mamy

nl=1%2%x3%---x(n—1)xn

Przyjmujmy ze 0! =1
Wypiszmy kilka silni liczb naturalnych

ol=1
=1
20=1%x2=2

3'=1%2%x3=6

41 =1%x2x3x4=24
5l=1%2%3*%x4%5 =120
6!=1%2x3x4*5%x6="T720

T =1%2x3%x4*x5%6x7 = 5040

(n—1)!=1%x2%x3x4*5%---x(n—1)
nl=1%2%x3%4%x5%6%xTx---x(n—1)%n

20.0.8 Przyklady
Obliczanie silni wyjasniamy na nizej podanych przykladach
Przyklad 20.1 Oblicz wartosé utamka

5! % 7!
4! x 6!

315
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Rozwiazanie:
Latwo uproscimy ten ulamek piszac

Sl=4lx5, T'=6!%7
5! % 71 4lx5 x 6!x7

T=6 .o oA
Przyklad 20.2 Uprosé utamek |
n!
1)
Rozwiazanie:
Latwo uproscimy ten ulamek piszac
(n—=1)! = 1%2%3%4%5%6%T%---x(n—1)
n! = 1%2%3%4%x5%6x7*---x(n—1)*n
n! 1%2%3%x4%5%6x7*---x(n—1)*n
(n—1) ~  1#2%3%4%5%6%7%---x(n_1)

Zasanie 20.1 Oblicz warto$é utamka

31 % 5!« 7! 9!
2! % 4! x 6! % 8!

Zasanie 20.2 Uprosé utamek
2n!

(2n — 3)!

20.0.9 Permutacje

Permutacja elementéw zbioru nazywamy ich ustawienie w pewnej kolejnosci. Dwie per-
mutacje sktadajace sie z tych samych elementéw sa rézne, jezeli réznia sie kolejnoscia ele-
mentow.

Na przyklad:

Permutacje cyfr liczby dwucyfrowej 23 skladaja sig¢ z tych samych cyfr 2 i 3 tworza dwie
rézne permutacje

23 ¢ 32 tlosc permutacji 2! =2
Zauwazmy, ze innych permutacji cyfr 2 i 3 nie ma.

Podobnie wypiszmy wszystkie permutacje cyfr liczby trzycyfrowej 257

257 275
527 572 tlosc permutacji 3! =6
725 752

Przyklad 20.3 Wypisz wszystkie permutacje zbioru dwuelementowego ab

ab  ba ilosc permutacji 2! = 2

Zavwazmy, ze innych permutacji liter a i b nie ma.
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Podobnie wypiszmy wszystkie permutacje zbioru trzyelementowego abc

abc acb
bac bca ilosc permutacji 3! =6
cab cba

Ogdlnie, ilosé permutacji n-elementowego zbioru réwna jest n!
Zasanie 20.3 Wypisz wszystkie permutacje cyfr liczby trzycyfrowej 391

Zasanie 20.4 Wypisz wszystkie permutacje elementow zbioru
czteroelementowego ABC D

20.0.10 Wariacje

Wariacja k-elementowa ze zbioru n-elomentowego (n > k) nazywamy ciag k elementéw
wybranych ze zbioru n-elementowego. Ciag k-elementowy jest wariacja z powtdrzeniami,
jezeli w tym ciaggu moga powtarzaé sig elementy zbioru z ktérego tworzone sa wariacje. Nato-
miast k-elementowa wariacja bez powtorzen jest ciagiem w ktérym nie ma powtérzen ele-
mentow zbioru n-elementowego. W wariacjach bez powtorzen i w wariacjach z powtérzeniami
kolejnosé elementow jest wazne, to znaczy, ze dwie wariacje sa rozne, jezeli skladaja sig¢ z
tych samych elementow ale roznia sig kolejnoscig elementow.

20.0.11 Wariacje z powtérzeniami.

Pojecie wariacji bez powtorzen lub z powtérzeniami dobrze illustruje proces losowania ze
zbioru n-elementowego, ktéry zawiera tylko elementy rézne.

Mianowicie, wariacje z powtorzeniami tworzymy w ten sposéb, ze wylosowany element wrzu-
camy spowrotem do urny przed losowaniem nastgpnego elementu. Losujemy tak dlugo az
wylosujemy k-elementéow. W ten sposéb otrzymamy ciag k-elementéow w ktérym moze by¢
wylosowany ten sam element co najwyzej k-razy.

Podobnie tworzymy k-elementowe wariacje bez powtdrzen z ta réznica, ze wylosowanego
elementu nie wrzucamy spowrotem do urny przed losowaniem nastepnych elementéw. W
ten spos6b otrzymujemy k-elementowa wariacje w ktérej wszystkie elementy sa rézne, to
znaczy, ze nie ma elemetow powtérzonych.

Tlo$¢ mozliwych k- elementowych wariacji z powtdérzeniami utworzynych ze zbioru n-elementowego
obliczamy ze wzoru

k_  k
V,=n

20.0.12 Przyklady

Pojecie wariacji z powtérzaniemi i obliczanie ilosci k-elementowych wariacji z powtérzaniami
wybranymi ze zbioru n-elementowgo illustrujemy i wyjasniamy na nizej podanych przyktadach

Przyklad 20.4 Wypisz wszystkie liczby dwucyfrowe utworzone ze zbioru cyfr {1,2}.

Rozwiazanie:
W tym przyktadzie liczby dwucyfrowe to sa wariacje 2-elementowe z powtorzeniami ze zbioru
tez 2-elementowego. Latwo znajdujemy

11 12
21 22
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Odpowiedz: Ilos¢ liczb dwucyfrowych utworzonych cyfra 11 2 to ilo$¢ wariacji z powtérzeniami
‘/22 — 22 =4

Przyklad 20.5 Wypisz wszystkie liczby dwucyfrowe utworzone ze zbioru cyfr {1,2,3}.

Rozwiazanie:
W tym przyktadzie liczby dwucyfrowe to sa wariacje 2-elementowe z powtorzeniami ze zbioru
3-elementowego. Latwo znajdujemy te liczby

11 12 13
21 22 23
31 32 33

Odpowiedz: Ilos¢ liczb dwucyfrowych utworzonych cyfra 1, 2, 3 to ilo$¢ wariacji z powtérzeniami
‘/32 — 32 =9

Przyklad 20.6 Wypisz wszystkie liczby trzycyfrowe utworzone ze zbioru cyfr {1, 2, 3}.

Rozwiazanie:
W tym przyktadzie liczby trzycyfrowe to sa wariacje 3-elementowe z powtoérzeniami ze zbioru
tez 3-elementowego. Latwo znajdujemy liczby trzycyfrowe

111 122 113
121 122 123
131 132 133
211 212 213
221 122 123
231 132 233
311 312 313
321 322 323
331 332 333

Odpowiedz: Ilo$¢ liczb trzycyfrowych utworzonych cyfra 1, 2, 3 to ilo$¢ wariacji z powtdérzeniami
Vi =33=27

Zasanie 20.5 Wypisz wszystkie wariacje 2-elementowe z powtorzeniami utworzone ze zbioru
3-elementowego {a, b, c}.

Zasanie 20.6 Wypisz wszystkie wariacje 3-elementowe z powtorzeniami utworzone ze zbioru
3-elementowego {a, b, c}.

Zasanie 20.7 Wypisz wszystkie liczby dwucyfrowe utworzone ze zbioru cyfr {2, 5, 7, 9}.

20.0.13 Wariacje bez powtérzen

Wariacja k-elementowa bez powtdrzen to ciag elementéw réznych wybranych ze zbioru n-
elementowego (1 < k < n).

Liczba wszystkich k-elementowych wariacji bez powtorzen wybranych ze zbioru n-elementowego
okreslona jest wzorem:

kL n!
W = (n—k)!

lub piszac iloczyn w odwrotnej kolejnosci jego czynnikéow mamy wzér

=(n—k+1)x(n—k+2)x---x(n—1)%n

———=nsxn—1)*---*x(n—Fk)x(n—k+1).
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20.0.14 Przyklady

Pojecie wariacji bez powtdrzen i obliczanie ilosci k-elementowych wariacji bez powtdrzen
wybranych ze zbioru n-elementowgo illustrujemy i wyjasniamy na nizej podanych przykladach

Przyklad 20.7 Wypisz wszystkie liczby dwucyfrowe o réinych cyfrach utworzone ze zbioru
cyfr {1,2}.

Rozwiazanie:
W tym przykladzie liczby dwucyfrowe to sa wariacje 2-elementowe bez powtérzert wybrane
ze zbioru tez 2-elementowego. Latwo znajdujemy te liczby

12 21

Odpowiedz: Ilos¢ liczb dwucyfrowych o réznych cyfrach utworzonych z cyfr 1 i 2 to ilos¢
wariacji bez powtérzeri. W tym przypadku réwna jest iloéci permutacji W3 = 2! = 2

Przyklad 20.8 Wypisz wszystkie liczby dwucyfrowe o réinych cyfrach utworzone ze zbioru
cyfr {1,2,3}.

Rozwiazanie:
W tym przykladzie liczby dwucyfrowe to sa wariacje 2-elementowe bez powtérzert wybrane
ze zbioru 3-elementowego. Latwo znajdujemy te liczby

12 13
21 23
31 32

Odpowiedz: Ilos¢ liczb dwucyfrowych o réznych cyfrach utworzonych cyfr 1, 2, 3 to ilos¢
wariacji bez powtdrzen
9 3! 6

Przyklad 20.9 Wypisz wszystkie liczby trzycyfrowe o réinych cyfrach utworzone ze zbioru
cyfr {1, 2, 3}.

Rozwiazanie:
W tym przyktadzie liczby trzycyfrowe to sa wariacje 3-elementowe bez powtérzenn wybrane
ze zbioru tez 3-elementowego. Latwo znajdujemy te liczby trzycyfrowe o réznych cyfrach

123 132
213 231
312 321

Odpowiedz: Ilos¢ liczb trzycyfrowych o réznych cyfrach utworzonych z cyfr 1, 2, 3 to ilos¢
wariacji bez powtérzeri. W tym przykladzie to jest ilosé permutacji W3 = 3! =6

Zasanie 20.8 Wypisz wszystkie wariacje 2-elementowe bez powtorzen utworzone ze zbioru
3-elementowego {a, b, c}.

Zasanie 20.9 Wypisz wszystkie wariacje 3-elementowe bez powtorzen utworzone ze zbioru
3-elementowego {a, b, c}.

Zasanie 20.10 Wypisz wszystkie liczby dwucyfrowe o roinych cyfrach utworzone ze zbioru

cyfr {2, 5, 7, 9}.

Zasanie 20.11 Wypisz wszystkie wariacje bez powtorzen 2-elementowe wybrane ze zbioru
4-elementowego {a, b, ¢, d}.
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20.0.15 Kombinacje

Kombinacja k-elementowa wybrang ze zbioru n-elementowego nazywamy k-elementowy podzbiér
zbioru n-elementowego. Zatem w kombinacji kolejnosé¢ elementéw nie jest wazna. To znaczy,
ze dwie kombinacje sg rézne tylko wtedy gdy réznia sie¢ co namniej jednym elementem.

