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PREFACE

These lecture notes are designed for undergraduate students as a complemen-
tary reading text to a First Course in Calculus. It is assumed that the students
have basic knowledge in an introductory course to Mathematics in a Science
Programme.

The text book has its origin from lecture notes for courses given to undergrad-
uate science students. The lecture notes contain short and rigorous proofs of
theorems and fundamental formulas of calculus supported by example with
sets of questions.

Tadeusz STYŠ
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Chapter 1

Integration

1.1 Definite Integral

The concept of the definite integral (Riemann Integral) of a function f(x), a ≤
x ≤ b is different than the notion of the indefinite integral

F (x) =
∫

f(x)dx

as the antiderivative F (x) to the function f(x).
In order to define the definite integral, we shall follow the Archimedes method
(287-212 B.C.) of evaluation of the area below graph of a function f(x), a ≤
x ≤ b. Let us start with the example

Example 1.1 Find the area between x axis and the graph of the function

f(x) = 1 − x2, 0 ≤ x ≤ 1.

-

6

x

A

0 1

1

Area I(f)

Let us divide the interval [0, 1] in two subintervals [0,
1

2
], [

1

2
, 1] (n=2) and

evaluate the approximate value of the area A by using upper sums (see Fig.

1
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1)

A ≈ f(0)
1

2
+ f(

1

2
)
1

2
+ f(1)1 = 1 ∗ 1

2
+

3

4
∗ 1

2
=

7

8
= 0.875

-

6

x

A

0 0.5 1

1

Area I(f)

Fig 1. x0 = 0, x1 =
1

2
, x2 = 1

A ≈ f(0)
1

2
+ f(

1

2
)
1

2
+ f(1)1 = 1 ∗ 1

2
+

3

4
∗ 1

2
=

7

8
= 0.875

Now, let us divide the interval [0, 1] in four subintervals

[0, 1/4], [1/4, 1/2], [1/2, 3/4], [3/4, 1], (n = 4).

-
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The upper sum is

A ≈ f(x0)
1

4
+ f(x1)

1

4
+ f(x2)

1

4
+ f(x3)

1

4
+ f(1)

1

4

1 ∗ 1/4 + 15/16 1/4, 3/4 1/4 + 7/161/4 = 25/12 = 0.78125
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Also, we can approximate the area A by lower sums, the rectangles lie in area
A (see Fig. 3)

-
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Thus, the lower sum is

A ≈ f(x1)
1

4
+ f(x2)

1

4
+ f(x3)

1

4
+ f(x4)

1

4
+ f(1)

1

4

15

16
∗ 1

4
+

3

4
∗ 1

4
+

7

16
∗ 1

4
= 0.53125

Let us consider other way of approximation of the area A by choosing mid-
points of the subintervals

[0, 1/4], [1/4, 1/2], [1/2, 3/4], [3/4, 1], (n = 4).

The mid-points are

x∗
i =

1

8
+

i

4
, i = 1, 2, 3, 4

Now, we approximate the area A by the sum (see Fig. 4)

A ≈ f(x∗
1)

1

4
+ f(x∗

2)
1

4
+ f(x∗

3)
1

4
+ f(x∗

4)
1

4
=

63

64
∗ 1

4
+

55

64
∗ 1

4
+

30

64
∗ 1

4
+

15

64
∗ 1

4
= 0.671875
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Here, the points

x0 = 0, x∗
1 =

1

8
, x1 =

1

4
, x∗

2 =
3

8
,

x2 =
1

2
, x∗

3 =
5

8
, x3 =

3

4
, x∗

4 =
7

8
, x4 = 1

We shall extend the mid-point rule to a function f(x) defined on an interval
[a, b]. So, we divide the interval [a, b] in n equal subintervals of the length

∆x =
b − a

n
(see Fig.5)

a
s s s s s s s s

b

x0 x1 x2 q q q xn−1 xn

b

Fig.5 Partition of the interval [a, b]

[a, x1], [x1, x2], [x2, x3], ..., [xn−1, b],

where

x0 = a, x1 = a + ∆x, x2 = a + 2∆x, ..., xn = a + n∆x = b,

Then, at the mid-points

x∗
1 =

x0 + x1

2
, x∗

2 =
x1 + x2

2
, ..., x∗

n =
xn−1 + xn

2

the approximate value of the area is

A ≈ f(x∗
1)∆x + f(x∗

2)∆x3 + ... + f(x∗
n)∆x (1.1)
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1.2 Sigma Notation

We shall use sigma notation for the sum of n values a1, a2, a3, ..., an, so we
write

a1 + a2 + a3 + ... + an =
n
∑

k=1

ak

For example, when n = 4 and a1 = 12, a2 = 22, a3 = 33, a4 = 42, we have

12 + 22 + 32 + 42 =
4
∑

k=1

k2 = 30

In sigma notation, formula (1.1) is

A ≈
n
∑

k=1

f(x∗
k)∆x.

Later, we shall use the following formulae

n
∑

k=1

k = 1 + 2 + 3 + · · · + n =
n(n + 1)

2
n
∑

k=1

k2 = 12 + 22 + 32 + · · · + n2 =
n(n + 1)(2n + 1)

6
n
∑

k=1

k3 = 13 + 23 + 33 + · · · + n3 = (
n(n + 1)

2
)2

(1.2)

We note that
n
∑

k=1

1 = 1 + 1 + 1 + · · · + 1 = n

Also, we shall use the following additive properties of the sum

n
∑

k=1

[ak ± bk] =
n
∑

k=1

ak ±
n
∑

k=1

bk

n
∑

k=1

c ak = c
n
∑

k=1

ak

(1.3)

Let us come back to the example 1. In the example

f(x) = 1 − x2, [a, b] = [0, 1].

We consider n points

x0 = 0, x1 =
1

,
x2 =

2

n
, x3 =

3

n
, ..., xn−1 =

n − 1

n
, xn =

n

n
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for any natural n.
Then, the upper approximating sum of the area A is:

A ≈
n
∑

k=0

f(xk)∆x =
n
∑

k=0)

[1 − (
k

n
)2]

1

n
=

=
n
∑

k=0

1
1

n
−

n
∑

k=0

(
k

n
)2 1

n
=

=
n + 1

n
− 1

n3

n
∑

k=0

k2 =

= 1 +
1

n
− n(n + 1)(2n + 1)

6n3

Hence, the exact value of the area is the limit of the expression

1 +
1

n
− n(n + 1)(2n + 1)

6n3
→ 1 − 1

3
=

2

3

when n → ∞
In symbols, we write

A = lim
n−>∞

[1 +
1

n
− n(n + 1)(2n + 1)

6n3
] =

2

3

1.3 Riemann Sums

In order to define Riemann Integral (Definite Integral), we begin with Riemann
sums of a function f(x) given for x in the interval x ∈ [a, b].
Regular Partition. We choose points {x0, x1, x2, x3, ...., xn−1, xn} ∈ [a, b]
which satisfy the inequalities

a = x0 < x1 < x2 < x3 < · · · < xn1
< xn = b

The set P = {x0, x1, x2, x3, ...., xn−1, xn} is called partition of [a, b]. Thus, the
partition divides [a, b] into n closed subintervals

[x0, x1], [x1, x2], [x2, x3], ..., [xn−1, xn].

The length of each subinterval, we denote by

∆x1 = x1 − x0, ∆x2 = x2 − x1, ... ∆xn = xn − xn−1

The partition is called regular if ∆xk tends to zero when the number of points
n tends to infinity, that is

∆xk → 0 when n → ∞, for all k = 1, 2, 3, ...,

In each subinterval [xk−1, xk], k = 1, 2, ..., n, we choose a point ck, so that
ck ∈ [xk−1, xk].
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We define Riemann sums of the function f(x) in the interval [a, b] on the
regular partition P as follows:

Sn =
n
∑

k=1

f(ck)∆xk (1.4)

1.4 Riemann Integral

Riemann Integral (Definite Integral) is considered as the limit of the Riemann
sums. This, we state in the following definition:

Definition 1.1 Consider a function f(x) in the interval [a, b]. If there exits
limit of the Riemann sums

lim
n−>∞

Sn = lim
n−>∞

n
∑

k=1

f(ck)∆xk = I(f)

and the limit is the same for every regular partition P and for every choice of
the points ck ∈ [xk−1, xk], k = 1, 2, ..., n, then the function f(x) is integrable
in [a, b] and the value of the integral equals to limit I(f).
In symbols, we write

∫ b

a
f(x) dx = I(f).

We note that in the example the function f(x) = 1−x2 in [0, 1] is continuous,
therefore the integral

∫ 1

0
(1 − x2)dx

exists and its value I(f) =
2

3
, is obtained as the limit of Riemann sums on the

uniform partition.

Let us state the theorem on existence of the Riemann integral.

Theorem 1.1 Every continuous function f(x) on the closed interval [a, b] is
integrable. That is the Riemann integral

∫ b

a
f(x) dx

exists.

Example 1.2 Use the Riemann sums to evaluate the integral

∫ 2

1
(1 + 2x + 3x2)dx
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We observe hat the function f(x) = 1 + 2x + 3x2 is continuous in the interval
[1, 2]. Thus, by the theorem, the Riemann integral

∫ 2

1
(1 + 2x + 3x2)dx

exists. Therefore, the value I(f) of the integral is the same for any choice of
regular partition of [1, 2]. To evaluate the integral, we can choose the simplest
uniform partition of [1, 2] by the points

x0 = 1, x1 = 1 +
1

n
, x2 = 1 +

2

n
, x3 = 1 +

3

n
, · · · , xn = 1 +

n

n

with ∆xk = xk − xk−1 =
1

n
and with the points ck = xk, k = 1, 2, ..., n

Then, the Riemann sum of f(x) is

Sn =
n
∑

k=1

f(xk)∆xk =
n
∑

k=1

[1 + 2xk + 3(xk)
2]∆xk

=
n
∑

k=1

[1 + 2(1 +
k

n
) + 3(1 +

k

n
)2)]

1

n

=
n
∑

k=1

6

n
+

n
∑

k=1

2k

n2
+

n
∑

k=1

6k

n2
+

n
∑

k=1

3k2

n3

=
6

n

n
∑

k=1

1 +
8

n2

n
∑

k=1

k +
3

n3

n
∑

k=1

k2

=
6n

n
+

8n(n + 1)

2n2
+

3n(n + 1)(2n + 1)

6n3

= 6 + 4(1 +
1

n
) +

1

2
(1 +

1

n
)(2 +

1

n
)

Then, we find the limit of the Riemann sum

lim
n−>∞

Sn = lim
n−>∞

[6 + 4(1 +
1

n
) +

1

2
(1 +

1

n
)(2 +

1

n
)] = 11

Hence, the integral
∫ 2

1
(1 + 2x + 3x2)dx = 11

There are discontinuous functions which are not integrable. Consider the
example

Example 1.3 Dirichlet’s function

f(x) =







1 x isrational

0 x isirrational

is not integrable on the interval [0, 1].
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Indeed, consider a regular partition of [0, 1]. Let us choose rational points
ck ∈ [xk−1, xk], k = 1, 2, ..., n. Then, the Riemann sum of f(x) is

Sn =
n
∑

k=1

f(ck)∆xk =
n
∑

k=1

1 ∆xk = 1 = I(f).

On the other hand, choosing irrational points ck ∈ [xk−1, xk], k = 1, 2, ..., n
the Riemann sum is

Sn =
n
∑

k=1

f(ck)∆xk =
n
∑

k=1

0 ∆xk = 0 = I(f).

Thus, I(f) = 1 6= 0 = I(f). So, the limit of the Riemann sum depends on
a choice of the points ck ∈ [xk−1, xk]. Therefore, by the definition, Riemann
integral of Dirichlet’s function does not exists in the interval [0, 1]. However,
some of discontinuous functions are integrable in an interval [a, b].

Example 1.4 Consider the function (see Fig. 6)

f(x) =







−1 for 0 ≤ x < 1

1 for 1 ≤ x ≤ 2

Fig. 6 Graph f(x)

Of course, the Riemann integral exists since the area between x -axis and the
graph of the function is equal 2. However, the integral

∫ 2

0
f(x)dx = 0.

To show this, we follow the definition. Let us consider the Riemann sums of
f(x) on the intervals [0, 1] and [1, 2]. First, we find the Riemann sums on the
interval [0, 1]

S(1)
n =

n
∑

k=1

f(ck)∆xk =
n
∑

k=1

(−1)∆xk = −1
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Next, we find the Riemann sums on the interval [1, 2]

S(2)
n =

n
∑

k=1

f(ck)∆xk =
n
∑

k−1

(−1)∆xk = 1

for any partition P of the intervals and any choice of the points ck, k =
1, 2, ..., n.
Thus, the limit

lim
n−>∞

S(1)
n (−1) + lim

n−>∞
S(2)

n = lim
n−>∞

(−1) + lim
n−>∞

1 = −1 + 1 = 0.

Hence, the function f(x) is integrable and the value of the integral is equal to
zero. However, the area between x-axis and the graph of the function f(x) is
equal to 2.

1.5 Properties of Definite Integrals

Let f(x) and g(x) be two integrable functions in the interval [a, b], so that the
integrals

∫ b

a
f(x)dx,

∫ b

a
g(x)dx

exist.
Following the definition, one can show the following equalities for definite
integrals:
Additive property with respect to the integrand

∫ b

a
[f(x)± g(x)]dx =

∫ b

a
f(x)dx ±

∫ b

a
g(x)dx (1.5)

Additive property with respect to the interval of integration

∫ b

a
f(x)dx =

∫ c

a
f(x)dx +

∫ b

c
f(x)dx, for any c a ≤ c ≤ b (1.6)

For any constant K
∫ b

a
Kf(x)dx = K

∫ b

a
f(x)dx (1.7)

Reversing the direction of integration

∫ b

a
f(x)dx = −

∫ a

b
f(x)dx (1.8)

Let prove additive property (1.5). By the assumption, the integrals

∫ b

a
f(x)dx,

∫ b

a
g(x)dx
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exist.
This means the values of the integrals are limits of the Riemann sums

∫ b

a
f(x)dx = lim

n−>∞

n
∑

k=1

f(ck)∆xk,
∫ b

a
g(x)dx = lim

n−>∞

n
∑

k=1

g(ck)∆xk.

Thus, we have
∫ b

a
f(x)dx +

∫ b

a
g(x)dx = lim

n−>∞

n
∑

k=1

f(ck)∆xk + lim
n−>∞

n
∑

k=1

g(ck)∆xk =

lim
n−>∞

n
∑

k=1

[f(ck) + g(ck)]∆xk =
∫ b

a
[f(x) + g(x)]dx

We note that in the above equalities, we have used the additive property of
limits, that is, the limit of a sum equals the sum of the limits.
Also, by the definition, one can show the following inequalities for definite
integrals:
For a non-negative and integrable function f(x) ≥ 0 in the interval [a, b], the
integral

∫ b

a
f(x)dx ≥ 0. (1.9)

Let f(x) and |f(x)| be a integrable functions in [a, b], then
∫ b

a
f(x)dx| ≤

∫ b

a
|f(x)|dx (1.10)

Let f(x) and g(x) be integrable functions in the interval [a, b] and let f(x) ≤
g(x) for all x ∈ [a, b], then

∫ b

a
f(x)dx ≤

∫ b

a
g(x)dx

If f(x) is an integrable function in the interval [a, b] and if f(x) is lower bonded
by a number m and upper bounded a number M , that is

m ≤ f(x) ≤ M for all x ∈ [a, b],

then

m(b − a) ≤
∫ b

a
f(x)dx| ≤ M(b − a) (1.11)

Let us prove the first of above inequalities. By the assumption f(x) ≥ 0 is
integrable in the interval [0, 1]. Then, the limit of the Riemann sums

Sn =
n
∑

k=1

f(ck)∆xk n− > ∞,

exists and this limit of the sum of non-negative terms f(ck)∆xk ≥ 0, k =
1, 2, ..., n, is non-negative, that is

0 ≤ lim
n−>∞

n
∑

k=1

f(ck)∆xk =
∫ b

a
f(x)dx
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We note, by property (1.9), that the area between the graph of f(x), a ∈ [a, b]
and x-axis is

A =
∫ b

a
|f(x)| dx

Average of f(x). Let f(x) be a continuous function in interval [a, b]. Then,
the integral

∫ b

a
f(x) dx

exists.
The average value of f(x) in [a, b] is given by the formula

Average(f) =
1

b − a

∫ b

a
f(x) dx

We note that the average value of f(x) is the limit of arithmetic averages

f(x1) + f(x2) + f(x3) + · · · + f(xn)

n

of the values f(x1, f(x2), ..., f(xn) at points x1, x2, x3, ..., xn in interval [a, b].
Indeed, we consider the uniform partition of the interval [a, b]

xk = a + k∆x, k = 1, 2, ..., n, ∆x =
b − a

n

and the Riemann sums

Sn =
n
∑

k=1

f(xk)∆x =

= (b− a)
n
∑

k=1

f(x1) + f(x2) + f(x3) + · · · + f(xn)

n

Hence in the limit of arithmetic averages

lim
n−>∞

f(x1) + f(x2) + · · · + f(xn)

n
=

=
1

b − a
lim
n>∞

Sn

=
1

b − a

∫ b

a
f(x) dx

= Average(f)

The average of a continuous function f(x) in a closed interval [a, b] implies the
following First Mean Value Theorem for integrals:

Theorem 1.2 If a function f(x) is continuous in the closed interval [a, b],
then, there exists a point ξ ∈ (a, b) in the open interval, such that

f(ξ) =
1

b − a

∫ b

a
f(x) dx

for all x ∈ [a, b].
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Indeed, by the Weierstrass theorem, a function which is continuous in the
closed interval [a, b] attains its minimum value and maximum value, that is

m = min
a≤x≤b

f(x) ≤ f(x) ≤ max
a≤x≤b

f(x) = M

Also, the other Weierstrass theorem, a continuous function in a closed interval
[a, b] attains any value between m and M , that is, for any number y, m ≤ y ≤
M , there is an argument ξ ∈ [a, b] such that

y = f(ξ)

Because, the average value Average(f) lies between its minimum m and maxi-
mum M , m ≤ Average(f) ≤ M , therefore, by the Weierstrass theorem, there
exists ξ ∈ [a, b] such that

f(ξ) =
1

b − a

∫ b

a
f(x) dx

for all x ∈ [a, b].

Example 1.5 Evaluate the average value of the function

f(x) = sinπx, 0 ≤ x ≤ π,

in the interval [0, π]

By the formula

Average(f) =
1

b − a

∫ b

a
f(x) dx =

1

π

∫ π

0
sinx dx = − 1

π
cos x|π0 =

2

π

Exercises
Question 1.
Use the definition to evaluate the following integrals as the limit of Riemann
sums

(a)
∫ 2

0
(4 − x2)dx

(b)
∫ 2

0
f(x)dx,

where

f(x) =







1 for 0 ≤ x < 1

2x for 1 ≤ x ≤ 2

Question 2.
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(a) Use the definition to show that

∫ 1

0
(ax2 + bx + c)dx =

1

3
a +

1

2
b + c

(b) Evaluate the integral
∫ 1

0
(3x2 + 2x + 1)dx

(c) Evaluate the evarage value of the function f(x) = x3 + 3x2 + 5 in the
interval [0, 2].

1.6 Fundamental Theorems of Calculus

The relations between indefinite and definite integrals have been stated in the
form of Fundamental Theorems of Calculus.
First Fundamental Theorem of Calculus. Assume that f(x) is a contin-
uous function in the closed interval [a, b] and let F (x) be an antiderivative to
f(x) in the interval [a, b]. Then

∫ b

a
f(x) dx = F (b)− F (a)

Proof. By the assumption f(x) is continuous in [a, b]. By the theorem on
existence there exists the integral

∫ b

a
f(x) dx

Let F (x) be the antiderivative to f(x) in [a, b] and let P = {x0, x1, x2, ..., xn}
be a regular partition of [a, b] by points

a = x0 < x1 < x2 < · · · < xn = b

Then, by the Mean Value Theorem

F (xk) − F (xk−1) = F
′
(ck)(xk − xk−1) = F

′
(ck)∆xk.

for any choice of the points ck ∈ [xk−1, xk], k = 1, 2, ..., n.
Hence

n
∑

k=1

[F (xk) − F (xk−1) =
n
∑

k=1

F
′
(ck)∆k
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But, we have

n
∑

k=1

[F (xk) − F (xk−1) = +F (x1) − F (x0)

+F (x2) − F (x1)

+F (x3) − F (x2)

....................

+F (xn−1) − F (xn−2)

+F (xn) − F (xn−1)

= F (xn) − F (x0)

= F (b)− F (a)

Hence for F
′
(ck) = f(ck), k = 1, 2, ...n, the Riemann sums

Sn =
n
∑

k=1

f(ck)∆xk = F (b) − F (a)

Because f(x) is integrable function in [a, b], therefore taking limit of both sides,
we obtain

lim
n−>∞

Sn = F (b)− F (a) =
∫ b

a
f(x) dx

This ends proof of the First Theorem of Calculus.

Example 1.6 Evaluate the integral
∫ π

2

0
cos x dx

We note that the function f(x) = cos x (see Fig 7) is contiguous for all real x
and its antiderivative F (x) = sin x. By the theorem

∫ π

2

0
cos x dx = F (

π

2
) − F (0) = sin

π

2
− sin 0 = 1 − 0 = 1

Fig. 7 f(x) = cos x, x ∈ [0, π
2
]

The area below the graph is equal to 1.
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Theorem 1.3 Second Fundamental Theorem of Calculus If function
f(x) is continuous in the closed interval [a, b], then the function

F (x) =
∫ x

a
f(t) dt

is continuous and differentiable and F
′
(x) = f(x) for all x ∈ [a, b].

Proof. Using the definition of derivative, we find

F
′
(x) = lim

h−>0

F (x + h) − F (x)

h
= lim

h−>0
[
1

h

∫ x+h

a
f(t) dt −

∫ x

a
f(t) dt]

lim
h−>0

1

h

∫ x+h

x
f(t) dt = lim

h−>0
f(ch)

for a point ch ∈ [x, x + h], where f(ch) is the average value of f(x) in the
interval [x, x +h]. On the other hand, the average value f(ch)− > f(x), when
h− > 0. Thus, in the limit

F
′
(x) = lim

h−>0
f(ch) = f(x)

Example 1.7 Using the Second Fundamental Theorem, evaluate the deriva-
tive of the function

F (x) =
∫ x

1
(t2 + t + 1) dt

at the point x = 4.

We note that f(x) = x2 +x+1 is continuous function for all real x. Thus, the
assumptions of the theorem hold. By the thesis

F
′
(x) = f(x) = x2 + x + 1.

At the point x = 4, we compute F
′
(4) = f(4) = 42 + 4 + 1 = 21.

Example 1.8 Evaluate the integral

∫ 1

0
sinπx dx

The antiderivative to f(x) = sinπx is F (x) = − 1

π
cos πx. By the thesis of the

theorem
∫ 1

0
sinπx dx = F (1) − F (0) = − 1

π
[cosπ − cos 0] = − 1

π
[−1 − 1] =

2

π
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We note that the area between the graph of the function sin sinπx and

x-axis is equal to
2

π

Fig. 8. f(x) = sinπx.

1.7 Methods of Integration

In evaluation of Riemann integrals, we use extensively the Fundamental The-
orem of Calculus.

