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PREFACE

These lecture notes are designed for undergraduate students as a complemen-
tary reading text to a First Course in Calculus. It is assumed that the students
have basic knowledge in an introductory course to Mathematics in a Science
Programme.

The text book has its origin from lecture notes for courses given to undergrad-
uate science students. The lecture notes contain short and rigorous proofs of
theorems and fundamental formulas of calculus supported by example with
sets of questions.

Tadeusz STYS



Contents

1 Integration
1.1 Definite Integral . . . . . . . . . .. ..o
1.2 Sigma Notation . . . . .. .. ... .. ... ...
1.3 Riemann Sums . . . ... ... .. ... ...
1.4 Riemann Integral . . . . . ... ... ... ...
1.5 Properties of Definite Integrals. . . . . .. .. ... ... ...
1.6 Fundamental Theorems of Calculus . . . . ... ... ... ..
1.7 Methods of Integration . . . . . .. .. ... ... ...
1.7.1 Method by Substitution. . . . . .. .. ... .. .. ..
1.7.2 Integration by Parts . . . . .. .. ... ... ... ..
1.7.3 Integration of Rational Functions . . . .. . .. .. ..
1.7.4 Integration Using Table of Integrals . . . . . . . .. ..
1.7.5 Integration of the expression vazr?+bx+c .. .. ..
1.7.6 Integration of Trigonometric Expressions . . . . . . . .
1.7.7 Integrating the expressions e“*sinbx, e cosbx . . . . .
1.7.8 Integrals of Even and Odd Functions . . . . .. .. ..
1.8 Applications of Integrals . . . . .. .. .. ... ... .....
1.8.1 Area between two curves . . . . . . .. ... .. .. ..
1.8.2 Lengthofacurve . . . . .. . ... .. ... .. ....
1.8.3 Volume of a Solid. . . . .. ... ... ... .. ....
1.8.4  Volume of Cylindrical Shells . . . . . ... ... .. ..
1.8.5 Surfaceof asolid . . .. .. .. .. ...
1.8.6 Moments and Center of Mass . . . ... ... ... ..
1.9 Numerical Integration . . . . . .. .. .. ... ... ...
1.9.1 Trapezoidal Rule. . . . . . . . ... .. ... ... ...
1.9.2 Simpson Rule. . . . ... ... ..o
1.10 Exercises. Set 1 . . . . . . . . . ...

2 Ordinary Differential Equations (ODE)
2.1 Imtroduction to First Order ODE . . . . . .. ... ... ...
2.2 First Order Linear Equation . . . . .. .. .. ... ... ...
2.3 Separable Equations . . . .. ... ... ... ... ...
2.4 Linear Ordinary Differential Equations . . . . . . . .. .. ..

i

D Ut = =

14
17
17
21
24
28
32
34
40
42
45
45
47
48
50
52
93
54
54
96
60



ii

2.5 Exercises, Set 2 . . . . . ...

Taylor Polynomials and Taylor Theorem
3.1 Taylor Polynomials . . . . ... .. .. .. ... .. ......
3.2 Taylor Theorem . . . . . . ... .. .. .. .. ... ......

3.2.1

Examples . . . . . .. ... oo

Indeterminate Forms and L’Hopital Rule

4.1 Indeterminate Forms . . . . . . . . . . . . ... ... ..
4.2 L’Hopital’s Rule . . . . . . ... ... ... ... ... ...

Improper Integrals

5.1 Improper Integrals of the First Kind . . . . . ... .. .. ..
5.2 Improper Integrals of the Second Kind . . . . .. ... .. ..
5.3 Comparison Tests for Integrals . . . . . . . .. ... ... ...

Sequences and Series
6.1 Sequences . . . . . ...

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6

Definition of Convergence . . . .. .. .. ... .. ..
Bounded Sequences . . . . ... .. ...
The Algebra of Limits . . . . . ... ... ... ....
The Squeeze Theorem for Sequences . . . ... .. ..
Monotone Sequences . . . . . . .. .. ...
The Numbere. . . . .. . ... ... ... ... ....

6.2 Infinite Series . . . . . . . . .. Lo

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

Absolute Convergence of Infinite Series . . . . . . . ..
Comparison Test . . . . ... ... .. ... .. ....
Cauchy Root Test . . . . . . .. .. .. ... ......
d’Alembert’s Ratio Test . . . . .. .. ... ... ...
Alternating Series Test . . . . . . . .. ... ... ...

6.3 Exercises. Set 3.. . . . . . .



Chapter 1

Integration

1.1 Definite Integral

The concept of the definite integral (Riemann Integral) of a function f(x), a <
x < b is different than the notion of the indefinite integral

F(x) = /f(x)da?

as the antiderivative F'(x) to the function f(x).

In order to define the definite integral, we shall follow the Archimedes method
(287-212 B.C.) of evaluation of the area below graph of a function f(z), a <
x < b. Let us start with the example

Example 1.1 Find the area between x axis and the graph of the function

f(z)=1— 22 0<z<l1.

1.
A \
\\
x
0 1
Area I(f)
1
Let us divide the interval [0,1] in two subintervals |0, E]’ [5,1] (n=2) and

evaluate the approximate value of the area A by using upper sums (see Fig.

1



1)
1.1 1 3 1
1L
A \
\\
\\ x
0 0.5 1
Area I(f)
. 1
Fig 1. x0:0,x1:§,x2:1
1 1.1 13 1 7
A= — —)= DI=1x-4+—-%x-=—-=0.
FO)5+ 155+ FT =T+ 5 x5 =< =085

Now, let us divide the interval [0, 1] in four subintervals

0,1/4], [1/4,1/2], [1/2,3/4], [3/4,1], (n=4).

A \
\\
\\ T
1 1 3
0 3 3 1 1
1 1 3
F'lg2, 1‘0:0, 1‘121, 1‘225, 1‘321, re=1

The upper sum is

A m fla)g fe g+ Fa)g + fes) g+ F0)
1% 1/4+15/16 1/4,3/4 1/4 + 7/161/4 = 25/12 = 0.78125



Also, we can approximate the area A by lower sums, the rectangles lie in area
A (see Fig. 3)

A \

\

\\
\\\ l’

1 1 3
0 1 2 1 1
1 1 3
Fig.3, zog =0, ‘TIZZ’ z2:§, 1’321, Ty =1

Thus, the lower sum is

A m fla)g+ fe) g+ g+ fe)g+ F0)

4
5 1 3 1 7 1
e 24 Zx T4 — % Z=05312
16*4+4*4+16*4 0.53125

Let us consider other way of approximation of the area A by choosing mid-
points of the subintervals

0,1/4], [1/4,1/2], [1/2,3/4], [3/4,1], (n=4).
The mid-points are

fo—

+ i=1,2,3,4

i
4?

co| —

Now, we approximate the area A by the sum (see Fig. 4)

+f(552)1‘|’f(553)1+f(374)12
5, 1 30 1 15 1

1

A = -
f($1)4

63 1
_*_
4

6
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A
\\
T 1 T 5 3 7
Ol 512 5 2 8 1 5 1
Fig. 4
Here, the points
o ] 1, 3
x0=0,2] ==, 11 =—, 15 =~
0 1 8’ 1 4’ 2 8’
1 , 5 3, 7
$2—§>$3:§>$3:Z>$4:§>$4=1

We shall extend the mid-point rule to a function f(x) defined on an interval
la,b]. So, we divide the interval [a,b] in n equal subintervals of the length

bh—
Az = ¢ (see Fig.5)
a b
=$0 =$1 =$2 e e = =In—1 =In
Fig.5 Partition of the interval [a, b]
la, x1], [x1, 23], [T2, 23], ..., [Tn-1,D],
where

ro=a, xr1=a+ Az, 1o =a+ 20z, ...,x, =a+nlAx =b,

Then, at the mid-points

« _ Tot+T1 «  T11+ T2 « _ Tp1+Tp
xl_ 2 ) x2_ 2 7"'7xn #

the approximate value of the area is

Ax f(a))Ax + f(x3)Axs+ ...+ f(z)) Az (1.1)




1.2 Sigma Notation

We shall use sigma notation for the sum of n values aq,as,as, ...,

write

al—l—ag—l—ag—l—...—l—an:Zak

Gy, SO W€

For example, when n = 4 and a; = 12, ay = 2%, a3 = 33, a4 = 42, we have

4
P+22+34+4=> k=30

In sigma notation, formula (1.1) is

~ ) flap)Ar
k=1
Later, we shall use the following formulae

; 1
k=1 2
zn:k‘z — 12422432 4. 2= n(n+1)(2n +1)
k=1 6

n(n+1)

=P+ 434+ 4= (-

M=
i

e
Il
—

We note that

n

dYl=1+1+1+--+1=n

Also, we shall use the following additive properties of the sum

n

Zakj:bk Z :f:Zbk
k 1 k=1

Z cap = =cC Z ar
Let us come back to the example 1. In the example
flx)=1-2% [a,b] =1[0,1].

We consider n points

1 2 3 n—1
[L’(]:O,[L’l = —Ty= —, 3= —y...; Tp-1 =
s n n

n

n

y Ip = —

n

(1.2)

(1.3)



for any natural n.
Then, the upper approximating sum of the area A is:

_ ntl = Z
" n(n+ 1)(2n +1)

— 14 ——
+n 6n3

A

Q

1
n

Hence, the exact value of the area is the limit of the expression

1+1_n(n+1)(2n—|—1) _>1_l:g
n 6n3 3 3
when n — oo
In symbols, we write
1 1)(2 1 2
A= lim 141 _notD@nt), 2
n—>00 n 6n3 3

1.3 Riemann Sums

In order to define Riemann Integral (Definite Integral), we begin with Riemann
sums of a function f(z) given for = in the interval x € [a, b].

Regular Partition. We choose points {zg,x1, 22, Z3,...., Tn_1,Tn} € |a,D]
which satisfy the inequalities

Aa=20<T1 <3< x3< < Ty, <Tp=2>

The set P = {xg, z1, 22, X3, ..., Tn_1, T} is called partition of [a, b]. Thus, the
partition divides [a, b] into n closed subintervals

[1’0, 1’1], [1’1, 1’2], [1’2, 1’3], ceey [l’n—la l’n]
The length of each subinterval, we denote by
Axry =11 — 10, ATy =29 — 21, ... Axp =12, — Ty

The partition is called regular if Az tends to zero when the number of points
n tends to infinity, that is

Azxp —0 when n—oo, forall k=1,23, ...,

In each subinterval [zy_1,2x], k& = 1,2,...,n, we choose a point ¢, so that
Ck € [Tp—1, Tk



We define Riemann sums of the function f(z) in the interval [a,b] on the
regular partition P as follows:

Sn = i f(Ck)Al’k (14)

k=1

1.4 Riemann Integral

Riemann Integral (Definite Integral) is considered as the limit of the Riemann
sums. This, we state in the following definition:

Definition 1.1 Consider a function f(x) in the interval |a,b]. If there exits
limit of the Riemann sums

A S = oy D fler) An = 1(f)

and the limit is the same for every reqular partition P and for every choice of
the points ci € [Tk—1,2k], k = 1,2,...,n, then the function f(x) is integrable
in [a,b] and the value of the integral equals to limit I(f).

In symbols, we write

We note that in the example the function f(z) = 1— 2% in [0, 1] is continuous,
therefore the integral

/01(1 — 2?)dx

2
exists and its value I(f) = 3 is obtained as the limit of Riemann sums on the

uniform partition.

Let us state the theorem on existence of the Riemann integral.

Theorem 1.1 Every continuous function f(x) on the closed interval |a,b] is
integrable. That is the Riemann integral

b
| f@) da
exists.

Example 1.2 Use the Riemann sums to evaluate the integral

2
/ (1 + 22 + 32°)dx
1



We observe hat the function f(x) = 1+ 2z + 322 is continuous in the interval
[1,2]. Thus, by the theorem, the Riemann integral

2
/ (1+ 22 + 32°)dx
1

exists. Therefore, the value I(f) of the integral is the same for any choice of
regular partition of [1,2]. To evaluate the integral, we can choose the simplest
uniform partition of [1, 2] by the points

1 2 3
1’0:1,1’1:1—|——, 1’2:1—|——, 1’3:1—|——,---,l’n:1—|—ﬁ
n n n n

1
with Az, = 2, — 5,1 = — and with the points ¢y = x, k=1,2,...,n

Then, the Riemann sum of f(x) is

n

Z l’k Al’k =

M=

[1 + 2z + 3(l’k)2]Al’k

k=1 k=1
n k |
= Z[1+2(1+—)+3(1+—)2)]E
k=1
"6 2% 6k L 3k2
- Za et En— 2
6 n 8 n n
= —> 1+ —QZ —32
= —1 t
B 6_n+ n(n 1) 3n(n+1)(2n +1)
on 2n? 6m3

1 1 1 1
= 6+4(14+— —(14+—-)24+ —
FA(L )+ (14 )24 )

Then, we find the limit of the Riemann sum

lim S, = hm [6—|—4(1+ 1)+l(1+l)(2+l)]:11

n—>00 2 n n
Hence, the integral
2
/ (1422 + 32%)dz = 11
1

There are discontinuous functions which are not integrable. Consider the
example

Example 1.3 Dirichlet’s function
1 x isrational
flz) =

0 =z isirrational

is not integrable on the interval [0, 1].



Indeed, consider a regular partition of [0,1]. Let us choose rational points
¢k € [tp-1, 2], kK =1,2,...,n. Then, the Riemann sum of f(z) is

M:

Sp = f(CkAZEk—ZlAZEk—l—I(f)

k=1

e
Il
—

On the other hand, choosing irrational points ¢x € [zp_1,2x], k = 1,2,...,n
the Riemann sum is

]

M:

n

f(Ck Al’k—ZOAZL’k—O—I(f)

k=1

e
Il
—

Thus, I(f) = 1 # 0 = I(f). So, the limit of the Riemann sum depends on
a choice of the points ¢ € [xg_1, ). Therefore, by the definition, Riemann
integral of Dirichlet’s function does not exists in the interval [0, 1]. However,
some of discontinuous functions are integrable in an interval [a, b].

Example 1.4 Consider the function (see Fig. 6)

-1 for 0<z<1
(év)—{

1 for 1<x<2

0.5

0.5 1 1.5 2

.5

1
Fig. 6 Graph f(z)

Of course, the Riemann integral exists since the area between x -axis and the
graph of the function is equal 2. However, the integral

/02 f(z)dx = 0.

To show this, we follow the definition. Let us consider the Riemann sums of
f(z) on the intervals [0, 1] and [1,2]. First, we find the Riemann sums on the
interval [0, 1]

n n

S =3 fen)Azy = D (1) Azy = —

k=1 k=1
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Next, we find the Riemann sums on the interval [1, 2]

S — znj fex)Axy, = znj(—nmk =1
k=1

k—1

for any partition P of the intervals and any choice of the points c¢x, k =
1,2,....n.
Thus, the limit

lim SW(=1)+ lim S® = lim (—1)+ lim 1=—-141=0.

n—>o0 n—>o0 n—>o0 n—>o0
Hence, the function f(z) is integrable and the value of the integral is equal to
zero. However, the area between x-axis and the graph of the function f(x) is
equal to 2.
1.5 Properties of Definite Integrals

Let f(z) and g(z) be two integrable functions in the interval [a, b], so that the
integrals

/ab f(z)dx, /abg(:v)d:z

exist.

Following the definition, one can show the following equalities for definite
integrals:

Additive property with respect to the integrand

b b b
[ @) £ g@)de = [ f@)de £ [ gla)de (1.5)
Additive property with respect to the interval of integration
b c b
/ f(z)dx :/ f(I)d:E—l—/ f(x)dx, forany ¢ a<c<b (1.6)
For any constant K
b b
/ K f(z)dr = K/ f(z)dx (1.7)
Reversing the direction of integration
/b f(z)dx = —/a f(z)dx (1.8)
a b

Let prove additive property (1.5). By the assumption, the integrals

/ab f(z)dx, /abg(:c)d:z
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exist.
This means the values of the integrals are limits of the Riemann sums

/bf(:v)d:z = lim zn: f(ex)Axy, /bg(:v)d:z = lim Z g(cr)Axy.
a n—>o00 1 a

n—>o00

Thus, we have

/ d:B+/ x)dr = hm ZkaAl’k—l—llm ZngAl’k—

b
Jim S (e + glen)day = [ 17) + ()
We note that in the above equalities, we have used the additive property of
limits, that is, the limit of a sum equals the sum of the limits.

Also, by the definition, one can show the following inequalities for definite
integrals:

For a non-negative and integrable function f(z) > 0 in the interval [a, b], the
integral

/bf(a:)d:v >0, (1.9)
Let f(z) and |f(x)| be a integrable functions in [a, b], then
b b
| f@del < [CIf(@)lda (1.10)

Let f(x) and g(x) be integrable functions in the interval [a, b] and let f(z) <
g(x) for all z € [a, b], then

/ab f(z)dx < /abg(:v)d:z

If f(x) is an integrable function in the interval [a, b] and if f(z) is lower bonded
by a number m and upper bounded a number M, that is

m < f(r) <M forall z € la,b],

then
m(b— a) </ 2)dz| < M(b— a) (1.11)

Let us prove the first of above inequalities. By the assumption f(z) > 0 is
integrable in the interval [0, 1]. Then, the limit of the Riemann sums

Sn = Z f(Ck)Al’k n— > oo,

exists and this limit of the sum of non-negative terms f(cy)Axy > 0, k =
1,2, ...,n, is non-negative, that is

0< nl_lgloo zn: flep)Axy = /b f(z)dx
k=1 @
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We note, by property (1.9), that the area between the graph of f(z), a € [a, ]
and x-axis is

A= [ 1f@)] dr

Average of f(z). Let f(x) be a continuous function in interval [a, b]. Then,
the integral

/ab f(zx) dzx

exists.

The average value of f(x) in [a, b] is given by the formula
1 b

Average(f) = - a/ f(z) dx

We note that the average value of f(z) is the limit of arithmetic averages

f(x1) + f(xa) + flwz) + -+ fwn)

n

of the values f(z1, f(x2), ..., f(z,) at points x1, x9, 3, ..., T, in interval [a, b].
Indeed, we consider the uniform partition of the interval [a, b]

bh—
rr=a+kAzx, k=12 ...n, Az = ¢

n
and the Riemann sums

S = zi:f(atk)A:B:
(b_a)zn:f(ifl)‘|‘f(5172)‘|‘f(553)+---—|—f(17n)

n

k=1
Hence in the limit of arithmetic averages

lim flx) + f(wa) + -+ f(w,)

n—>o00 n

[
- b—afllirgosn

1 b
= 3 a/a f(z) dx
= Average(f)

The average of a continuous function f(z) in a closed interval [a, b] implies the
following First Mean Value Theorem for integrals:

Theorem 1.2 If a function f(x) is continuous in the closed interval |a,b],
then, there ezists a point £ € (a,b) in the open interval, such that

fO) =2 [ (o) do

:b—a

for all x € [a,b.
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Indeed, by the Weierstrass theorem, a function which is continuous in the
closed interval [a, b] attains its minimum value and maximum value, that is
= mi < < —
m = min f(z) < fz) < max f(z) =M
Also, the other Weierstrass theorem, a continuous function in a closed interval

[a, b] attains any value between m and M, that is, for any number y, m <y <
M, there is an argument £ € [a, b] such that

y = f(&)

Because, the average value Average(f) lies between its minimum m and maxi-
mum M, m < Average(f) < M, therefore, by the Weierstrass theorem, there
exists £ € [a, b] such that

fO) = s [ f(w) e

for all z € [a, b)].

Example 1.5 FEvaluate the average value of the function
f(z) =sinmzx, 0<z<m,
in the interval [0, 7]

By the formula

1 b 1 1 2
Average(f) = / f(z) de = —/ sinz dv = ——cosx|j = —
b—ala ™ Jo s s
Exercises
Question 1.

Use the definition to evaluate the following integrals as the limit of Riemann
sums

(a)

(b)

where

fz) =

1 for 0<2z<1
2¢ for 1<x<2

Question 2.
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(a) Use the definition to show that

1 1 1
/(aa:2+ba:+c)da::—a+—b+c
0 3 2

(b) Evaluate the integral
1
/ (32% 4 2z + 1)dx
0

(c) Evaluate the evarage value of the function f(z) = z® + 322 + 5 in the
interval [0, 2].

1.6 Fundamental Theorems of Calculus

The relations between indefinite and definite integrals have been stated in the
form of Fundamental Theorems of Calculus.