Tloé¢ kombinacji k-elementowych wybrach ze zbioru n-elementowego obliczmy ze wzoru

lub stosujac symbol Newtona piszemy

(1) = w6

Zatem ilos¢ kombinacji k-elementowych wybranych ze zbioru n-elementowego réwna jest
ilosci k-elementowych podzbioréw zbioru n-elementowego.

20.0.16 Przyklady

Pojecie kombinacji i obliczanie ilosci k-elementowych kombinacji wybranych ze zbioru n-
elementowgo illustrujemy i wyjasniamy na nizej podanych przykladach

Przyklad 20.10 Ile mozna utworzyc par do gry w szachy w klasie liczgcej 20 uczniow, zeby
kazdy uczen grat tylko raz z kazdym wybranym uczniem?

Rozwiazanie:

Tloé¢ par utworzonych z 20 uczniéw réwna jest ilosci kombinacji 2-elementowych ze zbioru
20-elementowego, gdyz dwie pary sa rozne tylko wtedy gdy réznia si¢ co najmniej jednym
elementem, czyli kazda para jest 2-elementowym podzbiorem.

Kazdy uczen moze dobra¢ partmera do gry w szachy na 20 — 1 = 19 sposobéw. Zatem ilos¢
19 % 20
= 190.

Tloé¢ kombinacji 2-elementowych ze zbioru 20-elementowego obliczamy réwniez ze wzoru

par réznych réwna sie

200 19%20

2 _
oo = 2120 -2)! 2

=190

Przyklad 20.11 W Klasie jest 15 uczniow. Na ile sposobow mozna wybraé
(i) trzech przedstawicieli
(ii) czterech przedstawicieli

Rozwiazanie (i):

Dwie tréjki sa rézne, jezeli réznia sig¢ co namniej jednym uczniem, kolejnosé¢ wyboru uczniow
do tréjki jest nie wazna. Zatem pytanie jest ile mozna utworzy¢ 3-elementowych kombinacji
ze zbioru 15-elementowego lub ile mozna utworzy¢ 3-elementowych podzbioréw ze zbiroru
15-elementowego 7

Obliczamy ze wzoru:

150 13%14x15
31(15 - 3)! 6

Odpowiedz: Ilo$¢ mozliwych przedstawicieli uczniow w grupach po 3 rowna jest 455 trdjek
Podobne jest rozwigzanie (i)

=13 % 7% 5 =455

3 _
Cis =
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Przyklad 20.12 Ile jest moZliwych wynikow w grze ”Duzy Lotek”, jezeli wybieramy 6 liczb
249 liczb ¢

Rozwiazanie:
Tloé¢ mozliwych wynikéw réwna jest ilosci kombinacji 6-elementowych wybranych ze zbioru
49-elementowego.
Zatem obliczamy stosujac wzor

49! 43 % 44 % 45 % 46 * 47 % 48 % 49
6!(49 — 6)! 1%2%3%4%5%6

Odpowiedz: W "Duzym Lotku” ilo§¢ mozliwych wynikéw rowna jest 13983816

= 13983816

6 __
C149_

Przyklad 20.13 Na okregu zaznaczono sze$¢ punktow pi1, p2, 3, P4, P5, D6
P4

Ps «P3

Pe « P2

P1

Wielokgty o wierzchotkach na okregu

Ile mozna narysowaé roznych wielokgtow w tym
(a) tréjkgtow
(b) czworokgtow
(¢) pieciokgtéw
(d) szesciokgtow
o wierzchotkach na okregu w punktach p1, p2, ps, p4, D5, Dé
Rozwiazanie:
Dwa wielokaty sa rézne, jezeli roznig si¢ co najmniej jednym wierzchotkiem. Podobnie dwie
kombinacje sa rézne, jezeli réznig si¢ co najmniej jednym elementem.
Zatem ilos¢ trojkatéw réwna jest ilosci 3-elemntowych komabinacji wybranych ze zbioru

6-elementowego. Ilos¢ mozliwych tréojkatéw o wierzchotkach na kregu obliczamy stosujac
wzdr

B 6! C 1#2%x3%4%x5%x6  4x5x6
C31(6—3)  1%2%3%x1%2%3 1%2%3
Podobnie ilo$¢ czworokatow réwna jest ilodci 4-elemntowych komabinacji wybranych ze
zbioru 6-elementowego. Ilos¢ mozliwych czworokatéow o wierzchotkach na kregu obliczamy
stosujac wzér

=4x5=20.

Ce

o _ 6!  1#2%3%4x5%6  5x6
67416 —4))  1x2%#3x4x1%x2 1%x2

Tloé¢ pigciokatéw réwna jest ilosci 5-elemntowych komabinacji wybranych ze zbioru 6-
elementowego. Ilo$¢ mozliwych pieciokatow o wierzchotkach na kregu obliczamy stosujac

wzor

15.

o5 _ 6! _ 1%2x3x4x5x6 6
67 516 —5)!  1%x2#%3%4x5x1 1
Tlog¢ szesciokatéw rowna jest ilosci 6-elemntowych komabinacji wybranych ze zbioru 6-
elementowego. Ilos¢ mozliwych szeSciokatow o wierzcholkach na kregu obliczamy stosujac
wWzOr

=6.

ot 6! 1%2%x3%x4%5%6

= = :1
67 61(6—6)! 1%2%3%4%x5%6%0!

gdyz 0Ol =1.

3
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20.1 Zadania

Zadanie 20.1 Oblicz warto$é utamka

4! x 514 3! % 4!
5! x 6!
Zadanie 20.2 Uprosé utamek
n!+ 5! |
(n—3)

Zadanie 20.3 Wypisz wszystkie permutacje zbioru 5ab
Zadanie 20.4 Wypisz wszystkie permutacje cyfr liczby trzycyfrowej 987
Zadanie 20.5 Wypisz wszystkie liczby rozne utworzone z cyfr

Zadanie 20.6 Wypisz wszystkie wariacje bez powtorzen 3-elementowe wybrane ze zbioru
5-elementowego {a, b, ¢, d}e.

Zadanie 20.7 Ile mozna utworzyé par do gry w szachy w klasie liczgcej 25 uczniow, zeby
kazdy uczen grat tylko raz z kazdym wybranym uczniem?

Zadanie 20.8 Ile jest mozliwych wynikow w grze liczbowej, jezeli wybieramy 5 liczb z 45
liczb ¢



Chapter 21

Statystyka opisowa

Pierwszym i waznym etapem opracowan statystycznych jest zbieranie i prezetacja danych.
Najwazniejsze dane statystyczne podawane sa w kazdym roku przez Giéwny Urzad Statysty-
czny (GUS) z siedziba w Warszawie. Dotycza one informacji o ludnosci w Polsce, dane o
wzorécie w przemysle i rolnictwie, w ekonowmi i finansach. Te dane stanowia wazna infor-
magcje dla planowania i administracji panstwa. Oprocz tego dane statystyczne zbierane sa
w ankietach z pytaniami o szczegdélnym znaczeniu. Na przyklad w sondazach i prognozach
w wyborach do sejmu i w waznych decyzjach administrcji w ktérych glos spoleczenstwa ma
istotne znaczenie. Zebrane dane statystyczne przedstawiamy w tabelach i ilustrujemy na
diagramach. Stosowane s rézne formy diagraméw. Najbardziej powszechne diagramy sa w
formie stupkéw lub kola z zaznaczeniem koloréw lub danych liczbowych lub w procentach.
Zatem diagramy sa prostym i waznym sposobem prezetacji danych statystycznych.

21.1 Przyklady danych statystycznych i diagramow

Dane statystyczne piszemy w tablicach z opisem ich znaczenia i wartosci liczbowych.

Przyklad 21.1 W zespole szkot byto Przedszkole, Szkola Podstawowa, Gimnazjum i Liceum.
W ponizeszej tabeli zebrano informacje dotyczgce liczby uczniow

Rodzaj Szkoty Liczba uczniéw | Czgé¢ z calosci Procent
Przedszkole (PSz) 125 1/8 z 1000 12.5%
Szkota Podstawowa (SzP) | 250 1/4 z 1000 25%
Gimnazjum (Gim) 375 3/8 z 1000 37.5%
Liceum (Lic) 250 1/4 z 1000 25%
Razem 1000 stits+ti=1]100%

W nizej podanych diagramach w formie stupkow i kola podane sa wykresy dziewczat,
chtopcéw i razem uczniéw w Przedszkolu (Psz), w Szkole Podstawowej (szP), w Gimnazjum
(Gim), i w Liceuam (Lic).
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Legenda: Duziewczeta stupek pierwszy, chlopcy stupek drugi i liczba ucznidow raze stupek

trzeci. Wykresy sa powtérzone dla kazdej z czterech szkot.
BARCHART PIECHARD

SzP=25% g

Gim=37.5%

BB

Lic=25%

125

PSz SzP Gim Lic

Legenda: Dziewczeta koto pierwsze, chlopcy koto drugie i liczba uczniéow raze kolo trzecie.
Wykresy sa powtorzone dla kazdej z czterech szkot.

21.2 Wartosé srednia i mediana

Waznymi parametrami danych statystycznych sa warto$¢ srednia i mediana. Wartosé
Srednia srytmetyczna. Wartoscia srednia arytmetyczna danych n liczb a1, as, ..., a, nazy-

wamy liczbe
ar+az+---+an

n

Srednia arytmetyczna =

Wartosé srednia arytmetyczna wazona. Bardziej ogdlnym pojeciem Sredniej jest pojecie
$redniej arytmetycznej wazonej. Mianowicie, niech wagami beda liczby dodatnie p1, p2,-- -, pn
takie, ze suma

pr+p+-+pn=1p; >0, 1=12,..n

Wtedy sérednia wazona nazywamy nastepujaca sume iloczynow
Srednia arytmetyczna wazona = piai + p202 + -+ pnan

Istotnie, w przypadku szczegdlnym, gdy wagi sa rowne

R |
n
wtedy Srednia arytmytyczna wazona jest poprostu srednig arytmetyczng.

Mediana. Dla danych statystycznych znajdujemy ich mediane to znaczy, ze wartos¢, ktéra
lezy w srodku danych. Mianowicie, w pierwszej kolejnosci sortujemy dane porzadkujac je
od najmiejszej do najwigkszej lub od najwigkszej do najmieszej. Wtedy liczba, ktéra lezy w
rownej odleglosci od poczatku i od konica uporzadkowanych danych nazywa sie mmediang.
Moze zdazy¢ sig ze nie ma takiej jednej liczby, natomiast sa dwie liczby obok siebie, ktore
leza w tej samaej odleglosci pierwsza od poczatku a druga od konca. Wtedy mediang jest
ich $rednia arytmetyczna.

Nizej, wyjasniamy to na przykladach.