Theorem 1.4 Let F (x) be an antiderivative to a continuous function f(x) in
the interval [a, b]. Then, the integral

∫ b

a
f(x) dx = F (x)|ba = F (b) − F (a)

Thus, the methods of evaluation of Riemann integrals are the same as the
methods for indefinite integrals, for finding an antiderivative.
Let us begin with the method by substitution

1.7.1 Method by Substitution.

Let f(x) be a continuous function in [a, b] and let x = φ(t) be a differentiable
function in the interval t ∈ [α, β], with the values in [a, b], that is

a = φ(α) ≤ φ(t) ≤ φ(β) = b

for t ∈ [α, β].
There exists an antiderivative F (x) for the continuous function f(x) in [a, b].
So, we consider the composed function

Φ(t) = F (φ(t)), x = φ(t) t ∈ [α, β]

The derivative
dΦ(t)

dt
=

dF (φ(t))

dx

dφ(t)

dt
, t ∈ [α, β]
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Because
dF (φ(t))

dx
= f(φ(t)), therefore, integrating both sides, we have

Φ(β) −Φ(α) =
∫ β

α
f(φ(t))φ

′
(t) dt

But Φ(α) = F (φ(α)) = F (b) and Φ(β) = F (φ(β)) = F (a)
Hence, we obtain the following formula of integrating by substitution

∫ b

a
f(x) dx =

∫ β

α
f(φ(t))φ

′
(t) dt x = φ(t) (1.12)

We shall apply extensively the formula, when integrating trigonometric and
rational functions.
Now, we shall consider some Riemann integrals of the following form:

∫ b

a
f(g(x))g

′
(x) dx

in which the functions f(g) and g(x) are identified.
Then, we substitute

u = g(x), du = g
′
(x) dx.

to the integral for a ≤ x ≤ b, and g(a) ≤ u ≤ g(b)
Thus, we obtain the following formula of integration by substitution

∫ b

a
f(g(x))g

′
(x) dx =

∫ g(b)

g(a)
f(u) du (1.13)

Example 1.9 Evaluate the integral
∫ 3

1

2x

1 + x2
dx

Solution We identify the functions

g(x) = 1 + x2, g
′
(x) = 2x, f(g(x)) =

1

g(x)
, 1 ≤ x ≤ 3

Let us substitute
u = x2 + 1, du = 2x dx

The range of u : g(a) = 2 ≤ u ≤ 10 = g(b) for 1 ≤ x ≤ 3.
We find

f(u) =
1

u
, du = g

′
(x) dx = 2x dx, g(1) = 2, g(3) = 10

By formula (2.24), we evaluate

∫ 3

1

2x

1 + x2
dx =

∫ 10

2

1

u
du == ln 10 − ln 2 = ln 5
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Example 1.10 Evaluate the integral

∫ 2

1

2x + 1

x2 + x + 1
dx

Solution We identify the functions

g(x) = x2 + x + 1, g
′
(x) = 2x + 1, f(g(x)) =

1

g(x)
, , 1 ≤ x ≤ 2

Let us substitute

u = g(x) = x2 + x + 1, du = (2x + 1) dx.

Then, we find

f(u) =
1

u
, du = g

′
(x) dx = (2x + 1) dx, g(1) = 3, g(2) = 7

By formula (2.24), we evaluate

∫ 2

1

2x + 1

x2 + x + 1
dx =

∫ 7

3

1

u
du = ln |u||73 = ln 7 − ln 3 = ln

7

3

Example 1.11 Evaluate the integral

∫ 1

0
2x

√
1 + x2 dx

Solution. We identify the functions

g(x) = 1 + x2, g
′
(x) = 2x, f(g(x)) =

√

g(x), 0 ≤ x ≤ 1

Let us substitute

u = x2 + 1, du = 2x dx

Then, we find

f(u) =
√

u, g(0) = 1, g(1) = 2

By formula (2.24), we evaluate

∫ 1

0
2x

√
1 + x2 dx =

∫ 2

1

√
u du =

∫ 2

1
u

1

2 du = [
u1+ 1

2

1 + 1
2

]|21 =
2

3
[2
√

2 − 1]

Example 1.12 For a given differentiable function f(x), in [a, b], find the in-
tegral

∫ b

a

f
′
(x)

f(x)
dx
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Solution We note that the logarithmic derivative

[ln |f(x)|]′ =
f

′
(x)

f(x)

Thus, the indefinite integral

∫ f
′
(x)

f(x)
dx = ln |f(x)| + C

Hence, the antiderivative to the integrand
f

′
(x)

f(x)
is F (x) = ln |f(x)|.

By the Fundamental Theorem of Calculus

∫ b

a

f
′
(x)

f(x)
dx = ln |f(x)|ba = ln f(b) − ln f(a) = ln

f(b)

f(a)

The same formula, we can obtain by the method of substitution. Indeed, we
identify the functions

g(x) = f(x), g
′
(x) = f

′
(x), f(g(x)) =

1

g(x)
, , a ≤ x ≤ b

Let us substitute
u = g(x) = f(x).

Then, we find

f(u) =
1

u
, du = g

′
(x) dx = f

′
(x) dx, g(a) = f(a), g(b) = f(b)

By formula (2.24), we evaluate

∫ b

a

f
′
(x)

f(x)
dx =

∫ f(b)

f(a)

1

u
du = ln |u||f(b)

f(a) = ln |f(b)| − ln |f(a)| = ln |f(b)

f(a)
|

Example 1.13 Evaluate the integral
∫ π

4

0
tanx dx

Solution Let us write the integrand tanx =
sin x

cosx
in terms of sinx and cosx.

Then, we are to evaluate the integral
∫ π

4

0

sinx

cos x
dx

We identify the functions

g(x) = cosx, g
′
(x) = − sinx, f(g(x)) =

1

g(x)
, 0 ≤ x ≤ π

4
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Let us substitute

u = g(x) = cos x, g
′
(x) = − sin x

Then, we find

f(u) =
1

u
, du = − sinx dx,

g(0) = 1, g(
π

4
) = cos

π

4
=

1√
2

By formula (2.24), we evaluate

∫ π

4

0

sinx

cos x
dx = −

∫ 1√
2

1

1

u
du

= − ln |u|
1√
2

1 = −(ln
1√
2
− ln 1) = − ln

1√
2

=
ln 2

2

Example 1.14 For a given function f(x) in [a, b], find the integral

∫ b

a
xf(x2) dx

Find the integral
∫ 1

0
xex2

dx, 0 ≤ x ≤ 1

Solution We identify the functions

u = g(x) = x2, g
′
(x) = 2x, du = 2x dx

Then, we have

∫ b

a
xf(x2) dx =

1

2

∫ b

a
2xf(x2) dx =

1

2

∫ g(b)

g(a)
f(u) du

Hence, for f(x) = ex, we have f(x2) = ex2

, g(0) = 0, g(1) = 1 Then, the
integral

∫ 1

0
xex2

dx =
1

2

∫ 1

0
eu du =

1

2
eu|10 =

1

2
(e − 1)

1.7.2 Integration by Parts

Let u(x) and v(x) be two differentiable function in the interval [a, b]. Then,
the derivative of the product

du(x)v(x)

dx
= u(x)

dv(x)

dx
+ v(x)

du(x)

dx

or in Newton notation

[u(x)v(x)]
′
= u(x)v

′
(x) + v(x)u

′
(x)
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Integrating both sides from a to b, we find

u(b)v(b)− u(a)v(a) =
∫ b

a
u(x)

dv(x)

dx
dx +

∫ b

a
v(x)

du(x)

dx
dx

Hence, we have the formula of Integration by Parts

∫ b

a
u(x)

dv(x)

dx
dx = u(b)v(b)− u(a)v(a)−

∫ b

a
v(x)

du(x)

dx
dx (1.14)

or
∫ b

a
u(x)v

′
(x) dx = u(b)v(b)− u(a)v(a)−

∫ b

a
v(x)u

′
(x) dx (1.15)

Example 1.15 Evaluate the integral

∫ π

0
x sin x dx

Solution. Let us denote by

u = x, u
′
= 1,

and by

v
′
= x, v =

∫

sin x dx = − cos x

By formula (1.15), we evaluate

∫ π

0
x sin x dx = −x cos x|π0 −

∫ π

0
(− cos x) dx

= −(π cos π − 0 cos 0 ) −
∫ π

0
(−cos x dx

= π + sin x |π0 = π + (sinπ − sin 0) = π

Example 1.16 Evaluate the integral

∫ 1

0
x ln(1 + x) dx

Solution. Let us denote by

u = ln(1 + x), u
′
=

1

1 + x
,

and

v′ = x, v =
∫

x dx =
x2

2
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By formula (1.15), we evaluate
∫ 1

0
x ln(1 + x) dx =

1

2
x2 ln(1 + x)|10 −

1

2

∫ 1

0

x2

1 + x
dx

=
1

2
(ln 2 − ln 1) − 1

2

∫ 1

0
(x − 1 +

1

1 + x
) dx

=
ln 2

2
− 1

2
[
x2

2
− x + ln(1 + x)]10

=
ln 2

2
− 1

2
(
1

2
− 1 + ln 2) =

1

4

Example 1.17 Evaluate the integral
∫ 1

0
xex dx

Solution. Let us denote by

u = x, u
′
= 1,

and

v′ = ex, v =
∫

ex dx = ex

By formula (1.15), we evaluate
∫ 2

1
xex dx = xex|21 −

∫ 2

1
ex dx

= (2e2 − e) − (e2 − e) = e2

Example 1.18 Evaluate the integral
∫ 1

0
sin2 π x dx

Solution. Let us denote by

u = sin πx, u
′
= π cos π x,

and

v′ = sinπ x, v =
∫

sinπ x dx = − 1

π
cosπ x

By formula (1.15), we evaluate

I =
∫ 1

0
sin2 π x dx = − 1

π
sinπ x cos πx|10 +

∫ 1

0
cos2 π x dx

=
∫ 1

0
(1 − sin2 πx) dx = 1 − I

Hence, we find I =
1

2
and

∫ 1

0
sin2 π x dx =

1

2
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1.7.3 Integration of Rational Functions

The general form of rational functions

Polynomial Pm(x) of degree m

Polynomial Qn(x) of degree n
=

a0x
m + a1x

m−1 + · · · + am−1x + am

b0xn + b1xn−1 + · · · + bn−1x + bn

We shall consider m < n, otherwise, the quotient

Pm(x)

Qn(x)
= P m−n(x) +

Rm−n(x)

Qn(x)

where Pm−n(x) is the polynomial of degree m− n and the remainder polyno-
mial Rm−n(x) has degree m − n < m.
A special rule play the rational functions called Partial Fractions of the fol-
lowing form:

A

x− λ
,

A

(x − λ)k
, k = 2, 3, ...

Mx + N

x2 + px + q

Mx + N

(x2 + px + q)k
, p2 − 4q < 0.

(1.16)

The following theorem holds:

Theorem 1.5 Every rational function (m < n) possesses form of a sum of
Partial Fractions. That is

Pm(x)

Qn(x)
=

A1

(x− λ)
+

A2

(x− λ)2
+ · · · + Ak

(x− λ)k

+
M1x + N1

(x2 + px + q)
+

M2x + N2

(x2 + px + q)2
+ · · ·

Therefore, integration of rational functions reduces to the integration of Partial
Fractions.
Let us integrate the Partial Fractions

1.
∫ b

a

A

(x − λ)
dx = A ln |x− a||ba = A(ln |b − λ| − ln |a − λ|)

= A ln | b − λ

a − λ
|

Example 1.19 Evaluate the integral
∫ 1

0

x dx

x2 − 5x + 6

Solution. The rational function
x

x2 − 5x + 6
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we present in partial fractions as follows: Factorizing the denominator
x2 − 5x + 6 = (x − 2)(x − 3), we find

x

x2 − 5x + 6
=

A

x − 2
+

B

x− 3
=

(A + B)x− (3A + 2B)

x2 − 5x + 6

for every real x 6= 2 and x 6= 3
Hence, by comparison of the numerators, we have the equations for A
and B

A + B = 1 and 3A + 2B = 0

The solution is A = −2 and B = 3. Thus, the integrand has the following
partial fractions representation

x

x2 − 5x + 6
= − 2

x− 2
+

3

x− 3

Hence, we evaluate

∫ 1

0

x dx

x2 − 5x + 6
=

∫ 1

0

3 dx

x − 3
−
∫ 1

0

2 dx

x − 2

= (3 ln |x − 3| − 2 ln |x− 2|)|10
= 3 ln 2 − 3 ln 3 + 2 ln 2 = 5 ln 2 − 3 ln 3 = ln 32

27

2. The second type of partial fractions

∫ b

a

A

(x − λ)k
dx, k = 2, 3, ..., λ /∈ [a, b]

we find the indefinite integral

∫

A

(x − λ)k
dx =

A

1 − k
(x − λ)1−k + C k = 2, 3, ...,

Then, the integral

∫ b

a

A

(x− λ)k
dx =

A

1 − k
(x − λ)1−k|ba =

A

1 − k
[(b− λ)1−k − (a − λ)1−k

3. Let us integrate the third type of partial fractions

∫ b

a

A

x2 + px + q
dx or

∫ b

a

Ax + B

(x2 + px + q
dx, p2 − 4q < 0,

General approach
To find the first integral, we present the denominator in the form

x2 + px + q = (x +
p

2
)2 + (q − p2

4
)
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Then, we substitute

u = x +
p

2
, du = dx, r =

√

q − p2

4

and we find the indefinite integral
∫

A

x2 + px + q
dx =

∫

A du

u2 + r2
+ C

=
A

r
ArcTan

u

r
+ C

=
A

√

q − p2

4

ArcTan
x + p

2
√

q − p2

4

+ C

(1.17)

Example 1.20 Evaluate the integral
∫ 2

1

dx

x2 − 2x + 2

Solution. The denominator

x2 − 2x + 2 = (x− 1)2 + 1

Then, we have p = −2, q = 2. Let u = x − 1, du = dx and for
x = 1, u = 0 and for x = 2, u = 1
∫ 2

1

dx

x2 − 2x + 2
=

∫ 1

0

du

u2 + 1
= ArcTanu|10

= ArcTan(x− 1)|21 = ArcTan1− ArcTan0 =
π

4

General approach to the second integral
We find the indefinite integral

∫

Ax + B

x2 + px + q
dx =

A

2

∫ 2x +
2B

A
x2 + px + q

dx

=
A

2

∫ 2x + p + 2B
A

− p

x2 + px + q
dx

=
A

2

∫

2x + p

x2 + px + q
dx +

A

2

∫ 2B
A

− p

x2 + px + q
dx

=
A

2
ln |x2 + px + q|+ A

2

∫ 2B
A

− p

x2 + px + q
dx

The second integral in the above is in the form of the first integral, then
we use formula (1.17).
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Example 1.21 Evaluate the integral

∫ 2

0

3x + 1

x2 − 4x + 5
dx

Solution We note that it is integral in the form

∫ b

a

Ax + B

(x2 + px + q
dx

where A = 3, B = 1, p = −4, q = 5 and the discriminant ∆ = p2 − 4q =
(−4)2 − 4 5 = −4 < 0.
Then, we evaluate

∫

3x + 1

x2 − 4x + 5
dx =

3

2

∫ 2x +
2

3
x2 − 4x + 5

dx

=
3

2

∫ 2x − 4 + 2
3

+ 4

x2 − 4x + 5
dx

=
3

2

∫

2x − 4

x2 − 4x + 5
dx +

3

2

∫ 2
3

+ 4

x2 − 4x + 5
dx

=
3

2
ln |x2 − 4x + 5| + 7

∫

dx

x2 − 4x + 5

Now, we evaluate the integral in the above of the first form

∫

dx

x2 − 4x + 5
=

∫

dx

(x − 2)2 + 1
= ArcTan(x− 2) + C

Finally, we find the indefinite integral

∫

3x + 1

x2 − 4x + 5
dx =

3

2
ln |x2 − 4x + 5| + 7ArcTan(x− 2) + C

Hence, the integral

∫ 2

0
=

3x + 1

x2 − 4x + 5
dx = [

3

2
ln |x2 − 4x + 5| + 7ArcTan(x − 2)]|20

= [
3

2
ln |22 − 4 2 + 5| + 7ArcTan(2− 2)]

− [ 3
2
ln |02 − 4 0 + 5| + 7ArcTan(0 − 2)]

= 7ArcTan2− 3

2
ln 5
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1.7.4 Integration Using Table of Integrals

Let us recall the antiderivative of some elementary functions

[ArcTanx]′ =
1

1 + x2
,

∫

dx

1 + x2
= ArcTanx + C, −∞ < x < ∞,

[tan x]′ =
1

cos2 x
= sec2 x ,

∫

dx

cos2 x
= tanx + C, −π

2
< x < π

2
,

[ArcSinx]′ =
1√

1 − x2
,

∫

dx√
1 − x2

= ArcSinx + C, −1 < x < 1

[ArcSinhx]′ =
1√

1 + x2
,

∫

dx√
1 + x2

= ArcSinhx + C, −∞ < x < ∞

Example 1.22 Evaluate the integral
∫ a

0

dx

a2 + x2

Solution. Let us substitute x = at, dx = adt. Then, we find the indefinite
integral

∫

dx

a2 + x2
=

1

a

∫

dt

1 + t2
=

1

a
ArcTant =

1

a
ArcTan

x

a
+ C, a 6= 0

Hence, we have

∫ a

0

dx

a2 + x2
=

1

a
tan(−1)t =

1

a
ArcTan

x

a
|a0 =

π

4a

Example 1.23 Evaluate the integral
∫ b

0

dx

(a2 + x2)2

Solution. To find the indefinite integral, we apply integration by parts to the
integral

I1 =
∫

dx

a2 + x2

Let

u =
1

a2 + x2
, u

′
=

−2x

(a2 + x2)2
, v = 1, v

′
= x

I1 =
∫

dx

a2 + x2
=

x

a2 + x2
+ 2

∫

x2 dx

(a2 + x2)2

But, the integral
∫ x2 dx

(a2 + x2)2
=

∫ x2 + a2 − a2 dx

(a2 + x2)2

=
∫

dx

a2 + x2
− a2

∫

dx

(a2 + x2)2
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Hence, we have

I1 = =
x

a2 + x2
+ 2(I1 − a2I2)

and

I2 =
∫

dx

(a2 + x2)2
=

1

2a2

x

a2 + x2
+

1

2a2
I1

Because

I1 =
1

a
ArcTan

x

a
+ C

therefore
∫

dx

(a2 + x2)2
=

1

2a2

x

a2 + x2
+

1

2a2

1

a
ArcTan

x

a
+ C

Thus, the definite integral
∫ b

0

dx

(a2 + x2)2
= [

1

2a2

x

a2 + x2
+

1

2a2

1

a
ArcTan

x

a
]|b0

= [
1

2a2

b

a2 + b2
+

1

2a2

1

a
ArcTan

b

a

Example 1.24 Evaluate the integral
∫ π

4

0
sec2 bx dx, 0 < b < 1.

Solution. Let u = bx, du = b dx. We find the indefinite integral
∫

sec2 bx dx =
1

b

∫

sec2 u du =
1

b
tan u + C =

1

b
tan bx + C

Hence, we have
∫ π

4

0
sec2 bx dx =

1

b
tan bx|

π

4

0 =
1

b
tan

πb

4

Example 1.25 Evaluate the integral
∫ a

0

dx√
a2 − x2

, a > 0.

Solution. Let us substitute x = at, dx = adt. Then, we find the indefinite
integral

∫ dx√
a2 − x2

=
∫ dt√

1 − t2
= ArcSin t = ArcSin

x

a
+ C, a > 0

Hence, we have

∫ a

0

dx√
a2 − x2

= ArcSin t|10 = ArcSin
x

a
|a0 =

π

2
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Example 1.26 Evaluate the integral
∫ 1

0

dx√
a2 + x2

, a > 0.

Solution. Let us substitute x = at, dx = adt. Then, we find the indefinite
integral

∫ dx√
a2 + x2

=
∫ dt√

1 + t2
= ArcSinh t = ArcSinh

x

a
+ C, a > 0

Hence, we have

∫ 1

0

dx√
a2 + x2

= ArcSinh t|10 = ArcSinh
x

a
|10 = ArcSinh

1

a

Let us recall that

sinh x =
1

2
(ex − e−x)

Example 1.27 Evaluate the integral
∫ a

0

√
a2 + x2 dx.

Solution. To find the indefinite integral, we apply integration by parts

∫ √
a2 + x2 dx = x

√
a2 + x2 −

∫

x2 dx√
a2 + x2

= x
√

a2 + x2 −
∫

(x2 + a2) − a2 dx√
a2 + x2

= x
√

a2 + x2 −
∫ √

a2 + x2 dx + a2
∫

dx√
a2 + x2

By the example, we find
∫

dx√
a2 + x2

= ArcSinh
x

a

Hence, we have

I =
∫ √

a2 + x2 dx = x
√

a2 + x2 − I + a2ArcSinh
x

a
+ C

and
∫ √

a2 + x2 dx =
1

2
[x
√

a2 + x2 + a2ArcSinh
x

a
+ C

Thus, the definite integral
∫ a

0

√
a2 + x2 dx =

1

2
[x
√

a2 + x2 + a2ArcSinh
x

a
]|a0 =

1

2
[a2

√
2 + a2ArcSinh1]

(1.18)
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Example 1.28 Evaluate the integral

∫ b

0

dx

(a2 + x2)n
, n ≥ 2, a > 0.

Solution. To find the indefinite integral, we apply integration by parts to the
integral

∫

dx

(a2 + x2)n

Let

u =
1

(a2 + x2)
, u

′
=

−2nx

(a2 + x2)2
, v = 1, v

′
= x

In =
∫

dx

(a2 + x2)n
=

x

(a2 + x2)n
+ 2n

∫

x2 dx

(a2 + x2)n+1

But, the integral

∫

x2 dx

(a2 + x2)n+1
=

∫

x2 + a2 − a2 dx

(a2 + x2)n+1

=
∫

dx

(a2 + x2)n
− a2

∫

dx

(a2 + x2)n+1

Hence, we have

In =
∫

dx

(a2 + x2)n
=

x

(a2 + x2)n
+ 2n(In − a2In+1) (1.19)

Thus, we get the recursive formulas

In+1 =
1

2na2

x

(a2 + x2)n
+

2n − 1

2na2
In (1.20)

Let us note that

I1 =
∫

dx

a2 + x2
=

1

a
ArcTan

x

a
+ C

and from formula (1.20), for n = 1, we find the integral

∫

dx

(a2 + x2)2
=

1

2a2

x

a2 + x2
+

1

2a2

1

a
ArcTan

x

a
+ C

and the definite integral

∫ b

0

dx

(a2 + x2)2
= [

1

2a2

x

a2 + x2
+

1

2a3
ArcTan

x

a
]|b0

=
1

2a2

b

a2 + b2
+

1

2a3
ArcTan

b

a
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1.7.5 Integration of the expression
√

ax2 + bx + c

Consider the integral
∫ √

ax2 + bx + cdx, a > 0, ∆ = b2 − 4ac < 0. (1.21)

In order to find the integral, we apply Euler’s substitution√
ax2 + bx + c = t − x

√
a

Hence,we find

ax2 + bx + c = t2 − 2tx
√

a + ax2

bx + c = t2 − 2tx
√

a, x =
t2 − c

2t
√

a + b
,

√
ax2 + bx + c = t − t2 − c

2t
√

a + b
=

√
a =

t2
√

a + bt + c
√

a

2t
√

a + b

dx = 2
t2
√

a + bt + c
√

a

(2t
√

a + b)2

In this way, we have transformed the integral (1.21) to the integral of a rational
function
∫ √

ax2 + bx + c dx = 2
∫

(
t2
√

a + bt + c
√

a

2t
√

a + b
)(

t2
√

a + bt + c
√

a

(2t
√

a + b)2
)dt (1.22)

Example 1.29 Evaluate the integral
∫ 1

0

√
x2 + 1 dx

We apply the Euler’s substitution
√

x2 + 1 = t − x

Hence,we find
x2 + 1 = t2 − 2tx + x2

1 = t2 − 2tx, x =
t2 − 1

2t
, t 6= 0

√
x2 + 1 = t − t2 − 1

2t
=

t2 + 1

2t

dx = 2
t2 + 1

(2t)2
dt

In this way, we have transformed the integral (1.21) to the integral of a rational
function

∫ √
x2 + 1 dx = 2

∫

(
t2 + 1

2t
)(

t2 + 1

4t2
)dt

= 2
∫

(
(t2 + 1)2

8t3
dt

(1.23)
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The rational function has the partial fraction representation

(t2 + 1)2

8t3
=

1

8t3
+

1

4t
+ (

t

8

Thus, we find the integral
∫

(
(t2 + 1)2

8t3
dt = − 1

16t2
+

t2

16
+

ln t

4
+ C

We note that when x = 0 then t = 1, when x = 1 then t = 1 +
√

2. So that
∫ 1

0

√
x2 + 1 dx = 2

∫ 1+
√

2

1

(t2 + 1)2

8t3
dt

= [− 1

16t2
+

t2

16
+

ln t

4
]|1+

√
2

1

=
1

2
(
√

2 + ArcSinh(1)) = 1.14779

(1.24)

Example 1.30 Evaluate the integral
∫ 1

0

√
x2 + x + 1 dx

We apply the Euler’s substitution
√

x2 + x + 1 = t − x

Hence,we find

x2 + x + 1 = t2 − 2tx + x2

x + 1 = t2 − 2tx, x =
t2 − 1

2t + 1
, t 6= −1

√
x2 + x + 1 = t− t2 − 1

2t + 1
=

t2 + t + 1

2t + 1

dx = 2
t2 + t + 1

(2t + 1)2
dt

In this way, we have transformed the integral (1.21) to the integral of a rational
function

∫ √
x2 + x + 1 dx = 2

∫

(
t2 + t + 1

2t + 1
)(

t2 + t + 1

(2t + 1)2
)dt

= 2
∫

(
(t2 + t + 1)2

(2t + 1)3
dt

(1.25)

The rational function has the partial fraction representation

(t2 + t + 1)2

(2t + 1)3
=

t

128
+

9

(2t + 1)2
+ (

3

8(2t + 1)
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Thus, we find the integral

∫

(
(t2 + t + 1)2

(2t + 1)3
dt =

1

64
[− 9

(2t + 1)2
+ 12 ln(1 + 2t) + (1 + 2t)2] + C

We note that when x = 0 then t = 1, when x = 1 then t = 1 +
√

3. So that

∫ 1

0

√
x2 + x + 1 dx = 2

∫ 1+
√

3

1
(
(t2 + t + 1)2

(t + 1)3
dt

=
1

64
[− 9

(2t + 1)2
+ 12 ln(1 + 2t) + (1 + 2t)2]|1+

√
3

1

= 1.33691
(1.26)

1.7.6 Integration of Trigonometric Expressions

In the integration of trigonometric expressions, we often apply trigonometric
identities

sin2 x + cos2 x = 1, sin 2x = 2 sin x cosx,

cos 2x = cos2x − sin2 x, sin2 x =
1 − cos 2x

2
,

cos2 x =
1 + cos 2x

2
, sec2x =

1

cos2 x
= 1 + tan2 x

sin x =
2tan2 x

2

1 + tan2 x
2

, cos x =
1 − tan2 x

2

1 + tan2 x
2

(1.27)

Example 1.31 Evaluate the integral
∫ π

0
sin2 x dx

Solution. By trigonometric identities (1.27), we find

∫

sin2 x dx =
∫

(

√

1 − cos 2x

2
)2dx

=
∫

1 − cos 2x

2
dx

=
x

2
− 1

2

∫

cos 2x dx

=
x

2
− 1

4
sin 2x + C

Hence, we evaluate
∫ π

0
sin2 x dx = (

x

2
− 1

4
sin 2x)|π0 =

π

2
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Also, we can evaluate the integral using the formula of integration by parts
∫

u v
′
dx = u v −

∫

u
′
v dx.