First Fundamental Theorem of Calculus. Assume that f(x) is a contin-
uous function in the closed interval [a, b] and let F'(x) be an antiderivative to
f(x) in the interval [a,b]. Then

Proof. By the assumption f(x) is continuous in [a,b]. By the theorem on
existence there exists the integral

/ab f(zx) dzx

Let F(x) be the antiderivative to f(z) in [a,b] and let P = {zo, 1, 22, ..., T}
be a regular partition of [a, b] by points

a=To <L <Xy < ---<xT,=b

Then, by the Mean Value Theorem

/ /

F(l’k) — F([L’k_l) =F (Ck)(l’k — l’k—l) =F (Ck)A{L’k

for any choice of the points ¢; € [zr_1, 2], k =1,2,...,n.
Hence

zn:[F(ZEk) — F(zp1) = zn: F'(cr) Ay

k=1 k=1
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But, we have

i l’k 1) = —I—F(l’l) — F(l’o)

k=1

= F(b) - F(a)

Hence for F'(c) = f(ck), k= 1,2, ...n, the Riemann sums
Sn = Z f(Ck)AZL’k = F(b) — F(a)
k=1

Because f(z) is integrable function in [a, b], therefore taking limit of both sides,
we obtain

lim S, = F(b) — F(a):/abf(:v) dx

n—>o00

This ends proof of the First Theorem of Calculus.

Example 1.6 Evaluate the integral

s

2
/ cos x dx
0

We note that the function f(z) = cos = (see Fig 7) is contiguous for all real z
and its antiderivative F'(z) = sin x. By the theorem

J

NIE]

Ccos :Ed:E:F(g)—F(O):sing—sin 0=1-0=1

ST
0.8
0.6
0.4 \\\\\

N
0.2 \\

Fig. 7 f(z) =cos z, z € [ g
The area below the graph is equal to 1.

]
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Theorem 1.3 Second Fundamental Theorem of Calculus If function
f(z) is continuous in the closed interval [a,b], then the function

is continuous and differentiable and F'(z) = f(z) for all x € [a,b].
Proof. Using the definition of derivative, we find

Fl(z) = lim LEER = F@) [% /amf(t) at— [0y ar

h—>0 h h—>0

lim % / ) dt = lim f(cr)

h—>0

for a point ¢, € [x,z + h], where f(cp) is the average value of f(z) in the
interval [z, x + h]. On the other hand, the average value f(c,)— > f(z), when
h— > 0. Thus, in the limit

Fl(z) = lim f(en) = ()

Example 1.7 Using the Second Fundamental Theorem, evaluate the deriva-
tive of the function

F(z) :/ (2 +t+1) dt
1
at the point x = 4.

We note that f(x) = 22+ + 1 is continuous function for all real z. Thus, the
assumptions of the theorem hold. By the thesis

F'(2)=fx)=a?+z+1.
At the point z = 4, we compute F'(4) = f(4) = 4> +4+ 1 = 21.

Example 1.8 FEvaluate the integral

1
/ sinmx dx
0

1
The antiderivative to f(z) = sinmx is F'(z) = —— cos mz. By the thesis of the
7T

theorem

L 1 1 2
/0 sinmx de = F(1) — F(0) = —;[cosw —cos0] = —;[—1 —1] = -
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We note that the area between the graph of the function sinsin7z and

2
x-axis is equal to —
T

0.8
0.6
0.4

0.2l /

0.2 0.4 0.6 0.8 1

Fig. 8. f(z) = sinmzx.

1.7 Methods of Integration

In evaluation of Riemann integrals, we use extensively the Fundamental The-
orem of Calculus.

Theorem 1.4 Let F(x) be an antiderivative to a continuous function f(x) in
the interval [a,b]. Then, the integral

[ #(a) e = P = Fo) ~ Fla)

Thus, the methods of evaluation of Riemann integrals are the same as the
methods for indefinite integrals, for finding an antiderivative.
Let us begin with the method by substitution

1.7.1 Method by Substitution.

Let f(z) be a continuous function in [a, b] and let z = ¢(t) be a differentiable
function in the interval ¢ € [« (], with the values in [a, b], that is

a=¢(a) < o(t) < o(3) =b

for t € [a, f].
There exists an antiderivative F'(z) for the continuous function f(z) in [a, b].
So, we consider the composed function

o) = Fot), w=0o(t) telnf]

he derivative de(t) _ dF(4(t)) do(t) a
1 t t)) dott
" . . te [ ) ]
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F
Because w = f(o(t)), therefore, integrating both sides, we have
x

But &(a) = F(é(a)) = F(b) and &(5) = F(¢(0)) = F(a)

Hence, we obtain the following formula of integrating by substitution

[ 1wy de = [ o006

We shall apply extensively the formula, when integrating trigonometric and
rational functions.
Now, we shall consider some Riemann integrals of the following form:

/

(t) dt z = 6(t) (1.12)

in which the functions f(g) and g(x) are identified.
Then, we substitute /
u=g(x), du = g (x) dx.

to the integral for a < x <b, and g(a) <u < g(b)
Thus, we obtain the following formula of integration by substitution
b , g(b)
[ Fota)d @) de = [ f) du (1.13)

Example 1.9 FEvaluate the integral

3 2
d
/1 1+ 22 v

Solution We identify the functions

gle) =1+ g(z)=22, f(g(x))=—=, 1<a<3

Let us substitute
vu=2*+1, du=2zdx

The range of u: g(a) =2 <u <10 =g(b) for 1 <z <3.
We find

f)=2, du=g(@)de=20dr, g(1)=2, ¢(3) =10

By formula (2.24), we evaluate

3 10 1
/ 2 da::/ Zdu==1n10—1n2 = In5
1 1+ 22 2 U



Example 1.10 FEvaluate the integral

2 2z +1
Ja
1 224+ z+1

Solution We identify the functions
gle) = +a+1, g(@)=20+1, flglr))=—=., 1<z<2

Let us substitute

u=g(r)=2*4+r+1, du=2z+1)dr.

Then, we find
f)=, du=g(0)dr= (20t 1) dr, g()=3 g2)=7

By formula (2.24), we evaluate

2 2 1 71 7
/Lda::/ —du=1n |u||f=In7—In3=In—-
1 22+ x+1 3 U 3

Example 1.11 FEvaluate the integral

1
/ 20V 1 + 22 dx
0

Solution. We identify the functions

/

g(z) =1+2% g(x) =22, [(g(x)) = /g(z), 0<z<1

Let us substitute
u=2*+1, du=2zdx

Then, we find
flu)=+u, g(0)=1, g(1)=2

By formula (2.24), we evaluate

1+3

1 2 2, 9
/2$V1+z2da::/ \/ﬂdu:/uﬁdu:[u 1?2 =Z[2v2 - 1]
0 1 1 3

1+3

19

Example 1.12 For a given differentiable function f(z), in [a,b], find the in-

tegral

b f (@)
L
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Solution We note that the logarithmic derivative

[ ()
f(z)

| f(x)]] =

Thus, the indefinite integral

f@
/f@ dw =1In|f(z)] + C

Hence, the antiderivative to the integrand j;((;ﬂ)) is F(z) =1In|f(x)|.
By the Fundamental Theorem of Calculus
b f/ (z) b f(b)
dr =In|f(z)|, =Inf(b) —In f(a) =In =
N F@)ls = f) = n fla) = In 55

The same formula, we can obtain by the method of substitution. Indeed, we
identify the functions

gle) = f(x), gx)=f(2), [flgx))=—=,, a<z<b

Let us substitute

Then, we find

By formula (2.24), we evaluate

b f () 10 1 0 f(b)
dr = —du=1In|u =In|f(b)] —In|f(a)| =In|—=
L @=L ull 76 = £ @) = In | f(@)] = In|-£ 5]
Example 1.13 FEvaluate the integral
/Z tanx dx
0

sin x

Solution Let us write the integrand tanx = in terms of sinx and cos .

, cos T
Then, we are to evaluate the integral

. .
I sinx

/ dx
0 COST

We identify the functions

g(z) =cosz, ¢ () =—sinz, f(g(z))=—, 0<z<

N
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Let us substitute

Then, we find

By formula (2.24), we evaluate

7 sinx N3
dv = -—
0 COSX

= —Injul;

L
u
- 1 1 In2
= (ln——lnl):—ln—:n—

V2 V2 o 2

Example 1.14 For a given function f(x) in [a,b], find the integral
b
/ vf(z?) dow

1
/:Eemzdz, 0<z<1
0

Find the integral

Solution We identify the functions
u=g(x)=22 ¢ =2z du=2zxdr

Then, we have

b 1 b 1 e
2 — 2 = —
/CL:Ef(:E)d:B—2 a2:£f(:c)dz 2/g(a) f(u) du
Hence, for f(z) = e®, we have f(22) = ¢*, ¢g(0) = 0, g(1) = 1 Then, the

integral

1.7.2 Integration by Parts

Let u(x) and v(x) be two differentiable function in the interval [a,b]. Then,
the derivative of the product

du(z)v(r)
dx = ule) dx

or in Newton notation
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Integrating both sides from a to b, we find

b

w(bYv(b) — u(a)v(a) = / u(:v)dZ—E:) dr + / bv(x)djlf) dx

Hence, we have the formula of Integration by Parts

/a bu(z)dzgj)d:v — u(b)o(b) — u(a)v(a) — / " () )

a dl’

or

Example 1.15 FEwvaluate the integral
/ xsin x dx
0

Solution. Let us denote by
u=x, u =1,

and by

/

v =2, v:/sinzzdzcz—coszz
By formula (1.15), we evaluate
/Owatsin rdr = —xcos :E|6r—/07r(—cos x) dx
= —(mcos m—0cos 0)—/07r(—coszcd:£
= m+sinz|f =7+ (sinm —sin 0) ==
Example 1.16 FEvaluate the integral

1
/ xIn(l+ x) dx
0

Solution. Let us denote by

) 1
u=In(l+z), u o2
and
/ d $2
v =, v—/:c I—?

(1.14)

(1.15)



By formula (1.15), we evaluate

[amsaydr = Pl [ -
| @ln z)dz = Sr°ln $0201+x
1 1 1 1
:—12—11——/ —1 d
2(n nl) 20(z +1+x)z
In2 1 2°
In2 1,1
= S S(:—1+4In2) =
;g itind)
Example 1.17 FEvaluate the integral
1
/ xe’ dx
0
Solution. Let us denote by
U =x, u = 1,
and
v =e”, v:/emdz:em
By formula (1.15), we evaluate
2 2
/zem de = zemﬁ—/ e’ dx
1 1
= (2 —¢) — (e —¢) = ¢?
Example 1.18 FEvaluate the integral
1
/ sin? 7 x du
0
Solution. Let us denote by
u = sin 7z, u =TcosT z,
and
;. . 1
vV=sinmx, v=[sinmrdr=——cosmTx
T
By formula (1.15), we evaluate
1 1 1
I:/ sin®m zdr = ——sinwxcoswﬂé—l—/ cos> m x dx
0 T 0

1
= /(1—sin27rx)d:17:1—l
0

1
Hence, we find I = 3 and

1 1
/ sin’rm x de = =
0 2

23
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1.7.3 Integration of Rational Functions
The general form of rational functions

Polynomial P, (x) of degree m  agx™ + ™ a1 T+
Polynomial Q,(z) of degreen — box™ + byx™1 4 - -+ + by_12 + b,

We shall consider m < n, otherwise, the quotient

Pn(z) = . Ry ()
O T 0w

where P,,_,(x) is the polynomial of degree m — n and the remainder polyno-
mial R,,_,(z) has degree m —n < m.

A special rule play the rational functions called Partial Fractions of the fol-
lowing form:

A A
x—\ (x — Ak’
Mx+ N Mx+ N
22+ pr+q (224 pr+q)F

k=23, ..
(1.16)

p* —4q < 0.

The following theorem holds:

Theorem 1.5 Every rational function (m < n) possesses form of a sum of
Partial Fractions. That is
P, A A A
@ _ A A A
@Qn(z) (x—A)  (z—-A)7 (x—A)
Mll’ + N1 Mgl’ + N2

_l_
(x24+pr+q) (224 pr+q)?

Therefore, integration of rational functions reduces to the integration of Partial
Fractions.
Let us integrate the Partial Fractions

1.
b A
L oy de = Ammle—ally = A@nfb - A~ nfa - X)
b— A
= Al
n| 2=

Example 1.19 Evaluate the integral
/1 x dx
0o 22 —bx+6

Solution. The rational function
T

2 — 5+ 6
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we present in partial fractions as follows: Factorizing the denominator
2?2 =52+ 6 = (x — 2)(x — 3), we find

x A B (A+B)z— (34 +2B)

552—5:E+6::E—2+:E—3 2 — 52+ 6

for every real x # 2 and x # 3
Hence, by comparison of the numerators, we have the equations for A
and B

A+ B=1 and 34+42B=0

The solution is A = —2 and B = 3. Thus, the integrand has the following
partial fractions representation
x B 2 3
2—5rx+6 -2 x-—3

Hence, we evaluate

/1 z dx B /13dz /12dz
o 22—5x4+6  Jo x—3 0o x—2

= (Bln|z —3|—2In|z—2|)

= 3In2-3In3+4+2In2=5mn2-3m3=In3

. The second type of partial fractions

4 dv, k=2 Aéla,b
- 3---
/CL(:E—)\)’f ’ T 2, 5]

we find the indefinite integral

A A _

Then, the integral

P A A A . .
/a(a:—A)’fdle—k(z_A) o= Tl =N"T = (a=)

. Let us integrate the third type of partial fractions

b A b A B
/270[9: or /Ld:p, p? —4q <0,
a T2+ pr+gq a (24 pr+q

General approach
To find the first integral, we present the denominator in the form

e tprtg=(a+5)°+ (@)



Then, we substitute

u=$+g, du = dzx, r= q—%
and we find the indefinite integral
A Ad
[ = [ 40
24+ pr+q u? 4 1r?
A U
= —ArcTan—+C
—Are cmr+ (1.17)
A P
= ———ArcTan T +C

q— N

Example 1.20 Evaluate the integral

/2 dx
1 22 —2x+2

Solution. The denominator
20 +2=(x—-1>2+1

Then, we have p = —2, ¢ = 2. Let u = x — 1, du = dzr and for
r=1, u=0and forx =2 u=1

2 dx L du
- = = ArcT 5
/1 % —2x+2 /()u2—|—1 reTanuly

= ArcTan(x —1)|3 = ArcTanl — ArcTan0 = %

General approach to the second integral
We find the indefinite integral

2B
/ Ax + B P /2x+
T D dr =
2+ pr+q 2 x2+px+q
20 +p+ 2 —
= —/ PT 4 dz
2 2+ pr+q

B / 20 +p / ——P
2 x2+pz+q 2 x2+pz+q
__p

—A = dx
x2+pr+q

A
= Tl tprtg+ 5 |

The second integral in the above is in the form of the first integral, then
we use formula (1.17).
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Example 1.21 FEvaluate the integral

/2 3r+1 d
——dz
0 — 4z +5

Solution We note that it is integral in the form

/ab( Ar+ B de

22+ pr+q

where A =3, B=1, p= —4, ¢ = 5 and the discriminant A = p? — 4q =
(—4)2—45=-4<0.
Then, we evaluate

[Erl g o 3 s 2“5 o
2 —4x+5 2) 22 4x+5

B /2:17—4—|— —|—4d
N 4r +5 v

B / 2 — 4 / ——|—4
N 2 2 — 4a;+5 2 a;2 4x+5

_ ln|:E —4a:+5|+7/

4at—l—5

Now, we evaluate the integral in the above of the first form

dx dx
— = — = ArT -2
/a72—455+5 /(17—2)2—{—1 refan(z=2) +C

Finally, we find the indefinite integral

3z +1 3
/%dx = nf2* —dz+ 5|+ TArcTan(z —2) + C

Hence, the integral

2 3 1 3
[= 2 = Bl e 5|+ T Ton(e - D)

3
= [5 In|2% — 42+ 5|+ 7ArcTan(2 — 2)]

— [EIn|0* =40+ 5| + TArcT'an(0 — 2)]

= TArcTan2 — gln 5
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1.7.4 Integration Using Table of Integrals

Let us recall the antiderivative of some elementary functions

1 d
[ArcTanz] = ——, *_ — ArcTanz + C, —o0 <z < 00,
1+ a2 1+ 2
[tan x]' = ! =sec’x / dz =tanz+C, —Z<zr<?Z
©cos?z " J cos?z T2 27
1 dx
ArcSing] = ——, /7 = ArcSine +C, -1 <zx <1
| ] V1 — a2 V1—2a2?
1 d
[ArcSinhz) = —— " — ArcSinhx + C, —oo <z <00

V1+ 22’ V1+ 22

Example 1.22 FEvaluate the integral

/a dx
0o a?+ x2

Solution. Let us substitute x = at, dr = adt. Then, we find the indefinite
integral

du 1 dt 1 1 T
/m B al 1+ - aATcTcmt = EAT’CTcma +C, a#0

Hence, we have

a  dx 1 1 T s
_ (-Dy _ = Zla &
/0 prpnpe i atan t= aArcTcma|0 = 1

Example 1.23 FEvaluate the integral

/b dx
o (a%+ 22)?

Solution. To find the indefinite integral, we apply integration by parts to the

integral
dx
IlZ/ﬁ
a® +x
Let
1 ’ —21' r
u:a2+x2’ b :(a2+x2)2’ v=l v=e

I—/ dx B x +2/ x? dx
U2 a2 a2 (a? + x?)?

But, the integral

/ 22 dx /x2+a2—a2da:

(a? + 22)2 (2 + 22)2

B / dx —a2/ dx
N a? + z? (a? + z2)?




29

1’ —I—Q(Il —a2]2)

Hence, we have

I pu— pu— —_—

! a? + z?
and
dx 1 x 1
I, = / — =+ — 1
(a®+22)?2 2020+ 2% 2a?
Because
1 T
I, =—-ArclTan—+C
a a
therefore q . -

x x x
——=————F+ ——ArcTan—+C

/ (a®> +22)?2  2a?2a’?+ 2% 2d%a a

Thus, the definite integral
b dx 1 x 11 x
— = [———— 4+ ——ArcTan~]|}
/0 (a2 + 22)? [2a2 a’>+ 22 2d’a a”o

1 b 11 b
+ — ArcTcma

= Lparetar,

Example 1.24 FEvaluate the integral

/Zseczbzdx, 0<b< 1.
0
Solution. Let u = bz, du = b dz. We find the indefinite integral

1 1
/seczbzdx: —/seczu du = gtanu+C: gtanbz—l—C

Hence, we have
I 1 ES | b
/04 sec’ bx dr = gtanbﬂ(]* = gtan %
Example 1.25 FEvaluate the integral
a> 0.

/a dx
0 Va2 — 22’

Solution. Let us substitute x = at, dr = adt. Then, we find the indefinite

integral
= ArcSint = ArcSz’nz +C, a>0
a

dx d
/\/m:/\/li—t2

Hence, we have

— ; 1_ o Lia _

= ArcSin t|; = ArcSin—|j = =
0 a2
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Example 1.26 FEvaluate the integral

a > 0.

1 x
/0 Va?+ z?’
Solution. Let us substitute x = at, dxr = adt. Then, we find the indefinite
integral

dx dt . .
/\/ﬁ = / ﬁ = ArcSinht = ArcSmha +C, a>0

Hence, we have

1 1
/0 % = ArcSinh t|y = ArcSz’nh§|é = ArcSz’nha
Let us recall that

: 1 -
sinh © = 5(6”6 —e ")

Example 1.27 FEuvaluate the integral
/ va? + z? dz.
0
Solution. To find the indefinite integral, we apply integration by parts

2 dx
Va2 +ax22dr = xvVa?+a22— e
/ ,/a2_|_l;2

x? —I—a —a?dx
= zva?®+ 2?2 — /
va? + x?

= zva?®+ 22— /\/a2+x2da7+a/

\/a2 + 22

By the example, we find

dz ..
/\/ﬁ = ATCSZTLhE

Hence, we have
I:/\/mdx = x\/m—l+a2ArcSinh§+C
and
/\/@24—7:172 dr = %[x\/m + azArcSinhg +C
Thus, the definite integral

a 1 1
/ Va?+2?der = §[x\/ a?+ 2%+ azArcSinhgﬂg = i[az\/i + a*ArcSinhl]
0
(1.18)
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Example 1.28 Fvaluate the integral

b d
/ 7$, n>2 a>0.
o (a?+a2)n
Solution. To find the indefinite integral, we apply integration by parts to the
integral
/ dx
(a% + x2)»
Let
1 ’ —2711‘ 1 ’
U=——+, U =————, U= v =2x
(a2 + z2)’ (a2 + x2)?’ ’
In:/dif _ #Hn/ﬂ
(a2 + 22) (a2 + 22) (a2 + 22)"
But, the integral
/ 22 dx B /x2+a2—a2da:
(a2 + x2)n+1 - (a2 + x2)n+1

_ /dif 2 /d_ff
- (a2 _I_l.2)n (a2 +I2)n+1

Hence, we have

dx €T )
= e = ey 2 o) (1.19)

Thus, we get the recursive formulas

1 x 2n —1
2na? (a? + xz2)»  2na?