325

Przyklad 21.2 Rozpatrzmy nastepujgce dane:
(1) 2,1,6,8,3,2,10,12,11

(i) 9,4,2,7,5,1,3,10,15,17, 16

Rozwiazanie (i). Dane 2,1,5,8,3,2,10,12,11 porzadkujemy w kierunku rosnacym od
najmieszej do najwiekszej
o|wnym

1,2,2,3,6,8,10,11,12
Zauwazamy, ze liczba 6 jest odlegta od poczatku o cztery pozycje i od konica rowniez o cztery
pozycje. Zatem liczba 6 jest mediang danych (i).
Rozwiazanie (ii). Dane0,—-1,9,4,2,7,5,1,3,10, 15,17, 16 porzadkujemy w kierunku rosnacym
od najmieszej do najwigkszej
-1,0,1,2,3,4,5,7,9,15,16, 17
ku Zauwazamy, ze liczba 4 jest odlegla od poczatku o pie¢ pozycji, a liczba 5 jest odlegla
od konica réwniez o pie¢ pozycji. Zatem mamy dwie liczby w $§rodku danych 4 i 5. Wtedy
4
mediang jest ich srednia arytmetyczna, to znaczy — = 4.5. Odpowiedz: mediang danych
(ii) jest liczba 4.5

21.2.1 Korelacja danych statystycznych
Rozpatrzmy dwa ciagi danych
a:{alaa25"'aan}a b:{blaan"'abn}a

o tej samej liczbie elementow n.

Defimnicja 21.1 Korelacjg danych statystycznych
a:{al,ag,...,an}, b:{bl,bg,...,bn},
nazywamy nastepujgcy iloraz:

ay by +az by +---+ay, by

Cor(a,b) = )
(,0) Va2 +ai 4+ +a2yb?+ b3+ + b2

Dane statystyczne piszemy réowniez w ich unormowanej formie. Mianowicie, niech

N N N N a1, a2, ...,0n
a={ay,as,...,an} = {21 22 } =
\/CL1+CL2+-~~+CL" (211)
77 7 _ {blaan"'abn} '

l; = {bla b25 s bn}

IV R

gdzie

A ai b — by
al_\/a2+a2+~--+a2, 1_\/b2+b2+--~+b2,
1 2 n 1T 03 n

b = ai r b2
2 2 )
Vai+a3+---+a2 N

R b

&n* (079 , b n

VAt add a2 Rt b2
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Zauwazamy, ze dane statystyczne (21.1) w unormowanej formie spehiaja nastepujace warunki:
Qtai+4+ai=1; P4+bi+-+b2=1

Wtedy korelacja pomigdzy danymi a i b oraz korelacja pomigdzy danymi unormowanymi a
i b jest ta sama i okreslana jak nastepuje:

Defimnicja 21.2 Korelacjg danych statystycznych

a={ay, ag,...,an}, b={by,ba,....,bn}
nazywamy sume nastepujgcych iloczynow:
Cor(a,b) = Cor(a i)) =Gy by 4+ g byt -+ ay i)n,
Przyklad 21.3 Oblicz korelacje pomiedzy danymi
a=1{2,1,5,8}, b=1{4,3,9,3}
Rozwiazanie. Podstawiajac do wzoru dane
a1 =2, as=1, az3=>5H, a4 =2,
b =4, by=3, b3=9, by=3
obliczamy wspdtczynnik korelacji

ay by +az by +---+ay, by

R
- i — 0.769444,
V22 412+ 52 + 82142 + 3% + 92 + 32

Cor(a,b) =

21.3 Wariancja i odchylenie standardowe
Wariancja o2 danych statystycznych
a= {ala az, ..., an}a

zwigzana jest z ich $rednia arytmetyczng

ar+az+ - +an

nastepujacym wzorem:

Czytamy sigma.
Odchylenie standardowe o jest pierwiastkiem kwadratowym z wariancji

oc=Vo?
Przyklad 21.4 Oblicz wariancje i odchylenie standardowe nastepujgcych danych:

(1) a={3,-1,8,4}, (i) b={12,4,8,6}.
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Rozwiazanie (i). Rozwiazanie jest prostym i bezposrednim podstawieniem danych do
wzorow. Najpierw obliczamy wartosé $rednig

_agtaxt+--ta, 3—-1+8+4

= " = 1 3.5
nastepnie obliczamy wariancje
o2 — (a1 —8)? + (a2 — 8)2 + -+ (an — s)?
N n
. (3-35)2+(-1-35)24+(8—-3.5)2+(4—-3.5) 1031
= 1 = 10.

oraz odchylenie standardowe
oc=vo?=1+v10.31 =3.21131

Rozwiazanie (ii). Podobnie rozwigzanie przyktadu (ii) jest prostym i bezposrednim pod-
stawieniem danych do wzoréw. Najpierw obliczamy wartosé¢ srednia
a1 +as+---+ap 12+4+8+6 30

nastepnie obliczamy wariancje

o2 — (a1 —3)? + (az — )2 + -+ (a, — 5)?
(12 - 7.5)% 4 (4 — 7.5)2 + (8 — 7.5)2 + (6 — 7.5)?

= 2 =8.75

oraz odchylenie standardowe

o=vVo?=1+v10.31 = 2.95804

21.4 Zadania

Zadanie 21.1 Na wyktad z matematyki zapisali sie studenci z biologi 20 studentow, chemii
40 studentow, fizyki 50 studentow, informatyki 50 studentow i z matematyki 40 studentow
W ponizeszej tabeli zebrano informacje dotyczgce liczby studentow

Przedmiot Liczba uczniow | Czesé z calosci Procent
biologia (BIO) 20 1/10 z 200 10%
chemia (CHEM) 40 1/5 z 200 20%
fizyka(F1Z) 50 1/4 z 200 37.5%
informatyka (INF) | 50 1/4 z 200 25%
matematyka(MAT) | 40 1/5 z 200 12.5%
Razem 200 Gtetitit+s=1]100%
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Narysuj przy pomocy linijkii cyrkla diagramy w formie stupkéw i kota dla studentéw biologii
(BIO), chemii (CHEM), fizyki (FIZ), informatyki (INF) i matematyki (MAT) .
Podaj rowniez opis diagramoéw w formie legendy .
Zadanie 21.2 Dla nastepujgcych danych
(1) 4,6,8,10,12,14, 16, 18, 20,22

(ii) 19,17,15,13,11,9,7,5,3, 1

oblicz érednig arytmetyczna, srednia arytmetyczng z waga p = % i mediang
Zadanie 21.3 Oblicz korelacje pomiedzy danymi
a=1{21,15,8,8}, b=1{1,3,6,9}
Zadanie 21.4 Oblicz wariancje i odchylenie standardowe dla nastepujgcych danych:

(i) a={51,6,4}, (i) b={10,6,2,1}.



Chapter 22

Wstep do rachunku
prawdopodobienstwa

22.1 Wstep

Podstawy rachunku prawdopodobienstwa stworzyli Pascal (1623-1662 n.e.) i

Fermat (1601-1665 n.e.) w potowie XVII-go wieku. W wiekach XVIII i XIX waznym od-
kryciem bylo prawo wielkich liczb J. Bernoulliego i prace A. Moivre, P. Laplasa i S. Poissona.
Czebyszewa, Browna i Kolmogorowa.

Rachunek prawdopodobienstwa zajmuje si¢ badaniem praw rzadzacych zjawiskami losowymi
( przypadkowymi), to jest takimi zjawiskami, ktérych przebiegu czy wyniku nie mozna jed-
noznacznie przewidzie¢. Dzieje si¢ tak dlatego, ze na przebieg zjawiska losowego wplyw ma
na ogol wiele przyczyn, z ktorych jedynie cze$¢ udaje sie kontrolowac.

Wyniki zjawisk ( do$wiadczeri) losowych nazywamy zdarzeniami losowymi.

Jezeli doswiadczenie losowe powtérzymy n razy i przy tym w tych n doswiadczeniach
doktadnie k razy zaobserwujemy wynik A ( zdarzenie losowe A), to liczbe

k

n

nazywamy czestoscia zdarzenia losowego A w serii n doswiadczen.

W zjawiskach masowych czestosci wystepowania kazedego zdarzenia losowego maja ta wlasnosé,
ze wraz ze wrostem liczby n, te czestodci ”stabilizuja si¢” coraz bardziej ”blisko” pewnej
liczby charakterystycznej dla tego zdarzenia.
Ogodlnie w doswiadczeniach powtarzanych w tych samych warunkach dla kazdego doswiadczenia,
gdy mozliwe sg dwa wyniki, liczba ” charakterystyczna” jest bliska polowie liczby doswiadczen.
Wtedy czestosci

kn

—_— =
n

5 n:152737"';

NN

1
daza do > gdy liczba doswiadczen n — oo dazy do nieskoézonosci.
Przyklad 22.1 Na przyktad rzucajgc symetryczng monetg n = 100, 200 lub wiecej razy
zaobserwujemy okoto potowe reszek i okoto potowe ortow.
Nizej podane wyniki w 100 i 200 rzutach moneta wskazuja na stabilizacje czestosci ”blisko”

3 dla ilosci doswiadczenn n > 200.
(22.1)
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Tablica
Ilo$¢ rzutéw | liczba reszek | liczba orléow | czesto$¢ | czesto$é—
i K N R R
100 61 39 0.61 0.39—
200 102 98 0.51— 0.41
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22.2 Zdarzenia elementarne

W kadym do$wiadczeniu losowym mozemy wyrdzni¢ najprostrze wyniki zwane zdarzeniami
elementarnymi.
Zbioér zdarzen elementarnych oznaczamy litera €.

Przyklad 22.2 Rzucajgc monetq, mozliwe sq¢ dwa wyniki reszka lub orzel, innych mozliwosci
nie ma. Zbiorem zdarzen elementarnych jest zbior

Q= {wl, (.«)2}

ztozony z dwdch zdarzen elementarnych wi, ws, gdzie zdarzenie elementarne wi zachodzi,
gdy w rzucie monetq pojawi sie reszka, zdarzenie elementarne we zachodzi, gdy pojawi sie
orzel.

Prawdopodobienistwo to jest liczba wokol, ktérej stabilizuje sig czgstosé, gdy ilos¢ doswiadczen
losowych zmiarza do niskonczonosci

Nizej stabilizacje czestosci wokdt liczby prawdopodobieristwa wstepnie opiszemy na wzor-
cowych przyktadach.

Rzut moneta. Zaczynamy od najprostrzego doswiadczenie rzutu moneta. Rzucajac
moneta, mozliwe sa dwa wyniki reszka lub orzel, innych mozliwosci nie ma.

Pytamy, jakie szanse mamy, zeby pojawita si¢ reszka ?

Z dwo6ch mozliwych wynikow reszka, orzel, jeden jest dla reszki i jeden jest dla orta. Zatem

szansa pojawienia sie reszki réwna jest 3 oraz pojawienia sie¢ orta réwniez réwna jest 5

Jezeli wynik pojawienia sie reszki oznaczymy litera A, a wynik pojawienia sie orla litera B to
prawdopodobieristwo pojawienia sig reszki oznaczamy symbolem P(A), a prawdopodobienistwo
pojawienia si¢ orta symbolem P(B).