Let
u = sin x, u

′
= cos x, and v

′
= sinx, v = − cosx

Then, we find the trigonometric identities to find

I =
∫

sin2 x dx = − sin x cos x +
∫

cos2 x dx

= − sin x cos x +
∫

(1 − sin2 x dx dx

= − sin x cos x + x− I

Solving for I , we obtain
∫

sin2 x dx =
1

2
(x − sinx cosx)

Hence, we find
∫ π

0
sin2 x dx =

1

2
(x − sin x cos x)|π0 =

π

2

Example 1.32 Evaluate the integral
∫ π

0
sin4 x dx

Solution. We apply the trigonometric identities (1.27) to find

∫

sin4 x dx = =
∫

(

√

1 − cos 2x

2
)4 dx

= =
∫ 1

4
(1 − cos 2x)2 dx

=
1

4

∫

1 − 2 cos 2x + cos2 2x) dx

=
∫

1

4
[1 − 2 cos 2x +

1

2
(1 + cos 4x)] dx

=
3

8
x − 1

4
sin 2x +

1

32
sin 4x

Hence, we find
∫ π

0
sin4 x = [

3

8
x− 1

4
sin 2x +

1

32
sin 4x]|π0 =

3π

8

Example 1.33 Consider the indefinite integral

In =
∫

sinn x dx, n ≥ 2.
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(a) find the integral I0, I1 and I2.

(b) Show the recursive formula

In =
1

n
sinn−1 x cosx +

n − 1

n
In−2, n ≥ 2

(c) Using the recursive formula, evaluate the integrals

∫ π

2

0
sin3 x dx

∫ π

2

0
sin4 x dx

Solution.
(a) The straight foreword integration gives the integrals

I0 =
∫

dx = x + C, I1 =
∫

sinx dx = − cos x + C

For n = 2, we apply integration by part formula
∫

u v
′
dx = u v −

∫

u
′
v dx

Let
u = sin x, u

′
= cos x, and v

′
= sinx, v = − cosx

Then, we use the trigonometric identity sin2 x + cos2 x = 1 to find

I =
∫

sin2 x dx = − sin x cos x +
∫

cos2 x dx

= − sin x cos x +
∫

(1 − sin2 x dx dx

= − sin x cos x + x− I

Solving for I , we obtain

∫

sin2 x dx =
1

2
(x − sinx cosx)

Hence, we find

∫ π

0
sin2 x dx =

1

2
(x − sin x cos x)|π0 =

π

2

To (b). Again, we apply the formula of integration by parts
∫

u v
′
dx = u v −

∫

u
′
v dx.

Let
u = sinn−1 x, u

′
= (n − 1) sinn−2 x cos x,
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and
v

′
= sinx, v = − cos x

Then, we have

In =
∫

sinn x dx = − sinn−1 x cos x + (n − 1)
∫

sinn−2 cos2x dx

= − sinn−1 x cos x + (n − 1)
∫

sinn−2(1 − sin2 x) dx

= − sinn−1 x cos x + (n − 1)
∫

sinn−2 dx − (n − 1)
∫

sinn x dx

= − sinn−1 x cos x + (n − 1)In−2 − (n − 1)In

Hence, we find the recursive formula

In = −1

n
sinn−1 x cosx +

n − 1

n
In−2

To (c). In order to evaluate the integral
∫ π

2

0
sin3 x dx

we apply the recursive formula

I3 = −1

3
sin2 x cosx +

2

3
I1

= −1

3
sin2 x cosx − 2

3
cos x

By Fundamental Theorem of Calculus, we evaluate
∫ π

2

0
sin3 x dx = [−1

3
sin2 x cosx − 2

3
cos x]|

π

2

0 =
2

3

Also, we evaluate the integral
∫ π

2

0
sin4 x dx

by the recursive formula

I4 = −1

4
sin3 x cosx +

3

4
I2

= −1

4
sin3 x cosx +

3

4
(−1

2
sinx cosx +

1

2
I0)

= −1

4
sin3 x cosx − 3

8
sin x cosx +

3

8
x

By Fundamental Theorem of Calculus, we evaluate
∫ π

2

0
sin4 x dx = [−1

4
sin3 x cosx − 3

8
sinx cosx +

3

8
x]

π

2

0 =
3π

16
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Example 1.34 Evaluate the integral

∫ π

2

0
sin6 x cos5 x dx

Solution. We apply the method of substitution. Let

t = sinx, dt = cosx dx,

Then, we find the indefinite integral
∫

sin6 x cos5 x dx =
∫

sin6 x cos4 x cos x dx

=
∫

t6(1 − t2)2dt =
t7

7
− 2t9

9
+

t11

11

=
sin7 x

7
− 2 sin9 x

9
+

sin11 x

11

Hence, we evaluate

∫ π

2

0
sin6 x cos5 x dx = [

sin7 x

7
− 2 sin9 x

9
+

sin11 x

11
]|

π

2

0 =
8

693

Example 1.35 Evaluate the integral
∫ π

2

0

dx

1 + cosx
dx,

Solution We apply the substitution

t = tan
x

2
, dt =

1

2
sec2 x

2
dx =

1

2
(1 + tan2x

2
)dx,

dx =
2dt

1 + t2
, cosx =

1 − tan2 x
2

1 + tan2 x
2

=
1 − t2

1 + t2

Then, we find indefinite integral
∫

dx

1 + cos x
= 2

∫

dt

(1 + t2)(1 + 1−t2

1+t2
)

=
∫

dt = t + C

= tan
x

2
+ C

Hence, the integral

∫ π

2

0

dx

1 + cos x
dx = tan

x

2
|

π

2

0 = 1

Example 1.36 Similarly, we evaluate the integral
∫ π

2

0

dx

1 + sin x
dx,
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Solution We apply the substitution

t = tan
x

2
, dt =

1

2
sec2 x

2
dx =

1

2
(1 + tan2x

2
)dx,

dx =
2dt

1 + t2
, sinx =

2 tan x
2

1 + tan2 x
2

=
2t

1 + t2

Then, we find indefinite integral
∫

dx

1 + sin x
=

∫

2 dt

(1 + t2)(1 + 2t
1+t2

)
=
∫

2dt

(1 + t)2
= − 2

1 + t

= − 2

1 + tan x
2

Hence, the integral
∫ π

2

0

dx

1 + sinx
dx =

−2

1 + tan x
2

|
π

2

0 = 1

Example 1.37 Find the indefinite integral
∫ π

2

0

dx

a + b cos x
, a > b > 0.

Use the Fundamental theorem of Calculus to evaluate the integral
∫ π

2

0

dx

2 + cos x
.

Solution We apply the universal substitution

t = tan
x

2
, dt =

1

2
sec2 x

2
dx =

1

2
(1 + tan2x

2
)dx,

dx =
2dt

1 + t2
, cosx =

1 − tan2 x
2

1 + tan2 x
2

=
1 − t2

1 + t2

Then, we have
∫

dx

a + b cos x
=

∫

2dt

(1 + t2)(a + b1−t2

1+t2
)

=
∫

2dt

(1 + t2)a + (1 − t2)b

=
∫

2dt

(a − b)t2 + (a + b)

=
2√

a2 − b2

∫

du

1 + u2
=

2√
a2 − b2

ArcTanu,

where

u =

√

a − b

a + b
t, du =

√

a − b

a + b
dt



40

In terms of the original variable x

∫

dx

a + b cosx
=

2√
a2 − b2

ArcTanu

=
2√

a2 − b2
ArcTan

√

a − b

a + b
t

=
2√

a2 − b2
ArcTan(

√

a − b

a + b
tan

x

2
)

Hence, we find

∫ π

2

0

dx

2 + cos x
=

2√
3
ArcTan(

√

1

3
tan

x

2
)|

π

2

0 =
2√
3
ArcTan

1√
3

Example 1.38 Find the indefinite integral

∫

dx

1 + sin x + cos x
, x 6= (2k − 1)π, −π

2
+ 2kπ, k = 0,±1,±2, ...

Use the Fundamental theorem of Calculus to evaluate the integral

∫ π

2

0

dx

1 + sinx + cos x

Solution Let us substitute

t = tan
x

2
, dt =

1

2
sec2 x

2
dx =

1

2
(1 + tan2x

2
)dx,

dx =
2dt

1 + t2
, sinx =

2 tan x
2

1 + tan2 x
2

=
2t

1 + t2

Then, we have

∫

dx

1 + sinx + cosx
=

∫

2dt

(1 + t2)[1 + 2t
1+t2

+ 1−t2

1+t2
]
=
∫

dt

1 + t

= ln |1 + t| = ln |1 + tan
x

2
|

Hence, we find

∫ π

2

0

dx

1 + sin x + cos x
= ln |1 + tan

x

2
|

π

2

0 = ln2

1.7.7 Integrating the expressions eax sin bx, eax cos bx

Let us find the indefinite integral

I1 =
∫

eax sin bx dx, I2 =
∫

eax cos bx dx, a 6= 0, b 6= 0.
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Applying integration by pars, we note

u = eax, u
′
= aeax, v

′
= sin bx, v = −1

b
cos bx

Also, for the second integral

u = eax, u
′
= aeax, v

′
= cos bx, v =

1

b
sin bx

Then, we find for both integrals
∫

eax sin bx dx = −1

b
eax cos bx +

a

b

∫

eax cos bx,

∫

eax cos bx dx =
1

b
eax sin bx− a

b

∫

eax sin bx,

Hence, we have the system of two equations

I1 = −1

b
eax cos bx +

a

b
I2

I2 =
1

b
eax sin bx− a

b
I1

Solving the system of linear equations withe the unknowns I1 and I2, we find

I1 =
∫

eax sin bx dx =
a sin bx− b cos bx

a2 + b2
eax + C

I2 =
∫

eax cos bx dx =
a cos bx + b sin bx

a2 + b2
eax + C

Example 1.39 Evaluate the integrals

∫ π

2

0
e2x sin 3x dx,

∫ π

2

0
e2x cos 3x dx.

Solution. To find the indefinite integrals, we apply integration by pars. We
denote

u = e2x, u
′
= 2e2x, v

′
= sin 3x, v = −1

3
cos 3x

Also, for the second integral

u = e2x, u
′
= 2e2x, v

′
= cos 3x, v =

1

3
sin 3x

Then, we find for both integrals
∫

e2x sin 3x dx = −1

3
e2x cos 3x +

2

3

∫

e2x cos 3x,

∫

e2x cos 3x dx =
1

3
e2x sin 3x − 2

3

∫

e2x sin 3x,
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Hence, we have the system of two equations

I1 = −1

3
e2x cos 3x +

2

3
I2

I2 =
1

3
e2x sin 3x − 2

3
I1

Solving the system of linear equations withe the unknowns I1 and I2, we find

I1 =
∫

e2x sin 3x dx =
2 sin 3x − 3 cos 3x

13
e2x + C

I2 =
∫

e2x cos 3x dx =
2cos 3x + 3 sin bx

13
e2x + C

Hence
∫ π

2

0
e2x sin 3x dx =

2 sin 3x − 3 cos 3x

13
e2x|

π

2

0

=
−2

13
eπ +

3

13
=

1

13
(3 − 2eπ)

and
∫ π

2

0
e2x cos 3x dx =

3 sin 3x + 2cos 3x

13
e2x|

π

2

0

=
−3

13
eπ − 2

13
= − 1

13
(3eπ + 2)

1.7.8 Integrals of Even and Odd Functions

.
Even Functions. Let f(x) be a continuous even function in the symmetric
interval [−a, a]. That is, f(x) satisfies the condition

f(−x) = f(x) for all − a ≤ x ≤ a, a > 0.

Then, the integral
∫ a

−a
f(x) dx = 2

∫ a

0
f(x) dx (1.28)

Indeed, we note that
∫ a

−a
f(x) dx =

∫ 0

−a
f(x) dx +

∫ a

0
f(x) dx (1.29)

Let us substitute to the first integral t = −x, dt = −dx, t = a, when x = −a
and t = 0 when x = 0. Then, we find

∫ 0

−a
f(x) dx = −

∫ 0

a
f(−t) dt =

∫ a

0
f(t) dt

Hence, by (1.29), we have formula (1.28).
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Example 1.40 Consider the function

f(x) =
1

4c2 + x2
, −∞ < x < ∞

Show that f(x) is an even function on the whole real line and for all values of
the parameter c Evaluate the integral

∫ 2

−2

1

4 + x2
dx,

We find

f(−x) =
1

4c2 + (−x)2
=

1

4c2 + x2
= f(x),

for all −∞ < x < ∞.
Thus, the function is even and the integral

∫ 2

−2

1

4 + x2
dx = 2

∫ 2

0

1

4 + x2
dx =

2

2
ArcTan

x

2
|20 =

π

4
,

Odd Functions. Now, let f(x) be a continuous odd function in the symmetric
interval [−a, a]. That is, f(x) satisfies the condition

f(−x) = −f(x) for all − a ≤ x ≤ a, a > 0.

Then, the integral
∫ a

−a
f(x) dx = 0 (1.30)

Indeed, we note that

∫ a

−a
f(x) dx =

∫ 0

−a
f(x) dx +

∫ a

0
f(x) dx (1.31)

Let us substitute to the first integral t = −x, dt = −dx, t = a, when x = −a
and t = 0 when x = 0. Then, we find

∫ 0

−a
f(x) dx = −

∫ 0

a
f(−t) dt = −

∫ a

0
f(t) dt

Hence, by (1.31), we have formula (1.30).

Example 1.41 Consider the function

f(x) = sin 2x cos 3x , −∞ < x < ∞

Show that the integral
∫ 1

−1
sin 2x cos 3x dx = 0,
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We find

f(−x) = sin 2(−x) cos 3(−x) = − sin 2x cos 3x = −f(x),

for all −∞ < x < ∞.
Thus, the function is odd and the integral

∫ 1

−1
sin 2x cos 3x dx = 0
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1.8 Applications of Integrals

1.8.1 Area between two curves

Let us consider two continuous functions f(x) and g(x) in the interval [a, b].
Suppose that

f(x) ≥ g(x), a ≤ x ≤ b.

Then the area between the curves is given by the formula

A =
∫ b

a
[f(x) − g(x)]dx

Example 1.42 Find the area between the parabola

f(x) = 1 − x2

and the straight
g(x) = x− 1

Solution. We find the points of intersection, that is, when f(x) = g(x). Thus,
we solve the equation

1 − x2 = x − 1, or x2 + x − 2 = (x + 2)(x − 1) = 0

The solution is x = −2 and x = 1. The curves intersects at the points (−2,−3)
and (1, 0).

Fig. 7 Area between the curves y = 1 − x2 and y = x − 1

By the formula, the area

A =
∫ 1

−2
[(1 − x2) − (x − 1)] dx =

∫ 1

−2
(2 − x2 − x) dx

= 2x − x3

3
− x2

2
)|1−2

= (2 − 1

3
− 1

2
) − (−4 +

8

3
− 2) =

9

2
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Example 1.43 Find the area bounded by the graphs of the functions

y = 4 − x2, y = x2

Solution. We find the points of intersection, that is, when

4 − x2 = x2, or 2x2 = 4

The solution is x =
√

2 and x = −2
√

2. The curves intersects at the points
(−

√
2, 2) and (

√
2, 2).

Fig. 8. Area between the curves y = 4 − x2 and y = x2

By the formula, the area

A =
∫

√
2

−
√

2
[(4 − x2) − x2] dx =

∫

√
2

−
√

2
(4 − 2x2) dx

= (4x − 2x3

3
)|
√

2
−
√

2

= (4
√

2 − 4
√

2

3
) − (−4

√
2 +

4
√

2

3
)

=
16
√

2

3

Example 1.44 Find the area between two parasols

y2 = 2px

and
x2 = 2py

Solution. We write the equations in the form

y1 =
x2

2p
and y2 =

√

2px
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The curves intersect when y1 = y2. So, we solve the equation

x2

2p
=
√

2px

Clearly, the solutions are x1 = 0, y1 = 0 and x2 = 2p, y2 = 2p. Thus, the
points of intersection are the origin (0, 0) and (2p, 2p).

Fig. 9 Area between the curves y = 1 − x2 and y = x − 1

By the formula, the area

A =
∫ 2p

0
[
√

2px − x2

2p
dx = [

2

3

√

2p x
2

3 ]2p
0 =

4

3
p3

1.8.2 Length of a curve

Consider a continuously differentiable function f(x) in the interval a, b]. In
order to find the length L of the curve y = f(x), a ≤ x ≤ b, we divide the
interval [a, b] into subintervals, so that

[a, b] = [x0, x1] ∪ [x,x2] ∪ ...,∪[xn−1, b]

a
s s s s s s s s

b

x0 x1 x2 q q q xn−1 xn

b

Partition of the interval [a, b]

where
x0 = a, xk+1 = xk + ∆xk, k = 0, 1, ..., n− 1, xn = b,

Let
∆yk = f(xk+1) − f(xk), k = 0, 1, ..., n− 1.

Using relations between sides of a right triangle, we approximate the piece ∆sk

of the curve y = f(x) for x ∈ [xk, xk+1] by the formula

∆sk =
√

(∆xk)2 + (∆yk)2.
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So that, the length of arc L, we approximate by the Riemann sum

L ≈
n−1
∑

k=0

∆sk =
n−1
∑

k=0

√

(∆xk)2 + (∆yk)2 =
n−1
∑

k=0

√

1 + (
∆yk)

∆xk

)2∆xk

of the function
√

1 + [f ′(x)]2.
Hence, for ∆xk− > 0, when n− > ∞, we obtain the formula for the length of
the curve given by the graph of the function f(x)

L =
∫ b

a

√

1 + [f ′(x)]2]dx (1.32)

Example 1.45 Find the length of the curve given by the graph of the function

f(x) = x2

which joins the points (−1, 1) and (1, 1)

Solution. We have f(x) = x2, f
′
(x) = 2x. By the formula, the length

L =
∫ 1

−1

√
1 + 4x2dx = 2

∫ 1

0

√
1 + 4x2dx

Let u = 2x, du = 2dx. Then, using formula (1.32), we find indefinite integral

L =
∫ √

1 + 4x2dx =
1

2

∫ √
1 + u2du

=
1

4
[u
√

1 + u2 + ArcSinhu] + C

=
1

2
x
√

1 + 4x2 +
1

4
ArcSinh2x + C

Hence, we find the length

L = 2
∫ 1

0

√
1 + 4x2dx = [x

√
1 + 4x2 +

1

2
ArcSinh2x]10

= [
√

5 +
1

2
ArcSinh2]]

1.8.3 Volume of a Solid.

Let f(x) ≥ 0 be a continuous function in interval [a, b]. If the graph of the
function y = f(x), revolves about x-axis, then the points (x, f(x)) move along
the circles with radius r = f(x) which lies in the plane veridical to x-axis.
Let us consider the volume of the cylinder Vk bounded by the circles of radius
r = f(x) which lies between two planes x = xk and x = xk+1, veridical to
x-axis with the hight ∆xk = xk+1 − xk, k = 0, 1, ...n− 1. Then, the volume of
the cylinder is given by the formula

Vk = πf2(xk)∆xk.



49

The approximate value of the solid V is the Riemann sum

V ≈
n−1
∑

k=0

πf2(xk)∆xk,

of the function πf2(x).
In the limit, when n− > ∞, ∆xk− > 0, we obtain the formula for the volume
of the solid generated by revolving the area below the graph of the function
f(x) about x-axis

V = π
∫ b

a
[f(x)]2 dx.

Similarly, the volume of the solid generated by revolving about y-axis the area
between y− axis and the graph of the function x = g(y), c ≤ y ≤ d, is given
by the formula

V = π
∫ d

c
[g(y)]2dy.

Now, let us consider the area between two graphs of functions f(x) and
g(x), f(x) ≥ g(x) ≥ 0, a ≤ x ≤ b. Then, the volume of the solid gen-
erated by the area about x-axis is given by the formula

V = π
∫ b

a
[f2(x) − g2(x)]dx.

Example 1.46 The area under the graph of the function

f(x) =
√

x, 0 ≤ x ≤ 4.

is rotated about the x-axis. Find the volume of the solid generated.
Solution. Straight foreword application of the formula leads us to the result

V = π
∫ 4

0
(
√

x)2 dx = π
∫ 4

0
x dx =

x2

2
|40 = 8π

Example 1.47 Find the volume of a cone which has hight h and the radius
r.

Solution. Let the vertex of the cone be at the origin and its hight along the
x-axis. Then, the equation of the side is

y =
r

h
x

By the formula the volume

V = π
∫ h

0
(
r

h
)2 dx =

πr2

h2

x3

3

h

0
=

1

3
πr2h.
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Example 1.48 Find the volume of the solid generated by revolving the graph
of half of the ellipse

x2

a2
+

y2

b2
= 1,

about the x-axis.

Solution. Half of the ellipse is given by the function

y = b

√

1 − x2

a2
, −a ≤ x ≤ a, a > 0, b > 0.

By the formula

V = πb2
∫ a

−a
(

√

(1 − x2

a2
)2 dx = πb2

∫ a

−a
(1 − x2

a2
) dx

= πb2(x − x3

3a2
|a−a =

4

3
ab2π

1.8.4 Volume of Cylindrical Shells

Let f(x) ≥ 0 be a continuous function in interval [a, b]. Now, let the graph of
the function y = f(x), revolves about y-axis, then the points (x, f(x)) move
along the circles with radius r = x which lies in the plane veridical to y-axis.
We consider strip area bounded by two discs of radius r1 = x and r2 = x+∆x.
Then, the area of the ring bounded by the two circles of radius r1 and r2 is
given by the formula

∆A = π(r2
1 − r2

2) = 2π
(r1 + r2)

2
(r1 − r2) = 2πr∆x

where

r =
r1 + r2

2
= x +

∆x

2

So that, the volume of the ring is given by the formula

∆V = 2πxy ∆x

The approximate value of the volume of the solid V is the Riemann sum

V ≈
n−1
∑

k=0

2πxkf(xk)∆xk.

of the function 2πxf(x).
In the limit, when n− > ∞, ∆yk− > 0, we obtain the formula for the volume
of the solid generated by revolving the area below the graph of the function
f(x) about y-axis
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V = 2π
∫ b

a
xf(x) dx (1.33)

Similarly, revolving the area between y axis and the graph of the function
x = g(y), c ≤ y ≤ d about x− axis, we obtain the solid of the volume

V = 2π
∫ d

c
yg(y) dy (1.34)

Example 1.49 .