Inst = I, (1.20)

Let us note that

d 1
11:/271’2:—/17’07—‘(177’{4‘0
a“+x a a

and from formula (1.20), for n = 1, we find the integral

dx 1 x 11 x
— = ———— + —~ArcTan= + C
/(a2+x2)2 2a? a2—|—932+2a2a e ana+

and the definite integral

b dx 1 x 1 x
T AreTan¥P
/0 (a2 4 22)? [2a2 a2+x2+2a3 e cma]|0
1 b b

1
= Sl L IR + 2T“?)ArcTcma
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1.7.5 Integration of the expression vaz? + bx + ¢

Consider the integral
/\/ax2 +br+cdr, a>0, A=0b*>—4ac<D0. (1.21)
In order to find the integral, we apply Euler’s substitution

Va2 +br+c=t—xva

Hence,we find
ar? + bxr + ¢ = t2 — 2tx\/a + ax?

t2—c
=12 -2t =——
br+c=t Ta, x ST
t? —c t2y/a + bt + c\/a
2 — —_——_— = =
Vart fbete=t = oo = va 2t /a+ b
dx_2t2\/5+bt+c\/5
T (2t +b)?

In this way, we have transformed the integral (1.21) to the integral of a rational
function

[Varm T vedr=2 [ & @ﬁj;ﬁxt \(/gtj;;tﬁ—b)cz\/a)dt (1.22)

Example 1.29 Fvaluate the integral

1
/ Va2 +1dx

0

We apply the Euler’s substitution

Val+l=t—x

Hence,we find
2 +1=1t*—2tx +a?

?—1
1=12—2t = t#0
x? x 2t ) %
-1 t*+1
VTt 2t 2t
41
de =28 Tl
(2t)2

In this way, we have transformed the integral (1.21) to the integral of a rational
function

[VarTiar = 2/(t2+1)(t2+1)dt

2t 4t2

oy (1.23)
- 2/(T dt
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The rational function has the partial fraction representation

#+1)? 1 1 ot

T TR
Thus, we find the integral
(2 +1)2 1 t2  Int
—dt=———=+—=+—+4+C
/( 8t3 16t2+16+ 4 +

We note that when z = 0 then t = 1, when z = 1 then t = 1 4+ v/2. So that
V2 (12 4 1)°

1
/\/$2+1d$ = 2/ dt
0 1 &3
1 t2 lnt 1+\/§ (1 24)
ERTEARTREr R

1
— 5(\/5 + AreSinh(1)) = 1.14779

Example 1.30 FEvaluate the integral

/0 1 Va4t x4 1dx
We apply the Euler’s substitution
Valtr+l=t—x
Hence,we find
2+ ar+1=1>— 2+ 2?

2 —1
— t#£ -1
2t +1° 7

t?—1 2+t+1
Va+o+1l=t— _ T

2% +1 241
dt

r+1=1t -2z, z=

P P+t+1
T =2 ——
(2t +1)2

In this way, we have transformed the integral (1.21) to the integral of a rational
function

24t+1 Pt +1
[varaside = 2 PR g
2A+1 7 (2t +1)2 (1.25)
B /((t2+t+1)2d '
B (2t +1)3
The rational function has the partial fraction representation
(t2+t+1)2_L+ 9 o 3

(2t+1)3 128 (2t +1)2  8(2t +1)
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Thus, we find the integral

E+t+1)? 1
/( (2t +1)3 =51

- (2t +1)

9 2
5+ 12In(1+2t) + (1 +2t)°] + C

We note that when z = 0 then ¢t = 1, when z = 1 then t = 1 4+ /3. So that

VB (12 41+ 1)

1
N 1de — 2/ dt
/0 r+x+ lazx ; ENE
1 9
= e 1 12In(1 + 2t) + (1 4 2)2] V3
— 1.33691

(1.26)

1.7.6 Integration of Trigonometric Expressions

In the integration of trigonometric expressions, we often apply trigonometric

identities

sin?z + cos?z = 1,

cos 2z = cos’x —sin®x, sin’z =

9 1+ cos 2z
cos“ r = ——,
2
) 2tan2§
sing = ——=—,
1+ tan?3

sin2x = 2sinz cosz,

Example 1.31 FEvaluate the integral

1 — cos2x
2 )
1.27
sec’r = 5 = 1+ tan’ 2z ( )
cos?x
1 — tan? %
cos r=——-=
1 -+ tan 5
/ sin® x dx
0

Solution. By trigonometric identities (1.27), we find

/ sin? x dx

Hence, we evaluate

/0 sin x do = (5 - Zsian)K{ =

1 —cos2x
= —d
/ 5
1
g— i/cos2x dx
1
g— Zsin2a¢+0
r 1

bo |
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Also, we can evaluate the integral using the formula of integration by parts

/uvldzzuv—/u/vdzc.

/

. / .
u=sin x, u =coszr, and v =sinxr, v= —cosx

Let

Then, we find the trigonometric identities to find

I:/sinzzdzc = —sinz cos:v+/cos2:c dx

= —sinz cosz + /(1 — sin® x dw dw
= —sinx cos z+x—1
Solving for I, we obtain
/Sin2$ dx = %(a: —sinz cosx)
Hence, we find
/07r sin®z dr = %(a: —sinz cosz)|f = T

Example 1.32 FEvaluate the integral

T4
/ sin® x dx
0

Solution. We apply the trigonometric identities (1.27) to find

1 —cos2x
4 L / 4
/sm rdr = —/( — ) dx

1
= :/1(1—008255)2 dx
1 2
= Z/l—QcosQ:E%—cos 2x) dx

1 1
= /Z[l — 2cos2x + 5(1 + cosdx)] dx
3 1

1
= gzz— Zsin2:c—|— 3—2sin4a:

Hence, we find

g 3 1 1 3
/0 sin'z = [gzc— Zsin2:c—|— 3—2sin455]|6r = g

Example 1.33 Consider the indefinite integral

In:/sin"a: dx, n > 2.
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(a) find the integral Iy, I; and Is.
(b) Show the recursive formula

1 . n—1
I, =—sin" 'z cosx + — 1, o, n>2
n n

(c) Using the recursive formula, evaluate the integrals

us us
2 . 2 .
/ sin® z dx / sin® x dx
0 0

Solution.
(a) The straight foreword integration gives the integrals

Ioz/da::a:+0, Ilz/sina:da::—coszv+0

For n = 2, we apply integration by part formula
/uvldz:uv—/u/vdzc

. / / .
u=sin x, u =coszr, and v =sinzr, v= —cosx

Let

Then, we use the trigonometric identity sin? z + cos?z = 1 to find
I= /sinzzc dr = —singx cos:v+/cos2:c dx

= —sinx cosa?+/(1—sin2:£d:£da:
= —sinx cos z+x—1

Solving for I, we obtain
. 9 1 :
/sm xdr = 5(:17 —sinz cosx)
Hence, we find
/7r sin®z dr = l(:17 —sinz cosz)|f = T
0 2 02

To (b). Again, we apply the formula of integration by parts

/uv/d:v:uv—/u/vdzc.

. pa— / . pa—
uw=-sin""rz, u =(n-1)sin"?2z cosz,

Let
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and
/ .
v =sinr, v=—cosx

Then, we have

I, = /sin" rdr=—sin""'2 cosx+ (n—1) / sin"~? cos®x dx
= —sin" 'z cosx+ (n—1) / sin""?(1 — sin® z) dx
= —sin" 'z cosx+ (n— 1)/sin"_2 de — (n — 1)/sin":v dx

= —sin" 'z cosx+ (n— 1)1, o — (n—1),

Hence, we find the recursive formula
1. n—1
I,=—=sin" ‘'z cosz + ——1,
n n

To (¢). In order to evaluate the integral

s

2 .
/ sin® x dx
0

we apply the recursive formula

1
I3 = —gsinzz cos:l?—l—gll

1, 2
= ——SIn" T COST — —COST
3 3

By Fundamental Theorem of Calculus, we evaluate

3. 3 1. 5 2 z
sin® x do = [—gsm x cos:v—gcos:BHO ==
0

J

Also, we evaluate the integral

(NJE]

sin® x dx

by the recursive formula

1. 3
I, = 1 sin® z cosx + ZIQ
1 3 1 1
=~ sin®x cosz + Z(—§ sinz cosx + EIO)
= 1sin3:17 cos:v—§sinzv cosT + —x
4 8 8

By Fundamental Theorem of Calculus, we evaluate

/ , 3 3 .z 3w
0

SIE]

sin’ z dr = [—lsin x cosr — =sinx cosx + Sz|f = —
4 8 87" 16
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Example 1.34 FEvaluate the integral

us

/E sin®z cos® x dx

0

Solution. We apply the method of substitution. Let
t=sinz, dt=cosz dzx,

Then, we find the indefinite integral

/ sinz cos®x dr = / sin®z cos*z cosx dx
o2t t
= [Q-)dt=—- - —+—
/ ( ) 7 9 + 11
B sin“z  2sin’x  sin'z
7 9 11
Hence, we evaluate
™ -7 -9 .11
2 . 5 sin‘x  2sin"x  sinx, z 8
d e — 2 =
/0 sin’x cos’z dx = | - o T 11 o 503

Example 1.35 FEvaluate the integral

3 dx
[ty
0o 14 coszx

Solution We apply the substitution

1 1 x
t = tang, dt = 3 sec” gd:r = 5(1 + tanzi)dx,
gp = 24t I —tan?§  1—1¢?
T e T T T T 11

Then, we find indefinite integral

dx dt
/1+cosx /(1+t2)(1+1—t2) / +

2 1+¢2
= tan 5 +C

Hence, the integral

[NIE]

d x
/ 7Idx:tang(§:1
0o l4cosz 2

Example 1.36 Similarly, we evaluate the integral

3 dx
/ — dx,
o 1l+sinzx
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Solution We apply the substitution

1 1
t= tanz, dt = = sec® Zdx = —(1+ tanzg)dx,

2 2 2 2
2dt . 2tan 3 2t
dr = ——, sinzx = — =
1+ ¢2 1 +tan?s 1+1t2

Then, we find indefinite integral

/ dx _/ 2 dt _/ 2dt _ 2
l+sinz  J (1+2)1+Z) J (1+8)?2 1+t

1+¢2
B 2
~ 1+tan 5
Hence, the integral
7 d -2 oz
[
0o 1l4sinx 1+ tan 5

Example 1.37 Find the indefinite integral

/Edix, a>b>0.
0o a+bcosx

Use the Fundamental theorem of Calculus to evaluate the integral

/% dx
0 24cosz’

Solution We apply the universal substitution

1 1
t= tang, dt = 3 sec? gdx = 5(1 + tanzg)d%
2dt 1—tan?§ 1—¢

dr = ——, cosx = =
14 ¢2 1 +tan?s 1+1t2

Then, we have

a+bcosx (1+t2)(a+b};§§)
2dt

- /(1+t2)a+(1—t2)b
_/ 2dt
) (a=Db)t2+ (a+D)

2 du 2

= ArcTanu,

T Va_p) 1+ JE_R®

where
a—>b a—>b
S\ aret W
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In terms of the original variable x
d
< ArcT anu

/ atbcosr  Ja?
b
= \/7ArcTcm Z n bt
—b
= \/7ArcTcm Z I tan
Hence, we find
3 2 1 x 2 1
de —ArcTcm(\/jtan E)|02 = —ArcTan—
372 V3 V3

2
/0 24 cosx /3

Example 1.38 Find the indefinite integral

d x4 (2k — D

1+sinz + cosx’
Use the Fundamental theorem of Calculus to evaluate the integral

/% dx
o 1l+sinz -+ cosx

T ok, k=0,41,+2, ...

Solution Let us substitute
1
—(1+ tanzg)da:,

1
t= tanz, dt = = sec® Zdy =
2 2 2 2
e 2t 2 tan 2 2t
r=-——, sinzx = =
1+ t27 L +tan?s 14t
Then, we have
dr B / 2dt _ dt
1 +sinz +cosx (1+t2)[1+1iiz+ﬁ—§§] L+t
= ln|1—|—t|:ln|1—|—tang|
Hence, we find
s d s
/2 : v :ln|1+tanz|02:lr12
0 l+4sinx+ cosz 2
“* cos bx

1.7.7 Integrating the expressions ¢** sinbz, e

Let us find the indefinite integral

Ilz/e”sinbz dz, Igz/e”cosba? dr, a#0, b#0.
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Applying integration by pars, we note

ax ! ax

/ i 1
u=e u =ae", v =sinbz, v:—gcosbz

Also, for the second integral

azr / azr

, 1.
u=e"" u =ae"™, v =cosbr, v=—sinbx

b
Then, we find for both integrals

1
/e” sinbx dx = —ge” cos bx + %/6” cos bz,

1 ) a .
/e” cosbr de = —e* sinbx — — / e sin b,

b b

Hence, we have the system of two equations

1
I, = ——e** cos bx + g]g

b b

1
Iy = —e*sinbx — ﬂh

b b

Solving the system of linear equations withe the unknowns /; and I, we find

inbxr — bcosb
L :/e‘”sinba: dr = asmor cos Ie”—l—C
a? + b2

acosbxr + bsin bz
a? + b?

Igz/e”cosba: dr = e +C

Example 1.39 Fvaluate the integrals

us

™
2 ) 2
/ e?® sin 3z d, / e?® cos 3z dz.
0 0

Solution. To find the indefinite integrals, we apply integration by pars. We
denote

’ ’ . 1
u=e* u =2* v =sin3z, v:—gcos?):v

Also, for the second integral

! ! 1
u=e** u =2** v =cosdzr, v= 3 sin 3z
Then, we find for both integrals
2x 1 1 2x 2 2x
/e sin 3x da:z—ge cos3:v—|—§/e cos 3z,

1 2
/629” cos 3z dxr = gezm sin 3x — 3 / e?® sin 3z,
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Hence, we have the system of two equations
1 2
I = —gezm cos 3z + g[g
1 2
I, = —e**sin3x — =1
3 3

Solving the system of linear equations withe the unknowns I; and Iy, we find

2sin 3z — 3¢os 3T o,
e

I :/ezmsin?)x dr = 13 +C
2cos 3z + 3sinb
12:/62mC083[L’ dr = cos z;?—, S Iezm—l—C
Hence . .
/5 2 gin 3y de — 281n3zv—3cos3x62m|og
0 13
-2 3 1
e — " _— = — — 2 n
ERIRSTIRE T
and i .
/E 02 cos 3y dr — 3s1n3z—|—20083x62m|og
0 13
-3 2 1
= ———=——(3"42)

13 13 13

1.7.8 Integrals of Even and Odd Functions

Even Functions. Let f(x) be a continuous even function in the symmetric
interval [—a, a]. That is, f(z) satisfies the condition

f(=x)=f(x) forall —a<zx<a, a>0.
Then, the integral . .
/_ f(z) doe = 2/0 f(z) dx (1.28)

Indeed, we note that
a 0 o
[ f@yde= [ f@)des [ f)da (1.29)

Let us substitute to the first integral t = —x, dt = —dz, t = a, when z = —a
and t = 0 when x = 0. Then, we find

/0 f(x) dx:—/aof(—t) dt:/oaf(t) dt

—a

Hence, by (1.29), we have formula (1.28).
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Example 1.40 Consider the function

1

:4027—]—1’2’ — o0 <Tr <0

()

Show that f(x) is an even function on the whole real line and for all values of
the parameter ¢ Fvaluate the integral

2 ;
/_24—|—552 o

B 1 B 1
4R+ (—x)? 4R + a2

We find
f(=z)

for all —oo < x < 0.
Thus, the function is even and the integral

T
47

> > 2 v
d :2/ de = 2 ArcTan™|? =
/_24+5172I , 15 g2t =gArclangly

Odd Functions. Now, let f(z) be a continuous odd function in the symmetric
interval [—a, a]. That is, f(z) satisfies the condition

f(=x)=—=f(x) forall —a<zx<a, a>0.

Then, the integral
/ fla) de =0 (1.30)

—a

Indeed, we note that

/a f(x) d{E:/_Oaf(a?) d:l:+/0af(at) dx (1.31)

—a

Let us substitute to the first integral t = —x, dt = —dz, t = a, when z = —a
and t = 0 when x = 0. Then, we find

/0 f(x) dx:—/aof(—t) dt:—/oaf(t) dt

—a

Hence, by (1.31), we have formula (1.30).

Example 1.41 Consider the function
f(z) =sin2z cos3zr, —oo<x <00

Show that the integral
1
/ sin2x cos 3z dx = 0,
-1
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We find
f(—x) =sin2(—x) cos3(—z) = —sin 2z cos3z = — f(z),

for all —oo < x < 0.
Thus, the function is odd and the integral

1
/ sin 2z cos 3x dx = 0

-1
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1.8 Applications of Integrals

1.8.1 Area between two curves

Let us consider two continuous functions f(z) and g(z) in the interval [a, b].
Suppose that
flz) >g(x), a<az<hb.

Then the area between the curves is given by the formula

b

A= [ 1@~ gla))do

Example 1.42 Find the area between the parabola
f@) =1-a?

and the straight
g(x) =z —1

Solution. We find the points of intersection, that is, when f(z) = g(z). Thus,
we solve the equation

l—a2*=2-1, or 2*+zr-2=@+2)(x-1)=0

The solution is # = —2 and x = 1. The curves intersects at the points (—2, —3)
and (1,0).

Vv

Fig. 7 Area between the curves y =1 — 22 and y = o — 1

By the formula, the area

A:/_lz[(l—l’z)—(l’—l)]dl’ = /(2—:52—55)0[:17

x3 2
= 22— — )
x 3 2)|—2
1 1 9
( 3 2) ( +3 ) 2
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Example 1.43 Find the area bounded by the graphs of the functions

y=4— a2 Y=z

Solution. We find the points of intersection, that is, when
4 — ? = 2°, or 22%=4

The solution is © = /2 and x = —2v/2. The curves intersects at the points

(—\/5, 2) and (\/5, 2).

1 45 05 1
Fig. 8. Area between the curves y = 4 — 22 and y = 2

By the formula, the area

V2 V2
A= /_\/5[(4 — 2 — 2 dr = /_\/5(4 —227%) dx
= <4x——>|f

= (42— f) (—4v2 + \f)
16v/2

3
Example 1.44 Find the area between two parasols

y2 = 2px

and
x? = 2py

Solution. We write the equations in the form

22
Y= — and  ys = 1\/2px
2p
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The curves intersect when y; = y5. So, we solve the equation

2 —./9

2p bt

Clearly, the solutions are 1 = 0, y; = 0 and x5 = 2p, yo = 2p. Thus, the
points of intersection are the origin (0,0) and (2p, 2p).

0.2 0.4 0.6 0.8 1

Fig. 9 Area between the curves y =1 — 2?2 and y = o — 1

By the formula, the area
2 2 2p 4 3
A= / 2p:£——dat = [3\/2]9I3] =3P

1.8.2 Length of a curve

Consider a continuously differentiable function f(x) in the interval a,b]. In
order to find the length L of the curve y = f(x), a < x < b, we divide the
interval [a, b] into subintervals, so that

la,b] = [0, 21] U [z 23] U ..., U[z),_1, ]

a b
Zo T X2 . . . Tp—1 Tn

Partition of the interval [a, b]

where
To=a, Tps1 =T+ Dxg, k=0,1,....n—1, x, =0,
Let
Ayk = f(l’k_H) — f(l’k), k= 0, 1, ey — 1.
Using relations between sides of a right triangle, we approximate the piece Asy
of the curve y = f(z) for x € [z, xk41] by the formula

Asy = \/(AZBk)z + (Ayg)?.
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So that, the length of arc L, we approximate by the Riemann sum

n—1 n—1 n—1 A
L~ Y as =Y JBnp T aur = 51+ (G2,
k=0 k=0 Tk

of the function /1 + [f'(z)]2.

Hence, for Azp— > 0, when n— > 0o, we obtain the formula for the length of
the curve given by the graph of the function f(z)

L= /ab 1+ [ (@) da (1.32)
Example 1.45 Find the length of the curve given by the graph of the function
fla) =a”
which joins the points (—1,1) and (1,1)

Solution. We have f(z) = 22, f'(z) = 2z. By the formula, the length

1 1
L= / V1T d22de = 2/ VI + 422d
—1 0

Let u = 2x, du = 2dz. Then, using formula (1.32), we find indefinite integral
1
L= [ Vit = 5/\/1+u2du
1
= Z[ux/ 1+ u?+ ArcSinhu] + C

1 1
— 5gm/l + 422 4 ZArcSz'nhQZE +C

Hence, we find the length
1 1
L= 2/ V1+44z2de = [zV1+ 422 + §ArcSinh2:E](1]
0

1
= [V5+ SAreSinh2]]

1.8.3 Volume of a Solid.

Let f(z) > 0 be a continuous function in interval [a,b]. If the graph of the
function y = f(x), revolves about z-axis, then the points (z, f(z)) move along
the circles with radius » = f(x) which lies in the plane veridical to x-axis.
Let us consider the volume of the cylinder V;, bounded by the circles of radius
r = f(x) which lies between two planes x = x; and z = x4, veridical to
z-axis with the hight Az = xp1 — xx, £ =0,1,...n — 1. Then, the volume of
the cylinder is given by the formula

Vi = 7f?(x5) Ay
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The approximate value of the solid V' is the Riemann sum

n—1

Va Y wf(w) Ay,

k=0

of the function 7 f?(x).