Wtedy piszemy

1
Prawdopodobieristwo 3 oznacza, ze w duzej ilosci rzutéw oczekujemy polowe reszek i potowe

ortow.

Przyklad 22.3 Policz ile razy pojawi sie reszka i ile razy pojawi sie orzet w 10-ciu rzutach
monetg.

Zal6zmy, ze reszka pojawila sie za pierwszym, piatym, ésmym i dziesiatym rzutem, razem
4 razy, natomiast orzel pojawil sig¢ 6 razy.
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Zdarzenie pojawienia sie reszki oznaczamy litera A, zdarzenie pojawienia si¢ orta oznaczamy
litera B.
Obliczamy czesto$¢ pojawienia sie reszki

4 zdarzenia sprzyjajace 4 2

tosc(A) = —_—_=z
Czestosc(4) 10 zdarzen mozliwych 10 5

Podobnie obliczamy czestosé pojawienia sig orla jako stosunek 6-ciu zdarzen sprzyjajacych
do wszystkich 10-ciu zdarzen mozliwych

Czestosc(B) 6 zdarzen sprzyjajacych 6 3
zestosc = ===
10 zdarzen mozliwych 10 5

Przyklad 22.4 W klasie byto 20 uczniow. Kazdy uczen rzucit symetryczng monetg 50
razy. Nizej w tablicy 22.2 podane sq czestosci wypadniecia reszki w 100 ¢ 1000 rzutow.

(22.2)
Tablica
Liczba rzutéw | liczba reszek | liczba ortéw | czestos¢ | czesto$é—
n k n-k % ”Tfk—
100 54 46 0.54 0.45—
1000 517 483 0.517— 0.483

Widzimy, ze czesto$¢ pojawienia sie reszki na 100 rzutéw moneta réwna jest 0.54, natomiast
na 1000 rzutéw rowna jest 0.517. Czestos¢ 0.517 na 1000 rzutéw blizsza jest liczbie charak-
terystyczne réwnej 0.5 niz czgstosé 0.54 na 100 rzutéw moneta w tym przyktadzie.

Ta zaobserwowana prawidlowos¢ polegajaca na tym, ze czgsto$¢ zajécia zdarzenia losowego
jest "stabilna” okolo jakiejs statej wartosci, gdy ilo$¢ powtdrzen doswiadczenia losowego jest
duza, lezy u podstaw pojecia prawdopodobienistwa.

Nizej wyjasnimy jeszcze takie pojecia jak
e zdarzenia roziaczne - wykluczajace
e zdarzenie pewne
e zdarzenie niemozliwe
e prawdopodobienstwo zdarzen

Dalej oznaczmy litera A zdarzenie pojawienia si¢ reszki, litera B zdarzenia pojawienia sie
orla w rzucie moneta.

Zdarzenia A i B sa rozlaczne-wykluczajace sie, poniewaz zajscie zdarzenia A wyklucza
zajscie zdarzenia B.

Sume-alternatywe zdarzeti A lub B, piszemy

AUB
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Obliczamy czgstos¢ alternatywy zdarzen rozlacznych
2 3
Czestosc(A U B) = Czestosc(A) + Czestosc(B) = 5 + 5= 1

Czestosé alternatywy zdarzen roztgeznych A i B réwna jest sumie czesto$ci zdarzenia A i
zdarzenia B.

Podobnie obliczamy prawdopodobieristwo alternatywy zdarzen rozitacznych.

P(AUB):P(A)+P(B):%+%:1

Prawdopodobieristwo alternatywy zdarzen roztgcznych A i B réwna jest sumie prawdopodobieristwa
zdarzenia A i zdarzenia B.

W rzucie moneta pojawienie sie reszki lub orla jest zadarzeniem pewnym, ktérego praw-
dopodobienistwo rowne jest 1.

Natomiast zdarzenie, ze w rzucie moneta nie pojawi sie ani reszka ani orzel jest zdarzeniem
niemozliwym.

Prawdopodobienistwo zdarzenia niemozliwego réwne jest 0

Przyklad 22.5 Rozpatrzmy doswiadczenie rzutu kostkq o ksztalcie szescianu foremnego, na
ktorego Scianach sg oczka od 1 do 6.

W doswiadczeniu rzutu kostka odczytujemy ilos¢ oczek na kostce. Mozliwy jest jeden z
szedciu odczytéw

1 oczko, 2 oczka, 3 oczka, 4 oczka, 5 oczek i 6 oczek

nastepujacych zdarzen elementarnych

zdarzenia wi, gdy pojawi sig¢ 1 oczko
zdarzenie wo, gdy pojawi si¢ 2 oczka
zdarzenie ws, gdy pojawi si¢ 3 oczka
zdarzenie wy, gdy pojawi si¢ 4 oczka
zdarzenie ws, gdy pojawi si¢ 5 oczek
zdarzenie wg, gdy pojawi si¢ 6 oczek

Zatem w jednym rzucie kostka jest 6 mozliwych wynikéw
1 oczko, 2 oczka, 3 oczka, 4 oczka, 5 oczek, 6 oczek

Szansa pojawienie sig¢ kazdej ilosci oczek jest taka sama w stosunku do 6 wynikéw mozliwych.
1

To prawdopodobienstwo réwne 5 piszemy

P(wl):é, P(WQ):é
Plos) =3,  Pla)=g¢
P(w5)_é, P(WG)—é
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Zal6zmy, ze wykonano N = 100 rzutéw kostka i zapisano liczbe oczek

Zdarzenie wy pojawilo sie 17 razy, to znaczy, 1 oczko pojawilo sie 17 razy
Zdarzenie wy pojawilo sie 16 razy, to znaczy, 2 oczka pojawito sie 16 razy
Zdarzenie w3 pojawilo sie 17 razy, to znaczy, 3 oczka pojawito sie 17 razy
Zdarzenie wy pojawilo sie 18 razy, to znaczy, 4 oczka pojawilo sie 18 razy
Zdarzenie ws pojawilo sig 15 razy, to zmaczy 5 oczek pojawilo si¢ 15 razy
Zdarzenie wg pojawilo sig 17 razy, to znaczy 6 oczek pojawilo si¢ 17 razy

W tym doswiadczeniu czestoscia pojawienia sie jednego z szeSciu wynikéw sa nastepujace
ilorazy:
17 zdarzen sprzyjajacych 17

C'zest = =—=0.17
zestose(w) 100 zdarzen mozliwych 100
16 zdarzen sprzyjajacych 16
Czest = =—=0.16
zestose(wsz) 100 zdarzen mozliwych 100
17 zdarzen sprzyjajacych 17
t = =—=0.1
Czestosc(ws) 100 zdarzen mozliwych 100 0.17
18 zdarzen sprzyjajacych 18
Czest = =—=0.18
zestose(ws) 100 zdarzen mozliwych 100
15 zdarzen sprzyjajacych 15
t = =—=0.1
Czestosc(ws) 100 zdarzen mozliwych 100 0.15
17 zd ja;j h 1
Czestosc(ws) = 7 zdarzen sprzyjajacyc _ 7 — 016

100 zdarzen mozliwych 100
Zbior
Q= {wla w2, W3, W4, Ws, WG}

jest zbiorem wszystkich zdarzen elementarnych rozlacznych - wykluczajacych.
Dlatego alternatywa zdarzenl elementarnych
A=wUwy UwszUws Uws Uwsg

jest zdarzeniem pewnym.
Prawdopodobienistwo zdarzenia pewnego A réwne jest 1, piszemy

P(A)=P(w Uws Uws Uwg Uws Uwg) =1
Rowniez czesto$¢ zdarzenia pewnego réwna jest 1, poniewaz rowna jest sumie czestosci
elementarnych

717+16+17+18+15+1771
© 100 100 100 100 100 100

Czestosc(w)

22.3 Zdarzenia jednakowo prawdopodobne
W powyzszych doswiadczeniach rozpatrywalismy zdarzenia losowe jednakowo prawdopodobne.
W rzucie moneta pojawienie sie orla lub reszki zachodzi z réwnym prawdopodobienistwem

1
3 W rzucie kostka prawdopodobienstwo pojawienia sie

1 oczka, 2 oczek, 3 oczek, 4 oczek, 5 oczek, 6 oczek

1

jest to samo i réwne 5
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Nizej podajemy definicje Laplace’a prawdopodobienstwa dla N zdarzen losowych réwno-
prawdopodobnych

Defimnicja 22.1 JeZeli dla danego doswiadczenia losowego, zbior zdarzen elementarnych
sktada sie z N zdarzen rownoprawdopodobnych, to prawdopodobienistwo zdarzenia losowego
A rowne jest

P(4) = +

gdzie n jest iloScig zdarzen sprzyjajecych zdarzeniu A.
Rozpatrzymy nastepujacy przyklad:

Przyklad 22.6 Z talii 52 karty wyciggnieto losowo jedng karte. Oblicz prawdopodobienstwo
P(A) nastepujgcych zdarzeri:

(i) Zdarzenie A polega na wyciggnieciu asa.
(i) Zdarzenie A polega na wyciggnieciu pika.
(#ii) Zdarzenie A polega na wyciggnieciu kiera I lub trefla.

Rozwiazanie (i). Zbiér zdarzen elementarnych sktada sie z N = 52 zdarzeri réwnoprawdopodobnych.

Prawdopodobienistwo wyciagnigcia kazdej karty jest to samo i réwne 5k

Poniewaz w talii sa 4 asy, dlatego liczba zdarzen sprzyjajacych wyciagniecia asa jest n = 4.
Zatem prawdopodobienistwo wyciagniecie asa jest réwne

4 1

Rozwiazanie (ii). Zbiér zdarzeni elementarnych sktada sie z N = 52 zdarzeri réwnoprawdopodobnych, Prawdopodobieris
wyciagniecia kazdej karty jest to samo i réwne Tk
Poniewaz w talii jest 13 pikéw, dlatego liczba zdarzenl sprzyjajacych wyciagnigcia pika jest
n = 13. Zatem prawdopodobieristwo wyciagniecia pika jest réwne
13 1

PA)=5=1

Rozwiazanie (iii). Zbiér zdarzeri elementarnych sktada si¢ z N = 52 zdarzeri réwnoprawdopodobnych.
1

Prawdopodobienistwo wyciagnigcia kazdej karty jest to samo i réwne Bk

Poniewaz w talii jest 13 kieréw i 13 trefli, dlatego liczba zdarzen sprzyjajacych wyciagniecia

kiera lub trefla jest

n=13+13 =26
Zatem prawdopodobienstwo wyciagniecie kiera lub trefla jest réwne

26 1
PA)= = =3

Rozpatrzmy jeszcze jeden przyklad zdarzen losowych.