(a) Evaluate the volume of the solid generated by revolving the area between
x- axis and the graph of the function y = 4 − x2 about the y− axis.

(b) Evaluate the volume of the solid generated by revolving the area between
y- axis and the graph of the function x = 4 − y2 about the x− axis.

Solution (a). We find the points of intersection of the function y = 4 − x2

and the x− axis. Solving the equation

4 − x2 = 0

we obtain the points of intersection (−2, 0) and (2, 0).
Because the function f(x) = 4 − x2 is symmetric about x− axis, therefore,
we consider the interval of integration [0, 2]. Then, by the formula (1.33), we
evaluate

1

2
V = 2π

∫ 2

0
x(4 − x2) dx = π[2x2 − x4

4
]|20 = 8π

Hence, the volume V = 16π.
Solution (b). Let us find the points of intersection of the function x = 4− y2

and the y− axis. Solving the equation

4 − y2 = 0

we find the points of intersection (0,−2) and (0, 2). Because the function
g(y) = 4 − y2 is symmetric about y− axis, therefore, we consider the interval
of integration [0, 2]. By the formula (1.34), we evaluate the volume

1

2
V = 2π

∫ 2

0
y(4 − y2) dy = π[2y2 − y4

4
]|20 = 8π

Hence, the volume 16π.
Choice of a Formula. In order to evaluate a volume generated by revolving
a region about x− axis or y− axis, we have the following options:

1. When the region bounded by the curve y = f(x) ≥ 0, a ≤ x ≤ b, revolves
about x− axis, the volume

V = π
∫ b

a
[f(x)]2dx
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2. When the region bounded by the curve y = f(x) ≥ 0, a ≤ x ≤ b, revolves
about y− axis, the volume

V = 2π
∫ b

a
xf(x)]dx

3. When the region bounded by the curve x = g(y) ≥ 0, c ≤ y ≤ d, revolves
about y− axis, the volume

V = π
∫ d

c
[g(y)]2dy

4. When the region bounded by the curve x = g(y), y ≥ 0, c ≤ y ≤ d,
revolves about x− axis, the volume

V = 2π
∫ d

c
yg(y)dy

1.8.5 Surface of a solid

Let us consider a differentiable function f(x) ≥ 0 in the interval [a, b]. Then,
the approximate value Sn of the surface S of the union of solids Vk, k =
0, 1, ..., n− 1 generated by rotating about x-axis of the curves

yk = f(x), for xk ≤ x ≤ xk+1, k = 0, 1, ..., n− 1,

is the Riemann sum

Sn = 2π
n−1
∑

k=0

f(xk)
√

(∆xk)2 + (∆yk)2∆xk, k = 0, 1, 2, ..., n − 1

of the function 2πf(x)
√

1 + [f ′(x)]2.
Hence, in the limit, when n− > ∞, we obtain the following formula for the
surface S of the solid generated by rotating about x-axis the area between the
graph of the function y = f(x), a ≤ x ≤ b and x−axis

S = 2π
∫ b

a
f(x)

√

1 + [f ′(x)]2dx.

Example 1.50 Find the surface of the ball generated by rotation of the circle
x2 + y2 = r2 about x-axis.

Consider the function

y = f(x) =
√

r2 − x2, 0 ≤ x ≤ r.

We have

f(x) =
√

r2 − x2, f ′(x) =
−x√

r2 − x2

By the formula, half of the surface S of the ball is

S

2
= 2π

∫ r

0

√
r2 − x2

√

1 + [
−x√

r2 − x2
]2dx = 2π

∫ r

0
x dx = 2πr2.

Hence, the surface of the ball is S = 4πr2.
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1.8.6 Moments and Center of Mass

Let f(x) ≥ 0 be a continuous function in [a, b]. The moments Mx and My and

the coordinates (ξ, η) of the center of the mass of A =
∫ b
a f(x)dx under the

curve y = f(x), x ∈ [a, b] are defined by the formulae

Mx =
1

2

∫ b

a
f2(x) dx, My =

∫ b

a
xf(x) dx

ξ =
My

A
=

1

A

∫ b

a
xf(x) dx, η =

Mx

A
=

1

2A

∫ b

a
f2(x) dx

Also, the volume V of revolution of the curve y = f(x), x ∈ [a, b], about x-axis
is given by the formula V = 2πηA.

Example 1.51 .

(a) Find moments Mx and My and the coordinates of the center of mass of
the area between parabola y2 = 2p x and x-axis for x ∈ [0, 1].

(b) Evaluate the volume of revolution of the parabola y2 = 2p x, x ∈ [0, 1]

We have y = f(x) =
√

2px, p > 0, 0 ≤ x ≤ 1.
By the formula

Mx =
1

2

∫ b

a
[f(x)]2dx =

1

2

∫ 1

0
2px dx =

1

2
p

My =
∫ b

a
xf(x)dx =

∫ 1

0

√

2px
√

x dx =
2

5

√

2p.

The area of the region under the graph of the function f(x) =
√

2px, 0 ≤
x ≤ 1 is

A =
∫ 1

0

√

2px dx =
2

3

√

2p

Then , we evaluate the coordinates (ξ, η) of the center of mass

ξ =
1

A

∫ 1

0
xf(x) dx =

3

2
√

2p

∫ 1

0
x
√

2px dx =
3

5

η =
1

2A

∫ 1

0
[f(x)]2 dx =

3

2
√

2p

∫ 1

0
2px dx =

3

8

√

2p

By the formula, volume of the solid generated by revolving the area about
x-axis

V = 2πη A = 2π
3

8

√

2p
2

3

√

2p = π p

Center of Mass of a Region Bounded by Two Curves. Let us consider
two continuous functions f(x) ≥ g(x) in the interval [a, b]. The coordinates
ξ, η of the center of mass (centroid) of the region between the graphs of the
two functions is given by the formulae:

ξ =
My

A
, η =

Mx

A
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where the area of the region

A =
∫ b

a
[f(x) − g(x)]dx

and the moments of the region

My =
∫ b

a
x[f(x)− g(x)]dx,

Mx =
1

2

∫ b

a
[f(x) + g(x)][f(x)− g(x)]dx =

1

2

∫ b

a
[f2(x) − g2(x)]dx

Example 1.52 Find the center of mass (centroid) of the region bounded by
the curves y = x3 and y =

√
x

Solution. We find the points of intersection of the curves f(x) = x3 and
g(x) =

√
x, x ≥ 0. Solving the equation x3 =

√
x, we find the solution x = 0

or x = 1. Thus, the curves intersect at the points (0, 0) and (1, 1). We note
that

√
x ≥ x3 for 0 ≤ x ≤ 1. First, we evaluate the area of the region

A =
∫ 1

0
[
√

x − x3]dx =
5

12

Then, we find the moments of the centroid

My =
∫ 1

0
x(
√

x − x3)dx =
∫ 1

0
x

3

2 − x4)dx =
1

5

Mx =
1

2

∫ 1

0
(x − x6)dx =

5

28

Hence, we obtain the coordinates of the center of mass

ξ =
My

A
=

12

25
, η =

Mx

A
=

3

7
.

1.9 Numerical Integration

1.9.1 Trapezoidal Rule.

Let f(x) be a given function twice contiguously differentiable in the interval[a, b].
We consider uniform partition of the interval [a, b] by the points

xi = a + i h, h =
b − a

n
, i = 0, 1, 2, ..., n.

Then, the area of the tropez with the base h = xi+1 −xi and the parallel sides
f(xi−1) and f(xi) is given by the formula

Ti =
f(xi−1) + f(xi)

2
h, i = 1, 2..., n
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-

6

x0 x1

I3(f)

x2 x3 x4 x5 x6 x7

q q q q q q q q

a b

Fig. 7.1, I(f)

The approximated area under the graph of the function is the sum of the
areas of n trapeze, that is

T = T1 + T2 + · · · + Tn

So that

T =
f(x0) + f(x1)

2
h +

f(x1) + f(x2)

2
h

+
f(x2) + f(x3)

2
h + · · · + f(xn−1) + f(xn)

2
h,

=
h

2
[f(x0) + 2f(x1) + 2f(x2) + · · · + 2f(xn−1) + f(xn)]

(1.35)

In this way, we arrived at the composed trapezoidal rule

Th(f) =
h

2
[f(x0) + 2f(x1) + 2f(x2) + · · · + 2f(xn−1) + f(xn)]

where the truncation error

ET (f, h) = −h2

12
(b − a)f ′′(η),

for certain η ∈ (a, b), so that

I(f) = Th(f) + ET (f, h).

The truncation error of the trapezoidal rule satisfies the following inequality:

| ET (f, h) |≤ M (2)

12
(b− a)h2,

where
M (2) = sup

a≤x≤b

| f ′′(x) | .
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Example 1.53 Evaluate the integral

∫ 2

0
ln(1 + x)dx

by trapezoidal rule with the accuracy ε = 0.05.

Solution. In order to get accuracy ε = 0.05, we shall estimate the step-size

h, so that, we choose the greatest h =
b− a

n
for which the following inequality

holds:

ET (f, h) ≤ h2

12
(b − a)M (2) ≤ ε.

Because

f(x) = ln(1 + x), f ′(x) =
1

1 + x
, f ′′(x) = − 1

(1 + x)2
,

we have

M (2) = max
0≤x≤2

1

(1 + x)2
= 1.

So, the inequality

ET (f, h) ≤ h2

12
2 < 0.05

holds for h = 0.5 and n = 4.
The approximate value of the integral is:

T (f) = 0.25[f(x0) + 2f(x1) + 2f(x2) + 2f(x3) + f(x4)]

= 0.25[ln(1) + 2ln(1.5) + 2ln(2) + 2ln(2.5) + ln(3)] = 1.282105.

1.9.2 Simpson Rule.

Let y = f(x) be a four times continuously differentiable function in the
interval[a, b]. We consider uniform partition of the interval [a, b], by 2n + 1
points

a = x0 < x1 < x2 <, ..., < x2n−1 < x2n = b

So that

xi = a + ih, i = 0, 1, 2, ..., 2n, h =
b − a

2n

and the interval consists of 2n subintervals

[a, b] = [a, x1] ∪ [x1, x2] ∪ [x2, x3] ∪ · · · ∪ [x2n−1, x2n].
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In order to derive Simpson rule, we consider the area S1 between x-axis and
the graph of the quadratic function

y(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0) +

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
f(x1) +

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
f(x2)

=
(x − x1)(x − x2)

2h2
f(x0) −

(x − x0)(x − x2)

h2
f(x1) +

(x − x0)(x − x1)

2h2
f(x2)

Let us note that the quadratic function y(x) goes thought the three points
(x0, f(x0)), (x1, f(x1)) and (x2, f(x2)).

-
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Fig. 7.2. I(f)

The area is given by the integral

S1 =
∫ x2

x0

f(x) dx =
f(x0)

2h2

∫ x2

x0

(x − x1)(x− x2) dx

− f(x1)

h2

∫ x2

x0

(x − x0)(x− x2) dx

+
f(x2)

2h2

∫ x2

x0

(x − x0)(x− x1) dx

=
f(x0)

2h2

2h3

3
+

f(x1)

h2

4h3

3
+

f(x2)

2h2

2h3

3

=
h

3
[f(x0) + 4f(x1) + f(x2)]

Then, the area between x-axis and graph of the function f(x) over the subin-
terval [x0, x2] is the integral

∫ x2

x0

f(x) dx ≈ h

3
[f(x0) + 4f(x1) + f(x2)]

This is the simple Simpson’s method. The error of the simple Simpson’s
method

∫ x2

x0

f(x)dx − h

3
[f(x0) + 4f(x1) + f(x2)] = −h5

90
f (4)(η)
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To obtain the composed Simpson’s method, we apply the simple Simpson’s
method to each of the integrals on the right side

∫ b

a
f(x)dx =

∫ x2

x0

f(x)dx +
∫ x4

x2

f(x)dx + · · · +
∫ x2n

x2n−2

f(x)dx,

So that
∫ x2i

x2i−2

f(x) dx ≈ h

3
(f(x2i−2) + 4f(x2i−1) + f(x2i+1)) = Si

for i = 1, 2, ..., n.
Then, we obtain composed Simpson rule

Sh(f) = S1 + S2 + · · · + Sn,

that is

Sh(f) =
h

3
[f(a) + 4f(x1) + 2f(x2) + 4f(x3)

+ 2f(x4) + · · · + 2f(x2n−2) + 4f(x2n−1) + f(b)]

Hence, the integral

∫ b

a
f(x)dx = Sh(f) + ES(f, h),

where the error

ES(f, h) = −h5

90
[f (4)(η1) + f (4)(η2) + · · · + f (4)(ηn)],

for ηi ∈ [x2i−2, x2i], i = 1, 2, ..., n
Hence, by the intermediate value theorem, there exists η ∈ (a, b) such that

f (4)(η1) + f (4)(η2) + · · · + f (4)(ηn) = nf (4)(η) =
b − a

2h
f (4)(η),

Therefore, the error of the composed Simpson rule is:

ES(f, h) = −h5

90
nf (4)(η) = − h4

180
(b − a)f (4)(η),

for certain η ∈ (a, b).
This error satisfies the following inequality:

| ES(f, h) |≤ h4

180
(b − a)M (4). (1.36)

where
M (4) = max

a≤x≤b
| f (4)(x) | .
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Example 1.54 Evaluate the integral

I(f) =
∫ 2

0
ln(1 + x)dx

by Simpson rule using step-size h = 0.5. Estimate the truncation error ES(f, h).

Solution. We note that 2n =
b − a

h
= 4 and

Sh(f) =
h

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + f(x4)]

=
0.5

3
[ln(1) + 4ln(1.5) + 2ln(2) + 4ln(2.5) + ln(3)] = 1.295322

The exact value of I(f) = 1.295837, so that the error ES(f, h) = I(f)−S(f) =
1.295837 − 1.295322 = 0.000515.
Also, we note that

f (4)(x) = − 6

(1 + x)4
and M (4) = max

0≤x≤2

6

1 + x)4
= 6.

Hence

| ES(f, h) ≤ h4

180
(b − a)M (4) =

0.0625

180
2 ∗ 6 = 0.00417.

Question 1.1 .

(a) Assume that the error ET (f, h) of the trapezoidal method T (f, h) is pro-
portional to h2, so that

ET (f, h) = C h2

for a constant C.
Show that the

ET (f, 2h) = 4 ET (f, h)

(b) Let 2n be an even number of the subinterval in an uniform portion of the
interval [a, b]. Denote by T (f, 2h), T (f, h) two trapezoidal results obtained

for 2h and h =
b − a

2n
, respectively. Show that the Simpson method

S(f, h) =
1

3
(4T (f, h)− T (f, 2h))

Solution.
To(a). By the assumption

ET (f, h) = C h2, ET (f, 2h) = 4C h2

Hence, we find
ET (f, 2h) = 4C h2 = 4ET (f, h)
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To(b). The formulae of the trapezoidal method defined on 2n subintervals
are:

T (f, h) =
h

2
[f(a) + 2f(x1) + 2f(x2) + 2f(x3) + · · · + 2f(x2n−1) + f(b)]

T (f, 2h) = h[f(a) + 2f(x2) + 2f(x2) + 2f(x4) + · · · + 2f(x2n−2) + f(b)]

Hence, we find

1

3
[4T (f, h)− T (f, 2h)] =

h

2
[f(a) + 2f(x1) + 4f(x2) + 2f(x3) + 4f(x4) · · ·

+ 4f(x2n−2) + 2f(x2n−1) + f(b)] = S(f, h)

1.10 Exercises. Set 1

Riemann Sums and Riemann Integral.

Question 1.2 .

(a) State the definition of Riemann sums of a function f(x) given in the
interval [a, b].

(a) Find the Riemann sums of the following functions on an uniform partition
of the interval [a, b]

(i) f(x) = x2 + x + 1, 0 ≤ x ≤ 1, (ii) g(x) =







1, 0 ≤ x ≤ 1

x, 1 < x ≤ 2

(c) Find the limit of the Riemann sums of the functions f(x) and g(x).

Question 1.3 .
Use the Riemann sums

(a) to find the area between x-exis and the graph of the function

f(x) = 1 + x2, 0 ≤ x ≤ 1.

(b) Evaluate the mean value of the function

f(x) = 2x2, 0 ≤ x ≤ 4,

where the mean value of f(x) in [a, b] is given by the formula

(mean(f) =
1

b− a

∫ b

a
f(x) dx

Question 1.4 Evaluate the integrals
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(a)
∫ π

2

0
cos x dx

(a)
∫ π

2

0
sinx dx

Using the Riemann sums with the mid-points x∗
i =

xi+1 + xi

2
, of the subinter-

vals [xi, xi+1], i = 0, 1, ..., n− 1 and the formulae

cosx + cos 3x + cos 5x + ... + cos(2n − 1)x =
sin 2nx

2 sin x

sin x + sin 3x + sin 5x + ... + sin(2n − 1)x =
1 − cos nx

2 sin x

lim
x−>0

sin x

x
= 1

Fundemental Theorem of Calculs.

Question 1.5 .

(a) State the Fundamental theorem of Calculus.

(b) Use the theorem to evaluate the following integrals

∫ 1

0
(1 +

√
x + sinπx) dx

(c)
∫ 2

1

x dx

1 + x

(d)
∫ 2

0

dx

4 + x2

(e)
∫ 2

1

dx√
9 − x2

(f)
∫ 3

1
(xα + xβ) dx, α =

1

2
, β =

2

3

(g)
∫ 1

0
(sin

πx

4
+ cos

πx

2
) dx
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(h)

(i)
∫ π

4

0
sec2 x dx, (ii)

∫ π

2

π

4

csc2 x dx

Question 1.6 .
Find the area bounded by the given curves and the given lines. Sketch the graph

(a)
f(x) = 9 − x2 and x− axis

(b)
f(x) = −x2 + 6x − 5 and x − axis

(c) Find the area between two functions

f(x) = 1 − x and g(x) = 1 − x2

Method by Substitution.

Question 1.7 .
Use the substitution to evaluate the integrals

(a)
∫ 4

0

√
1 + 2x dx, t = 1 + 2x

(b)
∫ a

0

√
x

1 + x
dx, t =

√
x, a > 0

(c)
∫ 2

0
x
√

4 − x2 dx, t = 4 − x2

(d)
∫ 2

0

x2

4 + x2
dx, t = 4 + x2

(f)
∫ a

0

√
a2 − x2 dx, x = a cos t, a > 0

Question 1.8 .
Use the substitution u = g(x) to evaluate the integrals

(a)
∫ 1

0
(2x + 1)

√
x2 + x + 3 dx
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(b)
∫ 2

1

t + 3t2√
t2 + 2t3

dt

(c)
∫ 1

0

√
4 − x2 dx

(d) Show that

∫ 1

0
sinπx cosn πx dx =

1

π(n + 1)
[1 + (−1)n], n = 1, 2, ...,

(e) Use the substitution u = tan
x

2
to evaluate the integrals

(i)
∫ π

4

0

sin x dx

1 + sinx
dx, (ii)

∫ π

4

0

sinx dx

1 + cos x
dx

(iii)
∫ π

4

0

dx

1 + sin x + cos x
dx, (iv)

∫ π

4

0

sinx dx

1 − sin2 x + cos2 x
dx

Question 1.9 .

(a) For a given continuous function f(x) in the interval [a, b], show that

∫ b

a
3x2f(x3) dx =

∫ b3

a3

f(u) du

(b) Let f(x) = ex. Evaluate the integral

∫ 1

0
3x2f(x3) dx

Metod of Integration by Parts.

Question 1.10 .
Evaluate the following integrals:

(a)
∫ 1

0
sinπx cosπx dx

(b)
∫ 2

1
x cos

πx

2
dx

(c)
∫ 1

0
cos2 πx dx
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(d)

(i)
∫ π

0
e2x sin 4x dx, (ii)

∫ π

0
e3x cos 6x dx

(e)

(i)
∫ 1

0
arectan 2x dx, (ii)

∫ 1

0
x2 ln(1 + x) dx

(f) Show that

(i)
∫ 1

−1
sin2 2πx dx =

∫ 1

−1
cos2 2πx dx = 1

(g)

(ii)
∫

cos3 x dx =
1

3
cos2 x sin x +

2

3
sin x + C

where C is a constant.

(b) Evaluate the integral
∫ π

2

0
cos3 x dx

Integration of Rational Functions

Question 1.11 .
Evaluate the following integrals

(a)
∫ 1

0

x

x2 − 7x + 10
dx

(b)
∫ 1

−1

2x + 1

x2 + 6x + 9

(c)
∫ 1

−1

dx

x2 − 2x + 5

(d)
∫ 1

0

4x dx

x2 + 4

(e)
∫ 1

0

4x dx

(x2 + 4)2

(f)
∫ 2

1

dx

(x2 − 9)(x + 2)
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Trapezoidal and Simpsons Methods

Question 1.12 .

(a) State the formula for T (f, h) of the trapezoidal method and give an esti-
mate of its error errorT (f, h).

(b) Evaluate the approximate value of the integrals, when n = 4, by the trape-
zoidal method

(i)
∫ π

0
sinx dx (ii)

∫ 1

0
ex2

dx (iii)
∫ 1

0

dx√
1 + x3

(c) Evaluate the integral

∫ 1

0
(1 + x + x2 + x3 + x4) dx

by trapezoidal method with accuracy ε = 0.08.

Answer = 2.31328, n = 5, h = 0.2

Question 1.13 .

(a) State the formula for S(f, h) of Simpsson method and give an estimate of
its error errorS(f, h).

(b) Evaluate the approximate value of the integrals, when n = 4, by Simpson’s
method

(i)
∫ π

0
sinx dx (ii)

∫ 1

0
ex2

dx (iii)
∫ 1

0

dx√
1 + x3

(c) Evaluate the integral

∫ 1

0
(1 + x + x2 + x3 + x4) dx

by Simpson method with accuracy ε = 0.05

Answer = 2.29167, n = 1, h = 0.5

Question 1.14 .

(a) Assume that the error ET (f, h) of the trapezoidal method T (f, h) has the
series expansion

ET (f, h) = c2 h2 + c4 h4 + c6 h6 + · · ·
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Let 2n be an even number of the subinterval in an uniform partion of the
interval [a, b]. Denote by T (f, 2h), T (f, h) two trapezoidal results obtained

for 2h and h =
b − a

2n
, respectively. Show that the error of method

S(f, h) =
1

3
(4T (f, h)− T (f, 2h))

is
E(f, h) ≈ −4c4 h4

Question 1.15 Sketch the graph of the curves and evaluate the area between
them

(a)
f(x) = x2, g(x) = 2 − x2

(b)

f(x) =
1

1 + x2
, g(x) =

1

2
x2

,



Chapter 2

Ordinary Differential Equations
(ODE)

2.1 Introduction to First Order ODE

The general form of the first order differential equations

dy(x)

dx
= f(x, y(x)), a ≤ x ≤ b. (2.1)

where the function f(x, y) of two variable x and y is given in the rectangle

Ω = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d

and y(x) is the unknown function of the variable x.
We shall see that there are many solutions of the equation. In fact, there is
one parameter family of solutions of the equation. We can choose one from
the family by the initial condition

y(a) = y0 for a given value y0

The following Cauchy-Picard theorem holds:

Theorem 2.1 If the function f(x, y) is continuous in the c rectangle Ω with
respect to both variables x and y, and satisfies Lipschitz’s condition with respect
to the variable y, that is

|f(x, y1)f(x, y2)| ≤ L |y1 − y2| for all a ≤ x ≤ b,

here the Lipschitz’s constant L > 0 is independent of x and y,
then there exists a unique solution y(x) of equation

dy(x)

dx
= f(x, y(x)),

which satisfies the initial condition

y(a) = y0 (2.2)

67
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2.2 First Order Linear Equation

In general, equations of the form (2.1) are successfully solvable for some types
of the given function f(x, y). For example, when the function f(x, y) is linear
in the variable y, that is

f(x, y) = −p(x)y + q(x), a ≤ x ≤ b,

where p(x) and q(x) are given in [a, b].
Then, the linear equation takes the form

dy(x)

dx
+ p(x)y = q(x), a ≤ x ≤ b. (2.3)

Below, we shall solve the linear differential equation (2.3). First, let us solve
the homogeneous linear equation

dy(x)

dx
+ p(x)y = 0, a ≤ x ≤ b. (2.4)

when the function q(x) = 0 for all x.
So, we write the equation in terms of the differentials

dy

y
= −p(x)dx, a ≤ x ≤ b. (2.5)

Integrating both sides, we find

ln |y| = −
∫

p(x) dx + C0

or
y(x) = e−

∫

p(x) dx+C0 = Ce−
∫

p(x) dx

for constant C = eC0.