In the limit, when n— > oo, Axy— > 0, we obtain the formula for the volume
of the solid generated by revolving the area below the graph of the function
f(z) about x-axis

vszU@Pm.

Similarly, the volume of the solid generated by revolving about y-axis the area
between y— axis and the graph of the function = = g(y), ¢ < y < d, is given
by the formula

V= 7T/Cd[g(y)]zdy-

Now, let us consider the area between two graphs of functions f(z) and
g(x), f(z) > g(z) >0, a < x < b. Then, the volume of the solid gen-
erated by the area about z-axis is given by the formula

b
V= [1f@) - ¢*(x)lde.

Example 1.46 The area under the graph of the function
flx)=vz, 0<z<4

1s rotated about the x-axis. Find the volume of the solid generated.
Solution. Straight foreword application of the formula leads us to the result

4 2

1
V:W/O(\/E)zd:zzﬂ/o IdI:%|é:8TF

Example 1.47 Find the volume of a cone which has hight h and the radius
r.

Solution. Let the vertex of the cone be at the origin and its hight along the
x-axis. Then, the equation of the side is

o
By the formula the volume
h 23t 1
Vo [ a= TR L,
L A PR T L
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Example 1.48 Find the volume of the solid generated by revolving the graph
of half of the ellipse

about the x-axis.
Solution. Half of the ellipse is given by the function

2

y=>o 1—17—2, —a<z<a, a>0,b>0.
a

By the formula

e [T = [
V_7T —a( ( ag) xr = T —a( ag) X
3
o 2. T q % 2
= wb*(x 3031%a 3ab T

1.8.4 Volume of Cylindrical Shells

Let f(z) > 0 be a continuous function in interval [a, b]. Now, let the graph of
the function y = f(x), revolves about y-axis, then the points (x, f(z)) move
along the circles with radius » = x which lies in the plane veridical to y-axis.
We consider strip area bounded by two discs of radius vy = z and ro = x+ Ax.
Then, the area of the ring bounded by the two circles of radius r; and r is
given by the formula

AA=rm(r? —rd) = 2%“12&(7’1 —r9) = 2mrAzx
where A
_ritry Ar
r= 5 =+ 5

So that, the volume of the ring is given by the formula
AV =2nzy Ax

The approximate value of the volume of the solid V' is the Riemann sum

n—1

Va2 f(z) Axy.

k=0
of the function 27wz f(x).
In the limit, when n— > oo, Ayx— > 0, we obtain the formula for the volume

of the solid generated by revolving the area below the graph of the function
f(z) about y-axis
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V=2 /ab xf(x) dx (1.33)

Similarly, revolving the area between y axis and the graph of the function
x=g(y), c <y <dabout z— axis, we obtain the solid of the volume

V=2r /cd yg(y) dy (1.34)

Example 1.49 .

(a) Evaluate the volume of the solid generated by revolving the area between
x- axis and the graph of the function y = 4 — 2% about the y— axis.

(b) Evaluate the volume of the solid generated by revolving the area between
y- axis and the graph of the function x = 4 — y? about the x— axis.

Solution (a). We find the points of intersection of the function y = 4 — z?
and the r— axis. Solving the equation

4—2"=0

we obtain the points of intersection (—2,0) and (2, 0).
Because the function f(x) = 4 — 2% is symmetric about z— axis, therefore,
we consider the interval of integration [0,2]. Then, by the formula (1.33), we

evaluate
1V = 27T/2:B(4 — %) dr = 7[22* — I—4]|2 =8
2 0 4410
Hence, the volume V' = 167.
Solution (b). Let us find the points of intersection of the function z = 4 — y?

and the y— axis. Solving the equation
4—9y*=0

we find the points of intersection (0,—2) and (0,2). Because the function
g(y) = 4 — y? is symmetric about y— axis, therefore, we consider the interval
of integration [0, 2]. By the formula (1.34), we evaluate the volume

4

1 2 Y
5V = 2%/0 yd—y?) dy = 7[2y" — L5 = &r

Hence, the volume 167.
Choice of a Formula. In order to evaluate a volume generated by revolving
a region about x— axis or y— axis, we have the following options:

1. When the region bounded by the curve y = f(x) > 0, a < x < b, revolves
about z— axis, the volume

V= w/ab[f(a;)]%x
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2. When the region bounded by the curve y = f(z) > 0, a < z < b, revolves
about y— axis, the volume

V= 27‘(‘/:If(l’)]d$

3. When the region bounded by the curve z = g(y) > 0, ¢ < y < d, revolves
about y— axis, the volume

V= 7T/cd[g(y)]zdy

4. When the region bounded by the curve z = ¢g(y), y > 0, ¢ <y < d,
revolves about z— axis, the volume

d
V= 2%/0 yg(y)dy

1.8.5 Surface of a solid

Let us consider a differentiable function f(x) > 0 in the interval [a, b]. Then,
the approximate value S, of the surface S of the union of solids Vi, k =
0,1,...,n — 1 generated by rotating about z-axis of the curves

yp = f(z), for zp <z <z, k=0,1,...,n—1,

is the Riemann sum

n—1
S =21Y flae)y/(Azp)? + (Ayp)2Azy,  k=0,1,2,...n—1
k=0

of the function 27 f(z),/1 + [f'(2)]?.

Hence, in the limit, when n— > oo, we obtain the following formula for the
surface S of the solid generated by rotating about z-axis the area between the
graph of the function y = f(x), a < x < b and z—axis

b
S = 27r/ f(x)\/14 [f()])*dx.
Example 1.50 Find the surface of the ball generated by rotation of the circle
2% +y? =r? about x-axis.
Consider the function
y=flr)=vr2—22, 0<z<r

We have .
oo _
fo =

By the formula, half of the surface S of the ball is

S T _ T
522%/0 \/7’2—:172\/1%—[\/%7]%55:2%/0 x dv = 271’

Hence, the surface of the ball is S = 4772

f(I) = 7:2_1.2’
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1.8.6 Moments and Center of Mass

Let f(x) > 0 be a continuous function in [a, b]. The moments M, and M, and
the coordinates (&,7) of the center of the mass of A= [’ f(z)dz under the
curve y = f(z), « € [a,b] are defined by the formulae

— l/bf2($) de, My:/bxf(a:) dz
M, 1 /b
S PR S P

Also, the volume V of revolution of the curve y = f(z), x € [a, b], about z-axis
is given by the formula V = 2mnA.

Example 1.51 .

(a) Find moments M, and M, and the coordinates of the center of mass of
the area between parabola y* = 2p x and x-azis for x € [0, 1].

(b) Evaluate the volume of revolution of the parabola y* = 2p z, x € [0,1]

We have y = f(z) =+2pz, p>0, 0<z<1.
By the formula

M, —%/b[f( ))Pdr = = /szzdzc—%

M, = /:Ef da:—/ \/%a;fd:c_—\f

The area of the region under the graph of the function f(x) = /2pz, 0 <

r<1is 1 a
A:/O @dgx:%@

Then , we evaluate the coordinates (£,7) of the center of mass

3 1 3
_ 9 _ =
A/ ) do = 2\/%/055 pr dr 5
3 1 3
= 2 = 2,/2
QA/ >dr = \/%/0 pr dr 8\/79

By the formula, volume of the solid generated by revolving the area about

ZT-axis 5 5
V=2mA=2r g\/2p§@:Wp

Center of Mass of a Region Bounded by Two Curves. Let us consider
two continuous functions f(x) > g(z) in the interval [a,b]. The coordinates
&, n of the center of mass (centroid) of the region between the graphs of the
two functions is given by the formulae:

e My _ M.
a0 T3
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where the area of the region

A= [1f() ~ glw)dr

and the moments of the region
My = [ #lf(e) ~ (o)l
1 b 1 o, 9
M, = 5 [(1f(@) + 9@)if @) — g@lda = 5 [ [£2(2) = g*(a))do

Example 1.52 Find the center of mass (centroid) of the region bounded by
the curves y = a3 and y = \/x

Solution. We find the points of intersection of the curves f(z) = 2 and
g(z) = \/z,z > 0. Solving the equation z* = \/z, we find the solution z = 0
or x = 1. Thus, the curves intersect at the points (0,0) and (1,1). We note
that \/z > 2® for 0 < x < 1. First, we evaluate the area of the region

5
A= / -
Ndr = T2
Then, we find the moments of the centroid
1 1
M, = / dx—/a:g—afl)da::—
0 5
M, = —/ (:E—:EG)OZ:B:E
“ 2o 28

Hence, we obtain the coordinates of the center of mass

M, 12 M, 3

TaTwm "TaTw

1.9 Numerical Integration

1.9.1 Trapezoidal Rule.

Let f(z) be a given function twice contiguously differentiable in the interval[a, b].
We consider uniform partition of the interval [a, b] by the points
b—a

ri=a+1h, h= , 1=0,1,2,...,n
n

Then, the area of the tropez with the base h = x;,1 — z; and the parallel sides
f(z;—1) and f(z;) is given by the formula

f(ioa) + f(z:)

T, =
2

h, 1=1,2...n
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g X1 X2 X3 X4 Ty Te 7

Fig. 7.1, I(f)

The approximated area under the graph of the function is the sum of the
areas of n trapeze, that is

T=Ti+To+ - +T,

So that
p oo L), | S S,
+ thr.,,Jrf(%—l); f(l“n)h, (1.35)
h

= Slf(w0) +2f(w1) + 2f (w2) + -+ 2f () + flan)]

In this way, we arrived at the composed trapezoidal rule
h
Th(f) = 5lf (o) +2f (1) + 2f(w2) + - + 2f(2n-1) + f(2n)]

where the truncation error
2

— (b= a)f" (),

ET(.f7 h’) =
for certain n € (a,b), so that

I(f) =Tu(f) + Ex(f,h).

The truncation error of the trapezoidal rule satisfies the following inequality:

M@

_ 2

where
MO = sup | f(z) .

a<z<b
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Example 1.53 FEvaluate the integral

2
[ in(1+ 2)de
0

by trapezoidal rule with the accuracy € = 0.05.

Solution. In order to get accuracy € = 0.05, we shall estimate the step-size

h—
h, so that, we choose the greatest h = - a for which the following inequality
holds:
h2
Er(fh) < 75(b— a)M® < e

Because

f@)=in(l+a). fla)=——. @)=t

’ 1+ (1+2)%
we have
1
M® = ma =1.

So, the inequality

holds for h = 0.5 and n = 4.
The approximate value of the integral is:

T(f) =0.25[f(xo) + 2f(21) + 2f (x2) + 2f (23) + f(24)]
= 0.25[In(1) + 2in(1.5) 4 2(n(2) + 2In(2.5) + In(3)] = 1.282105.

1.9.2 Simpson Rule.

Let y = f(z) be a four times continuously differentiable function in the
interval[a, b]. We consider uniform partition of the interval [a,b], by 2n + 1
points

a=Tog < T < T2 <,...,<[L’2n_1<l’2n:b

So that
b—a

2n

ri=a+1th,1=0,1,2,....2n, h=
and the interval consists of 2n subintervals

la,b] = [a, x1) U [x1, x2) U [x2, 23] U U [T2-1, Tan).
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In order to derive Simpson rule, we consider the area S; between x-axis and
the graph of the quadratic function
(x — x1)(x — x2) ( (x — ) (x — x2)
(2o — 21)(0 — 72) (21— 20) (21 — 72)
(x —x1)(x — x2) (x — x0)(x — x2) (x — x0)(x — 1)

2h2 .f(IO) - h2 f(Il) + 2h2 f(I2)
Let us note that the quadratic function y(z) goes thought the three points
(zo, f(20)), (w1, f(71)) and (29, f(22)).

(x — ) (x — 271)
flan) + (22 — wo) (w2 — 21)

y(z) = f(z2)

4

g X1 X2 X3 X4 Ty Te X7

Fig. 7.2. 1(f)

The area is given by the integral
S; = /I2 f(z) de = f (o) /mz(:c —x1)(x — 29) dx

0 2h? 0
fla) [

- / (z — z0)(z — m2) dz

+ f;zs) /9:(:5—:50)(:5—171) dx

f (o) 20° N f(l“l)@Jrf(l“z)E
2h? 3 h? 3 2h? 3
h
= g[f(ffo) +4f (1) + f(22)]
Then, the area between x-axis and graph of the function f(x) over the subin-
terval [z, 22| is the integral

T2 h

|7 (@) do 515 (o) +4f (1) + f(a2)]
Zo

This is the simple Simpson’s method. The error of the simple Simpson’s

method

/ f(z)dr — g[f(fo) +4f (1) + f(22)] = —g—of(4) (n)

0
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To obtain the composed Simpson’s method, we apply the simple Simpson’s
method to each of the integrals on the right side

2n

/abf(:v)da::/m:z f(:c)da:+/;4f(a:)da:+---+ " fa)de,

So that
/:21 flz) dx ~ g(f(l’%—z) +4f(z2i-1) + f(22i41)) = S

fore=1,2,...,n.
Then, we obtain composed Simpson rule

Sp(f) = Si+S+---+8S,,
that is
S = LU + 47 ) +2f(w) + 4f(2s)

+ 2f(za) + -+ 2f(w2n-2) + 4f (220-1) + (0)]
Hence, the integral
[ Fwyde = $,(7) + Bs(f, ),

where the error

h5
—oglF )+ FO ) + -+ FO ()],
for n; € [l’gi_g,l’gi], 1= 1,2, N
Hence, by the intermediate value theorem, there exists € (a,b) such that

ES(.f> h) =

b—a
Fm) + S O0m) + - f D) = nf D () = 2 D),
Therefore, the error of the composed Simpson rule is:
Bs(£.h) = —hnf () = (b= )90
SR = g™ V= T g G
for certain n € (a,b).
This error satisfies the following inequality:
h4
| Bs(f.h) |< g5 (b= a)M®. (1.36)

where
M® = max | f@(z) | .

a<z<b
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Example 1.54 FEvaluate the integral

1) = [ (1 + )

by Simpson rule using step-size h = 0.5. Estimate the truncation error Es(f, h).

Solution. We note that 2n = b—Ta =4 and
h
Su(f) = glf (o) + 4f(w1) + 2f(22) + 4f (w3) + f(24)]

E
E
The exact value of I(f) = 1.295837, so that the error Eg(f, h) = I(f)—S(f) =

1.295837 — 1.295322 = 0.000515.
Also, we note that

[In(1) + 4In(1.5) + 2in(2) 4+ 4in(2.5) + In(3)] = 1.295322

6 6
(4) _ (4) _ _
() At and M ax o o) 6.
Hence iy 0.0625
| Bs(f,h) < 150 = a) MW = W2 % 6 = 0.00417.

Question 1.1 .

(a) Assume that the error Ep(f,h) of the trapezoidal method T (f,h) is pro-
portional to h?, so that
ET(.f7 h’) =C h'2

for a constant C.
Show that the
ET(.f7 2h’) =4 ET(.f7 h’)

(b) Let 2n be an even number of the subinterval in an uniform portion of the
interval [a,b]. Denote by T'(f,2h), T(f,h) two trapezoidal results obtained

for 2h and h =

a
, respectively. Show that the Simpson method
n

S, ) = ST (f,h) = T(f,20))

Solution.
To(a). By the assumption

Er(f,h) =C R, Ep(f,2h) = 4C 1?2

Hence, we find
Er(f,2h) = 4C h* = 4E7(f,h)
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To(b). The formulae of the trapezoidal method defined on 2n subintervals
are:

T(.) = 214(a) + 20 (02) +27(22) + 20 (w) 4+ 2 (22s) + (0]
T(f,2h) = h[f(a) +2f(x2) + 2f(22) + 2f (za) + - + 2f (220-2) + f(b)]
Hence, we find

1 h

SUT(LR) = T(f,20)] = Slfa) + 2f(21) + 4 (22) + 2f(w3) + 4 (24) -

+ 4f(ran-2) + 2f(z2n-1) + f(b)] = S(f, h)

1.10 Exercises. Set 1

Riemann Sums and Riemann Integral.
Question 1.2 .

(a) State the definition of Riemann sums of a function f(x) given in the
interval [a, b].

(a) Find the Riemann sums of the following functions on an uniform partition
of the interval [a, b]

1, 0<z<1

(i) fl@)=a>+a+1, 0<ax<1, (i) g(z):{
r, 1l<x<?2

(c) Find the limit of the Riemann sums of the functions f(x) and g(z).

Question 1.3 .
Use the Riemann sums

(a) to find the area between x-exis and the graph of the function

flz)=1+2% 0<z<L

(b) Evaluate the mean value of the function
f(z) = 222, 0<uxz<4,
where the mean value of f(x) in [a,b] is given by the formula

1

(mean(f) = T /abf(x) dx

Question 1.4 Fuvaluate the integrals
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ISIE]

cos x dx

(a)
J

(a) ]
/ *sinx da
0

Using the Riemann sums with the mid-points x; =
vals [z, xi41], 1 =0,1,...,n — 1 and the formulae

Tiy1 + T .
L, of the subinter-

in 2
cosx + cos 3x + cos bz + ... + cos(2n — 1)x = Sln' nx
2sinx

1 —
sinx + sin 3z +sinbz + ... +sin(2n — 1)z = M
2sinx
i ST _ 4
z—>0 g

Fundemental Theorem of Calculs.

Question 1.5 .
(a) State the Fundamental theorem of Calculus.

(b) Use the theorem to evaluate the following integrals

1
/ (1++/z +sinwx) do
0

“ /2 x dx

14+
(d)
2 dr
0 4+ a2
(e)
/2 dx
1 V9 — 22
0) 3 o
/l(za—l—zﬁ)dx, a=g, 625

(9) X
/ (sin ™+ cos —I) dx
0
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(h) ] ]
. T g T
(1) /0 sec” x dx, (11) /E csc” x dx

4

Question 1.6 .
Find the area bounded by the given curves and the given lines. Sketch the graph

(a)

f(x)=9—2% and z— axis

(b)

f(zr)=—2*+6x—5 and x — axis
(c) Find the area between two functions

flxy=1—-2 and g(z)=1-2?

Method by Substitution.

Question 1.7 .
Use the substitution to evaluate the integrals

(o) 4
/ V1i+2xde, t=1+2z
0

(b)
/Oa VT de, t=+/r, a>0

1+
(0 2
/x\/4—x2da:, t=4—2°
0
(@ 2
2
— —dw, t= 4+ 2?
/04+x2 T, +x
) a
/ Va2 —z2dr, r=acost, a>0
0

Question 1.8 .
Use the substitution u = g(x) to evaluate the integrals
(o) 1
/ 2z +1)Val+x+3de
0
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(b)
2 t43t2

—dt
1 Vt2 423
(¢ 1
/ V4 — 2% dx
0
(d) Show that

1
/ sinmx cos" mx dx = 1+ (=1)"], n=12,..,
0

m(n+1)

x
(e) Use the substitution u = tan 5 to evaluate the integrals

(0) /% sin z'dz iz, (i) /% sinx dz i
o 1l+sinz 0 14 cosz
I dx I sinx dzx
d ’ . / '
(7i7) /o 1+ sinz +coszx v (iv) 0o 1—sin?z + cos2x

Question 1.9 .
(a) For a given continuous function f(x) in the interval [a,b], show that
b b
/ 322 f(2*) dx = /(3 f(u) du
(b) Let f(x) = e®. Evaluate the integral

1
/ 322 f(2%) dx

0

Metod of Integration by Parts.

Question 1.10 .
Evaluate the following integrals:

(a)

1
/ sinmx coswx dx
0

) 2
/ T COS T dx
1 2

(0 1
/ cos® x dx
0
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(d) _ _
(1) / e*sindx dr, (i) / e cos 6z dx
0 0

(e) ) )
(1) /0 arectan 2x dx, (i) /0 2*In(1 + ) dx

(f) Show that
1 1
(1) / sin® 2nx do = / cos? 2mw dx = 1
-1 -1
(9) ' )
(17) /Cos?’xdz:gcoszxsinx—l—gsin x4+ C
where C' is a constant.

(b) Evaluate the integral
/ * cos® z dw
0

Integration of Rational Functions

Question 1.11 .
Evaluate the following integrals

(a)

/0 2T+ 1000
/1 20+ 1
122462+ 9
/1 dx
a2 —-2x+5

/1 4o dx
0o 2+4

/1 4o dx
0 (x244)?

(b)

(c)

(d)

(¢)

(f)
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Trapezoidal and Simpsons Methods
Question 1.12 .

(a) State the formula for T(f,h) of the trapezoidal method and give an esti-
mate of its error errorp(f,h).