Przyklad 22.7 Na liscie w szkole jest 250 dziewczgt © 200 chtopcow. Wybrano z listy losowo
jedno nazwisko. Jakie jest prawdopodobieristwo zdarzenia A, Ze to jest
(a) dziewczynka, (b) chlopiec.
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Rozwiazanie (a). Razem na liscie jest 250+ 200 = 450 uczniéw. Zbiér wszystkich zdarzen
elementarnych
Q= {wi, w2, w3, -, was0}

sktada sie z jest N = 450, zdarzen. Kade z tych zdarzen elementarnych w;, ¢ = 1,2,3,---,450
polega na wylosowaniu z listy 450 uczniéw jedno nazwisko.
Liczba zdarzen sprzyjajacych, ze to jest dziewczynka rowna sig n = 250. Prawdopodobienistwo,

ze to jest dziewczynka
250 5

PA) =507

Rozwiazanie (b). Podobnie obliczamy prawdopodobienistwo wybrania z listy nazwiska
chlopca. Razem na lidcie jest 250 + 200 = 450 uczniéw. Zbidr wszstkich zdarzen elemen-
tarnych

Q= {wi,w2,ws, -+, was0}

sklada si¢ z jest N = 450, zdarzenl elementarnych. Kade z tych zdarzen elementarnych
wy, 1 =1,2,3,---,450 polega na wylosowaniu z listy 450 uczniéw jedno nazwisko.
Liczba zdarzen sprzyjajacych, ze to jest chlopiec réwna sie n = 200. Prawdopodobienstwo,

ze to jest chlopiec
200 4

PA=7350"35

22.4 Zdarzenia losowe zlozone

Alternatywa, koniukcja i réznica zdarzen losowych jest zdarzeniem losowym zlozonym.
Zatem, wykonujac te operacje na zbiorze zdarzen elementarnych, otrzymujemy zdarzenia
losowe zlozone.
Na przyklad, w do$wiadczeniu z rzutem kostka zbiorem wszystkich zdarzen elementarnych
jest zbior

Q = {w1, wa,ws, Wy, ws, we }

W tym zbiorze Q) wyrézniamy nastepujace podzbiory jako zdarzenia zlozone:

e Zdarzenie pewne okreslone przez zbiér
Q == {wla w2, W3, W4, Ws, (.()6}

wszystkich zdarzen elementarnych, ktérego pradopodobieristwo P(2) = 1, poniewaz
kazde ze zdarzen elementarnych

w1, W2, W3, W4, Ws, We

sprzyja zdarzeniu pewnemu §2.
Przawdopodobienstwo kazdego z tych zdarzen elemntarnych

1
Pw)=¢. i=1,2,3,456

e oczekiwany wynik zdarzenia A to parzysta ilo$¢ oczek. To zdarzenie losowe zachodzi,
jezeli zdarzy sie wa lub wy lub wg. To znaczy, gdy prawdziwa jest alternatywa

wo Uwyg Uwg
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Zatem zdarzenie A jest okre$lone przez podzbiér

A = {wa,wy,ws} CQ
zbioru € wszystkich zdarzen elementarnych. Zdarzenia elementarne wa, wy, we sprzy-
jaja zajsciu zdarzenia A.
Prawdopodobieinstwo tego zdarzenia

mm:%:

e oczekiwany wynik zdarzenia A to ilo$¢ oczek mniejsza niz 3.

To zdarzenie losowe zachodzi, jezeli wynik rzutu kostka jest jedno oczko lub dwa oczka,
gdy prawdziwa jest alternatywa
w1 U wo

Zatem zdarzenie A jest okre$lone przez podzbiér
A={wi,wa} CQ

Zdarzenia elementarne wi,ws sprzyjaja zdarzeniu A
Prawdopodobienstwo zajscia tego zdarzenia

2 1
P(A)=-==
e oczekiwany wynik zdarzenia A to ilo$¢ oczek wigksza od 3. To zdarzenie losowe za-
chodzi, jezeli zdarzy sie¢ w4 lub ws lub wg, gdy pradziwa jest alternatywa ws Uws U wg.
Zatem zdarzenie A jest okre$lone przez podzbiér

A = {ws4,ws,we} C

zbioru ) wszystkich zdarzen elementarnych. Kazde ze zdarzen wg,ws,ws sprzyja
zdarzeniu A
Prawdopodobienstwo tego zdarzenia

3 1
P(A) ===

22.5 Operacje na zdarzeniach losowych

Podstawowg relacja w zbiorach jest ralacja przynaleznosci elementu do zbioru.

Relacje, ze element x nalezy do zbioru 2, piszemy z € 2. Rdéwniez relacje, ze x nie jest
elementem zbioru {2, piszemy x ¢ Q.

Zdarzenia losowe rozumiemy jako podzbiory zbioru zdarzen elementarnych. Operacje na
zbiorach takie jak suma, iloczyn i réznica zbioréw odnosza sie réwniez do dziatan na zdarzeni-
ach losowych, poniewaz sa to dzialania na podzbiorach zbioru zdarzen elentarnych.

22.6 Zdarzenie przeciwne

. . . / . . /
Zdarzenie przeciwne do zdarzenia A oznaczamy symbolem A . Zdarzenie przeciwne A
zachodzi, jezeli nie zaszlo zdarzenie losowe A.
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Na przyktad, niech zdarzenie A polega na uzyskaniu parzystej liczby oczek w rzucie kostka.
Wtedy
A= {(.()2, Wy, WG}

jest podzbiorem zbioru zdarzen elementarnych
Q= {wr,ws,ws, ws, ws,ws}, ACQ
Zdarzenie przeciwne A’ zachodzi, jezeli pojawi sie nieparzysta liczba oczek
A= {wr,ws, ws}
Podzbisr A’ jest réwniez podzbiorem zbioru zdarzen elementarnych
Q = {w1,ws,ws, wy, ws,ws }, A ca

Zauwazmy, ze zdarzenie przeciwne réowne jest réznicy zbioru wszystkich zdarzen elemen-
tarnych
Q = {w1, w3, w3, ws, ws, we }

i wydarzenia A
Zatem mamy

!’
A =Q—A={w,ws,ws,ws,ws,ws } — {wa,ws,ws} = {w1,ws, ws}

22.7 Alternatywa zdarzen
Alterternetywa zdarzen losowych A i B jest zdarzenie
C=AUB

ktére zachodzi wtedy i tylko wtedy, gdy zachodzi zdarzenie A lub zachodzi zdarzenie B.
Na przyktad: niech zdarzeniem A bedzie liczba oczek na kostce wieksza od 5, natomiast
zdarzeniem B niech bedzie liczba oczek mniejsza od 2.

Jasne, ze zdarzenie

A:(.UG

natomiast zdarzenie
B = w1

Alternatywa tych zdarzen jest podzbidr
C:AUB = {wl,wg}
zbioru zdarzen elementarnych (). Piszemy

C=AUBCqQ

22.8 Koniukcja zdarzen
Koniukcjg zdarzen losowych A i B jest zdarzenie
D=AnNB,

ktére zachodzi wtedy i tylko wtedy, gdy zachodzi zdarzenie A i jednoczesnie zachodzi zdarze-
nie B.
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Na przyklad, niech zdarzeniem A bedzie liczba oczek wigksza od 3, zdarzeniem B niech
bedzie liczba oczek mniejsza od 5.
Jasne, ze zdarzenie A okresla podzbiér

A = {wy,ws,ws} C Q,
oraz zdarzeniem B okresla podzbiér
B = {w1,ws,ws,ws} CQ
Koniukcja A N B jest zdarzeniem
D =ANB = {ws,ws,ws} N{wr,ws,ws,ws} = {wa}

ktére sktada sie z tych samych zdarzeri elmentarnych réwnoczes$nie nalezacych do A i do B.

22.9 Zdarzenia rozlaczne

Zdarzenia A i B wylaczaja sie, jezeli ich koniukcja jest zbiorem pustym. To znaczy ANB = 0.
Niech na przyklad, w doswiadczeniu rzutem kostka, niech zdarzenie

A ={w1,we}
oznacza pojawienie si¢ jednego oczka lub szesciu oczek, natomiast zdarzenie
B = {ws, wa, w5}

oznacza pojawienie sig¢ trzech oczek lub czterech oczek lub pieciu oczek.
Te zdarzenia sa roziaczne, gdyz ich koniukcja

ANB={w,ws} N{ws,ws,ws} =0

jest zbiorem pustym zdarzen.

22.10 Réznica zdarzen losowych

Réznica zdarzen losowych A i B to jest zdarzenie
E=A-B
zachodzi wtedy gdy zdarzenie A zachodzi, natomiast zdarzenie B nie zachodzi.
Na przyktad, niech zdarzeniem A bedzie parzysta ilosé oczek, natomiast zdarzeniem B niech

bedzie ilo$¢ oczek podzielna przez 3.
Jasne, ze zdarzenie A zachodzi, jezeli wylosujemy element podzbioru

{(.()2, W4, UJG} C Q

zbioru )
natomiast zdarzenie B nie zachodzi, jezeli nie wylosujemy elementu podzbioru

{w:;, (.«)6} c N
zbioru €.
Zatem réznica zdarzen losowych A i B to jest zdarzenie
E=A-B

zachodzi, jezeli wylosujemy element podzbioru A i jednoczesnie nie wylosujemy elementu
podzbioru B. Wtedy zdarzenie

E=A—-B={ws,wy,ws} — {ws,ws} = {wa,ws} C Q
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22.11 Przyklady zdarzen losowych

Nizej podajemy przyklady zdarzen losowych i zdarzen sprzyjajacych okreslonemu zdarze-
niu losowemu. Podajemy réwniez opis operacji: alternatywy i koniukcji zdarzen losowych
oraz prawdopodobienstwo zdarzen sprzyjajacych i zdarzen przeciwnych do danego zdarzenia
losowego.

Przyklad 22.8 Ze zbioru liczb
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17.18,19, 20}

wybieramy losowo jedng liczbe. Oblicz prawdopodobieristwo wylosowania z tego zbioru liczby
podzielnej przez 5.

Rozwiazanie (22.8). Zbiér wszystkich zdarzenn mozliwych
Q=1{1,2,3,4,5,6,7,8,9,10,11, 12, 13, 14, 15, 16, 17.18, 19, 20}

sklada si¢ N = 20 zdarzen elementarnych.
Zbioér zdarzen sprzyjajacych
A= {5,10,15,20}

sktada sie z k = 4 liczb podzielnych przez 5.
Zatem prawdopodobienstwo wylosowania liczby podzielnej przez 5 ze zbioru €2 wszystkich
mozliwych zdarzen jest réwne

k 4 1
P A = —= — = —
(4) N 20 5
Odpowiedz: Prawdopodobienstwo wylosowania ze zbioru €2 liczby podzielnej przez 5 jest
1

rowne 5

Przykilad 22.9 Ze zbioru liczb
{1,2,3,5,7,9}
wybieramy losowo dwie liczby. Oblicz prawdopodobienstwo wylosowania dwoch liczb z ktorych

co najmniej jedna jest podzielne przez 3.