Example 2.1 Find all solutions of the equation

dy

dx
− 2xy = 0, −∞ < x < ∞.

We write the equation in the differentials form

dy

y
= 2x dx, −∞ < x < ∞.

Integrating both sides, we find

ln |y| = x2 + C0

Hence, we obtain all solutions

y(x) = C ex2+C0 = C ex2



69

for constant C = eC0.
We note that all solutions are given in the form of one parameter family of
solutions with the parameter C .
Now, let us solve the non-homogeneous equation. Multiply equation (2.3) by

the factor e
∫

p(x) dx, we obtain

e
∫

p(x)dxdy(x)

dx
+ p(x)e

∫

p(x)dxy = e
∫

p(x)dxq(x), a ≤ x ≤ b.

The left side of the equation is the derivative of the product

d

dx
[e
∫

p(x)dxy] = e
∫

p(x)dxq(x).

Integrating both sides, we obtain

e
∫

p(x)dxy =
∫

e
∫

p(x)dxq(x)dx + C.

Hence, the solution

y(x) = e−
∫

p(x)dx[
∫

e
∫

p(x)dxq(x)dx + C ],

or

y(x) = e−
∫

p(x)dx
∫

e
∫

p(x)dxq(x)dx + C e−
∫

p(x)dx, a ≤ x ≤ b.

for a constant C .

Example 2.2 Find all solutions of the equation

dy

dx
+ 2y = x, −∞ < x < ∞

We have p(x) = 2, q(x) = x. Let us multiply the equation by the factor

e−
∫

p(x)dx = e−
∫

2dx = e2x, to get

e2x dy

dx
+ 2e2xy = x e2x, −∞ < x < ∞

Now, the left side of the equation is the derivative of the product

d

dx
[e2xy] = x e2x.

Integrating both sides, we find

e2xy =
∫

x e2xdx + C

Hence, we have the solution

y(x) = e−2x
∫

x e2xdx + Ce−2x

or

y(x) =
1

4
(2x − 1) + Ce−2x, −∞ < x < ∞

for any value of the parameter C .
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Example 2.3 Find all solutions of the equation

dy

dx
+ 4xy = 8x, −∞ < x < ∞

We have p(x) = 4x, q(x) = 8x. Let us multiply the equation by the factor

e
∫

4xdx = e2x2

, to get

e2x2 dy

dx
+ 4e2x2

x y = 8e2x2

x.

Now, the left side of the equation is the derivative of the product

d

dx
[e2x2

y] = 8x e2x2

.

Integrating both sides, we find

e2x2

y = 8
∫

x e2x2

dx + C

Hence, we have the solution

y(x) = 2 + Ce−2x2

, −∞ < x < ∞

for any value of the parameter C .
From the examples, we observe that all solutions of a first order differential
equation are in the one parameter family of solutions with the parameter C .
However, we can choose a unique one by the initial condition, as we present
in the following example

Example 2.4 Find the solution y(x) of the initial value problem

y′ − y = sin 2x, −∞ < x < ∞

y(0 = 1

We have p(x) = −1, q(x) = sin 2x. Let us multiply the equation by the factor

e−
∫

dx = e−x, to get
e−xy′ − e−xy = e−x sin 2x.

Now, the left side of the equation is the derivative of the product

[e−xy]′ = e−x sin 2x.

Integrating both sides, we find

e−xy =
∫

e−x sinx dx + C (2.6)

We find the indefinite integral integrating by parts. Let

u = e−x, u′ = −e−x, v′ = sin 2x, v = −1

2
cos 2x
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Using the formula of integration by parts
∫

u v′ dx = u v −
∫

u′ v dx

we find

I =
∫

e−x sin 2x dx = −1

2
e−x cos 2x − 1

2

∫

e−x cos 2x dx

Similarly, we find
∫

e−x cos 2x dx =
1

2
e−x sin 2x +

1

2

∫

e−x sin 2x dx

Hence, we have the solution

5

4
I = −1

2
e−x cos 2x − 1

4
e−x sin 2x

or
∫

e−x sin 2x dx = −2

5
e−x cos 2x − 1

5
e−x sin 2x. (2.7)

Combining (2.6) and (2.7), we find the solution

y(x) = −1

5
(2 cos 2x + sin 2x) + Cex

Using the initial value condition y(0) = 1, we determine the constant

y(0) = −2

5
+ C = 1, C =

7

5

Hence, the unique solution

y(x) = −1

5
(2 cos 2x + sin 2x) +

7

5
ex

satisfies the initial condition.
Exercises

Question 2.1 .

(a) Find all solutions of the equation.

y′(x) + 3x2y(x) = x2.

(b) Find the solution y(x) of the equation which satisfies the initial value
condition y(0) = 2.

Question 2.2 Find a continuous solution of the initial value problem

y′(x) + y(x) = f(x), y(0) = 2

where

f(x) =







2, 0 ≤ x < 1,

0, x ≥ 1
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Question 2.3 Show that if w(x) and v(x) are two solutions of the equation

y′(x) + p(x)y(x) = 0

then, for any constants c1 and c2 the function

y(x) = c1w(x) + c2v(x)

is also the solution of the equation

Question 2.4 Prove that if w(x) and v(x) are two solutions of the equation

y′(x) + p(x)y(x) = q(x)

then the difference
y(x) = w(x)− v(x)

is the solution of the equation homogeneous equation

y′(x) + p(x)y(x) = 0

2.3 Separable Equations

Let the function f(x, y) = h(x)g(y) be the product of two function h(x) and
g(y). So that, each of them is a function of one variable x or y. Then, the
separable equation is:

dy

dx
= h(x)g(y) (2.8)

or in terms of differentials

M(x)N(y)dx + m(x)n(y)dy = 0 (2.9)

Clearly, equation(2.9) can be written in the form (2.8) that is

dy

dx
= −M(x)N(y)

m(x)n(y)
, for h(x) = −M(x

m(x)
, g(y) =

N(y)

n(y)
(2.10)

provided that m(x)n(y) 6= 0
For example, the equation

dy

dx
=

1 + x2

1 + y2

or
(1 + x2)dx − (1 + y2)dy = 0

is separable, since the function

f(x, y) =
1 + x2

1 + y2
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is the product of two functions h(x) = 1 + x2 and g(y) =
1

1 + y2
and each of

them is one variable function.
In order to solve a separable equation, we write equation (2.8) in the differen-
tials from

dy

g(y)
= h(x) dx

Integrating both sides, left with respect to y, and right with respect to x, we
find the solution y(x) in the implicit form

∫

dy

g(y)
=
∫

h(x) dx

In the example, we find the implicit form of the solution
∫

(1 + y2)dy = (
∫

1 + x2) dx + C

So that

y +
y3

3
= x +

x3

3
+ C

or

(y − x) +
1

3
(y3 − x3) = C

for any constant C .
Equations with homogeneous f(x, y). Consider the equation

dy

dx
= f(x, y)

where the function f(x, y) is homogeneous of degree n if satisfies the condition

f(t x, t y) = tnf(x, y)

for any real t.

Example 2.5 The equation

dy

dx
=

y

x + y
, x + y 6= 0,

is with homogeneous right side of degree 0.
We have

f(x, y) =
y

x + y

Then

f(t x, t y) =
(t y)

t x + t y
=

ty

t x + t y
= f(x, y)
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for any real t.
General approach. By the substitution

y(x) = x v(x)

we replace the unknown function y(x) by the unknown function v(x).
Then, we have

dy

dx
= v +

dv

dx

and for t =
1

x
, x 6= 0

f(
1

x
x,

1

x
y) = f(1,

y

x
) = f(1, v) = g(v)

Hence, we find

v +
dv

dx
= g(y)

Thus, we have arrived to the separable equation, which in terms of differentials
takes the following form:

dv

g(y) − v
=

dx

x

Integrating both sides, we obtain the relation between x and y as implicit form
of the solution

∫

dv

g(v) − v
= ln |C x|

for any constant C .

Question 2.5 Find all solutions of the equation

dy

dx
=

y

x + y
, x + y 6= 0,

Solution. By the substitution y = x v, we transform the equation to the
separable equation in v

v + x
dv

dx
=

1

1 + 1
v

or
1 + v

v2
dv = −dx

x
, x 6= 0

Integrating both sides, we find the implicit form of all solutions

−1

v
+ ln |v| = − ln |C x|

v ln |C x v| = 1

In the original variables
y ln |C y| = x.

for any constant C .
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2.4 Linear Ordinary Differential Equations

We shall consider the linear ordinary differential equations of the second order
with constant coefficients

L[y](x) =≡ d2y

dx2
+ p

dy

dx
+ q y = f(x), a ≤ x ≤ b, (2.11)

or
L[y](x) =≡ y′′ + p y′ + q y = f(x), a ≤ x ≤ b, (2.12)

where the constant coefficients p, q and the right side function f(x) are given,
and y(x) is the unknown function.
The equation is linear because the operator L[y](x) in the left side is linear
one. So that, the image of a linear combination

c1y1(x) + c2y2(x)

is linear combination of images, that is

L[c1y1 + c2y2](x) = c1L[y1](x) + c2L[y2(x)

Indeed, we have

L[c1y1 + c2y2](x) =
(d2c1y1 + c2y2)

dx2
+ p

d(c1y1 + c2y2)

dx
+ q(c1y1 + c2y2)

= c1(
d2y1

dx2
+ pc1

dy1

dx
+ qy1) + c2(

d2y2

dx2
+ c2

dy2

dx
+ qy2)

= c1L[y1](x) + c2L[y2](x)

for any constants c1 and c2.
In order to solve the equation, we begin with solution of the homogeneous
equation, when the right side function f(x) = 0 for all x ∈ [a, b].

d2y

dx2
+ p

dy

dx
+ q y = 0, a ≤ x ≤ b, (2.13)

To find all solutions of the homogeneous equation, we apply Euler’s substitu-
tion

y(x) = eλx

y′(x) = λeλx

y′′(x) = λ2eλx

Then, we obtain the equation for λ

y′′ + py′ + qy = (λ2 + pλ + q)eλx = 0

A root λ1 of the characteristic equation

λ2 + pλ + q = 0 (2.14)
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determines the solution y1(x) = eλ1x.
To find all real solutions of the equation, we consider the following three cases:
Case 1. The roots λ1 and λ2 of the characteristic equation

λ2 + pλ + q = 0, ∆ = p2 − 4q > 0, (2.15)

are real and distinct.
Then, we have two linearly independent solutions

y1(x) = eλx, y2(x) = eλ2x

Thus, all solutions are in the form of the linear combination

y(x) = c1y1(x) + c2y2(x) (2.16)

for any constants c1 and c2.
Two parameters family of solutions (2.16) is called general solution of homo-
geneous equation (2.14).

Example 2.6 Find the general solution of the equation

y′′ − 3y′ + 2y = 0

Solution.The characteristic equation

λ2 − 3λ + 2 = (λ − 1)(λ − 3) = 0, ∆ = 1 > 0.

has two real and distinct roots λ1 = 1 and λ2 = 3. Then, the linearly inde-
pendent solutions are:

y1(x) = eλ1x, y2(x) = eλ2x

and the general solution is:

y(x) = c1e
λ1x + c2e

λ2x

for any constants c1 and c2.
Case 2. There is a real and double root λ1 = λ2 of characteristic equation
(2.14). Then, the double root generates two independent solutions

y1(x) = eλ1x, y2(x) = xeλ1x

Thus, the general solution of homogeneous equation 2.14) is:

y(x) = c1e
λ1x + c2xeλ1x

for any constants c1 and c2.

Example 2.7 Find the general solution of the equation

y′′ − 4y′ + 4y = 0, ∆ = 0.
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Solution. The characteristic equation

λ2 − 3λ + 2 = (λ − 2)2 = 0

has double real root λ1 = λ2 = 2. Then, the linearly independent solutions
are:

y1(x) = e2x, y2(x) = xe2x

and the general solution is:

y(x) = c1e
2x + c2xe2x

for any constants c1 and c2.
Case 3. There is a complex root λ1 = a + ib of characteristic equation (2.14).
Then, the conjugate λ1 = a − ib is also the root of the characteristic equation
Using Euler’s formula

eit = cos t + i sin t

we find
ea+ib = ea eib = ea(cos b + i sin b)

Hence, the complex solutions are

e(a+ib)x = eax(cos bx + i sin bx)

e(a−ib)x = eax(cos bx − i sin bx)

Because the equation is linear one, therefore the real and imaginary parts of
the complex solutions are also solutions, that is, the complex root generates
two linearly independent solutions

y1(x) = eax cos bx, y2(x) = eax sin bx

Then, the general solution of homogeneous equation 2.14) is:

y(x) = c1e
ax cos bx + c2e

ax sin bx

for any constants c1 and c2.

Example 2.8 Find the general solution of the equation

y′′ − 6y′ + 25y = 0, ∆ = −64 < 0.

Solution. The characteristic equation

λ2 − 6λ + 25 = 0

has complex root λ1 =
6 + 8i

2
= 3 + 4i, a = 3, b = 4.

Then, the linearly independent solutions are:

y1(x) = e3x cos 4x, y2(x) = e3x sin 4x
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and the general solution is:

y(x) = c1e
3x cos 4x + c2e

3x sin 4x

for any constants c1 and c2.
Solution of Non-homogeneous equations. All solutions of the non-homogeneous
equation

y′′ + p y′ + q y = f(x), a ≤ x ≤ b, (2.17)

are in the of two parameters c1 and c2 family of solutions

y(x) = c1y1(x) + c2y2(x) + yp(x)

where c1y1(x) + c2y2(x) is the general solution of the homogeneous equation,
when f(x) = 0 for all ∈ [a, b], and yp(x) is a particular solution of non-
homogeneous equation (2.17). Therefore, to find all solutions of the non-
homogeneous equation, first, we find the general solution of the homogeneous
equation, and then, we find a particular solution yp(x) of the non-homogeneous
equation. The sum of two is the general solution of the non-homogeneous equa-
tion.
We shall present two methods for finding a particular solution of a non-
homogeneous equation.
- the method of under determined coefficients
- the method of variation of parameters.
Method of undetermined coefficients. This method is used to find a par-
ticular solution of the non-homogeneous equation. It is applicable to a special
class of function f(x) in the right side of the equation.

• When f(x) = pn(x) = a0 + a1x + a2x
2 + · · · + anx

n is a polynomial.
Assume a particular solution also as a polynomial.

• When f(x) is an exponential function like

f(x) = eax or f(x) = pn(x)eax

Assume a particular solution also as an exponential function or a combi-
nation of a polynomial and an exponential function.

• hen f(x) = A sinx + B cos x is a combination of trigonometric functions.
Assume a particular solution also as a combination of trigonometric func-
tions.

Example 2.9 Find a particular solution of the equation

y′′ − 2y′ + y = 1 + x2

The right side f(x) = 1 + x2 is the polynomial. So, we predict a particular
solution also as a polynomial

yp(x) = a0 + axx + a2x
2
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where the coefficients a0, a1 a2 are to be determined.
To find the coefficients a0, a1, a2, we substitute to the equation

yp(x) = a0 + axx + a2x
2

y′
p(x) = a1 + 2a2x

y′′
p(x) = 2a2

to get

2a2 − 2(2a2x + a1) + a0 + a1x + a2x
2 = 1 + x2, for all −∞ < x∞

Hence, we have
2a2 − 2a1 + a0 = 1

4a2 − a1 = 0

a2 = 1

The solution is
a2 = 1, a1 = 4, a0 = 7,

and the particular solution

yp(x) = 7 + 4x + x2, −∞ < x < ∞.

Example 2.10 Find a particular solution of the equation

y′′ − y′ + 4y = sinx + cosx

The right side f(x) = sinx + cosx. So, we predict a particular solution also
in the form of the right side

yp(x) = A sinx + B cos x

where the coefficients A, B are to be determined.
To find the coefficients A, B, we substitute to the equation

yp(x) = A sinx + B cos x

y′
p(x) = A cosx − B sin x

y′′
p(x) = −A sinx − B]cosx

to get

(−A sinx −B cos x) − (A cos x −B sin) + 4(A sin x + B cos x) = sinx + cos x.

Hence, we have

(−A+B+4a) sinx+(−B−A+4B) cosx = sin x+cosx, for all −∞ < x < ∞
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Comparing both sides, we have

3A + B = 1

−A + 3B = 1

So that

A =
1

5
, B =

2

5

and the particular solution

yp(x) =
1

5
sinx +

2

5
cos x, −∞ < x < ∞.

Example 2.11 .

(a) Find all solutions of the equation

y′′ − 2y′ − 3y = 2ex − 10 sin x, −∞ < x < ∞.

(b) Find the solution of the equation which satisfies the initial value conditions

y(0) = 0, y′(0) = 1

Solution (a). First, we find all solutions of the homogeneous equation

y′′ − 2y′ − 3y = 0, −∞ < x < ∞.

The characteristic equation

λ2 − 2λ − 3 = (λ + 1)(λ − 3) = 0

has the real roots λ1 = −1, λ2 = 3. Therefore, the linearly independent
solutions are

y1(x) = e−x, y2(x) = e3x

and the general solution of the homogeneous equation is

c1e
x + c2e

3x

for any constants c1 and c2.
To find a particular solution of the non-homogeneous equation

y′′ − 2y′ − 3y = 2ex − 10 sin x, −∞ < x < ∞.

We predict a particular solution in the form of the right side

yp(x) = Aex + B sinx + C cosx
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where the coefficients A, B, C are to be determined.
To find the coefficients A, B, C , we substitute to the equation

yp(x) = Aex + B sinx + C cos x

y′
p(x) = Aex + B cosx − C sinx

y′′
p(x) = Aex − B sinx −C cosx

to get

(Aex − B sinx −C cos x) − 2(Aex + B cosxx − C sin)

− 3(Aex + B sinx + c cos x)

= ex − 10 sin x.

or

(−4Aex + (−4B + 2C) sin x− (−4C − 2B) cos x) = 2ex − 10 sin x

Comparing both sides, we have

−4A = 2

−4B + 2C = −10

−4C − 2B = 0

So that, the solution is

A = −1

2
, B = 2, C = −1

and the particular solution

yp(x) = −1

2
ex + 2 sin x − cos x, −∞ < x < ∞.

All solutions of the non-homogeneous equation are in the two parameters fam-
ily of solutions

y(x) = c1e
−x + c2e

3x − 1

2
ex + 2 sin x− cos x

for any constants c1 and c2

Solution (b). By the initial conditions

y(0) = c1 + c2 −
1

2
− 1 = 0

y′(0) = −c1 + 3c2 −
1

2
+ 2 = 1
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Hence, we find

c1 =
5

4
, c2 =

1

4
and the solution

y(x) =
5

4
e−x +

1

4
e3x − 1

2
ex + 2 sin x − cosx

satisfies the initial conditions.
Method of variation of coefficients.Let us assume that we have two linearly
independent solutions

y1(x) and y2(x)

of the homogeneous equation

y′′(x) + p y′(x) + q y(x) = 0, −∞ < x < ∞

Then, all solutions of the homogeneous equation are in the form of the linear
combination of two

y(x) = c1y1(x) + c2y2(x),

for any constants c1 and c2.
To obtain a particular solution of the non-homogeneous equation

y′′(x) + p y′(x) + q y(x) = f(x), a ≤ x ≤ b

we apply the method of variation of parameters predicting a particular solution
in the form

yp(x) = v1(x)y1(x) + v2(x)y2(x),

where the functions v(x) and v2(x) are to be determined, so that yp(x) is a
particular solution of the non-homogeneous equation.

We put the condition

v′
1(x)y1(x) + v′

2(x)y2(x) = 0, for all a ≤ x ≤ b. (2.18)

for the functions v1(x) and v2(x).
By condition (2.18), we find

y′
p(x) = v1(x)y′

1(x) + v2(x)y′
2(x)

and
y′′(x) = v1(x)y′′

1(x) + v2(x)y′′
2(x) + v′

1(x)y′
1(x) + v′

2(x)y′
2(x)

By substitution the above to the equation, we have

[v1(x)y′′
1(x) + v2(x)y′′

2(x) + v′
1(x)y′

1(x) + v′
2(x)y′

2(x)]

+ p[v1(x)y′
1(x) + v2(x)y′

2(x)]

+ q[v1(x)y1(x) + v2(x)y2(x)] = f(x)
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The above can be written as follows:

v1(x)[y′′
1(x) + p y′

1(x) + q y1(x)]

+ v2(x)[y′′
2(x) + p y′

2(x) + q y2(x)]

+ [v′
1(x)y′

1(x) + v′
2(x)y′

2(x)] = f(x)

Because, y1(x) and y2(x) are solutions of the homogeneous equation, therefore

y′′
1(x) + p y′

1(x) + q y1(x) = 0, and y′′
2(x) + p y′

2(x) + q y2(x) = 0

Hence, we have the following conditions imposed on the functions v1(x) and
v2(x):

v′
1(x)y1(x) + v′

2(x)y2(x) = 0

v′
1(x)y′

1(x) + v′
2(x) + v′

2(x)y′
2(x) = f(x)

The determinant

W [y1, y2](x) =

∣

∣

∣

∣

∣

∣

y1(x) y2(x)

y′
1(x) y′

2(x)

∣

∣

∣

∣

∣

∣

of the matrix

A =





y1(x) y2(x)

y′
1(x) y′

2(x)





is called Wronskian.
Solving the two equations for v

′

1 and v
′

2, we find the solution

v′
1(x) =

1

W [y1, y2](x)

∣

∣

∣

∣

∣

∣

0 y2(x)

f(x) y′
2(x)

∣

∣

∣

∣

∣

∣

,

and

v′
2(x) =

1

W [y1, y2](x)

∣

∣

∣

∣

∣

∣

y1(x) 0

y′
1(x) f(x)

∣

∣

∣

∣

∣

∣

,

or

v′
1(x) = − f(x)y2(x)

W [y1, y2](x)
, and v′

2(x) =
f(x)y1(x)

W [y1, y2](x)

Integrating both sides, we find the functions

v1(x) = −
∫ x

a

f(s)y2(s)

W [y1, y2](s)
ds, v2(x) =

∫ x

a

f(s)y1(s)

W [y1, y2](s)
ds (2.19)

Thus, having v1(x) and v2(x), we find the particular solution

yp(x) = v1(x)y1(x) + v2(x)y2(x), a ≤ x ≤ b.
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Example 2.12 .

(a) Find a particular solution of the equation

y′′(x)− 4y′(x) + 3y(x) = sinx, −∞ < x < ∞

(b) Find a solution of the equation which satisfies the initial conditions

y(0) = 1, y′(0) = 0

Solution (a). First, we have to find linearly independent solutions of the
homogeneous equation

y′′(x) − 4y′(x) + 3y(x) = 0, −∞ < x < ∞

The characteristic equation

λ2 − 4λ + 3 = (λ − 1)(λ − 3) = 0

has the real and distinct roots λ1 = 1 and λ2 = 3. Then, the linearly indepen-
dent solutions are

y1(x) = ex, y2(x) = e3x

We predict a particular solution of the non-homogeneous equation in the form

yp(x) = v1(x)ex + v2(x)e3x

We impose the condition

v′
1(x)ex + v′

2(x)e3x = 0, for all −∞ < x < ∞.

on the functions v1(x) and v2(x).
Then, we substitute to the equation

yp(x) = v1(x)ex + v2(x)e3x

y′
p(x) = v1(x)ex + v′

1(x)ex + 3v2(x)e3x + v′
2(x)e3x

= v1(x)ex + 3v2(x)e3x

y′′
p(x) = v1(x)ex + v′

1(x)ex + 3v2(x)e3x + v′
2(x)e3x

to obtain

[v1(x)ex + v′
1(x)ex + 3v2(x)e3x + v′

2(x)e3x]

−4[v1(x)ex + 3v2(x)e3x] + 3[v1(x)ex + v2(x)e3x] = sinx

or after simplification

v′
1(x)ex + v′

2(x)e3x = sinx



85

Thus, the derivatives v′
1(x) and v′

2(x) satisfy two linear equations

v′
1(x)ex + v′

2(x)e3x = 0

v′
1(x)ex + v′

2(x)e3x = sinx

The determinant

W [y1, y2](x) =

∣

∣

∣

∣

∣

∣

ex e3x

ex 3e3x

∣

∣

∣

∣

∣

∣

= 2e4x > 0

is the Wronskian of the matrix

A =





ex e3x

ex 3e3x





Solving the system of two equations, we find the solution

v′
1(x) =

1

2
e−4x

∣

∣

∣

∣

∣

∣

0 e3x

sinx 3e3x

∣

∣

∣

∣

∣

∣

= −1

2
e−x sinx

and

v′
2(x) =

1

2
e−4x

∣

∣

∣

∣

∣

∣

ex 0

ex sinx

∣

∣

∣

∣

∣

∣

=
1

2
e−3x sinx

Integrating both sides, we find the functions

v1(x) = −1

2

∫ x

0
e−s sin s ds, v2(x) =

1

2

∫ x

0
e−3s sin s ds

Applying formula of integrating by parts, we evaluate

v1(x) =
1

4
e−x(sinx + cos x− ex)

and

v2(x) =
1

20
(e−3x(e−3x − sinx − cos x)

Having the functions v1(x) and v2(x), we find the particular solution

yp(x) = v1(x)ex + v2(x)e3x, −∞ < x < ∞.