(b) Evaluate the approzimate value of the integrals, when n = 4, by the trape-
zoidal method

: T . Lo L dr
(1) /0 sinx dx (11) /0 e’ dx (131) /0 i
(c) Evaluate the integral
/01(1—|—{£—|-{£2—|—{E3—|—{E4) dx
by trapezoidal method with accuracy € = 0.08.
Answer = 2.31328, n =5, h =0.2

Question 1.13 .

(a) State the formula for S(f,h) of Simpsson method and give an estimate of
its error errors(f,h).

(b) Evaluate the approximate value of the integrals, when n = 4, by Simpson’s
method

I 1 9 1
(4) /0 sinede (i) /0 ¢ dy (#44) /0 %
(c) Evaluate the integral
1
/ (I+z+a2*+2° +2%) do
0

by Simpson method with accuracy € = 0.05

Answer = 2.29167, n =1, h = 0.5

Question 1.14 .

(a) Assume that the error Ep(f, h) of the trapezoidal method T (f,h) has the
SETries erpansion

ET(.f7h'):C2 h2—|—04h4—|—06h,6_|_...



66

Let 2n be an even number of the subinterval in an uniform partion of the
interval [a,b]. Denote by T'(f,2h), T(f,h) two trapezoidal results obtained

for 2h and h = 62_—&, respectively. Show that the error of method
n

S(f,h) = ST ) = T(F,28)

18

E(f, h) ~ —4cy h*

Question 1.15 Sketch the graph of the curves and evaluate the area between
them

(a)

(b)



Chapter 2

Ordinary Differential Equations
(ODE)

2.1 Introduction to First Order ODE

The general form of the first order differential equations

dy(z)
dx

where the function f(z,y) of two variable z and y is given in the rectangle

Q={(r,y): a<zx<b c<y<d

— fa,y(@), a<z<b (2.1)

and y(x) is the unknown function of the variable z.

We shall see that there are many solutions of the equation. In fact, there is
one parameter family of solutions of the equation. We can choose one from
the family by the initial condition

y(a) =yo for a given value yg
The following Cauchy-Picard theorem holds:

Theorem 2.1 If the function f(x,y) is continuous in the ¢ rectangle Q2 with
respect to both variables x andy, and satisfies Lipschitz’s condition with respect
to the variable y, that is

|f(x,y1) f(z,y2)| < L |y —yo| forall a<xz<b,

here the Lipschitz’s constant L > 0 is independent of x and vy,
then there exists a unique solution y(x) of equation

d
D) — fayta),
which satisfies the initial condition
y(a) = yo (2.2)

67
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2.2 First Order Linear Equation

In general, equations of the form (2.1) are successfully solvable for some types
of the given function f(x,y). For example, when the function f(x,y) is linear

in the variable y, that is

flzy) = —plx)y +q(z), a<z<Dh,
where p(x) and ¢(z) are given in [a, b].
Then, the linear equation takes the form

dy(z)
dx

Below, we shall solve the linear differential equation (2.3)
the homogeneous linear equation

dy()
da:+

when the function ¢(x) = 0 for all x.
So, we write the equation in terms of the differentials

+p(2)y = q(z), a<x<b.

p(x)y =0, a<z<b.

dy _
Yy
Integrating both sides, we find

In|y| = —/p(a:) dx + Cy

—p(z)dz, a<z<hb.

or
y(:v) — e—fp(m) dz+Co _ Ce—fp(m) dx
for constant C' = e°.

Example 2.1 Find all solutions of the equation

dy

— —2zy =0, —00 < & < 0.
dx

We write the equation in the differentials form
d
—y:2a7dat, —00 < x < 00.
Yy

Integrating both sides, we find
In|y| = 2* + Cy
Hence, we obtain all solutions

y(z) = C "+ = ¢ ¢’

(2.3)

. First, let us solve

(2.4)

(2.5)
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for constant C' = 0.

We note that all solutions are given in the form of one parameter family of
solutions with the parameter C'.
Now, let us solve the non-homogeneous equation. Multiply equation (2.3) by

the factor eJ 7@ 4 we obtain
efp(m)dmd?ii—(z) + p(x)el P@dey — o [r@ideg ) g < 4 < b,
x
The left side of the equation is the derivative of the product
A
dx
Integrating both sides, we obtain

efp(m)dmy = /efp(m)qu(:v)da? +C.

o] Pry] = &) Prg ().

Hence, the solution

y(@) = e S0 [ ef g ()da + )

or
y(z) = e‘f”(m)dm/efp(m)%(a:)dx +C e Jr@d <<,

for a constant C'.

Example 2.2 Find all solutions of the equation

d
—y—l-Qy::B, —00 < & < 00
dz
We have p(x) = 2, q(z) = x. Let us multiply the equation by the factor

e—fp(m)dm _ €—f2dm _ 62m’ to get

d
ezm—y + 2e%y = x %, —00 < T <00
dz
Now, the left side of the equation is the derivative of the product
d

%[ezmy] = 1 e,

Integrating both sides, we find
ey = /a: e*dx + C
Hence, we have the solution
y(z) = e_zm/:v e*dr + Ce ™"

or
1
y(x) = Z(Q:B — 1)+ Ce™™, —00 < T <00

for any value of the parameter C.
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Example 2.3 Find all solutions of the equation

d
—y—|-4zvy:8:v, —00 < x < 00
dx

We have p(x) = 4z, q(xr) = 8x. Let us multiply the equation by the factor
6f4mdm — 62m2’ to get

20?4 + 4e2% g Yy = 82 .
dz

Now, the left side of the equation is the derivative of the product
d
dz

Integrating both sides, we find

[eszy] — 8z e27°,

eszy = 8/:17 2 dx + C
Hence, we have the solution
y(z) =2+ Ce >, —00 < & < 00

for any value of the parameter C.

From the examples, we observe that all solutions of a first order differential
equation are in the one parameter family of solutions with the parameter C'.
However, we can choose a unique one by the initial condition, as we present
in the following example

Example 2.4 Find the solution y(x) of the initial value problem

Yy —y = sin 2z, —00 < x < 00

y(0=1
We have p(z) = —1, q(z) = sin2z. Let us multiply the equation by the factor
e~ J dz e ", to get

e "y —e "y = e "sin2z.
Now, the left side of the equation is the derivative of the product
le™"y]" = e " sin 2.
Integrating both sides, we find
ey = /e_m sinz dr 4+ C (2.6)
We find the indefinite integral integrating by parts. Let

. 1
u=e¢* u =—e" v =sin2z, v= ~3 cos 21
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Using the formula of integration by parts

/uv'dz:uv—/u'vda:

1 1
I = /e_m sin 2z dr = —56_”6 cos 21 — i/e_m cos 2z dx

we find

Similarly, we find
_m 1 . 1 .
/e cosQa:d:E:§e SIHQZL’+§/€ sin 2z dx

Hence, we have the solution

) 1 1
ZI = —56_”5 cos 2x — Ze_m sin 2x
or
o 2 . ..
/e sin 2z dx = —ge " cos 2x — z¢ sin 2. (2.7)

Combining (2.6) and (2.7), we find the solution
1
y(z) = —5(2 cos 2z + sin2z) + Ce”

Using the initial value condition y(0) = 1, we determine the constant

2 7
- _Z —1 _ L
y(0) 5—|—C , C E

Hence, the unique solution
1 7
y(x) = —5(2 cos 2x + sin 2z) + gem

satisfies the initial condition.
Exercises

Question 2.1 .
(a) Find all solutions of the equation.
y'(z) + 327y (x) = 2°.
(b) Find the solution y(x) of the equation which satisfies the initial value
condition y(0) = 2.
Question 2.2 Find a continuous solution of the initial value problem
y'(@) +y(x) = fz), y(0)=2

where

fx) =

2, 0<x <1,
0, z>1



72

Question 2.3 Show that if w(x) and v(x) are two solutions of the equation
y'(z) +p(z)y(z) =0
then, for any constants ¢y and co the function
y(x) = crw(z) + cv(x)
1s also the solution of the equation
Question 2.4 Prove that if w(z) and v(z) are two solutions of the equation
y'(z) + p(x)y(z) = q(z)

then the difference
y(z) = w(z) — v(z)

1s the solution of the equation homogeneous equation

y'(z) +p(r)y(z) =0

2.3 Separable Equations

Let the function f(x,y) = h(z)g(y) be the product of two function h(x) and
g(y). So that, each of them is a function of one variable z or y. Then, the
separable equation is:

dy
T h(x)g(y) (2.8)
or in terms of differentials
M(z)N(y)dz +m(x)n(y)dy = 0 (2.9)

Clearly, equation(2.9) can be written in the form (2.8) that is

dy — M(z)N(y) M(x N(y)
hl AN , for h(z)=-— , = 2.10
&~ m()n() D=y Wy B
provided that m(z)n(y) # 0
For example, the equation
dy 1+2a?
dr 1412

or
(1+2%)dz — (1+y*)dy =0

is separable, since the function

1+ 22

f($>y):T?J2
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and each of

is the product of two functions h(z) = 1 + 2? and g(y) = T

them is one variable function.
In order to solve a separable equation, we write equation (2.8) in the differen-

tials from
dy

9(y)

Integrating both sides, left with respect to y, and right with respect to =, we
find the solution y(x) in the implicit form

/%Z/h(i)d(t

In the example, we find the implicit form of the solution

/(1+y2)dy:(/1+552) dz + C

= h(z) dz

So that ) 5
) T
L —z4+=—+C
y+3 :E+3+

or 1
(y—fv)+§(y3—1‘3) =C

for any constant C'.
Equations with homogeneous f(z,y). Consider the equation

dy

where the function f(x,y) is homogeneous of degree n if satisfies the condition

fta,ty)=1t"f(z,y)

for any real ¢.

Example 2.5 The equation

dy Yy
Y 0
is with homogeneous right side of degree 0.
We have y
x,y) =
f(z,y) Py
Then
(ty) ty

flt o ty) = f(z,y)

T trtty tatty
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for any real ¢.
General approach. By the substitution

y(x) =z v(x)
we replace the unknown function y(z) by the unknown function v(x).

Then, we have
dy _ W
do dx

1
and fort = —, x#0
x

Hence, we find
n dv )
v _— =
A g\y
Thus, we have arrived to the separable equation, which in terms of differentials

takes the following form:
dv ~ dw

gly)—v =

Integrating both sides, we obtain the relation between x and y as implicit form

of the solution P
/ ST P
g(v) —v

for any constant C.

Question 2.5 Find all solutions of the equation

dy y
— = ,  x+ 0,
dr =4y y7
Solution. By the substitution y = x v, we transform the equation to the
separable equation in v
n dv 1
v+ r— =
dr 1+ %
or - q
x
2vdv =——, x#0
v x
Integrating both sides, we find the implicit form of all solutions
1
——+Inlv] = —-1n|C z|
v

vin|Czo|=1

In the original variables
yln|C y| =z.

for any constant C.



75

2.4 Linear Ordinary Differential Equations

We shall consider the linear ordinary differential equations of the second order
with constant coefficients

2
L) == TY et gy = fa),  a<e<h (20
or
Liyl(x)==y"+py +qy=f(z), a<z<bh, (2.12)

where the constant coefficients p, ¢ and the right side function f(z) are given,
and y(z) is the unknown function.

The equation is linear because the operator Lly|(x) in the left side is linear
one. So that, the image of a linear combination

a1y () + coya(z)
is linear combination of images, that is
Llewyr + cayo|(z) = e1Lly1](z) + c2Lya(z)

Indeed, we have

d*ciyy + ¢ d(cryr + ¢

Liewyr + cayol(z) = ( 1?/; 2 202) +p ( 1y1d$ 242) + q(cryr + c2y2)
d? d d? d

cr dy21 +P01% +quy1) + Cz(d—y; + 02% + qy2)

= alLly](z) + c2Llys]()
for any constants ¢; and cs.

In order to solve the equation, we begin with solution of the homogeneous
equation, when the right side function f(z) =0 for all = € [a, b].

Py dy
a2 T Par

To find all solutions of the homogeneous equation, we apply Euler’s substitu-
tion

+qy =0, a<x<b, (2.13)

y(z) = e
y'(x) = Ae™
y//(l’) — )\26)\m

Then, we obtain the equation for A
v oy +ay= (N +pA e =0
A root A\ of the characteristic equation

NM4+pA+q=0 (2.14)
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determines the solution y; (z) = e,

To find all real solutions of the equation, we consider the following three cases:
Case 1. The roots A\; and Ay of the characteristic equation

N+ ph4q=0, A=9p?—4g >0, (2.15)
are real and distinct.

Then, we have two linearly independent solutions

y(z) = e, yao(z) =€

Aox

Thus, all solutions are in the form of the linear combination

y(x) = 1y (w) + caya(2) (2.16)

for any constants ¢; and cs.
Two parameters family of solutions (2.16) is called general solution of homo-
geneous equation (2.14).

Example 2.6 Find the general solution of the equation
y' =3y +2y=0
Solution.The characteristic equation
M-3A4+2=A-1)(A=3)=0, A=1>0.

has two real and distinct roots Ay = 1 and Ay = 3. Then, the linearly inde-
pendent solutions are:

and the general solution is:

Az Aox

y(x) = c1e™* 4 e

for any constants ¢; and cs.
Case 2. There is a real and double root A\; = Ay of characteristic equation
(2.14). Then, the double root generates two independent solutions

Az A1z
)

yi(zr) =e Ya(x) = we

Thus, the general solution of homogeneous equation 2.14) is:

Ax Ax

y(x) = 1™ + coxe

for any constants ¢; and cs.

Example 2.7 Find the general solution of the equation

y' =4y +4y =0, A=0.
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Solution. The characteristic equation
M3\ +2=\1—-22=0

has double real root \;y = Ay = 2. Then, the linearly independent solutions

are:

yi(x) =e*,  yolx) = e

and the general solution is:

2x

y(z) = c1e* + cpze®

for any constants ¢; and cs.
Case 3. There is a complex root A\; = a + b of characteristic equation (2.14).
Then, the conjugate A\; = a — ib is also the root of the characteristic equation
Using Euler’s formula

e = cost +isint

we find
et = ¢ e = e%(cos b + isinb)
Hence, the complex solutions are

elat)T — 9% (o b + i sin bz

1™ — 6% (cog by — i sin bx)

Because the equation is linear one, therefore the real and imaginary parts of
the complex solutions are also solutions, that is, the complex root generates
two linearly independent solutions

y1(x) = " cos b, yo(x) = e sinbx
Then, the general solution of homogeneous equation 2.14) is:
y(z) = 1€ cos bx + cpe” sin bx

for any constants ¢; and cs.

Example 2.8 Find the general solution of the equation
y' — 6y +25y =0, A=-64<0.
Solution. The characteristic equation

AN —6A+25=0
6 + 8i

—3+4i,a=3, b=4.

Then, the linearly independent solutions are:

has complex root A\; =

3 3

y1(x) = e** cosdx, ya(x) = e**sindx
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and the general solution is:

3

y(z) = 16> cos 4z + cpe®” sin 4x

for any constants ¢; and cs.
Solution of Non-homogeneous equations. All solutions of the non-homogeneous
equation

y'+py +qy=flx), a<z<b, (2.17)

are in the of two parameters ¢; and ¢y family of solutions

y(x) = ciyi(z) + caya(r) + yp(z)

where ¢1y1(x) + coya(x) is the general solution of the homogeneous equation,
when f(z) = 0 for all € [a,b], and y,(x) is a particular solution of non-
homogeneous equation (2.17). Therefore, to find all solutions of the non-
homogeneous equation, first, we find the general solution of the homogeneous
equation, and then, we find a particular solution y,(x) of the non-homogeneous
equation. The sum of two is the general solution of the non-homogeneous equa-
tion.

We shall present two methods for finding a particular solution of a non-
homogeneous equation.

- the method of under determined coefficients

- the method of variation of parameters.

Method of undetermined coefficients. This method is used to find a par-
ticular solution of the non-homogeneous equation. It is applicable to a special
class of function f(x) in the right side of the equation.

e When f(z) = pu(x) = ag + a1z + ax® + -+ + a,x™ is a polynomial.
Assume a particular solution also as a polynomial.

e When f(x) is an exponential function like
flz) =€ or f(x)=pa(z)e”

Assume a particular solution also as an exponential function or a combi-
nation of a polynomial and an exponential function.

e hen f(z) = Asinz + Bcosz is a combination of trigonometric functions.
Assume a particular solution also as a combination of trigonometric func-
tions.

Example 2.9 Find a particular solution of the equation
y”—2y’+y=1+372

The right side f(z) = 1+ 2?2 is the polynomial. So, we predict a particular
solution also as a polynomial

Yp(T) = ap + a,x + asa®
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where the coefficients ag, a; as are to be determined.
To find the coefficients ag, a1, as, we substitute to the equation

yp(z) = aop + ayx + asa?
yy(z) = a1 + 2axx
Yp(x) = 2a2
to get
2a9 — 2(2a27 + ay) + ap + a1x + axr® =1 + 22, forall — oo < zoo

Hence, we have
2a2—2a1+a0:1

4&2-&1:0

agzl

The solution is
agzl, a1:4, a0:7,

and the particular solution
yp(z) =7 +4r +2°, —o0<z < 00.
Example 2.10 Find a particular solution of the equation
y" —y 4+ 4y =sinxz + cosx

The right side f(z) = sinx + cosz. So, we predict a particular solution also
in the form of the right side

yp(x) = Asinz + Bcosx

where the coefficients A, B are to be determined.
To find the coefficients A, B, we substitute to the equation

yp(z) = Asinz + Bcosx

y,(z) = Acosw — Bsinz

y,(r) = —Asinz — Blcosx
to get
(—Asinx — Bcosz) — (Acosx — Bsin) + 4(Asinx + Bcosx) = sinz + cos .
Hence, we have

(—A+B+4a)sinaz+(—B—A+4B) cosx =sinz+cosx,  forall —oo <z < o0
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Comparing both sides, we have

3A+B=1
—A+3B=1
So that . )
A=—-, B=-
5 5
and the particular solution
1 . 2
yp(:v):gs1n:v+gcosa:, —00 < T < 0.

Example 2.11 .
(a) Find all solutions of the equation

y' =2y — 3y =2e" — 10sinx, —o00 <z < 00.

(b) Find the solution of the equation which satisfies the initial value conditions

Solution (a). First, we find all solutions of the homogeneous equation
y' =2y —3y=0, —oo<zx<o0.
The characteristic equation
M—22-3=A+1)(A=-3)=0

has the real roots Ay = —1, Ay = 3. Therefore, the linearly independent

solutions are

x 3z

yi(z)=e",  ypr)=c¢
and the general solution of the homogeneous equation is
c1e” + coe®®

for any constants ¢; and cs.
To find a particular solution of the non-homogeneous equation

y' =2y — 3y =2e" —10sinz, —o00 <z < 00.
We predict a particular solution in the form of the right side

yp(x) = Ae® + Bsinz + C cosz
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where the coefficients A, B, C' are to be determined.
To find the coefficients A, B, C, we substitute to the equation

yp(z) = Ae® + Bsinz + Ccosx
y,(v) = Ae®* + Beosx — C'sinx

yy(z) = Ae® — Bsinx — C cosx

to get
(Ae® — Bsinz — Ccosz) — 2(Ae® + Bcoszx — C'sin)
— 3(Ae” + Bsinz + ccos )
= e —10sinz.
or

(—4Ae” + (—4B + 2C) sinx — (—4C — 2B) cosx) = 2¢” — 10sinx

Comparing both sides, we have

—4A =2
—4B 4+ 2C = —10
—4C -2B =0
So that, the solution is
1
A=——-  B=2 (C=-1
2
and the particular solution
1
yp(z):—§em+28inz—cosz, —00 < x < 00.