Rozwiazanie (22.9). W tym przykladzie zdarzeniemi elementarnymi beda wszystkie pary
liczb podane w tablicy

L1, (L2, (1L3), (L5, (L7, (1,9),
(2,1), (2,2), (23), (25, 7, (29),
(3,1, (3,2, (.3, (3.5, (.7, (39),

9= 6 5.2, 5.3), (5.5, (5.7, (5.9).
(71, (7,2), (7.3), (7.5, (7.7, (7,9,
(9,1), (9,2), (9,3), (9,5), (9,7), (9,9)

3 3 3 3 3

N=6 x 6

Zatem zbior wszystkich zdarzen elementarnych sklada si¢ z N = 36 zdarzen mozliwych.
Zbiér zdarzen sprzyjajacych to sa te pary liczb wybrane z tablicy (22.9) w ktérych co
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najmniej jedna liczba jest podzielna przez przez 3.
Zatem zbidr zdarzen sprzyjajacych zdarzeniu A okreslony w tablicy

(1,3), (1,9)

(2,3), (2,9),

(3,1, (3.2), (3.3, (3.5, (.7, (3.9,

h= (5,3), (5,9),
(7,3), (7,9),

(9,1, (9.2), (9.3), (9,5, (9,7), (9,9,

k=20
sklada si¢ z k = 20 par w ktorych co najmniej jedna z liczb jest podzielna przez 3.
Zatem prawdopodobienistwo wylosowania dwéch liczb ze zbioru liczb {1,2,3,5,7,9} z ktérych
co majmnie jedna jest podzielna przez 3 jest rowne

py_ k20 5
N 3 9

Przyklad 22.10 Ze zbioru liczb
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17.18,19, 20}

wybieramy losowo jedng liczbe. Oblicz prawdopodobieristwo wylosowania liczby podzielnej
przez 2 1 przez 3.

Rozwiazanie (22.10). Zbidér wszystkich zdarzer losowych
Q=1{1,2,3,4,5,6,7,8,9,10,11, 12, 13, 14, 15, 16, 17.18, 19, 20}

sklada si¢ z N = 20 zdarzeni losowych elementarnych.
Zbioér zdarzen losowych sprzyjajacych zdarzeniu

A={6,12,18},

ze wylosowana liczba jest podzielna przez 2 i przez 3, sklada sie z k = 3 liczb.
Zatem prawdopodobienistwo wylosowania liczby podzielnej przez 2 i przez 3 ze zbioru 2 jest
réwne

Przyklad 22.11 Ze zbioru liczb

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17.18,19, 20}
wybieramy losowo jedng liczbe. Oblicz prawdopodobieristwo wylosowania liczby mniejszej 6.
Rozwiazanie (22.11). Zbidér wszystkich zdarzeri losowych

Q=1{1,2,3,4,5,6,7,8,9,10,11, 12,13, 14, 15, 16, 17.18, 19, 20}

sklada si¢ z N = 20 zdarzeni losowych elementarnych.
Zbioér zdarzen losowych sprzyjajacych zdarzeniu

A = {]" 2’ 3’4’ 5}’
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ze wylosowana liczba jest mniejsza od 6, sklada sig¢ z k = 5 liczb.
Zatem prawdopodobienstwo wylosowania liczby mniejszej od 6 ze zbioru {2 jest réwne

k 5 1
P(4) = N 20 4
Przykiad 22.12 .
(1)  Podaj zbidr zdarzen wszystkich elementarnych w doswiadczeniu rzutem dwoma kostkami.
(#i)  Oblicz prawdopodobieristwo zdarzenia A pojawienia sie parzystej sumy liczby oczek w
rzucie dwiema kostkami.
(iii) Podaj zdarzenie przeciune A" do zdarzenia A.

Rozwiazanie (i) Mozliwe sa nastepujace wyniki:

e rzucajac pierwsza kostka otrzymamy 1, a natepnie rzucajac sze$¢ razy druga kostka,
dostaniemy liczbg oczek 1 lub 2 lub 3 lub 4 lub 5 lub 6.
lub

e rzucajac pierwsza kostka otrzymamy 2, a natepnie rzucajac sze$¢ razy druga kostka,
dostaniemy liczbg oczek 1 lub 2 lub 3 lub 4 lub 5 lub 6.
lub

e rzucajac pierwsza kostka otrzymamy 3, a natepnie rzucajac sze$¢ razy druga kostka,
dostaniemy liczbg oczek 1 lub 2 lub 3 lub 4 lub 5 lub 6.
lub

e rzucajac pierwsza kostka otrzymamy 4, a natepnie rzucajac sze$¢ razy druga kostka,
dostaniemy liczbg oczek 1 lub 2 lub 3 lub 4 lub 5 lub 6.
lub

e rzucajac pierwsza kostka otrzymamy 5, a natepnie rzucajac sze$¢ razy druga kostka,
dostaniemy liczbg oczek 1 lub 2 lub 3 lub 4 lub 5 lub 6.
lub

e rzucajac pierwsza kostka otrzymamy 6, a natepnie rzucajac sze$¢ razy druga kostka,
dostaniemy liczbg oczek 1 lub 2 lub 3 lub 4 lub 5 lub 6.

Zatem wynikiem tego doswiadczenia jest zbior wszystkich mozliwych par zdarzen elemen-
tarnych:

3 3 3 3 3 3

L1, (L2), (1L3), (L4), (1,5), (16),
(2,1), (2,2), (2,3), (2.4), (2,5), (2,6),
(3,1), (3,2), (3,3), (3.4), (3,5), (3,6),

) @, @2, 43), (44), (45, 46),
(5,1, (5,2), (5,3), (5.4), (55), (56)
(6,1), (6,2), (6,3), (6,4), (6,5, (6,6)

6,1), (6,2), (6,3), 6,5), (6,6),

N=6x6
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Rozwiazanie (ii). W rzucie dwiema kostkami suma oczek jest parzysta, jezeli na pierwszej
i jednoczesnie na drugiej kostce pojawi si¢ parzysta ilos¢ oczek, albo jednoczes$nie na pier-
wszej 1 na drugiej kostce pojawi sig nie parzysta ilo$¢ oczek. Poniewaz wszystkich zdarzen
elementarnych jest 6 x 6 = 36, to zbiér zdarzen sprzyjajacych

(1,1), (1,3), (1,5),
(2,2), (2.4), (2.6),
(3.1), (3.3), (3.5),

YT @2), (4,4, (46),
(5.1), (5,4), (5,5),
(6,2), (6,4), (6,6),

36
ma > = 18 elementy. Zatem prawdopodobieristwo zdarzenie A, ze w sumie wypadnie

parzysta ilos¢ oczek jest réwne

L

36 2

Rozwiazanie (iii). Zdarzeniem przeciwnym do zdarzenia A w rzucie dwiema kostkami
bedzie nie parzysta suma oczek. To znaczy, ze na pierwszej kostce pojawi si¢ nieparzysta
liczba oczek, natomiast na drugiej kostce pojawi sie parzysta ilos¢ oczek, albo odwrotnie,
na pierwszej kostce pojawi sie parzysta ilos¢ oczek, natomiast na drugiej kostce pojawi sie
nie parzysta liczba oczek. Zbidr zdarzen sprzyjajacych zdarzeniu przeciwnemu

(1,2),
2,1

1,4), (1,6),

2

wW

2

Ut

3 3 3 3 3 3

)
W

3, 3, 3,

(=2}

3

)
) : ,
);
)
)

4

—_

4

wW

4

Ut

3 3 3 3 3

)
W

5, 5, 5,

(=2}

3 3 3

(1,4), (1,6)
(2,1), (2,3), (2,5)
(3,2), (3,4), (3,6)
CERTCSY W), 49, (45)
(5,2), (5,4), (5,6)
(6,1), (6,3), (6,5)

6,1), (6,3), (6,5

3 3

Poniewaz wszystkich zdarzen elementarnych jest 6 x 6 = 36, to zdarzen sprzyjajacych zdarze-
36
niu przeciwnemu jest 3= 18.

. 7’ . . / . . . .
Zatem prawdopodobienistwo zdarzenia przeciwnego A , ze w sumie wypadnie nie parzysta
ilos¢ oczek jest réwne

/ 1 1
PA) = 18 ==
36 2
Przyklad 22.13 Oblicz prawdopodobieristwo wylosowania w totolotku ze zbioru liczb {1, 2, ...,49}
(i) szedciu liczb, (ii) pietciu liczb, bez powtdrzen.

Rozwiazanie (i). Najpierw ustalmy zbiér zdarzen elementarnych. Intuicyjnie jasne, ze
zdarzeniem elementarnym bedzie szes¢ liczb

{nla n2,ng, N4, Ns, TLG}
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wybranych losowo ze zbioru liczb {1,2;...,49}.

Pytanie ile bedzie réznych széstek ze zbioru 49-ciu liczb?.

Rozumiemy, ze dwie széstki sa rdézne, jezeli roznia sie co najmiej jedna liczba. Prosta
odpowiedZ na to pytanie znajdujemy w kombinatoryce. Mianowicie, ilo$¢ réznych szdstek
rowna jest ilodci kombinacji z 49-ciu liczb po sze$¢ liczb. Ta liczbe kombinacji okreslamy

wzorem 1 49' 49'
(6> 6l = (49 6) 6l w3l OO0

Zatem, zbiér wszystkich kombinacji {n1,na, ns, nq, ns, ng} szesciu liczb wybranych z 49-ciu
liczb

Q ={w={n1,n2,n3,n4,n5,n6},1 <m; <49, i=1,2,3,4,56.}

jest zbiorem wszystkich zdarzenl elementarnych.
Odpowiedz: Niech A € Q oznacza zdarzenie wylosowania szesciu liczb ze zbioru

Q={1,2,3,4,5, 48,49}

Tylko jedna széstka liczb wygrywa. ktéra sprzyja zdarzeniu A. Zatem prawdopodobieristwo
zdarzenia A jest réwne

1
13983816
Rozwiazanie (ii). Niech sze$é¢ liczb {k1, ko, k3, k4, ks, ke} bedzie wynikiem losowania to-
tolotka. Wiemy z rozwiazania (i), ze zbiér zdarzen elementarnych

P(A)

Q= {w={n1,n2,n3,n4,n5,n6},1 <m; <49, i=1,2,3,4,5,6.}

zawiera (%) = 13983816 clement6w.
Oznaczmy przez A zdarzenie, ze gracz wytypowal liczby {s1, s2, s3, 84, 85, S6} wsrdd ktérych
pieé liczby sa trafione. To znaczy, ze w tym zbiorze liczb

{Sla 52, 83, 54, S5, 56}

pieé liczb sa ze zbioru {ki, ke, ks, k4, k5, ke}-

Teraz policzmy ile jest zdarzen sprzyjajacych zdarzeniu A. Najpierw, zuwazmy, ze jedna
liczba nie trafiona moze by¢ ki lub ko lub k3 lub k4 lub ks lub k. Zatem, jedna z pieciu
liczb trafionych mozemy zastapi¢ liczba nie trafiona otrzymujac inna piatke liczb trafionych.
Taka zamiane mozna dokonaé na (?) = 6 szes¢ sposobow.