Let us note that, we can get the same particular solution applying straight
forward formulae (2.19).
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2.5 Exercises, Set 2

Linear First Order Equation. Consider the linear differential equation

dy(x)

dx
+ p(x)y = q(x), a ≤ x ≤ b. (2.20)

Below, we shall solve the linear differential equation (2.20). First, let us solve
the homogeneous linear equation

dy(x)

dx
+ p(x)y = 0, a ≤ x ≤ b. (2.21)

when the function q(x) = 0 for all x.
So, we write the equation in terms of the differentials

dy

y
= −p(x)dx, a ≤ x ≤ b. (2.22)

Integrating both sides, we find

ln |y| = −
∫

p(x) dx + lnC

or
y(x) = Ce−

∫

p(x) dx

for a constant C

Example 2.13 Find all solutions of the equation

dy

dx
− 2xy = 0, −∞ < x < ∞.

We write the equation in the differentials form

dy

y
= 2x dx, −∞ < x < ∞.

Integrating both sides, we find

ln |y| = x2 + lnC

Hence, we obtain all solutions

y(x) = C ex2

for a constant C .
We note that all solutions are given in the form of one parameter C family of
solutions.
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Now, let us solve the non-homogeneous equation. Multiply equation (2.20) by

the integrating factor e
∫

p(x) dx

e
∫

p(x)dxdy(x)

dx
+ p(x)e

∫

p(x)dxy = e
∫

p(x)dxq(x), a ≤ x ≤ b.

We note that the left side of the equation is the derivative of the product

d

dx
[e
∫

p(x)dxy] = e
∫

p(x)dxq(x).

Integrating both sides, we obtain

e
∫

p(x)dxy =
∫

e
∫

p(x)dxq(x)dx + C.

Hence, the solution

y(x) = e−
∫

p(x)dx[
∫

e
∫

p(x)dxq(x)dx + C ],

or

y(x) = e−
∫

p(x)dx
∫

e
∫

p(x)dxq(x)dx + C e−
∫

p(x)dx, a ≤ x ≤ b.

for a constant C .

Example 2.14 Find all solutions of the equation

dy

dx
+ 2y = x, −∞ < x < ∞

We have p(x) = 2, q(x) = x. Let us multiply the equation by the factor e2x,
to get

e2x dy

dx
+ 2e2xy = x e2x, −∞ < x < ∞

Now, the left side of the equation is the derivative of the product

d

dx
[e2xy] = x e2x.

Integrating both sides, we find

e2xy =
∫

x e2xdx + C

Hence, we have the solution

y(x) = e−2x
∫

x e2xdx + Ce−2x

or

y(x) =
1

4
(2x − 1) + Ce−2x, −∞ < x < ∞

for any value of the parameter C .
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Question 2.6 Consider the linear homogeneous differential equation

dy(x)

dx
+ p(x)y = 0, a ≤ x ≤ b. (2.23)

Show that if w(x) and v(x) are two solutions of the homogeneous equation,
then, for any constants c1 and c2, the function

y(x) = c1w(x) + c2v(x)

is also the solution of the homogeneous equation

Question 2.7 Prove that if w(x) and v(x) are two solutions of the non-
homogeneous equation

y′(x) + p(x)y(x) = q(x)

then the difference
y(x) = w(x)− v(x)

is the solution of the homogeneous equation

y′(x) + p(x)y(x) = 0

Question 2.8 Find all solutions of the equations

(a)
dy

dx
+ 4y = 2x, −∞ < x < ∞

Answer: y(x) = C e−4x +
1

2
(x − 1

4
)

(b)
dy

dx
+ 4xy = 8x, −∞ < x < ∞

Answer: y(x) = 2 + C e−2x2

Question 2.9 Find a continuous solution of the initial value problem

y′(x) + y(x) = f(x), y(0) = 2

where

f(x) =







x, −∞ < x ≤ 1,

2x − 1, 1 < x < ∞

Answer:

y(x) =







−1 + x + 3e−x, −∞ < x ≤ 1,

2x − 3 + e(1−x) + 3e(−x), 1 < x < ∞
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Question 2.10 . Find the solution y(x) of the equation.

y′(x) + 3x2y(x) = x2,

which satisfies the initial value condition y(0) = 2.

Answer: y(x) =
1

3
(1 + 5e−x2

)

Question 2.11 Solve the initial value problem

y′ − y = sin 2x, −∞ < x < ∞

y(0 = 1

Answer:y(x) =
1

5
(7ex − 2 cos 2x − sin 2x)

Separable Equations Let the function f(x, y) = h(x)g(y) be the product
of two function h(x) and g(y). So that, each of them is a function of one
variable either x or y. Then, the separable equation is:

dy

dx
= h(x)g(y) (2.24)

For example, the equation
dy

dx
=

1 + x2

1 + y2

is separable, since the function

f(x, y) = (1 + x2)
1

1 + y2

is the product of two functions h(x) = 1 + x2 and g(y) =
1

1 + y2
and each of

them is one variable function either x or y.
In order to solve a separable equation, we write equation (2.24) in terms of
the differentials

dy

g(y)
= h(x) dx

Integrating both sides, left with respect to y, and right with respect to x, we
find the solution y(x) in the implicit form

∫

dy

g(y)
=
∫

h(x) dx

In the example, we find the implicit form of the solution
∫

(1 + y2)dy = (
∫

1 + x2) dx + C
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So that

y +
y3

3
= x +

x3

3
+ C

or

(y − x) +
1

3
(y3 − x3) = C

for any constant C .

Question 2.12 Solve the following separable equations

(a)
dy

dx
= −2y tan x

Answer: y(x) = C cos2 x

(b)
2x(1 + y)dx + (1 + x2)dy = 0

Answer: y(x) =
C

1 + x2
− 1

Question 2.13 Find the solution y(x) of the equation

2y dx + (2x − 1)dy = 0

which satisfies the initial condition y(0) = 1

Answer y(x) =
1

1 − 2x

Equations with homogeneous f(x, y). Consider the equation

dy

dx
= f(x, y)

where the function f(x, y) satisfies the condition f(tx, ty) = f(x, y) for real t.

Question 2.14 Find all solutions of the equation

(a)
dy

dx
=

x3

4x3 − 3x2y

(b)
(x2 − 3y2)dx + 2x y dy = 0

Second Order Differential Equations Consider the equation

y′′(x) + a1y
′(x) + a2y(x) = f(x), a ≤ x ≤ b, (2.25)

where a1, a2 are given constant coefficients and the right side f(x) is a given
continuous function in the interval a, b]. Here y(x) is the unknown function of
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the variable x.
First, we solve the homogeneous equation

y′′(x) + a1y
′(x) + a2y(x) = 0, a ≤ x ≤ b, (2.26)

when the right side f(x) = 0 for all x ∈ [a, b].
The roots of the characteristic equation

λ2 + a1λ + a2 = 0

determine the fundamental set of solutions
Case1. Let the roots λ1 and λ2 be real and distinct (∆ = a2

1 − 4a2 > 0)
Then, the linearly independent solutions are

y1(x) = eλ1x, y2(x) = eλ2x

and all solutions are in form of the linear combination

y(x) = c1e
λ1x + c2e

λ2x

where c1 and c2 are any constants.

Example 2.15 Find all solutions of the equation

y′′ − 3y′ + 2y = 0

The characteristic equation

λ2 − 3λ + 2 = (λ − 1)(λ − 2) = 0, (∆ = 1 > 0)

has two real and distinct roots λ1 = 1 and λ2 = 2.
Thus, the linearly independent solutions are:

y1(x) = ex, y2(x) = e2x

and all solutions are in form of the linear combination

y(x) = c1e
x + c2e

2x

for any constants c1 and c2.
Case 2. Let the characteristic equation has a double real root λ1 = λ2,
(∆ = a2

1 − 4a2 = 0).
Then, the linearly independent solutions are

y1(x) = eλ1x, y2(x) = xeλ1x

and all solutions are in form of the linear combination

y(x) = c1e
λ1x + c2xeλ1x

where c1 and c2 are any constants.
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Example 2.16 Find all solutions of the equation

y′′ − 4y′ + 4y = 0

The characteristic equation

λ2 − 4λ + 4 = (λ − 2)2 = 0, (∆ = 0)

has two real and distinct roots λ1 = λ2 = 2.
Thus, the linearly independent solutions are:

y1(x) = e2x, y2(x) = xe2x

and all solutions are in form of the linear combination

y(x) = c1e
2x + c2xe2x

for any constants c1 and c2.
Case 3. Let the characteristic equation has a complex roots λ1 = α+iβ, λ1 =
α − iβ , (∆ = a2

1 − 4a2 < 0).
Then, the linearly independent solutions are

y1(x) = eαx sinβx, y2(x) = eαx cos βx

and all solutions are in form of the linear combination

y(x) = c1e
αx sin βx + c2e

αx cos βx

where c1 and c2 are any constants.

Example 2.17 Find all solutions of the equation

y′′ − y′ + y = 0

The characteristic equation

λ2 − λ + 1 = 0, (∆ = −3)

has complex roots λ1 =
1 + i

√
3

2
, λ =

1 − i
√

3

2
.

Thus, the linearly independent solutions are:

y1(x) = e
x

2 sin

√
3

2
x, y2(x) = e

x

2 cos

√
3

2
x

and all solutions are in form of the linear combination

y(x) = c1e
x

2 sin

√
3

2
x + c2e

x

2 cos

√
3

2
x

for any constants c1 and c2.
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Question 2.15 Find all solutions of the equations

(a)
y′′ − 7y′ + 12y = 0

(b)
y′′ − 6y′ + 9y = 0

(c)
y′′ − 2y′ + 2y = 0

Question 2.16 Find the solution of the equations which satisfies the indicated
initial value conditions

(a)
y′′ − 6y′ + 5y = 0, y(0) = 0, y′(0) = 1

(b)
y′′ − 4y′ + 4y = 0 y(0) = 1, y′(0) = 0

(c)
y′′ − 2y′ + 2y = 0, y(0) = 0, y′(0) = 1

Question 2.17 Find the solution of the non-homogeneous equations which
satisfies the indicated initial value conditions

(a)
y′′ − 6y′ + 5y = 1 + x2, y(0) = 0, y′(0) = 1

(b)
y′′ − 2y′ + 2y = sinx + cosx, y(0) = 0, y′(0) = 0
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Chapter 3

Taylor Polynomials and Taylor
Theorem

3.1 Taylor Polynomials

Let f(x) be a function n-times continuously differentiable in the interval [a, b].
Then, the polynomial

TLn(x) = f(x0) +
f ′(x0)

1!
(x− x0) +

f ′′(x0)

2!
(x − x0)

2

+
f ′′′(x0)

3!
(x − x0)

3 + · · ·+f (n)(x0)

n!
(x − x0)

n,

is called Taylor polynomial of degree n of the function f about the point x0.
1

The numbers
f (k)(x0)

n!
, k = 0, 1, . . . , n,

are called Taylor coefficients of f .
The relationship between a function and its Taylor polynomial is given in the
following Taylor’s theorem:

3.2 Taylor Theorem

Theorem 3.1 If f is a function (n + 1) times continuously differentiable in
the closed interval [a, b], then there exists a point ξx ∈ (a, b) such that

f(x) = f(x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)

2

+
f ′′′(x0)

3!
(x− x0)

3 + · · · + f (n)

n!
(x − x0)

n + Rn+1(ξx),

1Taylor polynomial about x0 = 0 of f is referred as Maclaurin’s polynomial of f .

95
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for all x0, x ∈ [a, b], where the remainder R(n+1)(ξx) can be written in the
following forms:
(a) The Lagrange’s form:

Rn+1(ξx) =
f (n+1)(ξx)

(n + 1)!
(x− x0)

(n+1).

where ξx is between x and x0.
(b) The Cauchy’s form:

Rn+1(ξx) =
f (n+1)(x0)

n!
(x − x0)(x − ξx)

n.

(c) The Integral form:

Rn+1(ξx) =
∫ x

x0

(x− t)n

n!
f (n+1)(t)dt.

Proof. We shall prove Taylor theorem with the remainder Rn+1(ξx) given in
the Lagrange’s form (a). Let us consider the following auxiliary function:

g(t)= f(x) − f(t) − x − t

1!
f ′(t) − (x− t)2

2!
f ′′(t)−· · · (x − t)n

n!
f (n)(t), (3.1)

for x, t ∈ [a, b].
Obviously, the derivative g′(t) exists and

g′(t) = −f ′(t) + f ′(t) − x − t

1!
f ′′(t)

+
x− t

1!
f ′′(t) · · · − (x − t)n

n!
f (n+1)(t)

= −(x− t)n

n!
f (n+1)(t).

Now, let us consider another auxiliary function

G(t) = g(t) − g(x0)

(x − x0)k+1
(x− t)k+1,

where t is between x0 and x.
This function satisfies Rolle’s theorem for any integer k, since we have

G(x0) = G(x) = 0,

and G′(t) exists in the open interval (a, b). By the Rolle’s theorem, there exists
a point ξx such that

G′(ξx) = 0.
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On the other hand

G′(t) = g′(t) +
g(x0)

(x − x0)k+1
(k + 1)(x − t)k.

Thus, for k = n and t = ξx, we have

−(x− ξx)
n

n!
f (n+1)(ξx) + g(x0)(n + 1)(x − x0)

n+1(x − ξx)
n = 0.

Hence

g(x0) =
f (n+1)(ξ)

(n + 1)!
(x− x0)

n+1.

and by (3.1), we obtain the Taylor formula

f(x) = f(x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)

2 + · · ·

+
f (n)

n!
(x − x0)

n + Rn+1(ξx)(x− x0)
n+1,

where the remainder

Rn+1(ξx) =
f (n+1)(ξx)

(n + 1)!
(x − x0)

n+1.

3.2.1 Examples

Example 3.1 Find Taylor polynomial and determine the remainder in the
Lagrange’s form for the function f(x) = ex, −∞ < x < ∞, when x0 = 0.

Solution. In order to determine the Taylor polynomial

TLn(x) = f(x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)

2 + · · ·

+
f (n)

n!
(x − x0)

n,

we shall find the Taylor coefficients of ex. Clearly

f (n)(x) = ex for all n = 0, 1, 2, . . . .

Thus, Taylor polynomial

TLn(x) = 1 +
x

1!
+

x2

2!
+

x3

3!
+ · · · + xn

n!
,

where the Lagrange’s remainder

Rn+1(ξx) =
eξx

(n + 1)!
xn+1.

for a certain ξx.
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Example 3.2 Find the Taylor polynomial for the function f(x) = (1 + x)n,
where n is an natural number, about the point xo = 0.

Solution. We have

f (0)(x) = (1 + x)n,

f (1)(x) = n(1 + x)n−1,

f (2)(x) + n(n − 1)(1 + x)n−2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f (n)(x) = n(n − 1) · · · (n − (n − 1)) = n!

f (m)(x) = 0, for m ≥ n + 1.

Hence, at the point x = 0,

f (0)(0) = 1

f (1)(0) = n

f (2)(0) = n(n − 1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f (n)(0) = n!

f (m)(0) = 0, for m ≥ n + 1.

The Taylor polynomial for f(x) = (1 + x)n with xo = 0 is

TLn(x) = 1 + nx +
n(n − 1)

2!
x2 +

n(n − 1)(n − 2)

3!
x3 + · · · + n(n − 1) · · · 1

n!
xn,

and the remainder is

Rn(x) ≡ 0.

Hence, by Taylor’s theorem, we obtain well known bionomical formula

(1 + x)n = 1 + nx +
n(n − 1)

2!
x2 +

n(n − 1)(n − 2)

3!
x3 + · · · + xn,

Example 3.3 Find Taylor polynomial for the function f(x) = ln(1+x), 0 ≤
x ≤ 1, about x0 = 0. How many terms of the Taylor polynomial are required
to approximate the function ln(1 + x), 0 ≤ x ≤ 1, by its Taylor polynomial
with accuracy ε = 0.0001.
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Solution. In order to obtain Taylor polynomial, we calculate

f(x) = ln(1 + x), f(0) = 0,

f ′(x) =
1

1 + x
, f ′(0) = 1,

f ′′(x) = − 1!

(1 + x)2
, f ′′(0) = −1,

f ′′′(x) =
2!

(1 + x)3
, f ′′′(0) = 2!,

f (4)(x) = − 3!

(1 + x)4
, f4(0) = 3!.

In general

f (n)(x) = (−1)n−1 (n − 1)!

(1 + x)n
and fn(0) = (−1)n−1(n − 1)!,

for n = 1, 2, . . . .
Hence, Taylor polynomial of ln(1 + x) at x0 = 0 is

TLn(x) = x − x2

2
+

x3

3
− x4

4
+ · · · + (−1)n−1 xn

n
,

where the Lagrange’s remainder

Rn+1(ξx) = (−1)n xn+1

(n + 1)(1 + ξx)n+1
, 0 ≤ ξ ≤ 1.

The error of approximation

ln(1 + x)− TLn(x) = (−1)n xn+1

(n + 1)(1 + ξx)n+1

satisfies the inequality

| ln(1 + x)− TLn(x) |≤ 1

n + 1
, 0 ≤ x ≤ 1.

The required number of terms of Taylor polynomial TLn(x) to get the accuracy
ε = 0.0001 is determined by the following inequality:

1

n + 1
≤ 0.0001 or n ≥ 9999.

We note that the Taylor’s series of the function ln(1+x) is slowly convergent.

For example, to compute ln 2 with the accuracy ε, we need to add about [
1

ε
]

terms. We can compute this sum by the instructions in Mathematica
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N[Sum[(-1)^(n+1)/n,{n,1,9999}]]

Then, we obtain ln 2 ≈ 0.693197.

Example 3.4 Consider the following functions:

1. f(x) = sin x, 0 ≤ x ≤ π

2
,

2. f(x) = cos x, 0 ≤ x ≤ π

2
.

(a) Find Taylor polynomial for the above functions at x0 = 0.

(b) For what value of n will Taylor polynomial approximate the above

functions correctly upto three decimal places in the interval [0,
π

2
].

Solution (a). In order to find Taylor polynomial

TLn(x) = f(x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)

2 + · · ·

+
f (n)(x0)

n!
(x − x))

n,

we shall determine Taylor coefficients

f (k)(0)

k!
, k = 0.1, . . . , n.

We have
f(x) = sin x, f(0) = 0,

f ′(x) = cos x, f ′(0) = 1,

f ′′(x) = −sin x, f ′′(0) = 0,

f
′′′
(x) = −cos x, f

′′′
(0) = 0.

In general

f (n)(x) =



















sin x n = 4k, k = 0, 1, . . .;
cos x n = 4k + 1, k = 0.1, . . .;
−sin x n = 4k + 2, k = 0, 1, . . .;
−cos x n = 4k + 3, k = 0, 1, . . .;

and

f (n)(0) = (sin 0)(n) =

{

(−1)k n = 2k + 1, k = 0, 1, . . .;
0 n = 2k, k = 0, 1, . . .;

Thus, Taylor polynomial for sin x is

TL2n+1(x) = x− x3

3!
+

x5

5!
− x7

7!
+ · · · + (−1)n+1 x2n+1

(2n + 1)!
,
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where the Lagrange’s remainder

R2n+2(ξx) =
(sin ξx)

(2n+2)

(2n + 2)!
x2n+2.

One can obtain the Taylor’s polynomial TL9(x) using the Mathematica in-
struction

Normal[Series[Sin[x],{x,0,9}]]

In order to get correct three decimal places, we should consider accuracy ε =
0.0005, and to choose a smallest n for which the remainder Rn+1(ξx) satisfies
the following inequality

| (sinξx)
(2n+2)

(2n + 2)!
x2n+2| ≤ ε.

Obviously, the above inequality holds if

1

(2n + 2)!
(
π

2
)2n+2 ≤ 0.0005.

Hence n = 4, so that the Taylor polynomial

TL9(x) = x − x3

3!
+

x5

5!
− x7

7!
+

x9

9!

approximates sin x in the interval [0, π
2
] with accuracy upto three decimal

places.
Solution of (b), (ii) For the function cos x, we find

f (n)(x) = (cos x)(n) =



















cos x for n = 4k, k = 0, 1, . . . ;
−sin x for n = 4k + 1, k = 0, 1, . . . ;
−cos x for n = 4k + 2, k = 0, 1, . . . ;
sin x for n = 4k + 3, k = 0, 1, . . . ;

and

cos(n)0 =

{

(−1)k for n = 2k, k = 0, 1, . . . ;
0 for n = 2k + 1, k = 0, 1, . . . ;

Thus, Taylor polynomial

TL2n(x) = 1 − x2

2!
+

x4

4!
+ · · · + (−1)n x2n

2n!
,

where the remainder

R2n+1(ξx) = (−1)n+1 (cos ξx)
(2n+1)

(2n + 1)!
x2n+1.
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In order to get accuracy of three decimal places, we choose n = 4 and the
polynomial

TL8(x) = 1 − x2

2!
+

x4

4!
− x6

6!
+

x8

8!
.

Then, for n = 4, we have the following remainder estimate

| R2n+1(ξx) |=| (−1)n+1 (cos ξx)
(2n+1)

(2n + 1)!
| ≤ 1

(2n + 1)!
(
π

2
)(2n+1) ≤ 0.0005.

Question 3.1 Find the Taylor polynomial T3(, f, x) and T4(g, x) of the fol-
lowing functions:

(a)

f(x) = sinh x =
ex − e−x

2
,

g(x) = sin
π

2
x + cos

π

2
x, 0 ≤ x ≤ 1

(b) Give an estimate of the errors

E(f) = f(x) − T3(f, x), E(g) = g(x) − T4(g, x), 0 ≤ x ≤ 1.

of approximation

Question 3.2 Find Taylor’s polynomial T3(x), n = 3 about x0 = 0 for the
following functions:

(a)

(i) f(x) = sinx, (ii) g(x) = cos x, 0 ≤ x ≤ π

2
.

(b) Evaluate an approximate values of sin
π

8
, and cos

π

12
using the Taylor’s

polynomials T3(x). Estimate the errors of approximation

Question 3.3 Find Taylor’s polynomial T3(x), n = 3 about x0 = 0 for the
following functions:

(a)

(i) f(x) =
√

1 + x, (ii) g(x) =
√

10 + x, 0 ≤ x ≤ 1.

(b) Evaluate an approximate values of
√

0.9, and
√

9.9 using the Taylor’s
polynomials T3(x). Estimate the errors of approximation



Chapter 4

Indeterminate Forms and
L’Hopital Rule

4.1 Indeterminate Forms

We consider several limits which take the form:

0

0
,

∞
∞ , 0 · ∞,

To each of these symbols there corresponds an expression that involves two
functions, say f(x) and g(x), and the limit, as x → xo, or as x → ∞, of the
expression considered.
Suppose that the functions f and g are defined in a neighborhood of a given
point xo and suppose that

lim
x→xo

f(x) = lim
x→xo

g(x) = 0.

Then the limit

lim
x→xo

f(x)

g(x)

is said to be of the
0

0
form.

The symbol
0

0
is called an indeterminate symbol.