All solutions of the non-homogeneous equation are in the two parameters fam-
ily of solutions

1
y(z) = cre™" 4 e — 561 + 2sinx — cosx

for any constants ¢; and ¢,
Solution (b). By the initial conditions

1
y(0)201+02—§—1:0

1
y’(O):—cl+302—§—|—2:1
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Hence, we find

5 1
C1 = Z’ Co = Z
and the solution
5 —x 3z 1 x :
y(:v)zze +Ze —5e + 2sinx — cosx

satisfies the initial conditions.
Method of variation of coefficients.Let us assume that we have two linearly
independent solutions

yi(z) and  ya(2)
of the homogeneous equation
y'(@) +py(z) +qylx) =0, —oco<z<oo

Then, all solutions of the homogeneous equation are in the form of the linear
combination of two

y(x) = cryi(z) + caya(z),

for any constants ¢; and cs.
To obtain a particular solution of the non-homogeneous equation

y'(@)+py' () +qyx)=f(z), a<z<bh

we apply the method of variation of parameters predicting a particular solution
in the form

yp(x) = vi(x)y(x) + va(2)ya(2),
where the functions v(x) and vy(x) are to be determined, so that y,(x) is a
particular solution of the non-homogeneous equation.
We put the condition
vi(x)y1(x) + vh(x)y2(x) =0, forall a <z <b. (2.18)

for the functions v1(x) and ve(z).
By condition (2.18), we find

Yp(x) = vi()yn (x) + va()ys(x)

and
y"(x) = vi(@)y) () + va (@) (2) + vi(2)y1 () + va(2)ys(w)
By substitution the above to the equation, we have

[01(2)y1 () + va(2)y5 (x) + V1 (2)y1(x) + v5(2)ys()]
+ plor(e)yr () + va(2)ys(2)]

+  qui(@)y () + ve(@)ye(2)] = f(x)
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The above can be written as follows:
vi(@)[yi (@) + p yi(z) + ¢ 1 (@)
+ va(2)[ys () +p yo(x) + q ya(2)]
+ [n(@)yi (@) + va(e)ys(e)] = f(x)
Because, 31 (x) and y,(x) are solutions of the homogeneous equation, therefore
vi(@) +poi(@) +qui(x) =0, and  yh(x) +pys(r) +qya(r) =0

Hence, we have the following conditions imposed on the functions v;(x) and
vo(x):

vr(@)ya () + va()y2(z) = 0

v (2)yi(z) + vy(z) +va()ys(z) = f(z)
The determinant
yi(z) y2(x) |

Wly1, yo] () =

of the matrix
{ yi(z) y2(x) ]
A —
yi(z) ya(z)

is called Wronskian.
Solving the two equations for | and vy, we find the solution

(@) = 1 0 ya(z)

T Wnwl@ | ) g |
and

() — 1 yi(z) O

P W@ | @) s |
" N 7o NP { (3 YA ),

= W@ ™M T W @)
Integrating both sides, we find the functions
/ Wy1>y2 / Wy1>y2 (2.19)

Thus, having v1(z) and 'Ug(l’), we find the particular solution

yp(z) = vi(2)y1(z) + va2(2)ya(z), a<a<b
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Example 2.12 .

(a) Find a particular solution of the equation

y'(x) — 4y (z) + 3y(x) =sinx, —oco<z <00

(b) Find a solution of the equation which satisfies the initial conditions

Solution (a). First, we have to find linearly independent solutions of the
homogeneous equation

y'(z) — 49/ (z) +3y(z) =0, —oo<z<00
The characteristic equation
M4 +3=A-1DA-3)=0
has the real and distinct roots Ay = 1 and Ay = 3. Then, the linearly indepen-

dent solutions are

yi(z) =€*,  yo(x) =€

We predict a particular solution of the non-homogeneous equation in the form
yp(1) = v1(1)e” + vo(z)e”
We impose the condition

vi(z)e® +vh(z)e* =0, forall —oo<x < oo0.

on the functions v (z) and va(x).
Then, we substitute to the equation

yp(z) = wvi(x)e® + vo(x)e®
yo(z) = wvi(z)e” +vi(z)e” + 3vy(x)e’” 4 vy (x)e®
= vi(x)e” + 3vy(x)e®®
yr(x) = vi(z)e” +vi(x)e” + 3vy(x)e’ + vy(x)e®
to obtain
[v1(z)e” + vi(x)e® + 3vg(x)e® + vh(x)e]
—4[vi(x)e® + 3vg(x)e?] + 3[vi(x)e” + vo(z)e*] = sinx
or after simplification

vi(z)e” + vh(z)e* = sinx



Thus, the derivatives v](z) and v)(x) satisfy two linear equations
vi(z)e” + vh(x)ed” =
vi(x)e® + vh(x)ed” = sinx

The determinant

x 63m

Wiy, ye](z) = = 2¢% > 0

e 363m

em 63m
em 363m

Solving the system of two equations, we find the solution

is the Wronskian of the matrix

A:

0 63m

1 1
vi(z) = ze = ——e Tsinx
sinz 33
and
1 e 0 1
vh(z) = e H = —e *sinx
2 e’ sinx
Integrating both sides, we find the functions
1 v -8 43 1 v —3s o3
vi(x)=—= [ e ’sin sds, wy(x) = —/ e **sin s ds
2Jo 2 Jo

Applying formula of integrating by parts, we evaluate
1 —X (o3 T
vl(:v)zze (sinx 4 cosz — €”)

and
1

~ 20

Having the functions v;(x) and ve(z), we find the particular solution

vo(x) (e (e —sinx — cos x)

Yp(1) = v1(2)e” + vo(2)e®*, —o0 < x < o0.
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Let us note that, we can get the same particular solution applying straight

forward formulae (2.19).
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2.5 Exercises, Set 2

Linear First Order Equation. Consider the linear differential equation
dy(x)
dx

Below, we shall solve the linear differential equation (2.20). First, let us solve
the homogeneous linear equation

dy(z)
dx

+ p(@)y = q(z), a<az<b. (2.20)

+ p(x)y =0, a<xz<b. (2.21)

when the function ¢(x) = 0 for all x.
So, we write the equation in terms of the differentials

dy _

» —p(z)dz, a<z<h (2.22)

Integrating both sides, we find

In|y| = —/p(:c) de +1InC

or
y(w) = Ce- [Pt

for a constant C'

Example 2.13 Find all solutions of the equation

d
—y—Q:Ey:O, —00 < & < 0.
dz
We write the equation in the differentials form
d
—y:2:z:da:, —00 < x < 00.
Y

Integrating both sides, we find
Injy|=2*+InC

Hence, we obtain all solutions
2

y(z) =C¢”

for a constant C'.
We note that all solutions are given in the form of one parameter C' family of
solutions.
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Now, let us solve the non-homogeneous equation. Multiply equation (2.20) by
the integrating factor eJ P(®) d

. ﬁ(m)dmd?;_(i”) +p(a)el My _ [ < g <
i

We note that the left side of the equation is the derivative of the product
d x)ax x)ax
ol ty) = POy (),
Integrating both sides, we obtain
efp(m)dmy = /efp(m)qu(:v)da? +C.

Hence, the solution

y(@) = e S0 [ ef g ()da + )

or
y(z) = e‘f”(m)dm/efp(m)%(a:)dx +C e Jr@d <<,

for a constant C'.

Example 2.14 Find all solutions of the equation

d
—y—I-Qy::B, —00 < & < 00
dz
We have p(x) = 2, q(x) = 2. Let us multiply the equation by the factor e**,

to get

d
2 + 2e*"y = x %", —o< T <00
dz
Now, the left side of the equation is the derivative of the product
d 2x 2x
—le =x e,
]

Integrating both sides, we find
ey = /a: e*dx + C
Hence, we have the solution
y(z) = e_zm/:v e*dx 4 Ce™"
or

1
y(x) = Z(Q:B —1)+Ce™™, —00 < & < 00

for any value of the parameter C.
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Question 2.6 Consider the linear homogeneous differential equation

dil—(j) +p(z)y =0, a<z<hb. (2.23)

Show that if w(x) and v(x) are two solutions of the homogeneous equation,
then, for any constants ¢, and cs, the function

y(z) = cqqw(z) + cov(x)
1s also the solution of the homogeneous equation

Question 2.7 Prove that if w(x) and v(x) are two solutions of the non-
homogeneous equation

y'(z) + p(x)y(z) = q(2)
then the difference
y(z) = w(x) — v(z)
1s the solution of the homogeneous equation
y'(z) + p(x)y(z) =0

Question 2.8 Find all solutions of the equations

(a)

d
—y—|-4y:2:£, —00 < x < 00
dz
—4x 1 1
Answer: y(x) =Ce ™ 4+ —(x — —)
2 4

(b) ;
—y—|-455y:8:£, —00 < x < 00
dz

—2z2

Answer: y(x) =24+ Ce
Question 2.9 Find a continuous solution of the initial value problem
y' (@) +ylx) = f(z),  y(0)=2

where

T, —oo <z <1,
f(z) =
20 -1, 1<z <o0

Answer:

—14+z+3e™7, —oco<x <1,
y(z) =

20 — 3472 4 3¢9 1 <2 < o0
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Question 2.10 . Find the solution y(x) of the equation.

y'(z) + 32%y(z) = 2?,

which satisfies the initial value condition y(0) = 2.
1

Answer: y(x) = g(l +5e%)
Question 2.11 Solve the initial value problem

Yy —y = sin 2z, —00 < 1 < 00

y(0=1

1 .
Answer:y(z) = g(7em — 2cos2x — sin2z)
Separable Equations Let the function f(z,y) = h(z)g(y) be the product

of two function h(z) and g(y). So that, each of them is a function of one
variable either z or y. Then, the separable equation is:

dy
—=h 2.24
7y = M2)9(y) (2.24)
For example, the equation
dy 1+2a?
de 1+ y?2

is separable, since the function

and each of

1
is the product of two functions h(x) = 1+ 22 and g(y) = T
)
them is one variable function either z or y.
In order to solve a separable equation, we write equation (2.24) in terms of
the differentials
dy
—— = h(z) dz
9(y)
Integrating both sides, left with respect to y, and right with respect to =, we
find the solution y(x) in the implicit form

/%Z/h(i)d(t

In the example, we find the implicit form of the solution

/(1+y2)dy:(/1+552) dz + C
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So that

or .
(y—2)+30°-a")=C
for any constant C.

Question 2.12 Solve the following separable equations

(a) ;
% = —2y tanzx

Answer: y(z) = C cos’x

(b)
2z(1 +y)dz + (1 + 2°)dy =0

C
Answer: y(x) = T2

Question 2.13 Find the solution y(z) of the equation
2y dx 4+ (22 — 1)dy =0

which satisfies the initial condition y(0) = 1
1

1—2x

Answer y(x) =

Equations with homogeneous f(z,y). Consider the equation

dy

where the function f(x,y) satisfies the condition f(tz,ty) = f(x,y) for real ¢.
Question 2.14 Find all solutions of the equation

(a)
dy _ =
de  4z3 — 3a2y

(b)
(22 — 3y*)dw + 22 y dy =0

Second Order Differential Equations Consider the equation
Y'(@) + ary'(z) + ay(z) = f(z),  a<z<bh, (2.25)

where a1, ay are given constant coefficients and the right side f(z) is a given
continuous function in the interval a, b]. Here y(x) is the unknown function of



the variable z.
First, we solve the homogeneous equation

y'(x) + ary'(x) + agy(z) =0,  a<a <D,

when the right side f(z) = 0 for all = € [a, b].
The roots of the characteristic equation

Ntad+a=0

determine the fundamental set of solutions
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(2.26)

Casel. Let the roots A\; and Ay be real and distinct (A = a? — 4ay > 0)

Then, the linearly independent solutions are

Ax Aox
;

yi(z) =e ya2(z) =€

and all solutions are in form of the linear combination
y(z) = c1eM® + cpe?®

where ¢; and ¢y are any constants.

Example 2.15 Find all solutions of the equation
y' =3y +2y=0
The characteristic equation
M=3+2=A-1)(A-2)=0, (A=1>0)

has two real and distinct roots Ay = 1 and Ay = 2.
Thus, the linearly independent solutions are:

yi(z) = e”, Yao(z) = >
and all solutions are in form of the linear combination
y(z) = c1e” + cae”

for any constants ¢; and cs.

Case 2. Let the characteristic equation has a double real root \;
(A = a% —4&2 = 0)

Then, the linearly independent solutions are

Ax Az
)

yi(zr) =e Ya(z) = we

and all solutions are in form of the linear combination
Ax

y(x) = 1M + come

where ¢; and ¢y are any constants.
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Example 2.16 Find all solutions of the equation
y'— 4y +4y =0
The characteristic equation
M —dX+4=(\N-2)*=0, (A =0)

has two real and distinct roots A\; = Ay = 2.
Thus, the linearly independent solutions are:

yi(z) =e*, ypa) = ze

2x
and all solutions are in form of the linear combination
y(z) = c1* + cyze™

for any constants ¢; and cs.

Case 3. Let the characteristic equation has a complex roots \; = a+i3, \; =
a—1i8, (A =a?—4ay <0).

Then, the linearly independent solutions are

y1(x) = e*sin B, ya(x) = e** cos fx
and all solutions are in form of the linear combination
y(z) = c1e**sin B + c2e™” cos Pz

where ¢; and ¢y are any constants.

Example 2.17 Find all solutions of the equation
y' =y +y=0
The characteristic equation
M —A+1=0, (A =-3)
1+ivV3 — 1—iV3

has complex roots \; = ;A=

Thus, the linearly independent solutions are:

SE

y1(z) = €2 sin Tl ya2(x) = €2 cos —zx

and all solutions are in form of the linear combination

= . V3 . 3
y(z) = c1e? sin =% + c2e2 cos =%

for any constants ¢; and cs.
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Question 2.15 Find all solutions of the equations

(a)

y' =Ty + 12y =0
(b)

y" — 6y +9y =0
(c)

y' =2y +2y=0

Question 2.16 Find the solution of the equations which satisfies the indicated
wnitial value conditions

(a)

y' =6y +5y=0, y0)=0, y(0)=1
(b)

y'—4y' +4y=0 y(0)=1, y(0)=0
(c)

y' =2y +2y=0, y(0)=0, y(0)=1

Question 2.17 Find the solution of the non-homogeneous equations which
satisfies the indicated initial value conditions

(a)
y'—6y' +5y=1+2%  y(0)=0, y(0)=1

(b)
y' =2y +2y=sinz+cosz, y(0)=0, ¥ (0)=0
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Chapter 3

Taylor Polynomials and Taylor
Theorem

3.1 Taylor Polynomials

Let f(z) be a function n-times continuously differentiable in the interval [a, b].
Then, the polynomial

TLa) = S+ D ) 4 T oy
f" (o) 3 ™ (o) n
+ 3 (x —x0)” + -+ n! (x — x0)",

is called Taylor polynomial of degree n of the function f about the point xy.!
The numbers
f) (z0)

n!

, k=0,1,...,n,

are called Taylor coefficients of f.
The relationship between a function and its Taylor polynomial is given in the
following Taylor’s theorem:

3.2 Taylor Theorem

Theorem 3.1 If f is a function (n + 1) times continuously differentiable in
the closed interval |a,b], then there exists a point &, € (a,b) such that

f' (o) [ (o)
1! 21

f(z) = fl(xo)+ ( — x0) + (z — x0)?

f/// ( 1,0) f(n)
o (x—wo)* 4+ + oy (x —20)" + Ryg1 (&),
I Taylor polynomial about o = 0 of f is referred as Maclaurin’s polynomial of f.
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for all xo,x € [a,b], where the remainder R(,11)(§:) can be written in the
following forms:
(a) The Lagrange’s form:

_ f(n+1)(€$) (n+1)
Rn+1(fm) = (n+1)! (ZB Io) .
where &, 1s between x and xg.
(b) The Cauchy’s form:
(n+1) T
Ru(e) = T 0w — e

(c) The Integral form:

v (z—1)"
o n!

Roir(&) = / FOD (1)t

Proof. We shall prove Taylor theorem with the remainder R, .;(&,) given in
the Lagrange’s form (a). Let us consider the following auxiliary function:

_ _ )2 _\n
o(0)= 1)~ )~ Z Ly - E iy ey s
for x,t € [a, b].
Obviously, the derivative ¢'(t) exists and
g = 10+ F) -
+ Zvl_' tf//(t) e (I;%)nf(nﬂ)(t)
= o ey

Now, let us consider another auxiliary function

g(xo)

(CREEA

G(t) = glt) -

Y

where t is between g and z.
This function satisfies Rolle’s theorem for any integer k, since we have

G(xg) = G(x) =0,

and G'(t) exists in the open interval (a, b). By the Rolle’s theorem, there exists
a point &, such that

G/(gm) =0.
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On the other hand

: : 9(xo)

G'(t) =g )+ ﬁ(k +1)(z— ).

Thus, for k =n and t = £,, we have
_@:17!&)”1?("“)(&) + g(xo)(n + 1)(x — 20)" (. — &)" = 0.
Hence (nh1)
alzo) = jén + 1()5!) (2= 20)"".
and by (3.1), we obtain the Taylor formula
F@) = flao) + L @ ) ¢ L o ey
(n)

L )+ R (@) — o)

where the remainder
(n+1)
Runi(e) = Lo o

3.2.1 Examples

Example 3.1 Find Taylor polynomial and determine the remainder in the
Lagrange’s form for the function f(x) =€, —oco < x < oo, when xo = 0.

Solution. In order to determine the Taylor polynomial

! T 1 T
TL@) = fo) + L@ ) + Ty s
) .
+ ol (l’ —1’0) s
we shall find the Taylor coefficients of e*. Clearly
fM(z)=e" for all n=0,1,2,....
Thus, Taylor polynomial
r oz 2P "
TLn(l’):l—Fﬂ—l-E‘l'a‘l'""l‘E,
where the Lagrange’s remainder
R (6 ) eﬁz n+1
n z) = T .
i (n+1)!

for a certain &,.
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Example 3.2 Find the Taylor polynomial for the function f(x) = (1 + z)",
where n is an natural number, about the point x, = 0.

Solution. We have
fOz) = 1+ 2)",
fO(x) =n(1 +2)" 1,
fP(x) +nln—1)(1 +2)"72
FW (@) =nn—1) - (n—(n—1) =n
f0(z) =0, for m>n-+1.

Hence, at the point x = 0,

FO0) =1

FO0) =
FO(0) = n(n 1)
f™(0) = n!

f0(0) =0, for m>n+1.
The Taylor polynomial for f(x) = (14 )" with x, = 0 is

—1 —1(n—2 — 1)1
TLn(:c):1+n:B+n(n2' )$2+n(n 3)'(71 )x3+...+%$n’

and the remainder is

R,.(z) =0.
Hence, by Taylor’s theorem, we obtain well known bionomical formula

-1 —1)(n—2
(1+x)":1+n$+n(n2' )$2+n(n 3)'(“ )$3+---+:B",

Example 3.3 Find Taylor polynomial for the function f(z) =In(1+x), 0<
x <1, about xg = 0. How many terms of the Taylor polynomial are required
to approximate the function In(1+z), 0 <z <1, by its Taylor polynomial
with accuracy € = 0.0001.
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Solution. In order to obtain Taylor polynomial, we calculate

f@) =In(l+x),  f(0)=0,

f/(I)_1+$> f/(O):l,
1" o 1! "
!
@)= O =2
!
) =~ 110 =3

In general

F () = (—1)“—1(”;1; and £7(0) = (~1)" " (n — 1),

(142

forn=1,2,....
Hence, Taylor polynomial of In(1 + x) at g =0 is

T Ly(z) :x—%2+%3—%4+---+(—1)"—12—n,
where the Lagrange’s remainder

2+

RnH(fm) = (_1)n(n+ 1)(1 _|_€m)n+1’ 0<¢<lL

The error of approximation
n+1

In(l+x)—TLy(x)=(-1)"

(n+ 11 +&)
satisfies the inequality

1
In(1 - TL, < — 0<z<l1.
| In(1+2) = TLo(e) | — 5, 0<o<
The required number of terms of Taylor polynomial T'L,,(x) to get the accuracy
€ = 0.0001 is determined by the following inequality:

1
< 0.0001 or n >9999.
n+1

We note that the Taylor’s series of the function In(1+ x) is slowly convergent.

For example, to compute In2 with the accuracy €, we need to add about [—|
€

terms. We can compute this sum by the instructions in Mathematica
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N[Sum[(-1)~(n+1)/n,{n,1,9999}]1]
Then, we obtain In2 ~ 0.693197.

Example 3.4 Consider the following functions:

1. f(x) =sinz, 0<x< E,

o N

2. f(r) =cosz, 0<zx<

(a) Find Taylor polynomial for the above functions at o = 0.
(b) For what value of n will Taylor polynomial approximate the above
functions correctly upto three decimal places in the interval [0, g]

Solution (a). In order to find Taylor polynomial

TLo(x) = f(zo) + 1D (& — ) 4+ L0 (4 2 4.

1! 2!
+f(n;(!gjo) (x — )",
we shall determine Taylor coefficients
f(:!(()), kE=0.1,...,n.
We have
flz) =sinz,  f(0)=0,
f'@) =cosx,  f(0)=1,
f'(x) = —sinz, f(0) =0,
f"(x) = —cos x, f"(0)=0.
In general
sin x n=4k, k=0,1,..;
o= i nTl Fo
—cosx n=4k+3, k=0,1,..
and

0 n=2k k=0,1,..;

Y

1)k g, — _ .
f(")(O):(sz'nO)("):{( DF n=2k+1, k=0,1,..;

Thus, Taylor polynomial for sin z is
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where the Lagrange’s remainder

(sin gm)(2n+2) 2n+2

Roni2(8e) = 2n +2)!