W ten sposéb znajdujemy sze$é réznych széstek jako zdzarzenia sprzyjajacych zdarzeniu A.
Ponadto, pozostalo 43 liczby nie zo staly wylosowane w totolotka. Kazda z tych 43 nie wyty-
powanych w grze mozna wymieni¢ na jedna z szesciu nie trafionych przez gracza. Zatem,
zdarzen sprzyjajacych zdarzeniu A wylosowania poprawnych pieciu liczba jest 6 % 43 = 258.
Oznacza to, ze prawdopodobienstwo wylosowania poprawnych 5 liczby z wylosowanych
szedciu liczb réwne jest

258
P(A)= ————=0. 184
(4) 13983816 000001845

22.12 Zadania

Zadanie 22.1 .

(1) Wykonaj 50 rzutéw monetg i policz ilos¢ reszek w 10, 20, 30, 40 i 50 rzutach.

Oblicz czeto$ci pojawienia sie reszki @ orta dla 10, 20, 30, 40 7 50 rzutéw monetq.

(i) Wskaz liczbe charakterystyczng dla tego doswiadezenia okolo ktdrej stabilizujg sie oblic-
zone czestosci.
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Zadanie 22.2 Wykonaj 10 rzutow dwoma jednakowymi monetami.
(1)  Oblicz czestosé pojawienia sie dwdch orléw w 10 rzutach.
(i)  Oblicz czestosé pojawienia sie orta i reszki w 10 rzutach.

Zadanie 22.3 Rozpalrz model probabilistyczny rzutu dwoma monetami jeden raz.
(1)  Oblicz prawdopodobieristwo pojawienia sie dwdch orldw.
(i)  Oblicz prawdopodobieristwo pojawienia si¢ orta i reszki.

Zadanie 22.4 Wykonaj 10 rzutow dwoma kostkami.

(1)  Oblicz czestosé pojawienia sie dwdch takich samych oczek.

(i)  Oblicz czestos$é pojawienia sie oczek, ktdrych suma réwna jest 4.
(7i1)  Oblicz czestosé pojawienia sie oczek, ktdrych suma réwna jest 7.

Zadanie 22.5 Rozpatrz model probabilistyczny rzutu dwoma kostkami szesciennymi jeden
raz.

(i)  Oblicz prawdopodobieristwo pojawienia si¢ dwdch takich samych ilosci oczek.

(i)  Oblicz prawdopodobieristwo pojawienia si¢ ilosci oczek, ktdrych suma réwna jest 4.
(#i1)  Oblicz prawdopodobieristwo pojawienia sie ilosci oczek, ktdrych suma réwna jest 12.

Zadanie 22.6 Ze zbioru liczb
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17.18,19, 20}

wybieramy losowo jedng liczbe. Oblicz prawdopodobieristwo wylosowania liczby podzielnej
przez 4.

Zadanie 22.7 Ze zbioru liczb
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17.18,19, 20}

wybieramy losowo dwie liczby, bez powtdrzen. Oblicz prawdopodobienstwo wylosowania liczby
podzielnej przez 8 lub 4.

Zadanie 22.8 Ze zbioru liczb
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17.18,19, 20}

wybieramy losowo jedng liczbe. Oblicz prawdopodobieristwo otrzymania liczby podzielnej
przez 3 1 przez 4.

Zadanie 22.9 Ze zbioru liczb
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17.18,19, 20}
wybieramy losowo jedng liczbe. Oblicz prawdopodobieristwo wylosowania liczby mniejszej 5.
Zadanie 22.10 Zbior zdarzer elementarnych
Q = {w1, wa,ws, Wy, ws, we }
(i)  Oblicz alternatywe i koniukcje zdarzen losowych ztozonych
A={wi,ws}, B={ws,we}

(#)  Oblicz prawdopodobieristwo zdarzenia A i zdarzenia B.
(13i)  Znajdz zdarzenia przeciwne A i B do zdarzen losowych A i B.
(iv) Oblicz prawdopodobieristwa zcdarzen losowych przeciwnych A i B .

Zadanie 22.11 Oblicz prawdopodobienstwo wylosowania w grze liczbowej ze zbioru liczb
{1,2,...,20} (i) pieciu liczb, (ii) czterech liczb, bez powtdrzenn.
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22.13 Aksjomatyczna definicja prawdopodobienstwa

Laplace’a definicja prawdopodobienstwa jako iloraz n zdarzen sprzyjajacych zdarzeniu losowemu

A do ilosci N wszystkich zdarzen elementarnych, w istocie ma swoje uzasadnienie w zbiorze
zdarzen elementarnych jednakowo prawdopodobnych. Mianowicie, jezeli wszystkie zdarzenia
elementarne sa rowno prawdopodobne, to znaczy, ze pierwsze zdarzenie elementarne pojawia
sie z prawdopodobieristwem p;, drugie z prawdopodobienistwem po, i tak dalej oraz N — te
zdarzenie elementarne pojawia si¢ zprawdopodobienstwem py i te prawdopodobienistwa sa
rowne

b1 =p2='"=DPN =D
wtedy
1
N
Skad otrzymamy prawdopodobienstwo jako iloraz n zdarzen sprzyjajacych zdarzeniu A do
wszystkich zdarzen elementarnych.

Bardziej ogélnym modelem prawdopodobienstwa jest definicja aksjomatyczna, ktéra obej-
muje rowniez zbiér zdarzenia elementarnych rézno prawdopodobnych.

Defimnicja 22.2 Oznaczmy przez ) zbior zdarzen elementarnych. Prawdopodobienstwem
zdarzenia losowogo A € Q nazywamy funkcje rzeczywistq P(A), ktdra spelnia nastepujgce
warunki:

(a) P(A) >0, dla kazdego zdaerzenia A € .

(b) Dla kazdej pary wytgczajgcej sie zdarzen losowych A, B € Q zachodzi réuwnosé; P(AUB) =
P(A) + P(B),49 — ciuliczb

(¢) P(w) =1.

Przyklad 22.14 Oblicz prawdopodobieristwo wylosowania w totolotku ze zbioru liczb {1, 2, ...

(i) sze$ciu liczb, (ii) pietciu liczb, (iii) czterech liczb

Rozwiazanie (i). Najpierw ustalmy zbiér zdarzen elementarnych. Intuicyjnie jasne, ze
zdarzeniem elementarnym bedzie sze$é¢ liczb {ni,nq, ng, ng, ns,ne}t wybranych losowo ze
zbioru liczb {1,2;...,49}, to znaczy n; € {1,2,...,49}, i = 1,2,3,4,5,6. Pytanie ile bedzie
roznych szostek ze zbioru 49-ciu liczb?. Rozumiemy, ze dwie szdstki sa rézne, jezeli roznia
si¢ co najmiej jedng liczba. Prosta odpowiedz na to pytanie znajdujemy w kombinatoryce.
Mianowicie, ilo$¢ réznych szdstek réwna jest ilosci kombinacji z 49-ciu liczb po szed¢ liczb.
Ta liczbe kombinacji okreslamy symbolem Newtona

49 49! 49!
(6) C 6! x(49—-6)! 6! x43! 13983816

Zatem, zbiér wszystkich kombinacji {n1, ns, ns, nq, ns, ng} szesciu liczb wybranych z 49-ciu
liczb
Q= {(4) = {nla n2,n3, N4, N5, nﬁ}; 1 <n; < 49; 1= 15 25 35 45 55 6}

jest zbiorem wszystkich zdarzen elementarnych.
Odpowiedz: Niech A € Q oznacza zdarzenie wylosowania szesciu liczb ze zbiru 2. Praw-
dopodobienstwo tego zdarzenia rowne jest

1
Pid) = 13983816

49}
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Zauwazmy, ze zgodnie z aksomatyczng definicja prawdopodobienistw funkcja P(A) okreslona
na zbiorze zdarzen elementarnych 2 spelnia warunki definicji. Mianowicie, mamy

1
PA) = ————
(&) P(A) = T5553810
tarne sa réwno-prawdopodobne.

>0, dla kazdego zdarzenia A € Q. Wszystkie zdarzenia elemen-

(b) Dla kazdej pary wylaczajacej sie¢ zdarzeni losowych A, B € ), jezeli zdarzenie A za-
chodzi to zdarzenie B nie zachodzi.

Wtedy
1
P(A)= —— P(B)=0.
@ = Toszser o PP
Zatem, mamy rownosé;
1
P(AUB)= ——— =P(A)+ P(B
(AU B) 13983816+O (4)+ P(B)
Podobnie, lub jezeli zdarzenie B zachodzi to zdarzenie A nie zachodzi.
Wtedy
1
P(A)=0 P(B)= —.
(A) =0, oraz P(B) = 755853576
Zatem, mamy réwnosé:
1
P(AUB) = ——— =P(A)+ P(B
(AU B) 0+13983816 (4)+ P(B)

(¢) Jezeli wybierzemy wszystkie mozliwe széstki, to wéréd nich pojawi si¢ napewno losowana
széstka. To znaczy, ze prawdopodobienistwo od wszystkich zdarzen elementarnych
P(Q)=1.

Rozwiazanie (ii). Niech sze$é liczb {k1, ko, k3, k4, ks, ke} bedzie wynikiem losowania to-
tolotka. Wiemy z rozwiazania (i), ze zbiér zdarzen elementarnych

Q= {w={n1,n2,n3,n4,n5,n6},1 <m; <49, i=1,2,3,4,5,6.}

zawiera (%) = 13983816 clement6w.

Oznaczmy przez A zdarzenie, ze gracz wytypowal liczby {s1, s2, s3, 84, 85, S6} wsrdd ktérych
pieé liczb jest trafnych. To znaczy, ze w tym zbiorze liczb {s1, so, s3, 4, S5, S¢} cztery liczby
jest ze zbioru {k1, ka, ks, k4, ks, ke¢}. Teraz policzmy ile jest zdarzen sprzyjajacych zdarzeniu
A. Najpierw, zuwazmy, ze jedna liczba nie trafiona moze by¢ ky lub kg lub k3 lub ky lub k5
lub kg. Zatem, jedna z pieciu liczb trafionych mozemy zastapié liczba nie trafiona otrzymujac
inna piatke liczb trafionych. Taka zamiane mozna dokona¢ na (?) = 6 szes¢ sposobow. W
ten sposéb znajdujemy szesé¢ réznych széstek jako zdzarzenia sprzyjajacych zdarzeniu A.
Ponadto, pozostalo 43 liczby nie wylosowane w totolotka. Kazda z tych 43 nie wytypowanych
W grze mozna wymieni¢ na jedna z szesciu nie trafionych przez gracza. Zatem, zdarzen
sprzyjajacych zdarzeniu A wylosowania poprawnych pieciu liczba jest 643 = 258. Oznacza
to, ze prawdopodobienstwo wylosowania poprawnych 5 liczby z wylosowanych szesciu liczb

rowne jest

258
PA) = ———
(4) 13983816
Rozwiazanie (iii). Niech szes$é¢ liczb {k1, ko, k3, k4, k5, ke} bedzie wynikiem losowania to-
tolotka. Wiemy z rozwiazania (i), ze zbiér zdarzen elementarnych