Now we define the first two indeterminate symbols.

Definition 4.1 The expression
f(x)

g(x)
(4.1)

is of
0

0
form at the point xo, if

lim
x→xo

f(x) = lim
x→xo

g(x) = 0;
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it is of
0

0
form, as x → ∞, if

lim
x→∞

f(x) = lim
x→∞

g(x) = 0.

Definition 4.2 An expression is of
∞
∞ form at the point xo, if

lim
x→xo

f(x) = lim
x→xo

g(x) = ∞;

it is of
∞
∞ form, as x → ∞, if

lim
x→∞

f(x) = lim
x→∞

g(x) = ∞.

4.2 L’Hôpital’s Rule

Suppose that
lim

x→xo

f(x) = 0 and lim
x→xo

g(x) = 0,

and suppose that lim
x→xo

f ′(x)

g′(x)
exists. Then lim

x→xo

f(x)

g(x)
also exists and

lim
x→xo

f(x)

g(x)
= lim

x→xo

f ′(x)

g′(x)
. (4.2)

Example 4.1 Evaluate

L = lim
x−>0

sinx

x

Solution. We have

f(x) = sinx, f(0) = 0, g(x) = x, g(0) = 0,

f ′(x) = cosx, f ′(0) = 1, g′(x) = 1, g′(0) = 1.

By the L’Hopital rule

L = lim
x→0

f ′(x)

g′(x)
= lim

x→0

cos x

1
= 1

Example 4.2 Evaluate

L = lim
x−>0

x3 − 5x2 + 6x − 2

x5 − 4x4 + 7x2 − 9x + 5

Solution. We have

f(x) = x3 − 5x2 + 6x − 2, f(1) = 0,

g(x) = x5 − 4x4 + 7x2 − 9x + 5, g(1) = 0,

f ′(x) = 3x2 − 10x + 6, f ′(1) = −1,

g′(x) = 5x4 − 16x3 + 14x − 9, g′(1) = −6.
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Hence, by L’Lopital rule, we obtain

L = lim
x−>1

x3 − 5x2 + 6x − 2

x5 − 4x4 + 7x2 − 9x + 5
= lim

x−>1

3x2 − 10x + 6

5x4 − 16x3 + 14x − 9
=

1

6

Example 4.3 Using L’Hôpital’s Rule to evaluate limits of the
0

0
form at a

given point x = xo.

(a) lim
x→0

x + sin 5x

x − sin 5x
= lim

x→0

1 + 5 cos 5x

1 − 5 cos 5x
= −3

2
.

(b) lim
x→0

sin 5x

x
= lim

x→0
5 cos x = 5.

(c) lim
x→0

cos2 x− 1

x2
= −lim

x→0

2 sin x cosx

2x
= −lim

x→0

sin 2x

2x
= −1.

(d) lim
x→0

x

tan x
= lim

x→0

1

1/ cos2 x
= lim

x→0
cos2 x = 1.

(e) lim
x→0

1 − cos x

sin2 x
= lim

x→0

sinx

2 sin x cos x
= lim

x→0

1

2 cos x
=

1

2
.

(f) lim
x→0

1 − cos x2

sin2 x
= lim

x→0

2x sin x2

2 sin x cos x
= lim

x→0

2x

sin 2x
· lim

x→0
sin x2 = 1 · 0 = 0.

(g) lim
x→0

2x − 3x

sinx
= lim

x→0

2x log 2 − 3x log 3

cosx
= log 2 − log 4 = log

2

3
.

(h) lim
h→0

eh − 1

h
= lim

h→0

eh

1
= 1; (i) lim

x→1

x3 − 1

x2 − 1
= lim

x→1

3x2

2x
=

3

2
.
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Chapter 5

Improper Integrals

5.1 Improper Integrals of the First Kind

We consider improper integrals of the first king with infinite limits of integra-
tion

∫ b

−∞
f(x)dx,

∫ +∞

a
f(x)dx,

∫ +∞

−∞
f(x)dx,

when one or both limits of integration are infinite.
In order to evaluate an improper integral of the first kind, we apply the fol-
lowing definition:

Definition 5.1 Let f be a continuous function in intervals either [a, λ] or
[λ, b] for every either λ > a or λ < b. If the limits

lim
λ→∞

∫ λ

a
f(x)dx, lim

λ→∞

∫ b

−λ
f(x)dx (5.1)

exists, then we say that the integrals
∫ ∞

a
f(x)dx,

∫ b

−∞
f(x)dx

are convergent and we write
∫ ∞

a
f(x)dx = lim

λ−>∞

∫ λ

a
f(x)dx,

∫ b

−∞
f(x)dx = lim

λ>∞

∫ b

−λ
f(x)dx.

If the limits (5.1) do not exist, we say that the improper integrals

∫ ∞

a
f(x)dx, or

∫ b

−∞
f(x)dx

are divergent.

A similar approach is used for integrals over the entire line. The improper

integral
∫ ∞

−∞
f(x)dx is defined as the limit of

∫ λ

µ
f(x)dx, when µ → −∞ and
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λ → +∞, in dependently of each other, provided that this limit exists.

Equivalently, the improper integral
∫ ∞

−∞
f(x)dx can be expressed as the sum

∫ ∞

−∞
f(x)dx =

∫ b

−∞
f(x)dx +

∫ +∞

b
f(x)dx,

where b is any real number. Since b can be arbitrarily chosen, in practice we

choose b so that the two integrals
∫ b

−∞
f(x)dx and

∫ +∞

b
f(x)dx can be easily

examined.

Example 5.1 Consider the infinite integral

∫ ∞

1

1

x2
dx.

We evaluate the proper in the limits from 1 to λ

∫ λ

1

1

x2
dx = (−1

x
)|λ1 = 1 − 1

λ
,

Then, we find

∫ ∞

1

1

x2
dx = lim

λ−>∞

∫ λ

1

1

x2
dx = lim

λ−>∞
(1 − 1

λ
) = 1

Thus, the improper integral converges to the limit 1:

Example 5.2 Consider the improper integral

∫ ∞

1

1√
x
dx.

We evaluate the proper integral from 1 to λ

∫ λ

1

1√
x
dx = 2

√
x|λ1 = 2(

√
λ − 1) → +∞, as λ → +∞.

Thus the integral
∫ ∞

1

1√
x
dx diverges to +∞ and we write

∫ ∞

1

1√
x
dx = +∞.

Example 5.3 Consider the improper integral

∫ ∞

0

1

1 + x2
dx
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We evaluate the proper integral from 0 to λ
∫ λ

0

1

1 + x2
dx = Arctanx|λ0 = Arctanλ

Then, we find
∫ ∞

0

1

1 + x2
dx = lim

λ−>∞

∫ λ

0

1

1 + x2
dx = lim

λ−>∞
Arctanλ =

π

2

Also, we evaluate the integral
∫ λ

−µ

1

1 + x2
dx = arctan λ + arctan µ|λµ,

∫ ∞

−∞

1

1 + x2
dx = lim

λ,µ→+∞
(arctanλ + arctan µ) =

π

2
+

π

2
= π.

Example 5.4 Consider the improper integral
∫ ∞

1

dx

xα

We evaluate the proper integral from 1 to λ

∫ λ

1

dx

xα
=

x1−α

1 − α
|λ1 =

λ1−α

1 − α
− 1

1 − α
, α 6= 0.

Hence, we find

∫ ∞

1

dx

xα
= lim

λ−>∞

∫ λ

1

dx

xα
= lim

λ−>∞

λ1−α

1 − α
=











1

α − 1
, if α > 1,

∞, if α < 1

5.2 Improper Integrals of the Second Kind

In this section we consider integrals over a finite interval [a, b], when the in-
tegrand f(x) has infinite singularity at some point or points in [a, b]. Recall
that f has an infinite singularity at the point x = xo, if f is not defined at the
point xo and when one-sided limits, as x approaches xo, are infinite.

Definition 5.2 Assume that f is integrable on every interval of the form ei-
ther [a, b− ε], or [a + ε, b], where 0 < ε < b − a, or [a + ε, b], but f has an
infinite singularity at the point x = b or x0 = a, that is lim

x→b−
f(x) or lim

x→a+
f(x)

is infinite.
Then improper integrals are defined as

∫ b

a
f(x)dx = lim

ε→0

∫ b−ε

a
f(x)dx,

∫ b

a
f(x)dx = lim

ε→0

∫ a

a+ε
f(x)dx,

provided that these limits exist.
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Example 5.5 Examining convergence of improper integrals of the second kind.

(a) Consider
∫ 1

0

1√
x
dx.

The integrand f(x) =
1√
x

is not bounded on the interval (0, 1] and lim
x→0−

f(x) =

+∞. The function f(x), however, is integrable over every interval [ε, 1], for
0 < ε < 1. We find the proper integral from ε to 1

∫ 1

ε

1√
x
dx = 2

√
x

∣

∣

∣

∣

∣

1

ε

= 2(1 −
√

ε) → 2, as ε → 0 + .

Therefore, the improper integral
∫ 1

0

1√
x
dx converges to the limit 2:

∫ 1

0

1√
x
dx = lim

ε→0+

∫ 1

ε

1√
x
dx = 2.

(b). Consider
∫ 1

0

1

x
dx.

Similarly to (a), the integrand f(x) =
1

x
is not bounded on the interval (0, 1]

and lim
x→0−

f(x) = +∞. Moreover, the function f(x) is integrable over every

interval [ε, 1], for 0 < ε < 1. Now we find the proper integral

∫ 1

ε

1

x
dx = lnx

∣

∣

∣

∣

1

ε

= − ln ε → +∞ as ε → 0 + .

Therefore, the improper integral
∫ 1

0

1

x
dx diverges to +∞ and we write

∫ 1

0

1

x
dx = +∞.

(c). Consider the integral
∫ 1

0

1

xα
dx,

where α is any real number. We note that we have already considered this
integral in (a) with α = 1

2
and in (b) with α = 1.

We deal with the infinite singularity at the point a = 0, and we note that

the function f(x) =
1

xα
is integrable over every interval [ε, 1] for 0 < ε < 1

and for every real value of α.
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We find the proper integral
∫ 1

ε

1

xα
dx =

1

1 − α
x(1−α)

∣

∣

∣

∣

1

ε

=
1

1 − α

(

1 − ε1−α
)

,

provided α 6= 1. Thus

lim
ε→0+

∫ 1

ε

1

xα
dx =







1

1 − α
if α < 1

+∞ if α > 1.

Combining the above with the result obtained in (b), we conclude that the
integral

∫ 1

0

1

xα
dx

converges for α < 1 and diverges for α ≥ 1. If α < 1 then
∫ 1

0

1

xα
dx =

1

1 − α
.

(d). Let f(x) =
1√

1 − x2
and consider the integral

∫ 1

0
f(x)dx =

∫ 1

0

1√
1 − x2

dx.

We note that lim
x→1−

f(x) = +∞, so that f(x), defined for |x| < 1, is not

bounded on the interval [0, 1).
The integral has a singularity point at x = 1, but f(x) is integrable over any
interval [0, 1 − ε], where 0 < ε < 1. We find the proper integral

∫ 1−ε

0

1√
1 − x2

dx = arcsinx

∣

∣

∣

∣

∣

1−ε

0

= arcsin(1 − ε) → π

2
, as ε → 0 + .

Hence
∫ 1

0
f(x)dx converges to π/2:

∫ 1

0

1√
1 − x2

dx = lim
ε→0+

∫ 1−ε

0

1√
1 − x2

dx =
π

2
.

(e). Consider the integral
∫ 1

0

1
√

x(1 − x)
dx.

It has two singularity points: at x = 0 and at x = 1.
We find the proper integral

∫ 1−ε

ε′

1
√

x(1 − x)
dx = arcsin(2x − 1)

∣

∣

∣

∣

∣

∣

1−ε

ε′

= arcsin(1 − 2ε) − arcsin(2ε′ − 1).
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Thus

lim
ε,ε′→0+

∫ 1−ε

ε′

1
√

x(1 − x)
dx = lim

ε→0+
arcsin(1 − 2ε) − lim

ε′→0+
arcsin(2ε′ − 1)

= arcsin 1 − arcsin(−1)

=
π

2
− (−π

2
) = π.

Therefore we conclude that the improper integral
∫ 1

0

1
√

x(1 − x)
dx

converges to π:
∫ 1

0

1
√

x(1 − x)
dx = lim

ε,ε′→0+

∫ 1−ε

ε′

1
√

x(1 − x)
dx = π.

(f). Consider the integral
∫ 1

0

1

1 − x
dx,

that has a singularity point at x = 1:

lim
x→1−

1

1 − x
= +∞. We find the proper integral

∫ 1−ε

0

1

1 − x
dx = − ln(1 − x)

∣

∣

∣

∣

1−ε

0
= − ln ε → +∞ as ε → 0 + .

Therefore,
∫ 1

0

1

1 − x
dx diverges to +∞:

∫ 1

0

1

1 − x
dx = +∞.

5.3 Comparison Tests for Integrals

5.3 Comparison Tests for Integrals

Theorem 5.1 Comparison Test I

Suppose that f and g are defined on the interval [a, +∞) and integrable on
[a, λ] for every λ > a.

If
0 ≤ f(x) ≤ g(x),

for all x ∈ [a, +∞), then

(i)
∫ +∞

a
f(x)dx converges if

∫ +∞

a
g(x)dx converges;

(ii)
∫ +∞

a
g(x)dx diverges if

∫ +∞

a
f(x)dx diverges.
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Proof. Since 0 < f(x) < g(x), for x ≥ a, we get

0 ≤
∫ λ

a
f(x)dx ≤

∫ λ

a
g(x)dx, x ≥ a,

and each integral is monotone increasing function of λ.

Hence, if
∫ λ
a g(x)dx converges,

∫ λ
a f(x)dx is bounded above and so it con-

verges.

If
∫ λ
a f(x)dx diverges then

∫ λ
a g(x)dx is unbounded and hence diverges.

Example 5.6 Does
∫ +∞

0

1

ex + 3
dx converge?

Solution. Let f(x) = e−x and g(x) =
1

ex + 3
, for x ∈ [0, +∞). We have

0 <
1

ex + 3
<

1

ex
= e−x, x ∈ [0, +∞),

and both functions, f and g, are integrable on [0, λ] for every λ > 0. Thus the
hypotheses of the Comparison Test I are satisfied. Now,

∫ +∞

0
f(x)dx =

∫ +∞

0
e−xdx

= − lim
λ→+∞

e−x

= − lim
λ→+∞

e−x|λ0
= − lim

λ→+∞
(1 − e−λ) = 1.

Therefore, by the Comparison Test, the improper integral
∫ +∞

0

1

ex + 3
dx

converges.
An analogous comparison test holds for improper integrals of the second kind.
We leave its formulation to the reader. The following example illustrates the
point.

Example 5.7 Does
∫ 1

0

1

x2 +
√

x
dx converge?

Solution. We have

1

x2 +
√

x
<

1√
x
, x ∈ (0, 1],

and
∫ 1

0

1√
x
dx = lim

ε→0+

∫ 1

ε

1√
x
dx = lim

ε→0+
2
√

x

∣

∣

∣

∣

∣

1

ε

= lim
ε→0+

(2 − 2
√

ε) = 2.
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Since
∫ 1

0

1√
x
dx converges, by the Comparison Test, we conclude that

∫ 1

0

1

x2 +
√

x
dx

converges.

Example 5.8 Examining convergence of an improper integral of the third
kind.

Consider the infinite integral
∫ ∞

0

1

x2 +
√

x
dx and note that the integrand has

a singular point at x = 0. Thus
∫ ∞

0

1

x2 +
√

x
dx is an improper integral of the

third kind.
We can write

∫ ∞

0

1

x2 +
√

x
dx =

∫ b

0

1

x2 +
√

x
dx +

∫ ∞

b

1

x2 +
√

x
dx,

where the point x = b for splitting up the interval of integration can be chosen
quite arbitrarily.

Let b = 1. We examine separately convergence of each of
∫ 1

0

1

x2 +
√

x
dx and

∫ ∞

1

1

x2 +
√

x
dx.

The integral
∫ 1

0

1

x2 +
√

x
dx converges by Example 5.7.

The integral
∫ ∞

1

1

x2 +
√

x
dx converges, by the Comparison Test, because

1

x2 +
√

x
<

1

x2
, x ∈ [1,∞) and

∫ ∞

1

1

x2
dx converges.

Therefore, we conclude that the integral
∫ ∞

0

1

x2 +
√

x
dx

converges.

Example 5.9 Is the function f(t) = tx−1e−t, where x is a real number, inte-
grable over the interval [0, 1]?

Solution. We shall consider separately the three cases: x ≤ 0, 0 < x < 1,
and x ≥ 1. Refer to Figure ?? to see graphs of f(t), 0 < t < 1, for selected
values of x.
Case 1: x ≤ 0.

On the interval [0, 1] we have et < 3, so tx−1e−t >
1

3
tx−1. By Example 5.5(b),
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∫ 1

0
tx−1dt diverges, since x− 1 ≤ −1. Hence

∫ 1

0
tx−1e−tdt diverges for x ≤ 0.

Case 2: 0 < x < 1.
If 0 < x < 1, then the function f(t) = tx−1e−t has an infinite singularity at

the point t = 0 and
∫ 1

0
tx−1e−tdt is an improper integral of the second kind.

If t ≥ 0 then 0 < e−t ≤ 1 and tx−1e−t ≤ tx−1. Now, the improper integral
∫ 1

0
tx−1dt converges for all values of x such that 0 < 1 − x < 1 or 0 < x < 1.

By the Comparison Test, therefore, we conclude that the improper integral
∫ 1
0 tx−1e−tdt converges for 0 < x < 1.

Case 3: x ≥ 1.
The function f(t) is continuous for t ∈ [0, 1] and, therefore, integrable. Hence
tx−1e−tdt exists for x ≥ 1.
Therefore, the function f(t) = tx−1e−t is integrable over the interval [0, 1],
provided that x > 0, but not integrable if x ≤ 0.

Example 5.10 Is the function f(t) = tx−1e−t, where x > 0, integrable on the
interval [1, +∞)?

Solution. The integral
∫ +∞

1
tx−1e−tdt is an improper integral of the first

kind. We shall prove that it converges by comparing the integrand f(x) with

the function g(t) = t−2. Now, the improper integral
∫ +∞

to

t−2dt converges.

Hence, by the Comparison Test,
∫ +∞

to

e−ttx−1dt converges.

Since f(t) = e−ttx−1 is integrable on any interval of the form [1, to], we conclude
that

∫ +∞

1
tx−1e−tdt =

∫ to

1
tx−1e−tdt +

∫ +∞

to

tx−1e−tdt

converges, when x > 0.
Therefore, the function f(t) = tx−1e−t, where x > 0, is integrable on the in-
terval [1, +∞).
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Chapter 6

Sequences and Series

6.1 Sequences

Let us begin with the definition

Definition 6.1 A sequence of real numbers is a real-valued function f whose
domain is the set of natural numbers N = {1, 2, ..., }, i.e.

f : N− > R, R is the set of real numbers

The function f which defines a sequence is a rule that assigns to each natural
number n a unique real value, normally denoted by

f(n) = an, n = 1, 2, . . .

The number an is called the n-th term of the sequence and the corresponding
sequence is denoted by the symbol

{an} = {a1, a2, a3, a4, . . .}.

We will find it convenient to use the notations {bn}, {cn}, {dn}, and {xn}, {yn},
etc., in addition to {an}, to denote sequences, especially when we deal with
two or more sequences at a time.

Example 6.1 Defining sequences:

(a) The function f(n) =
n

n + 1
, n ∈ N , defines a sequence with n-th term

an =
n

n + 1
, so that

a1 =
1

1 + 1
=

1

2
, a2 =

2

2 + 1
=

2

3
, a3 =

3

3 + 1
=

3

4
,

and so on. We have

{an} = {1

2
,

2

3
,

3

4
,

4

5
, . . . ,

n

n + 1
, . . .}.

117



118

(b) The function f(n) =
(−1)n

n2
, n ∈ N, defines the sequence

{ bn } = {−1,
1

4
, −1

9
,

1

16
, − 1

25
,

1

36
, . . .

(−1)n

n2
, . . . }.

(c) The function

f(n) = cn = (−1)n n2

n + 2
, n ∈ N,

defines the sequence

{cn} = {−1

3
,

4

4
, −9

5
,

16

6
, −25

7
, . . . , (−1)n n2

n + 2
, . . .}

6.1.1 Definition of Convergence

Let us state the intuitive definition of convergence of a sequence {an}, n =
1, 2, ..., ;

Definition 6.2 If an approaches a number a, when n approaches ∞, that is
an− > a when n− > ∞, so that, a is the limit of the sequence {an}, n =
1, 2, ...;. Then, the sequence is convergent to the limit a
In symbols, we write

lim
n−>∞

an = a

Otherwise, the sequence {an}, n = 1, 2, ...; is divergent.

Thus, as n increase, an gets arbitrarily close to a.

Theorem 6.1 If the limit lim
n→∞

an = a exists, then it is unique.

Example 6.2 Showing that lim
n→∞

an = a directly from the definition.

(a) Consider the sequence

an =
n

n + 1
The terms

a1 =
1

2
,

a2 =
2

3
,

a3 =
3

4
,

a4 =
4

5
...

an = 1 − 1

n + 1
, ...
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Hence, an =
n

n + 1
= 1 − 1

n + 1
− > 1 when n− > ∞, since

1

n + 1
− > 0, when

n− > ∞.
(b) Clearly

lim
n→∞

(−1)n

n2
= 0.

If an tends to the limit +∞ then we write

lim
n→∞

an = +∞.

If an has limit −∞ then we write

lim
n→∞

an = −∞.

For example the sequence an = n2, n = 1, 2, ...; has the infinite limit

lim
n−>∞

an = lim
n−>∞

n2 = ∞

Intuitively, lim
n→∞

an = +∞ means that an increase without bound, as n in-

crease, whereas lim
n→∞

an = −∞ means that an decreases without bound, as n

increase.
If lim

n→∞
an = +∞ then with any positive value of M , no matter how large it

is, we can find an N such that all terms an ≥ M, for n > N, are greater than
M . Similarly, if lim

n→∞
an = −∞, then for any M > 0 there exists N such that

all terms an ≤ −M , for n > N , are less than −M .
Infinite limits of the sequence.

lim
n→∞

n2

n + 1
= +∞.

Let M be any positive number. Following definition, we are to find N such
that an > M for all n > N . We have

an =
n2

n + 1
>

n2

2n
=

n

2
> M, provided n > 2M,

so we can take N = [2M ].

6.1.2 Bounded Sequences

We consider bounded sequences in the sense of the following definitions:

• A sequence {an}, n = 1, 2, ... is bounded if there are two numbers m and
M such that

m ≤ an ≤ M

for all n = 1, 2, ...;
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• A sequence {an}, n = 1, 2, ... is bounded above if there is a numbers M
such that

an ≤ M

for all n = 1, 2, ...;

• A sequence {an}, n = 1, 2, ... is bounded below if there is a numbers m
such that

m ≤ an

for all n = 1, 2, ...;

The following theorem holds:

Theorem 6.2 If the limit

lim
n−>∞

an,

exists, then the sequence {an} is bounded.

Proof. Let the sequence {an}, n = 1, 2, ... be convergent to the limit a. Then
almost all terms of the sequence lie in the neighborhood of the limit a. That
is, all exempt a finite number of terms, say

m = min{a1, a2, ..., ak} ≤ an ≤ M = max{a1, a2, ..., ak}

for a certain k. But, all remaining terms satisfy the inequality

a − ε ≤ ak+1, ak+2, ..., an, ... ≤ a + ε

Hence, all terms of the sequence are between m0 = min{a − ε, m} and M0 =
max{a + ε, M}, that is

m0 ≤ an ≤ M0,

for all n = 1, 2, ...;

6.1.3 The Algebra of Limits

It is clearly not always straightforward to use the definition of convergence
to prove that a sequence {an} converges to a known limit a. Moreover, if
the limit a is not known, then the definition of convergence may not help in
determining a.

Now we are going to introduce some useful results that enable us to evaluate
limits of quite complicated sequences without appealing to the definition of
convergence.

The following theorem can be used to evaluate the limits of sequences that
arise by applying the arithmetic operations of addition, multiplication, and
division on convergent sequences with known limits.
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Theorem 6.3 Suppose that {an} and {bn} are convergent sequences and let c
be a real number. Then the sequences

{can}, {an + bn}, {anbn}

are convergent and the following rules apply.