One can obtain the Taylor’s polynomial T'Lg(z) using the Mathematica in-
struction

Normal [Series[Sin[x],{x,0,9}]1]

In order to get correct three decimal places, we should consider accuracy € =
0.0005, and to choose a smallest n for which the remainder R, (&) satisfies
the following inequality

| (singm)(2n+2)

2n+2 <
Gnron L I=e

Obviously, the above inequality holds if

1 T o
m(§)2 +2 <0.0005.

Hence n = 4, so that the Taylor polynomial

b 2T 2

™

approximates sin x in the interval [0, 7] with accuracy upto three decimal
places.
Solution of (b), (ii) For the function cosx, we find

cosx for n=4k, k=0

—sinz for n=4k+1, k=0,1,...
—cosx for n=4k+2, k=0,1,...;
sinx  for n=4k+3, k=0,1 ;

f) (x) = (cos :E)(") =

and
o | (=1F for n=2k, k=01,...;
cos 0_{0 for n=2k+1, k=0,1,...;

Thus, Taylor polynomial

TL2n($) = 1= _ + =+ + (—1)“—

where the remainder
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In order to get accuracy of three decimal places, we choose n = 4 and the

polynomial

2 xt ab 28

Then, for n = 4, we have the following remainder estimate

(COS gm)(2n+1)| - 1
2n+1)! "~ (2n+1)

Question 3.1 Find the Taylor polynomial T5(, f,x) and Ty(g,x) of the fol-
lowing functions:

(a)

m
| Ront1 (&) |=] (=) +(5)Y < 0.0005.

2

f(z) =sinhz = —Te’
g(z)zsin%z%—cos%z, 0<z<1

(b) Give an estimate of the errors
of approximation

Question 3.2 Find Taylor’s polynomial T5(x), n = 3 about xog = 0 for the
following functions:

(a)

(1)  f(z)=sinz, (11) g(x) =cosz, 0<z<

|3

T T
(b) Evaluate an approrimate values of sin % and cos 5 using the Taylor’s

polynomials Ts(x). Estimate the errors of approximation

Question 3.3 Find Taylor’s polynomial T5(x), n = 3 about xo = 0 for the
following functions:

(1) flz)=V1+z, (11) g(x)=v10+2z, 0<z<L

(b) Evaluate an approzimate values of V0.9, and V9.9 using the Taylor’s
polynomials Ts(x). Estimate the errors of approximation



Chapter 4

Indeterminate Forms and
L’Hopital Rule

4.1 Indeterminate Forms

We consider several limits which take the form:

0 oo
PR 0- o0,
0 oo
To each of these symbols there corresponds an expression that involves two
functions, say f(z) and g(x), and the limit, as * — x,, or as © — oo, of the
expression considered.
Suppose that the functions f and g are defined in a neighborhood of a given
point x, and suppose that

lim f(x) = lim g(x) = 0.

Then the limit
lim _f(x)
=0 g()

is said to be of the % form.

0
The symbol = is called an indeterminate symbol.

Now we define the first two indeterminate symbols.

Definition 4.1 The expression

-

()

x)

g ‘
—~
—
=
—
~—

0
s of g form at the point x,, if

lim f(z) = lim g(z) =0;

T—To T—To

103
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0
it 18 of g form, as x — oo, if

lim f(z)= lim g(z) =0.

r—00 r—00

00 .
Definition 4.2 An expression is of — form at the point x,, if
00

lim f(x) = lim g(x) = oo;

T—To T—To
it 1s of — form, as x — oo, if
00

lim f(z) = lim g(z) = cc.

r—00 r—00

4.2 L’Hopital’s Rule

Suppose that
lim f(z) =0 and lim g(z) =0,

T—To

/
and suppose that lim f/(I) exists. Then lim
w20 g'(z) w70 g(x)

_flx) . (=
A o)~ o)’

Example 4.1 FEvaluate

Solution. We have
flz) =sinz, f(0) =0, g(z) ==, ¢(0)=0,
f'@) =cosz, f1(0)=1, ¢'(z)=1 g¢(0)=1
By the L’Hopital rule

f'(x) .. cosz
= lim =
=0g'(x) @0 1

x3 — bx? + 6z — 2
>0 g% —Agt + 722 —9x + 5

Solution. We have
f(z) =23 — 52® + 62 — 2, f(1) =0,

g(z) =2° —4z* + T2 — 92 + 5, ¢(1) =0,
f'(z) = 32* — 10x + 6, (1) =-1,

g (x) =5z —162% + 14z -9,  ¢'(1) = —6.

also exists and
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Hence, by L’Lopital rule, we obtain

. x3 — 5x? 4 6x — 2 ) 322 — 10z + 6 1
L= lim = lim S
e=>1 g5 — 44 + 722 -9z +5 =2—>15x4 — 1623+ 142—9 6

0
Example 4.3 Using L’Hopital’s Rule to evaluate limits of the 0 form at a
given point * = x,.

(a) lim r+sindr lim 1+5cosdr _§
e—0 1 —sinhr 2—01—5coshr 2
inb
(b) lin% TEOT lirr(1]5cosat = 5.
(c) lim cos’z — 1 — lim 2sin x cos — lim sin 2x _
z—0 x2 z—0 2r z—0 2r

T
d) lim—— =lim———— = limcos’z = 1.
( )HHO tanz «—01/cos?x 2—0

(e) i 1 —cosx I sinx I 1 1
m-——=1lim—— = lim ==,
a0 gin’zx z—02sinxcosx =z—02cosx 2
1-— 2 21 sin 22 2
(f) im— " —lim— " _ lim ——— . limsina® =10 = 0.
z—0 sin“x z—0 28In T cos x z—08in 2xr =—0
2% — 3% 27 log 2 — 3% log 3 2
(g) lim — = lim =28 087 _ log2 —log4 =log —.
z—0 Sinzx z—0 COS T 3
h h 3 2
.oet—1 e W ox0—1 . 3z 3
(h) Jim Simr =t Ol =mor =5
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Chapter 5

Improper Integrals

5.1 Improper Integrals of the First Kind

We consider improper integrals of the first king with infinite limits of integra-
tion

/_boof(a?)da:, /a+°° f(z)dx, /+°° f(x)de,

when one or both limits of integration are infinite.
In order to evaluate an improper integral of the first kind, we apply the fol-
lowing definition:

Definition 5.1 Let f be a continuous function in intervals either |[a,\| or
[\, b] for every either A > a or A < b. If the limits

lim /\f(a?)dx, lim bf(x)dx (5.1)

A—00 Jg A—o0 J )\

exists, then we say that the integrals

/aoo f(z)dx, /b f(z)dx

—0o0

are convergent and we write

0 . A b . b
| f@de = tim ["p@de. [ f@)de = Jim [ f)de,

a —00 —A

If the limits (5.1) do not exist, we say that the improper integrals

/aoo f(z)dx, or /_boo f(z)dx

are divergent.

A similar approach is used for integrals over the entire line. The improper
[%S) A

integral / f(z)dx is defined as the limit of / f(z)dx, when p — —oo and
o "

107
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A — 400, in dependently of each other, provided that this limit exists.

Equivalently, the improper integral / f(z)dx can be expressed as the sum

—0o0

I f(:c)da::/boo f(:c)da;+/b+°° Fa)da,

where b is any real number. Since b can be arbitrarily chosen, in practice we
b 400

choose b so that the two integrals / f(z)dzx and / f(z)dz can be easily
[e%S) b

examined.

Example 5.1 Consider the infinite integral

o 1
—dz.
/1:52:17

We evaluate the proper in the limits from 1 to A

Then, we find

00 A
/ idx = lim id:z: = lim (1 — %) =1
1

T2 A—>c0 1 2 A—>00
Thus, the improper integral converges to the limit 1:

Example 5.2 Consider the improper integral

o ]
—dx.
1\/5z

We evaluate the proper integral from 1 to A

r1 R
/lﬁdz—2\/5|1—2(\/X—1)—>—l—oo, as A — +oo.

o ]
Thus the integral / ——=dx diverges to +0o and we write
1 Wz

/loo %dz = +00.

Example 5.3 Consider the improper integral

oo 1
d
/0 1—|—$2$
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We evaluate the proper integral from 0 to A

Al
/ dr = Arctanx|y = Arctan)
0o 1422

Then, we find
| ) Al ) m
A 1+ 2 dv = Al—lgloo‘/(] 1+ 2 dv = Al—lgloo Arctan) = 5

Also, we evaluate the integral

Al
/ dx = arctan A + arctan ,u|:\“

—u 1+ 22
o 1
/_OO T :Ezda: = A73Lnim(arctanA + arctan p) = g + g S

Example 5.4 Consider the improper integral

/00 dx
1 x®
We evaluate the proper integral from 1 to A

A D S 1

i = — 0.
1 xe 1—a|1 l—-a 1-a’ a7
Hence, we find
1 )
°© dx ) Adx . A , if a>1,
/ —a:/\hm —a:Ahm 1 =¢ a—1
1 x —>00J1 T >0 1 — . if a<1

5.2 Improper Integrals of the Second Kind

In this section we consider integrals over a finite interval [a,b], when the in-
tegrand f(z) has infinite singularity at some point or points in [a, b]. Recall
that f has an infinite singularity at the point z = xz,, if f is not defined at the
point x, and when one-sided limits, as x approaches z,, are infinite.

Definition 5.2 Assume that f is integrable on every interval of the form ei-
ther la,b—¢|, or [a+e,b], where 0 < & < b—a, or [a+¢e,b], but f has an
infinite singularity at the point x = b or o = a, that is lirgl f(z) or lim+ f(z)

18 infinite.
Then improper integrals are defined as

/bf(a:)da: = lim

provided that these limits exist.

b—e

f(z)dx, /abf(:c)dz —lim [ f(z)dx,

a e—0 ate
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Example 5.5 FExamining convergence of improper integrals of the second kind.

(a) Consider
1] ;
1
The integrand f(z) = NG is not bounded on the interval (0, 1] and li%l f(z) =
x 20—

+o00. The function f(z), however, is integrable over every interval [e, 1], for
0 < e < 1. We find the proper integral from € to 1

/:Ld:v:%/i

1
7 622(1—\/5)—>2, as € —0+.

|
Therefore, the improper integral / Tda: converges to the limit 2:
0 VT

A li 1 1d
fy e =t [ =2

(b). Consider
11
—dx.
(I

1
Similarly to (a), the integrand f(z) = — is not bounded on the interval (0, 1]
x
and lirgl f(z) = 4o00. Moreover, the function f(x) is integrable over every
interval [e, 1], for 0 < € < 1. Now we find the proper integral

11 1
—dr =Inx
e T

=—Ilne - +00 as ¢ —0+.
€

11
Therefore, the improper integral / —dx diverges to +00 and we write
0 x

11
—dr = +00.
0 x
(c). Consider the integral
1]
/ —dz,
(I

where « is any real number. We note that we have already considered this
integral in (a) with a = § and in (b) with o = 1.

We deal with the infinite singularity at the point a = 0, and we note that
the function f(z) = — is integrable over every interval [e, 1] for 0 < e <1

and for every real value of a.
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We find the proper integral

Ll e
e x% 11—«

provided a # 1. Thus

1 1 B
5:1—@(1_81 )’

ifa<1

1 1 1
e-0+Je x too ifa > 1.

Combining the above with the result obtained in (b), we conclude that the

integral
11
/ —dzx
0 ¢
converges for a < 1 and diverges for a« > 1. If a < 1 then
11 1
—dzr = .
e 11—«

1

and consider the integral

1 1
dz = / =4
/0 fz)de 0 vV1—2a? v
We note that liIP_ f(z) = +o0o, so that f(z), defined for |z| < 1, is not
bounded on the interval [0, 1).

The integral has a singularity point at © = 1, but f(x) is integrable over any
interval [0, 1 — €], where 0 < ¢ < 1. We find the proper integral

1—e
:arcsin(l—e)ﬁg, as € —0+.
0

l1—e 1

0 V1—zx2

1
Hence / f(z)dx converges to 7/2:
0

dr = arcsin

ol e [ T
———dzr = lim ——dr = —.
/0 V11— 22 e—0+ Jo V1= 22 2

(e). Consider the integral

1 1
———dx
/0 vx(l—x)
It has two singularity points: at x = 0 and at z = 1.
We find the proper integral
1—¢

dr = arcsin(2x — 1)| = arcsin(1 — 2¢) — arcsin(2e’ — 1).

/um

6/
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Thus
lim = lim arcsin(l — 2¢) — lim arcsin(2&’ — 1)
e,e! =0+ 1 _ l’ e—0+ e’'—0+

= arcsin 1 — arcsin(—1)
T 7r

= 5—(—5):71

Therefore we conclude that the improper integral

L
/0 vx(l —x)dz

converges to m:

1 1
/ ——dr = lim d:z: = T.
0 x(l—x) &' =0+ (1l —x)

(f). Consider the integral
1] i
/0 11—z

that has a singularity point at x = 1:

1
11r{1_ 17 = +00. We find the proper integral

l1—e 1
/ de = —1In(l — x)
0 1

— X

1—e
=—Ilne > +o00 as ¢ —0+.

0

L1
Therefore, /
o 1

— X

dx diverges to +oo:

1
/ dxr = +o00.
o 1

5.3 Comparison Tests for Integrals

5.3 Comparison Tests for Integrals

Theorem 5.1 Comparison Test I

Suppose that f and g are defined on the interval [a,400) and integrable on
la, A] for every A > a.
If
0< fz) < g(a),

for all x € |a, —I—oo) then
(i) / x)dx converges if / x)dx converges;

(ii) / x)dx diverges if / x)dx diverges.
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Proof. Since 0 < f(z) < g(z), for = > a, we get

0</ d:v</ r, T >a,

and each integral is monotone increasing function of \.

Hence, if [ g(z)dz converges, [ f(x)dz is bounded above and so it con-
verges.

If [ f(x)dx diverges then [ g(x)dx is unbounded and hence diverges.

+o00 1
Example 5.6 Does / dx converge?
o er+3
1
Solution. Let f(z) =e™* and g(z) = Y for x € [0,400). We have
6"E
1 1
0< <—=e" x€]|0,+00),
et + 3 z

and both functions, f and g, are integrable on [0, A] for every A > 0. Thus the
hypotheses of the Comparison Test I are satisfied. Now,

/0+oo f(z)dx = /0+oo e *dx

Therefore, by the Comparison Test, the improper integral

+oo 1 d
/0 et +3 v
converges.

An analogous comparison test holds for improper integrals of the second kind.
We leave its formulation to the reader. The following example illustrates the
point.

Example 5.7 Does dx converge?

1 1
/0 2+ \/x
Solution. We have

1 1
—, xz€(0,1],

—= <
2?24+ r T

and

/\/_:lt—hm/\/_a:—th\/_ —hm(2—2\/_)—2

e—0+ —0



114

L |
Since / ——=dx converges, by the Comparison Test, we conclude that
0

NS
1 1
——dx
/0 24z
converges.
Example 5.8 Fxamining convergence of an improper integral of the third
kind.

Consider the infinite integral / ———dz and note that the integrand has

ﬁ+f

1
gl point at ¢ = 0, Ths [~
a singular point at x us 0 e
third kind.

We can write

dz is an improper integral of the

I L 4 / R I L g
——dr = | ———dx ——dx
0o 224+\/z 0o 224z b 12+ /x
where the point x = b for splitting up the interval of integration can be chosen

quite arbitrarily.
Let b = 1. We examine separately convergence of each of

1 1 0 1
—d d / —d
Aﬁ+ﬁzw L 2tz
1
0:52+\/_
The int 1/
e integra 2—|—\/_

1
—, T €[1,00) and/ —da: converges.

PEERY

Therefore, we conclude that the integral

The integral dx converges by Example 5.7.

———=dx converges, by the Comparison Test, because

I
————dx
0o 224z
converges.

Example 5.9 Is the function f(t) = t*"te™t, where x is a real number, inte-
grable over the interval [0, 1] ¢

Solution. We shall consider separately the three cases: * <0, 0<z <1,
and x > 1. Refer to Figure 7?7 to see graphs of f(t), 0 <t < 1, for selected
values of z.

Case 1: z<0.

1
On the interval [0, 1] we have e’ < 3, so t* te™" > gtm_l. By Example 5.5(b),
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1 1
t*~1dt diverges, since z — 1 < —1. Hence / t*“le7tdt diverges for z < 0.

0 0
Case 2: 0 <z <1.
If 0 < z < 1, then the function f(¢) = t*"'e™" has an infinite singularity at

1
the point ¢ = 0 and / t*~le~'dt is an improper integral of the second kind.
0
If t > 0 then 0 < e? < 1 and t*le™® < t*7!. Now, the improper integral
1
t*~1dt converges for all values of z suchthat 0 < 1 —z < lor 0 <z < 1.

Boy the Comparison Test, therefore, we conclude that the improper integral
Ji t*le~tdt converges for 0 < x < 1.

Case 3: z > 1.

The function f(t) is continuous for ¢ € [0, 1] and, therefore, integrable. Hence
t*~le~tdt exists for = > 1.

Therefore, the function f(t) = t*“'e™ is integrable over the interval [0, 1],
provided that z > 0, but not integrable if x < 0.

Example 5.10 Is the function f(t) = t" e, where x > 0, integrable on the
interval [1,+00)?

Solution. The integral / e~'dt is an improper integral of the first
kind. We shall prove that it converges by comparing the integrand f(x) with
+

the function g(t) = t72. Now, the improper integral t72dt converges.
to

“+o0o
Hence, by the Comparison Test, e 't 1dt converges.
to

Since f(t) = e*t*~! is integrable on any interval of the form [1,¢,], we conclude
that

“+o0 to “+o0o
/ e tdt = / e tdt + t* e tdt
1 1 to

converges, when x > 0.
Therefore, the function f(t) =t*"'e™, where x > 0, is integrable on the in-
terval [1, +00).
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Chapter 6

Sequences and Series

6.1 Sequences

Let us begin with the definition

Definition 6.1 A sequence of real numbers is a real-valued function f whose
domain is the set of natural numbers N = {1,2, ..., }, i.e.

f:N—>R, Risthesetof real numbers

The function f which defines a sequence is a rule that assigns to each natural
number n a unique real value, normally denoted by

f(n)=a,, n=1,2,...

The number a,, is called the n-th term of the sequence and the corresponding
sequence is denoted by the symbol

{an} = {a1, as, a3, a4, ...}

We will find it convenient to use the notations {b,}, {c.}, {d.}, and {z,.}, {yn},
etc., in addition to {a,}, to denote sequences, especially when we deal with
two or more sequences at a time.

Example 6.1 Defining sequences:

(a) The function f(n) = L,n € N, defines a sequence with n-th term
n

a, = ——, so that
n+1
1 1 2 2 3 3
MEITIT Ty U9y Ty BTy T

and so on. We have

o) = (5

117
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(b) The function f(n) = "~

, n € N, defines the sequence

n2
{b}_{11 1 1 1 1 (—1)" |
nr "4 9 160 250 367 p2 U

(c) The function
2

n
=c¢,=(—-1)"——, n€N,
fn) =0 = (~1" "
defines the sequence
14 916 25 n?
{Cn}_{_§> Z> _g> ga _7> SRR (_ ) n_|_2> }

6.1.1 Definition of Convergence

Let us state the intuitive definition of convergence of a sequence {a,}, n =
1,2, ...;

Definition 6.2 If a,, approaches a number a, when n approaches co, that is
an— > a when n— > o0, so that, a is the limit of the sequence {a,}, n =
1,2, ...;. Then, the sequence is convergent to the limit a
In symbols, we write

nlignoo an = a

Otherwise, the sequence {a,}, n=1,2,...; is divergent.

Thus, as n increase, a, gets arbitrarily close to a.

Theorem 6.1 If the limit nhrgo a, = a exists, then it is unique.
Example 6.2 Showing that nhrgo a, = a directly from the definition.

(a) Consider the sequence

_n
an_n—l—l
The terms 1
a1—§>
2
a2—§>
3
as—@
4
a4—g
1
a,=1—

SRR
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1
Hence, a,, = L 1-—
n+1 n—+1

— > 1 when n— > oo, since T > 0, when

n— > oo.
(b) Clearly

lim (D"

n—oo n2

= 0.
If a,, tends to the limit +o0o then we write

lim a, = +oc0.

n—oQ

If a,, has limit —oo then we write

lim a, = —oco.

n—oQ

For example the sequence a,, = n%, n = 1,2, ...; has the infinite limit

lim a, = lim n? = o0
n—>00 n—>o00

Intuitively, nh_}rgo a, = +o0o means that a, increase without bound, as n in-

crease, whereas lim a, = —oo means that a, decreases without bound, as n
n—oo
increase.
If lim a,, = 400 then with any positive value of M, no matter how large it
n—oo

is, we can find an N such that all terms a,, > M, for n > N, are greater than
M. Similarly, if nhrgo a, = —oo, then for any M > 0 there exists IV such that
all terms a,, < —M, for n > N, are less than — M.

Infinite limits of the sequence.

lim
n—oo n, _|_

= +o00.

Let M be any positive number. Following definition, we are to find N such
that a,, > M for all n > N. We have

n? n?

o >%:g>M, provided n > 2M,

an =
so we can take N = [2M].

6.1.2 Bounded Sequences
We consider bounded sequences in the sense of the following definitions:

e A sequence {a,}, n =1,2,... is bounded if there are two numbers m and
M such that

m<a, <M

forallm=1,2,..;
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e A sequence {a,}, n =1,2,... is bounded above if there is a numbers M

such that
an < M
forallm=1,2,..;
e A sequence {a,}, n = 1,2, ... is bounded below if there is a numbers m
such that
m < ap
forallm=1,2,..;
The following theorem holds:
Theorem 6.2 If the limit
lim_ an,

exists, then the sequence {a,} is bounded.