= (0.00001845

Q= {(4) = {n1;n2;n3;n4;n5an6}; 1 <n; < 49; 1= 15253545556'}
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zawiera () = 13983816 clement6w.
Oznaczmy przez A zdarzenie, ze gracz wytypowal liczby {s1, s2, $3, 84, 85, S6 } wsrdd ktérych
cztery liczby jest trafne. To znaczy, ze w tym zbiorze liczb {s1, so, s3, S4, S5, S¢} cztery
liczby jest ze zbioru {ki, ke, ks, k4, ks, ke}. Teraz policzmy ile jest zdarzen sprzyjajacych
zdarzeniu A. Najpierw, zuwazmy, ze dwie liczby nie trafione to moga by¢ pary ki, ks lub
k1,ks lub ..., lub k4, k5 lub ...,lub ks, kg Ilosé tych par réwna jest (g) = 15. Zatem, dwie
z czterech liczb trafionych mozemy zastapi¢ liczbami wylosowanymi w totolotku, ale nie
trafionionymi przez gracza. W ten sposob otrzymujemy inng czwérke liczb trafionych. Taka
zamiane mozna dokonaé na (g) = 15 pietnascie sposobéw. W ten sposéb otrzymujemy
15 réznych czwérek jako zdzarzenia sprzyjajacych zdarzeniu A. Ponadto, pozostato 43
liczby nie wylosowane w totolotka. Kazde dwie liczby z tych 43 nie wytypowanych w grze
mozna wymieni¢ na (423) = 21 % 43 sposobéw na dwie liczby nie trafionych przez gracza.
Zatem, zdarzen sprzyjajacych zdarzeniu A wylosowania poprawnych czterech liczba jest
15%21 %43 = 13545. Oznacza to, ze prawdopodobienstwo wylosowania poprawnych czterech

liczb z wylosowanych szesciu liczb rowne jest
13545
P =—
(4) 1398316
Zadanie 22.12 Niech szesé liczb {k1, ka, k3, ka, ks, ke } bedzie wynikiem losowania totolotka.
Gracz wytypowt szesé liczb {s1, s2, 83, 84, 85, S6}. Oblicz prawdopodobieristwo, ze gracz trafit

tylko w trzy liczby ze zbioru {k1, ke, ks, ka, ks, ke}, szesciu liczb, pozostale trzy liczby byty nie
trafione.

= 0.000969

22.14 Prawdopodobenstwo warunkowe

Prawdopodobienstwo warunkowe zajscia dowolnego zdarzenia A pod warunkiem, ze juz
zaszto zdarzenie B oznaczamy symbolem P(A|B) i definiujemy wzorem

P(AN B)

P(AIB) = 5.

gdy P(B) > 0.

Powyzesze okreslenie prawdopodobieristwa warunkowego wyjasniamy na nastepujacym przyktadzie:

Przyklad 22.15 W stadzie jest razem N owiec © barandw. Wiadomo, Ze ilos¢ owiec @
baranow jest nastepujgca:

e m baranéw
e k barandw biatych.
e razem biatych owiec i barandw jest n, k < n.

Niech A oznacza zdarzenie, ze losowo wybrany czworonogi jest bialy, natomiast niech B oz-
nacza zdarzenie, zZe wybrany losowo czworonogi jest baranem. Zaktadajgc, ze prawdopodobieristwo
wyboru kazdego czworonogiego owcy czy barana jest to samo. Wtedy obliczamy tatwo nastepujgce
prawdopodobienstwa:

n m k

P(B)=%, PANB) =<

Wybierajgc losowo biatego barana pytamy o warunkowe prawdopodobieristwo P(A|B). To
warunkowe prawdopodobenstwo wylosowania biatego barana jest rowne
k
P(A|B) = —

m
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Skqd otrzymamy nastepujgcy wzor:

k.
N

Zgodnie z definicjg, powyzszy wzor okresla warunkowe prawdopodobienistwo zdarzenia A pod
warunkiem, ze zaszto zdarzenie B, gdy P(B) > 0.

22.15 Prawdopodobienstwo catkowite

Aby wprowadzi¢ pojecie prawdopodobienstwa catkowitego postuzymy sie nastepujacym przyktadem:

Przyklad 22.16 Przypusémy, ze jaka$ fabryka produjkujgca Zardwki ma wadliwosé 5 Zarowek
na 100 wyprodukowanych. Wtedy prawdopodobieristwo zdarzenia, Ze losowo wybrana Zaréwka
z tej fabryki jest wadliwa wynosi 0.05. Przypusémy teraz , Ze zainstalowano w tej fabryce
nowg linie produkcji, ktora produkuje tylko 1 zZarowke wadliwg na 100 wyprodukowanych.
Jakie jest prawdopodobieristwo, Ze losowo wybrana Zardwka z tej fabryki jest wadliwa?

Interesujace prawdopodobienstwo to tak zwane prawdopodobienistwo calkowite. Gdyby
nowa linia produkcji produkowala tyle samo zaréwek co stara linia produkcyjna, to praw-
dopodobienstwo catkowite powinno by¢ réwne sredniej wadliwosci, to znaczy %(0.05 +
0.01) = 0.03. Oczywistscie zakladamy, ze zaréwki wyprodukowane przez obie linie pro-
dukcyjne zostaly doktadnie wymieszane.. OdpowiedZ na pytanie w tym przykladzie wynika
z nastepujacego twierdzenia o prawdopodobienstwie catkowitym

Twierdzenie 22.1 Jezeli zdarzenia By, Ba, ..., B, wylaczajg sie parami i ich parwdopodobienstwa
P(B;) >0, i=1,2,...n. Ponadto, jezeli alternatywa tych zdarzen jest zdarzeniem pewnym,

to znaczy By U Ba U ...U B, = §, to dla kazdego zdarzenia losowego A C Q z przestrzeni
zdarzen elementarnych €, zachodzi nastepujgcy wzor:

P(A) = P(B1)P(A/By) + P(B2)P(A/Bz) + - - - + P(Bn)P(A/By)

Stosujac to twierdzenie do opisanego wyzej przykladu, zalézmy, ze nowa linia produkcyjna
produkuje trzy razy wigcej zaréwek niz stara linia produkcyjna. Oznaczmy przez A in-
teresujace nas zdarzenie losowe, ze wybrana zarowka jest wadliwa. Rowniez oznaczmy
przez B; i By zdarzenia, ze losowo wybrana zaréwka zostala wyprodukowana na starej lini
produkcyjnej i nowej lini produkcyjnej, odpowiednio. Stosujac twierdzenie o calkowitym
prawdopodobienistwie, sprawdzamy zalozenia tego twierdzenia. Po pierwsze, widzimy ze
zdarzenia Bj i By sa rozlaczne. Po drugie,zadne z tych zdarzen nie jest zdarzeniem niemozliwym,
czyli prawdopodobieristwa ich zajécia sa dodatnie, P(By) > 01 P(Bz) > 0. Nastepnie, al-
ternatywa tych zdarzen jest zdarzeniem pewnym, to znaczy B; U By = (.

7Z tresci przykltadu wynika, ze

e P(B;) =0.3,
e P(By) =0.7.
oraz, ze dane prawdopodobienstwa warunkowe sa nastepujace:
e P(A/B;) =0.05,
e P(A/Bs) =0.01.
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Z tezy twierdzenia wynika
P(A) = P(B1)P(A/By) + P(B2)P(A/B3) =0.3%0.05+ 0.7 % 0.01 = 0.036

Zatem $rednio 36 zarowek na 1000 zaréwek wyprodukowanych w fabryce to sa zaréwki
wadliwe.

Zauwazmy, ze jezeli obie linie produkcyjne produkuja ta sama ilos¢ zaréwek, wtedy praw-
dopodobienstwa B; i By sa rowne

P(B1) = P(B) :%

i prawdopodobienstwo zdarzenia A wynosi
1
P(A)=P(B1)P(A/By) + P(B2)P(A/Bsy) = 5(0.05 +0.01) =0.03

Rozpatrzmy inny przyktad.

Przyklad 22.17 Powiedzmy, Ze stan pogody dla Warszawy w miesigcu kwietniu mozna
schrakteryzowaé za pomocq jednego z trzech typow pogody I, 11, II1. Z dtugotrwatych ob-
serwacji wywnioskowano, ze prawdopodobienstwa tego, ze w wybranym losowo dniu kwietnia
bedzie okreslony typ pogody sq¢ odpowiednio rowne: 0.2, 0.1, 0.7. Obliczyc¢ prawdopodobienstwo
zdarzenia, Ze w losowo wybranym dniu kwietnia bedzie padat deszcz.

Oznaczmy przez Bi, Bs, Bjs zdarzenia polegaja na tym, ze w losowo wybranym dniu
kwietnia wystapi odpowiednio I-szy lub II-gi, lub 3-ci typ pogody. Oznaczmy przez A
interesujace nas zdarzenie, ze w losowo wybranym dniu kwietnia bedzie padal deszcz.
Teraz sprawdzamy zalozenia twierdzenia o prawdopodobienstwie catkowitym.

Po pierwsze zauwazamy, ze zdarzenia By, Bs, 1 Bs sa parami rozlaczne. To znaczy, ze
koniukcja tych par zdarzeni jest zbiorem pustym §)

BlﬂBgzm, BlﬂBgzm, BQQB?,:V)

Po drugie, prawdopodobienstwa zdarzen P(B;) > 0, P(Bz) > 0, P(B3) > 0 sa dodatnie.
Po trzecie alternatywa zdarzen
By UByUB3 =

jest zdarzeniem pewnym.
7 tresci tego przykltadu mamy dla losowo wybranego dnia kwietnia prawdopodobienstwa
pojawienia si¢ typu pogody

e P(B;)=0.2
e P(By) =0.1
e P(B3) =0.7

oraz prawdopodobienstwa warukowe
e P(A/B;)=10.9
e P(A/Bs)=0.8
e P(A/B;3) =0.15

7 tezy twerdzenia o prawdopodobienstwie catkowitym obliczamy prawdopodobienistwo in-
teresujacego nas zdarzenia A :

P(A) = P(B1)P(A/B1) + P(B2)P(A/By) + P(B3)P(A/Bs)
= 0.2%0.9+0.1%0.8+0.7%0.15 = 0.445

pojawienia sie orta i rszki
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22.16 Zadania

Zadanie 22.13 W rzucie monnetq 100 razy orzel pojawil sie 45 razy a reszka pojawita sie
55 razy oblicz czestosci pojawienia ortow i reszek

Zadanie 22.14 Doswiadczenie losowe polega na rzucie dwoma monnetami. Oblicz praw-
dopodobienstwo pojawienia sie rownoczesnie dwoch ortow w 50 rzutach.

Zadanie 22.15 Doswiadczenie losowe polega na rzucie kostkq. Oblicz prawdopodobienstwo
pojawienia sie sumy oczek rownej 4 w 100 rzutach.

Zadanie 22.16 Wygrana w grze liczbowej polega na wylosowaniu czterech liczb z czterdzi-
estu liczb od 1 do 40. Oblicz prawpodobienstwo wygrane;.