(i) Scalar product rule:
lim

n→∞
c an = c lim

n→∞
an,

(ii) Sum rule:
lim

n→∞
(an + bn) = lim

n→∞
an + lim

n→∞
bn,

(iii) Product rule:
lim

n→∞
anbn = lim

n→∞
an · lim

n→∞
bn.

(iv) Quotient rule:

If bn 6= 0, for n = 1, 2, . . ., so that the sequence {an

bn

} is defined, and if

lim
n→∞

bn 6= 0, then the sequence {an

bn

} converges and lim
n→∞

an

bn

=
lim

n→∞
an

lim
n→∞

bn

.

6.1.4 The Squeeze Theorem for Sequences

When examining the convergence of a given sequence {an}, quite often it is
possible to find two sequences, say {xn} and {yn}, such that

xn ≤ an ≤ yn, for n > M ∈ N,

so that, eventually, all terms of {an} are “squeezed” between the corresponding
terms of {xn} and {yn}. If {xn} and {yn} converge to the same limit l, then
the sequence {an} must converge to the limit l.

Theorem 6.4 Squeeze theorem
Suppose that

xn ≤ an ≤ yn, for n > M ∈ N (6.1)

and
lim

n→∞
xn = lim

n→∞
yn = l. (6.2)

Then
lim

n→∞
an = l.

Example 6.3 Prove that limn−>∞
n
√

a = 1, for a > 0.

Solution. We consider two cases.
Case 1. a ≥ 1.
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If a ≥ 1 then n
√

a ≥ 1 and n
√

a = 1 + dn, where dn ≥ 0. Thus, by the Bernoulli
inequality,

a = (1 + dn)n ≥ 1 + ndn n ≥ 2.

Since

lim
n→∞

a − 1

n
= 0,

by the Squeeze Theorem, it follows that

lim
n→∞

dn = 0

and consequently
lim

n→∞
n
√

a = 1 + lim
n→∞

dn = 1.

Case 2. 0 < a < 1.

If 0 < a < 1, then a = 1/b, where b > 0, and

lim
n→∞

n
√

b = 1,

which implies

lim
n→∞

n
√

a =
1

lim
n→∞

n
√

b
= 1.

Example 6.4 Prove that lim
n→∞

n
√

n = 1.

Solution. We note that n
√

n > 1, when n > 1, so that we can write

n
√

n = 1 + dn, where dn > 0

and we have

n = (1 + dn)n = 1 +

(

n

1

)

dn +

(

n

2

)

d2
n + · · · +

(

n

n

)

dn
n >

(

n

2

)

d2
n.

Thus

n >

(

n

2

)

d2
n =

n(n − 1)

2
d2

n

which implies that

0 < dn <

√

2

n − 1
, n = 2, 3, . . . ,

Hence lim
n→∞

dn = 0 and

lim
n→∞

n
√

n = lim
n→∞

(1 + dn) = 1.

Example 6.5 Find the limit

lim
n−>∞

n
√

2n + 3n
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Firstly, we show, by squeeze theorem, that the sequence

an = n
√

2n + 3n, n = 1, 2, ...

is convergent.
We have the inequality

3 < n
√

2n + 3n < 3
n
√

2, n = 1, 2, ....

Because lim n
√

2 = 1 therefore, by the squeeze theorem, the sequence an =
n
√

2n + 3n, n = 1, 2, ... is convergent and its limit

lim
n−>∞

n
√

2n + 3n = 3

6.1.5 Monotone Sequences

We consider monotone sequences in the following sense:

• the sequence {an} is increasing if an+1 ≥ an for all n = 1, 2, ...;

• the sequence {an} is decreasing if an+1 ≤ an for all n = 1, 2, ...;

The following theorem holds:

Theorem 6.5 .

• If the sequence {an} is increasing and bounded above, then it is convergent
sequence.

• If the sequence {an} is decreasing and bounded below, then it is convergent
sequence.

Proof. By the assumption

an ≤ sup
n∈N

an = M

for all n = 1, 2, ...;.
But, the sequence is increasing, therefore, for ε > 0 all terms satisfy inequality

M − ε ≤ an ≤ M,

starting from n ≥ Nε. It means that the sequence converges and a = M is the
limit.
Similarly, By the assumption

an ≥ inf
n∈N

an = m

for all n = 1, 2, ...;.
But, the sequence is decreasing, therefore, for ε > 0 all terms satisfy inequality

m + ε ≥ an ≥ m,

starting from n ≥ Nε. It means that the sequence converges and a = m is the
limit.
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Example 6.6 Let a > b > 0 be two given real numbers. Consider the se-
quences of arithmetic and geometric averages

a1 =
a + b

2
b1 =

√
a b

a2 =
a1 + b1

2
b2 =

√

a1 b1

a3 =
a2 + b2

2
b3 =

√

a2 b2

........................ ...............................

an+1 =
an + bn

2
bn+1 =

√

an bn, n = 1, 2, ...

We note that
a > a1 > b1 > b

Indeed, we have

1

2
(
√

a −
√

b)2 =
1

2
(a + b) −

√
a b > 0

Hence

a1 =
a + b

2
>

√
a b = b1 > b. (6.3)

Similarly, having an and bn, we define

an+1 =
an + bn

2
, bn+1 =

√

an bn

and we apply inequality (6.3) for an, an+1, bn and bn+1 to obtain

an > an+1 > bn+1 > bn (6.4)

Then, the first sequence {an} is decreasing and the second sequence {bn} is
increasing. But, both sequences are bounded, by a and b, since

a > an > bn > b

for all n = 1, 2, ...
By the theorem both sequences {an} and {bn} are convergent.
Let the limits

α = lim
n−>∞

an, β = lim
n−>∞

bn.

From the equality

an+1 =
an + bn

2
we find

α =
α + β

2
, α = β
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Example 6.7 Consider the sequence given by the recursive formula

a1 =
√

2, x2 =
√

2 +
√

2, a3 =

√

2 +
√

2 +
√

2

In general
an+1 =

√
2 + an, n = 1, 2, ....

Clearly, the sequence is increasing, since

an+1 =
√

2 + an =

√

2 +
√

2 + an−1 >
√

2 + an−1 = an

for n = 1, 2, ...
Also, the sequence is upper bounded by 1 +

√
2, because

a1 =
√

2, a2 =
√

2 +
√

2 < 1 +
√

2

and by mathematical induction, if an < 1 +
√

2 then

an+1 =
√

2 +
√

an <
√

2 +
√

2 + 1 < 1 +
√

2

for n = 1, 2, ....
By the theorem, the sequence is convergent.
Let

α = lim
n−>∞

an

Then, we find

α = lim
n−>∞

an+1 =
√

2 + lim
n−>∞

an =
√

2 + α

Hence, α satisfies the quadratic equation

α2 = 2 + α

Then the limit α = 2. let us note that the negative root α = −1 of the
quadratic equation cannot be the limit.

6.1.6 The Number e

One of the fundamental constants in Mathematical Analysis is the number

e = 2, 7182818284 . . . .

It can be defined as a limit of an increasing sequence.
Let

an = (1 +
1

n
)n, n = 1, 2, . . .



126

We shall show that {an} is strictly increasing and bounded above. So that, by
virtue of theorem, {an} is convergent.
By the Bernoulli inequality,

(1 − 1

n2
)n > 1 − 1

n
for n > 1.

We have

(1 − 1

n2
)n > 1 − 1

n
implies (1 +

1

n
)n(1 − 1

n
)n > 1 − 1

n

implies (1 +
1

n
)n(1 − 1

n
)n−1 > 1,

for all n = 1, 2, ...
Therefore

(

1 +
1

n

)n

>

(

1

1 − 1
n

)n−1

=
(

n

n − 1

)n−1

and we get

an = (1 +
1

n
)n > (

n

n − 1
)n−1 = (1 +

1

n − 1
)n−1 = an−1, for all n = 1, 2, ..

In order to show that the sequence is bounded above, we apply the binomial
expansion, for n > 2,

an = (1 +
1

n
)n =

n
∑

k=0

(

n

k

)

1n−k(
1

n
)k = 1 + 1 +

n
∑

k=2

(

n

k

)

(
1

n
)k = 2 +

n
∑

k=2

αk.

The k-th term of the sum
∑

αk can be written as

αk =

(

n

k

)

(
1

n
)k =

n(n − 1)(n − 2) · · · (n − k + 2)(n − k + 1)

k!
(
1

n
)k

=
n

n

n − 1

n

n − 2

n
· · · n − k + 2

n

n − k + 1

n

1

k!

=
1

k!
(1 − 1

n
)(1 − 2

n
) · · · (1 − k − 1

n
).

So that

αk <
1

k!
=

1

1 × 2 × 3 × · · · × k
<

1

1 × 2 × 2 × · · · × 2
=

1

2k−1
,

for k = 2, 3, . . . , n. Therefore

an = 1 + 1 +
n
∑

k=2

αk < 1 + 1 +
1

2
+

1

22
+ · · · + 1

2n−1

= 1 +
1 − (1

2
)n

1 − 1
2

= 1 + 2(1 − (
1

2
)n) < 3,
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for all n = 1, 2, . . . .
By the theorem on monotone and bounded sequences, the sequence

an = (1 +
1

n
)n, n = 1, 2, ...;

is convergent and its limit

lim
n−>∞

(1 +
1

n
)n = e = 2.7182818284...

6.2 Infinite Series

Let us begin with the definition

Definition 6.3 Let {ak}, k = 0, 1, 2, . . . , be a given sequence of real numbers.
Consider the sequence {Sn} defined as the sum of the first n+1 terms of {ak}:

Sn = ao + a1 + a2 + · · · + an =
n
∑

k=0

ak. (6.5)

If {Sn} converges to the limit S,

lim
n−>∞

Sn = S,

then we define
∞
∑

k=0

ak to be S:

S =
∞
∑

k=0

ak (6.6)

and call S the sum of the infinite series The series is then said to be convergent;
otherwise it is said to be divergent. The sum Sn defined by is called the n-th
partial sum of the infinite series

Example 6.8 Show that the series
∞
∑

n=1

1

n(n + 1)
converges.

Solution. We have

an =
1

n(n + 1)
.

and
1

n(n + 1)
=

1

n
− 1

n + 1
,

Hence, we obtain

Sn =
(

1 − 1

2

)

+
(

1

2
− 1

3

)

+ · · · +
(

1

n
− 1

n + 1

)

= 1 − 1

n + 1
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So that Sn = 1 − 1

n + 1
− > 1 when n− > ∞

Thus, the given series converges and its sum
∞
∑

n=1

1

n(n + 1)
= 1.

The necessary condition for convergence of a infinite series, we give in the
following theorem:

Theorem 6.6 If
∞
∑

k=0

ak is convergent then lim
n→∞

an = 0.

Proof. Suppose that
∞
∑

n=0

an = S.

Then
lim

n→∞
Sn = S and lim

n→∞
Sn−1 = S.

Since Sn − Sn−1 = an, we have

lim
n→∞

an = lim
n→∞

(Sn − Sn−1) = lim
n→∞

Sn − lim
n→∞

Sn−1 = S − S = 0.

Therefore, lim
n−>∞

an = 0 is the necessary condition for convergence of the infi-

nite series
∞
∑

n=0

an.

Example 6.9 Show that the infinite series

∞
∑

n=0

rn,

where |r| ≥ 1, is divergent.

Solution. Recall that lim
n→∞

rn = ∞, when |r| > 1 and lim
n→∞

rn = 1, when

|r| = 1. Hence
lim

n→∞
an = lim

n→∞
rn 6= 0

and the necessary condition for convergence is not satisfied. Consequently,
∑

rn is divergent, when |r| ≥ 1.

Example 6.10 Find the sum of the infinite series
∞
∑

n=0

rn, |r| < 1.

Solution. We have

Sn = 1+ r + r2 + · · · + rn

rSn = r + r2 + · · · + rn + rn+1,

and Sn − rSn = 1 − rn+1 which gives

Sn =
1 − rn+1

1 − r
.
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Since |r| < 1,

lim
n→∞

Sn = lim
n→∞

1 − rn+1

1 − r
=

1 − r lim
n→∞

rn

1 − r
=

1

1 − r
.

Hence we have obtained the required result:

∞
∑

n=0

rn =
1

1 − r
, |r| < 1. (6.7)

Example 6.11 The harmonic series

∞
∑

n=1

1

n
= 1 +

1

2
+

1

3
+ . . . +

1

n
+ . . .

satisfies the necessary condition of convergence, since the term an =
1

n
− > 0,

when n− > ∞. However, the series diverges to infinity, since the sequence of
its partial sums diverges to ∞. Indeed, we have

S2n − Sn =
1

n + 1
+ . . . +

1

2n
≥ 1

n + 1
+

1

n + 2

+
1

2n
≥ n

1

2n
=

1

2

Hence, the sequence {S2n − Sn} is divergent, since S2n − Sn ≥ 1

2
, and it does

not satisfies the necessary condition of convergence. Therefore, the sequence
of partial sums {Sn} diverges. too.

6.2.1 Absolute Convergence of Infinite Series

Consider an infinite series
∞
∑

k=0

|ak|. The sequence of its partial sums

Sn = |ao| + |a1| + |a2| + · · · + |an| (6.8)

is clearly increasing. If {Sn} converges, then {Sn} must be bounded. Con-
versely, if {Sn} is bounded, then, being monotone increasing, {Sn} converges.
Therefore the following theorem holds.

Series
∞
∑

n=1

an for which
∞
∑

n=1

|an| is convergent are very important in the theory

of series.

A series
∞
∑

n=1

an such that
∞
∑

n=1

|an| is convergent is called absolutely convergent.

For testing convergence of series, we have a few tests, Comparison Test, Root
Test,Ratio Test and Alternating Series Test. Firstly, let us state and illustrate
the Comparison Test.
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6.2.2 Comparison Test

. Suppose that
0 ≤ ak ≤ bk, k = 0, 1, 2, . . .

Then,

• if
∞
∑

k=0

bk converges, then the series
∞
∑

k=0

ak converges.

• if
∞
∑

k=0

ak diverges, then the series
∞
∑

k=0

bk.

Proof. Let Sn and Tn denote the n-th partial sums:

Sn = ao + a1 + a2 + · · · + an,

Tn = bo + b1 + b2 + · · · + bn.

Then
0 ≤ Sn ≤ Tn, n = 1, 2, . . . (6.9)

By the assumption,
∞
∑

n=0

bn converges, so {Tn} is bounded and implies that

{Sn} is also bounded. Hence, {Sn} is increasing and bounded, by theorem on
monotone sequences, {Sn} converges. This completes the proof.

Example 6.12 Let the series
∞
∑

n=1

an, an ≥ 0, n = 1, 2, ... be absolutely con-

vergent, that is, the series
∞
∑

n=1

|an|

converges. Clearly, we have the inequality

0 ≤ an ≤ |an|, n = 1, 2, ...

By the comparison test the series
∞
∑

n=1

an converges.

Example 6.13 Consider the series

∞
∑

n=1

1

ns

By the second part of the comparison test, the series diverges for 0 < s ≤ 1.
Indeed, let

bn =
1

ns
, an =

1

n
, n = 1, 2, ...
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Then, we have

0 < an =
1

n
≤ 1

ns
= bn, 0 < s ≤ 1, n = 1, 2, ...

The harmonic series
∞
∑

n=1

1

n
diverges, so the series

∞
∑

n=1

1

ns
diverges. too, when

0 < s ≤ 1.
Now, let be s ≥ 2. By the first part of the comparison test, the series converges
for s > 2. Indeed, let

bn =
1

n(n − 1)
, an =

1

ns
, n = 2, 3, ...

Then, we have

0 < an =
1

ns
≤ 1

n(n − 1)
= bn, s ≥ 2, n = 2, 3...

The series
∞
∑

n=1

1

n(n − 1)
converges (see the example), so the series

∞
∑

n=1

1

ns
con-

verges. too, when s ≥ 2.

1

6.2.3 Cauchy Root Test

. Consider the series

∞
∑

n=1

an, an ≥ 0, n = 1, 2, ...

• If the limit lim
n−>∞

n
√

an = a < 1 exists and it is less then one, then the

series converges

• If the limit lim
n−>∞

n
√

an = a > 1 exists, and it is greater than one, then the

series diverges

• If the limit lim
n−>∞

n
√

an = 1 exists and it is equal to one, then there is no

conclusion.

Example 6.14 Consider the series

(i)
∞
∑

n=1

n

5n
, (ii)

∞
∑

n=1

xn

3n
, x > 0.

1In the case when 1 < s < 2 the series converges, but different test is to be used.
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(i) We find

lim
n−>∞

n

√

n

5n
=

limn−>∞
n
√

n

limn−>∞
n
√

5n
=

1

5
< 1

Since the limit a =
1

5
< 1, by the root test the series converges.

(ii) We find

lim
n−>∞

n

√

xn

3n
=

x

3

Then, by the root test, the series converges for
x

3
< 1, 0 ≤ x < 3, and the se-

ries diverges
x

3
> 1, x > 3. For x = 3 the root test does not apply. However,

the series diverges, since for x = 3 the necessary condition of convergence is
not satisfied.

6.2.4 d’Alembert’s Ratio Test

. Consider the series
∞
∑

n=1

an, an 6= 0, n = 1, 2, ...

Assume that the limit exists

lim
n−>∞

|an+1

an

| = a

Then,

• If a < 1 the series converges absolutely.

• If a > 1 or a = ∞ the series diverges.

• If a = 1, there is no conclusion.

Example 6.15 Use the ration test to investigate convergence of the series

(i)
∞
∑

n=1

2n

n!
, (ii)

∞
∑

n=1

xn

n!

We evaluate

lim
n−>∞

an+1

an
= lim

n−>∞

2n+1

(n + 1)!

n!

2n
= lim

n−>∞

2

n + 1
= 0

By the ration test a = 0 < 1, the series
∞
∑

n=1

2n

n!
converges.

For the second series, we evaluate

lim
n−>∞

an+1

an

= lim
n−>∞

xn+1

(n + 1)!

n!

xn
= lim

n−>∞

x

n + 1
= 0
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By the ration test a = 0 < 1, for any real x, the series
∞
∑

n=1

xn

n!
converges for

−∞ < x < ∞.

6.2.5 Alternating Series Test

. Suppose that

lim
n−>∞

an = 0 and 0 < an+1 ≤ an, n = 1, 2, ...

Then the alternating series
∞
∑

n=1

(−1)n+1an.

is convergent.
Proof. Consider the partial sums with even subscript 2n

S2n = (a1 − a2) + (a3 − a4) + (a5 − a6) + ... + (a2n−1 − a2n

By the assumption ak+1 ≤ ak, k = 1, 2, ..., 2n − 1, the terms (ak − ak+1) ≤
0, k = 1, 2, ..., 2n− 1. The sequence of partial sums {S2n} is increasing.
Now, let us write the partial sum as follows:

S2n = a1 − (a2 − a3) − (a4 − a5) − ... − (a2n−2 − a2n−1) − a2n

Hence, we observe the sequence {S2n} is bounded above by a1. So that

S2n ≤ a1, n = 1, 2, ...

Therefore, by the theorem on monotone sequences, the sequence converges and

lim
n−>∞

S2n = S

Now, let us consider the sequence {S2n−1} of partial sums with add subscripts

S2n−1 = S2n + a2n−1

By the assumption an− > 0 when n− > ∞. Therefore, from the above relation
the limit of the sequence {S2n−1} exists and

lim
n−>∞

S2n−1 = S

Thus, the alternating series is convergent and its sum

∞
∑

n=1

(−1)n+1an = S.
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Example 6.16 Consider the un harmonic series

1 − 1

2
+

1

3
− 1

4
+ ... + (−1)n−1 1

n
+ ... =

∞
∑

n=1

(−1)n−1

n

We note that it is alternating series with the coefficients

0 < an+1 =
1

n + 1
< an =

1

n
, n = 1, 2, ...

and with the limit

lim
n−>∞

an = lim
n−>∞

1

n
= 0

By the alternating series test, the un harmonic series is convergent. However,
the un harmonic series is not absolutely convergent.

Example 6.17 Consider the un harmonic series

1 − 1√
2

+
1√
3
− 1√

4
+ ... + (−1)n−1 1√

n
+ ... =

∞
∑

n=1

(−1)n−1

√
n

We note that it is alternating series with the coefficients

0 < an+1 =
1√

n + 1
< an =

1√
n

, n = 1, 2, ...

and with the limit

lim
n−>∞

an = lim
n−>∞

1√
n

= 0

By the alternating series test, the series is convergent. However, by the com-
parison test, comparing with harmonic series, the series is not absolutely con-
vergent.

6.3 Exercises. Set 3.

Question 6.1 Use L’Hôpital’s Rule to evaluate the following limits :

(a) lim
x→0

sin ax

x
for a 6= 0.

(b) lim
x→0

sin 5x

10x
.

(c) lim
x→0

cos2 x− 1

x2
.

(d) lim
x→0

1 − cos x2

sin2 x

(e) lim
h→0

eh − 1

h
; (i) lim

x→1

x3 − 1

x2 − 1
.
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Question 6.2 By repeating application of L’Hôpital rules, show that

(a) lim
x→0

sinx − x cosx

x sinx
= 0.

(b) lim
x→1

x3 − x2 − x + 1

x3 − 2x2 + x
= 2.

Improper Integrals

Question 6.3 Evaluate the integrals

(a)
∫ ∞

−∞

dx

4 + x2

(b)
∫ ∞

0

x dx

(1 + x2)2

(c)
∫ 1

0

x dx√
1 − x

(d)
∫ 1

0

dx√
1 − x2

(e)
∫ ∞

0
xe−x2

dx

(f)

(i)
∫ ∞

0
e−x sinx dx, (ii)

∫ ∞

0
e−x cos x dx

Question 6.4 Show the integral
∫ ∞

0

dx

(1 + x)α

is convergent for α > 1 and divergent for α ≤ 1.

Question 6.5 Find the limit of the sequences, when n− > ∞

(a) an =
n2 + n + 1

2n(n + 1)
, (b) bn =

√
n(
√

n + 1 −
√

n)

(c) cn = (n + 1)5 − n5, (d) dn = n

√

(n + 1)2

(e) xn = (1 +
2

n
)n, (f) yn = (1 − 1

n2
)n
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Question 6.6 Let a > b > 0 be two given real numbers. Show that the follow-
ing sequences are monotone and bounded. Find their limits when n− > ∞

(i) x1 =
√

2, xn+1 =
√

2 + xn, n = 1, 2, ...,

(i) arithemetic verages a1 =
a + b

2
, an+1 =

an + bn

2
, n = 1, 2, ...,

(ii) geometric verages b1 =
√

a b, bn+1 =
√

an bn n = 1, 2, ...,

(iii) cn =
3n

3n + 1
(iv) dn+1 =

n2 + 1

3n2 + 1
n = 1, 2, ...,

Question 6.7 Show that

lim
n−>∞

n
√

3n + 9n = 9, (ii) lim
n−>∞

n

√

αn + βn = max(α, β), α > 0, β > 0.

Question 6.8 State and use the comparison test to investigate convergence of
the series

(a)
∞
∑

n=1

1
√

n(n + 2)
, (b)

∞
∑

n=1

1
√

n(n2 + 2)
,

(c)
∞
∑

n=1

1

1 + an
, a > 0, (d)

∞
∑

n=1

n!

nn
,

Question 6.9 State and use the root test to investigate convergence of the
series

(a)
∞
∑

n=1

n

3n
, (b) 1 +

∞
∑

n=1

xn

nn
,

(c)
∞
∑

n=1

2n

3n
, (d)

∞
∑

n=1

xn

(ln n)n
,

Question 6.10 State and use the ratio test to investigate convergence of the
series

(a)
∞
∑

n=1

2n

n!
, (b) 1 +

∞
∑

n=1

xn

n!
,

(c)
∞
∑

n=1

n!

nn
, (d)

∞
∑

n=1

n xn−1

(e)
∞
∑

n=1

2nxn

nn
, (f)

∞
∑

n=1

3nxn

n3
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Question 6.11 Investigate convergence of the series

(a)
∞
∑

n=1

(−1)n−1xn

n
, x > 0 (b)

∞
∑

n=1

(−1)n−1xn

n2
, x > 0,

(c)
∞
∑

n=1

(−1)n−1 1

ln (n + 1)
, (d)

∞
∑

n=1

(−1)n−1 4√
n

(e)
∞
∑

n=1

3nxn

8n
, (f)

∞
∑

n=1

4nxn

5n n2