Proof. Let the sequence {a,},n = 1,2, ... be convergent to the limit a. Then
almost all terms of the sequence lie in the neighborhood of the limit a. That
is, all exempt a finite number of terms, say

m = min{ay, as, ..., ax} < a, < M = max{ay,as, ..., ax}
for a certain k. But, all remaining terms satisfy the inequality
a— € S A1, Q42,5 -0y Ay - S a+e€

Hence, all terms of the sequence are between my = min{a — €, m} and My =
max{a + €, M}, that is
mo <a, < MO>

forallm=1,2,..;

6.1.3 The Algebra of Limits

It is clearly not always straightforward to use the definition of convergence
to prove that a sequence {a,} converges to a known limit a. Moreover, if
the limit a is not known, then the definition of convergence may not help in
determining a.

Now we are going to introduce some useful results that enable us to evaluate
limits of quite complicated sequences without appealing to the definition of
convergence.

The following theorem can be used to evaluate the limits of sequences that
arise by applying the arithmetic operations of addition, multiplication, and
division on convergent sequences with known limits.
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Theorem 6.3 Suppose that {a,} and {b,} are convergent sequences and let c
be a real number. Then the sequences

{can}, {an+bn}, {anbn}
are convergent and the following rules apply.

(i) Scalar product rule:
lim ¢ a,, = cnlirgo (U,

(i1) Sum rule:
nlirgo (an + by) = nhrglo an, + nhrgo b,
(iii) Product rule:

lim a,b, = lim a, - lim b,
n—oo n—oo n—oo

(iv) Quotient rule:
Ifb, #0, forn=1,2,..., so that the sequence {Z—n} is defined, and if

a, . lim a,
lim b, # 0, then the sequence {—} converges and lim — = =—>—.
n—o0 by, n=e by lim by

6.1.4 The Squeeze Theorem for Sequences

When examining the convergence of a given sequence {a,}, quite often it is
possible to find two sequences, say {z,} and {y,}, such that

Tp < ap < yp,for n>M € N,

so that, eventually, all terms of {a,, } are “squeezed” between the corresponding
terms of {x,} and {y,}. If {z,} and {y,} converge to the same limit [, then
the sequence {a, } must converge to the limit .

Theorem 6.4 Squeeze theorem
Suppose that

Tp < an <yp,for n>MEeN (6.1)
and
lim 2, = lim y, = 1. (6.2)
Then
nlirgo an, = 1{.

Example 6.3 Prove that lim,,_~., /a =1, for a>0.

Solution. We consider two cases.
Case1l. a>1.
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If a > 1 then /a > 1 and {/a = 1+d,, where d,, > 0. Thus, by the Bernoulli
inequality,
a=1+d,)">1+nd, n>2.
Since
a—1

lim =0,
n—oo n

by the Squeeze Theorem, it follows that
limd, =0

and consequently
lim /a = 1+nlingodn =1

n—oo

Case 2. 0O0<a< 1.

If 0 < a< 1, then a =1/b, where b > 0, and

lim Vb =1,

which implies
1
lim /a = =1. 1

Example 6.4 Prove that nhrgo Un=1.
Solution. We note that /n > 1, when n > 1, so that we can write
Yn=1+d,, where d, >0

and we have

= n_ n n 2 ... n n n 2
n=(1+4+4d,)" =1+ <1>dn+ <2>dn+ + <n>dn > <2>dn.

Thus

which implies that

2

0<d, < ,
n—1

Hence Jirﬁlo d, = 0 and

lim /n = lim (1+dy) = 1.

n—oQ

Example 6.5 Find the limait

lim +/2" 4 3n

n—>oo0
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Firstly, we show, by squeeze theorem, that the sequence
an = V2" +3", n=12..

is convergent.
We have the inequality

3< V2 +30 <32, n=12,..

Because lim /2 = 1 therefore, by the squeeze theorem, the sequence a, =
V243", n=1,2, ... is convergent and its limit

lim /27 43" =3

n—>o0

6.1.5 Monotone Sequences

We consider monotone sequences in the following sense:
e the sequence {a,} is increasing if a,+1 > a, foralln = 1,2, ...;
e the sequence {a,} is decreasing if a,+; < a, for alln =1,2,...;
The following theorem holds:
Theorem 6.5 .

o [f the sequence {a,} is increasing and bounded above, then it is convergent
sequence.

o [f the sequence {a,} is decreasing and bounded below, then it is convergent
sequence.

Proof. By the assumption

a, < supa, =M
neN

forallm=1,2,...;.
But, the sequence is increasing, therefore, for € > 0 all terms satisfy inequality

M—-e<a, <M,
starting from n > N.. It means that the sequence converges and a = M is the
limit.
Similarly, By the assumption
a, > inf a, =m
neN
foralln=1,2,...;.
But, the sequence is decreasing, therefore, for € > 0 all terms satisfy inequality
m+e€ > a, >m,

starting from n > N.. It means that the sequence converges and a = m is the
limit.
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Example 6.6 Let a > b > 0 be two given real numbers.
quences of arithmetic and geometric averages

alza;—b blzvab

a2:a1‘2|’bl 62:\/a161

We note that
a>a; >b>0b

Indeed, we have
1 1
5(\/__\/(_))2 — §(a—|—b)—\/ab>0

Hence
a+b

ap = >Vab= bl > b.
Similarly, having a,, and b,,, we define

an + by,
2 )

Ap+1 = bn—l—l = an bn

Consider the se-

(6.3)

and we apply inequality (6.3) for a,, an+1,b, and b,4; to obtain

Ap > Qpy1 > bpit > by

(6.4)

Then, the first sequence {a,} is decreasing and the second sequence {b,} is
increasing. But, both sequences are bounded, by a and b, since

a>a, >b,>0b

forallm=1,2,...

By the theorem both sequences {a, } and {b,} are convergent.

Let the limits

= g o F= i b
From the equality
an + by
Ap4+1 = 9
we find
a+ 3




Example 6.7 Consider the sequence given by the recursive formula

alz\/§, 1’2:\/2+\/§, agz\/2—|—\/2—|—\/§

nt1 =V2+a, n=12 ..

Clearly, the sequence is increasing, since

In general

forn=1,2,..
Also, the sequence is upper bounded by 1 + v/2, because

a1 =V2, a=V\2+V2<1+V2

and by mathematical induction, if a,, < 1+ v/2 then

an+1:\/2+\/an<\/2—|—\/§—|—1<1—|—\/§

forn=1,2,....
By the theorem, the sequence is convergent.
Let
a= lim a,
n—>oo0
Then, we find

a= l_1£n Gni1 = |2+ l_1£n an =V2+a«a

Hence, « satisfies the quadratic equation

=2+«
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Then the limit @ = 2. let us note that the negative root o = —1 of the

quadratic equation cannot be the limit.

6.1.6 The Number e

One of the fundamental constants in Mathematical Analysis is the number

e =2, 7182818284 . . ..

It can be defined as a limit of an increasing sequence.

Let .
n — 1 _n’ :1,2,...
an = ( +n) n
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We shall show that {a,,} is strictly increasing and bounded above. So that, by
virtue of theorem, {a,} is convergent.
By the Bernoulli inequality,

1

1
(1-=)">1—— for n>1.
n n

We have
1., r . 1.,
(1_ﬁ) >1_E implies (1+E) (1-—
1
implies (14 —)"(1 —
n
forallm=1,2,...
Therefore

and we get

1
n—1

1 n
n=1+=)">
an = (L+ =)' > (

e LA

=a,_1,foralln=1,2, ..
n—1

In order to show that the sequence is bounded above, we apply the binomial
expansion, for n > 2,

an = (1+ %)“ = kz: (Z)ln—’f(%)’f =1+ sz: <Z>(%)k =2+k2:ak.

The k-th term of the sum > a4 can be written as

= <n>(1)k n(n—1)(n—2)...(n_k+2)(n_k+1)

Loy
k)'n' k! &)
nn—1n—-2 n—-k+2n—-k+11
n n n n n k!

1 1 2 kE—1
= =)= ) (1=

n n n

So that

1 1 3 1 !
S T Ix2x3x - xk Ix2x2x---x2 ok1

for k = 2,3,...,n. Therefore

an, = 1+1+zn:a <1—|—1+l—l-i—|- + !
no = k 9 22 on—1

1— (L 1
= 1+7(21)=1+2(1—(—)”)<3,
1-1 2
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foralln=1,2,....
By the theorem on monotone and bounded sequences, the sequence

1n
ap=1+-=)", n=12 .;
n

is convergent and its limit

1
lim (14 =)" = e = 2.7182818284...
n

n—>oo0

6.2 Infinite Series

Let us begin with the definition

Definition 6.3 Let {ax}, Kk =0,1,2,..., be a given sequence of real numbers.
Consider the sequence {S,} defined as the sum of the first n+1 terms of {ax}:

Spn=ao+a1+az+-+a, =Y a. (6.5)
k=0

If{S,} converges to the limit S,

lim S, =5,

n—>o00
then we define Z ar to be S:
k=0
S=> a (6.6)
k=0

and call S the sum of the infinite series The series is then said to be convergent;
otherwise it is said to be divergent. The sum S, defined by is called the n-th
partial sum of the infinite series

O 1
Example 6.8 Show that the series ———— converges.
P nz::l n(n+1) g
Solution. We have )
in = n(n+1)
and
1 1 1

nn+1) n n+l’

+(1 1)_1 1
n n+1/) n+1

Hence, we obtain

a2 ()
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So that S, =1 — — > 1 when n— > oo
n+1
s 1
Thus, the given series converges and its sum — =1
© ° PREESY

The necessary condition for convergence of a infinite series, we give in the
following theorem:

Theorem 6.6 If Z ay s convergent then 7}13;10 an = 0.
k=0

Proof. Suppose that
Z an, = S.
n=0

Then
lim S, =S5 and lim S,,_.1 = 5.

n—oQ n—oQ

Since S, — S,_1 = a,, we have
Mg an = g (Sn = o) = lim S = lim Sy =5 =5 =0.

Therefore, li£n a, = 0 is the necessary condition for convergence of the infi-
n—>o00
(o]

nite series Z Q.

n=0

Example 6.9 Show that the infinite series
>
n=0

where |r| > 1, is divergent.

Solution. Recall that lim 7" = oo, when |r| > 1 and lim 7" = 1, when

n—oo
|r| = 1. Hence
: o
i an = fim 70
and the necessary condition for convergence is not satisfied. Consequently,
> r™ is divergent, when |r| > 1.

Example 6.10  Find the sum of the infinite series » ", |r] < 1.

n=0
Solution. We have
Sy =1+ r4+r*+. 4"
rS, = r4+r24 4" 4t

and S, — S, = 1 — r"*! which gives

1— ,r,n—l—l

S, =
1—r



129

Since |r| < 1,

1 _ntl 1 —rlimr" 1
lim S, = lim ——— = —m=c -
n—o0 n—oo 1 —7p 1—r 1—r
Hence we have obtained the required result:
o " 1
dort=——, |r| <1 (6.7)
=0 1—r
Example 6.11 The harmonic series
i1—1+1+1+ iy
2= sttt +.
satisfies the mecessary condition of convergence, since the term a, = —— > 0,

when n— > oo. However, the series diverges to infinity, since the sequence of
its partial sums diverges to oo. Indeed, we have

1 1 1 1

Son — Sn = n+1+...+%2n+1+n+2
+ i>ni:1
2n = 2n 2

1
Hence, the sequence {Sa, — Sy} is divergent, since Sa, — S, > =, and it does

not satisfies the necessary condition of convergence. Therefore, the sequence
of partial sums {S,} diverges. too.

6.2.1 Absolute Convergence of Infinite Series

Consider an infinite series » _ |ai|. The sequence of its partial sums
k=0
Sn = lao| + lar| + lag| + -+ - + [an| (6.8)

is clearly increasing. If {S,} converges, then {S,} must be bounded. Con-
versely, if {S,} is bounded, then, being monotone increasing, {S,} converges.
Therefore the following theorem holds.

Series Z a,, for which Z la,| is convergent are very important in the theory
n=1 n=1

of series.
o0 o0

A series Y a,, such that > |a,| is convergent is called absolutely convergent.

n=1 n=1
For testing convergence of series, we have a few tests, Comparison Test, Root

Test,Ratio Test and Alternating Series Test. Firstly, let us state and illustrate
the Comparison Test.
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6.2.2 Comparison Test

. Suppose that
Ogakgbk, ]{?:0,1,2,...

Then,

o [ee)

o if Zbk converges, then the series Z aj converges.

k=0 k=0

o if Zak diverges, then the series Z by
k=0 k=0

Proof. Let S, and T,, denote the n-th partial sums:
Sp =0, +ar+ax+ -+ an,

Tn:bo+bl+b2++bn

Then
0S5, <T,, n=1,2,...

(6.9)

By the assumption, Z b, converges, so {71} is bounded and implies that

n=0
{S,} is also bounded. Hence, {S,} is increasing and bounded, by theorem on

monotone sequences, {5,} converges. This completes the proof.

Example 6.12 Let the series Z Gn, an, > 0, n=1,2,... be absolutely con-

n=1
vergent, that is, the series

o
Z |ay]
n=1

converges. Clearly, we have the inequality

0<a,<l|a,, n=12..

By the comparison test the series Z a, converges.
n=1

Example 6.13 Consider the series

s
n=1 n

By the second part of the comparison test, the series diverges for 0 < s < 1.

Indeed, let

, n=12 .
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Then, we have

1 1
0<an:E§n =b, 0<s<1, n=12 ..
o o
The harmonic series Z — diverges, so the series Z — diverges. too, when
n
n=1 n=1

0<s<l1.
Now, let be s > 2. By the first part of the comparison test, the series converges
for s > 2. Indeed, let

Then, we have

1
O0<a,=—

e —b,, §>2, n=23..
n® ~ n(n —1) °= "

o
converges (see the example), so the series Z — con-

n=1

The series A
> T
verges. too, when s > 2.

1

6.2.3 Cauchy Root Test

. Consider the series

> an,  a, >0, n=12 .

e If the limit lim /a, = a <1 exists and it is less then one, then the

n—>00

series converges

e If the limit lim </a, = a > 1 exists, and it is greater than one, then the

n—>oo0
series diverges

e If the limit lim /a, = 1 exists and it is equal to one, then there is no

n—>o00
conclusion.

Example 6.14 Consider the series
= n > "
— /i — > 0.
z:: = (i1) z:: g @

'n the case when 1 < s < 2 the series converges, but different test is to be used.
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(1)  We find

li n—>00 V 1
i o7 = e V01

n=>00 5_n lirnn—>oo W B 5

1
Since the limit a = R < 1, by the root test the series converges.

(7i)  We find
. ™ x
lim (/=3
n—>o00 |\ 3" 3

x
Then, by the root test, the series converges for 3 <1, 0<z <3, and the se-

x
ries diverges — > 1, x > 3. For x = 3 the root test does not apply. However,

the series diverges, since for x = 3 the necessary condition of convergence is
not satisfied.

6.2.4 d’Alembert’s Ratio Test

. Consider the series
> an, a, #0, n=1,2, ..
n=1

Assume that the limit exists

Then,
e If a < 1 the series converges absolutely.
e If a > 1 or a = oo the series diverges.
e If a = 1, there is no conclusion.
Example 6.15 Use the ration test to investigate convergence of the series

(7)

(i) s

nl’ n!
n=1 """ n=1 """

We evaluate

. An+1 . VA n! . 2
lim lim —— = lim =
n—>00 an n—>00 (n —+ 1)' on n—>co n, + 1

By the ration test a = 0 < 1, the series Z — converges.
= n!
For the second series, we evaluate

An41 . l’n+1 n' . €T
= lim —— = lim =0

n—>co n, + 1 o

lim

n—30c @,  n->00 (n+4 1)lan
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e} n

, x
By the ration test a = 0 < 1, for any real x, the series Z — converges for
= n!
—00 < T < 00.

6.2.5 Alternating Series Test

. Suppose that

lim a,=0 and 0<an <a, n=12 ..
n—>o00

Then the alternating series

Z(_l)n+1an-
n=1

is convergent.
Proof. Consider the partial sums with even subscript 2n

Son = (al - Cl2) + (ag — Cl4) + (Cl5 — aﬁ) “+ ...+ (agn_l — Aop,

By the assumption axy1 < ag, k = 1,2,...,2n — 1, the terms (ar — ags1) <
0, k=1,2,....,2n — 1. The sequence of partial sums {Ss,} is increasing.
Now, let us write the partial sum as follows:

Son = ay — (ag — az) — (as — as) — ... — (agn—2 — agn—1) — a2y
Hence, we observe the sequence {Ss,} is bounded above by a;. So that
Son < a;, n=12, ..
Therefore, by the theorem on monotone sequences, the sequence converges and
wZh O =5
Now, let us consider the sequence {Ss,_1} of partial sums with add subscripts
Son—1 = Son + G2n-1

By the assumption a,— > 0 when n— > oco. Therefore, from the above relation
the limit of the sequence {Ss,_1} exists and

lim Sgn_l = S
>00

n—

Thus, the alternating series is convergent and its sum

(-1)"a, = S.

n=1
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Example 6.16 Consider the un harmonic series

1 1 1 1 < (=1)n1
1_§+§_Z+“'+(_1) E+"':;T
We note that it is alternating series with the coefficients
1 1
0<ap1 = n—+1 <lGp=—, n=12 ..
and with the limit
lim a, = lim l:0
n—>o0 n—>o00 N,

By the alternating series test, the un harmonic series is convergent. However,
the un harmonic series is not absolutely convergent.

Example 6.17 Consider the un harmonic series

1 1 1 1 o (—1)n-L
=t == =+ ... — =
V2 V3 V4 vn 2 Vn

We note that it is alternating series with the coefficients

1 + (=)™

1 1
0<ant1 = <Qp=—47=, n=12 .
T+l Jn
and with the limit |
lim a,= lim — =0

n—>00 n—>00 \/ﬁ
By the alternating series test, the series is convergent. However, by the com-
parison test, comparing with harmonic series, the series is not absolutely con-
vergent.

6.3 Exercises. Set 3.

Question 6.1 Use L’Hopital’s Rule to evaluate the following limits :

(a) lim sinax

x—0

for a # 0.

in5
(b) lim 27
z—0 10z

2
. ocostx —1
(©) iy ==

1 —cosa?
d) i
()mli% sin? x
h 1 31
c - (i) lim =

a—1 g2 — 1

() 123



Question 6.2 By repeating application of L’Hopital rules, show that

(a) lim sinx —'xcosa? _0
z—0 rsinx
b) 1 -z —r+1
i _

Improper Integrals

Question 6.3 Fuvaluate the integrals

(a)

© dr
oo d+ a2
) ©  xdr
/0 (1+22)2
(c)
L xdr
0 V1—=x
(@ L dx
h ==
(e)
/Ooo ze ™ da

) ) )
(1) / e “sinzx dr, (11) / e *cosx dx
0 0
Question 6.4 Show the integral

[ ot

1s convergent for a > 1 and divergent for a < 1.
Question 6.5 Find the limit of the sequences, when n— > oo
n?4+n+1 —
n — ) b bn = 1-
(¢) ¢n=(n+1)>—n’, (d) d, = {/(n+1)?

(€) o= (142" (F) =)

135
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Question 6.6 Let a > b > 0 be two given real numbers. Show that the follow-
ing sequences are monotone and bounded. Find their limits when n— > oo

(i) a1 =2, Tni1 = V2 + T, n=1,2,..,
a-+b an+b

(1) arithemetic verages  a; = o nt1 = n=12,..,

(7i) geometric verages by =+/ab, by =+/a,b, n=12,..,
3" . n?+1

('l'l'l) Cp = 311 ('l'U) dn+1 = 37127_'_1 n = 1, 2, ceey

Question 6.7 Show that
lim /3" + 9" =9, (11) l_1m \Ja™ + fr = max(a, 5), «a >0, 3>0.

n—>o00

Question 6.8 State and use the comparison test to investigate convergence of

the series
o o 1
(b)
z::./ n—|—2) nz=:1 n(n? + 2)
a>0 d —
gl+a"’ (@) =
Question 6.9 State and use the root test to investigate convergence of the
series - -
n "
(@ > () 1+ —,
n=1 3 n=1
CIDIENENCIND
n=1 " n=1 (ln n)n’

Question 6.10 State and use the ratio test to investigate convergence of the
series

8
3

(a) _!> 1+Zn|>

n=1

> n! e
© 2@ e

n=1 n=

00 On g 00 3N g
© XI5
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Question 6.11 Investigate convergence of the series

(a) f% >0 () O_OHL# v 0,
3 o1 | d 3 1“—14

@ SV e @ YU

@ 3 S



