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PREFACE

These lecture notes are designed for undergraduate students as a complemen-
tary text to complex variables with Mathematica. It is assumed that students
have basic knowledge in real analysis and computing.

The notes has been used in the course on complex variables given to undergrad-
uate students at the Faculty of Science, University of Botswana. They contain
instructions and programs in Mathematica as a system for doing mathematics
with a computer.

Each chapter ends with a number of questions that can be used for tutorials
and tests.

Students are encouraged to learn complex variables by solving tutorial ques-
tions with Mathematica.

Tadeusz Stys
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Chapter 1

Revision

1.1 Complex Numbers

Every complex number z has the following form:
z=x+ 1y,

where
x = Re z 1sthe real part of z

y =1Im z isthe imaginary part of z

i? = —1 s the imaginary unit.

In Mathematica, real and imaginary parts of a complex number z = x + 1y
are given by the commands Re[z] and Im[z]. For example, the output of the
commands

z=3+4 1 ;
Re[z] "2+Im[z] "2

is 25.
A complex number z = z + iy can be considered as a point (z,y) on the carte-
sian plane with the coordinates x and y.

y , Z=X41y

o L)
¢j x

NZ =1 — 1y
Fig 1.1 Complex Plane

Trigonometric form of z. Also, every complex number z can be written in
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polar coordinates (¢, |z|), that is
z = |z|(cos ¢ + isin @),

where the modulus |z| = v/22 + y? and the argument ¢ is determined by the
equalities
x=|z[cosg, y=|z[sing,

for z # 0.

In Mathematica, the module and the principal value of argument of z = x 41y
are given by the commands Abs[z] and Arg[z]. For example, the output of
the commands:

z=1+1;
module=Abs[z];
argument=Arg[z]

T
are: module=v/2 and argument=z.

Conjugate complex number. For any complex number z its conjugate is
zZ=x—1y.

Thus, in the trigonometric form, the conjugate Z = |z|(cos ¢ — isin ¢) has the
same modulus as z, i.e.
2| = |,

and the argument of the conjugate is mines Arg(z), i.e.,
Arg(z) = —Arg(z) = —¢.

One can get the conjugate of z = x + iy, by the Mathematica command
Conjugate[z].
Exponential form of z. Let z =z 4+ 1y, or in trigonometric form

z = |z|(cos ¢ + isin ¢).
Then, we have the following exponential form of z
z = |z[e®,

where €' = cos ¢ + i sin ¢.
The Mathematica function trigForm prints the trigonometric form of a com-
plex number z

trigForm[z_] :=Print [Abs[z],"(Cos ",Arg[z],"+I Sin ",Arg[z],")"];
For example, the command

trigForm[1+1]



prints the trigonometric form of z = 1 4 ¢, as follows:

V2(cos % + I'sin %)

The principal argument of 2. Let us note that if ¢ is an argument of z
then ¢ + 2k7 is also an argument of 2z for any integer k = 0, £1,£2, ...,

The principal argument of z is the unique one which belongs to the interval
(—m, ], and is denoted by Arg(z). So that

— < Arg(z) < .

Arithmetic operations. We perform four arithmetic operations on the com-
plex numbers z; = x1 + 1y, and 29 = x5 + iys, according to the following rules
Addition and Subtraction

z21E£ 2 = (21 +iyr) £ (22 +iy2) = (v1 £ 22) +i(y1 £ y2),
Multiplication.
2k 2y = (@1 +iyn) * (2 + iy2) = (2122 — y1y2) + 121y + T2y1).
Diwvision. ,
Tty 1%t yiye V1% — Yol
Zy Tyt Y2 x5+ y3 x5+ y3

Y

for zo # 0. '
Let us note that multiplying or dividing two complex numbers z; = |21 |e
and zy = |2[e’?, in exponential forms, we find

2 % 2y = |z1| |z2|ei(¢1+¢1),

and
21 — @ei(%—(ﬁz)

)
Z9 |2’2|

for zo # 0.
Power of z. Let us consider z in the exponential form

z = |z|e™.
Clearly, the power « of z is
2% = [2]%e"® = |2|*(cos ap + i sin ag),

for any real number a.
In particular, we have De Moivre’s formula

(cos@ + isin )" = cosng + isinng = ¢! ngb’

for any natural n.

In order to convert a complex number from its trigonometric form to the
exponential form, we can use the Mathematica command TrigToExp[z]. For
example, the command



TrigToExp[Cos[P1/8]+ I Sin[Pi/8]]
T

gives the exponential form e 8.
In order to covert a complex number from its exponential form to the trigono-
metric form, we use the command ExpToTrig[z]. For example, the command

ExpToTrig[Exp[I Pi/8]]

. . . ™ .. m
gives the trigonometric form cos 3 4+ 7sin —.
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1.2 The Root of 2

Every complex number z = x + iy which satisfies the equation
2" =a

is called n-th root of the complex number a = a; + ias and denoted by {/a.
The following theorem holds:

Theorem 1.1 There are exactly n distinct roots of n-th root of a complex
number a # 0. These roots are given by the following formula:

2k 2k
2 = W(COSMTW + isin QH_TW), (1.1)

for k =0,1,....,n— 1., where ¢ = Arg(a) and \/|a| is the arithmetic root of
the real number |a| .

Proof. Let us consider the complex numbers
z = |z|(cos@ +isinf), a = |a|(cos¢p + ising).
Clearly, the equation

takes the trigonometric form
|2 (cos @ + isin0)" = |a|(cos ¢ + isin@).
Hence, by De Moivre’s formula
|z|" (cos nf + isinnf) = |a|(cos ¢ + isin @).
Comparing the modules and arguments, we find
2| = {flal, nf=¢+2kn, k=0,+1+.2,..,

Thus, all distinct roots of a are

2k 2k
2 = 1/ |a|(cos¢+T7T + i sin QH—TW),

for k=0,1,....,n— 1.



Example 1.1 Find all roots of the equation

2" =1.

Let us note that for a = 1, we have |a| = 1 and Arg(a) =

formula (1.1), we obtain the following distinct roots:

2km . 2km
2, = (cos — +isin —),
n n

for k=0,1,....,n— 1.
In the case when n = 8, the roots are

1 o1 )
zo =1, 1=—=+1— 2o =1, 23 = —

V2 V2

Z4:—1, 25 — —

Sl -

Zy Zg

Zs Z7

Z

Fig. 1.2 Root v/1
Let us note that the Mathematica command

z~(1/n)

¢ = 0.

By the

gives the principal value of the n-th distinct root of z. Also, the command

Sqrt [z] gives the square root of z.

The module nroot gives the list of all n-th roots of a complex number z.

nroot[z_,n_] :=Module[{a,al },
a=Abs[z];
al=Arg[z];
Table[a"{(1/n)}(Cos[(al+2 Pi k)/n]+
I Sin[(al+2Pi k)/n]),{k,0,n-1}]

For example, the output of the command
nroot[1,4]

is the following list of the roots: 1,I,-1,-1.



1.3 Logarithm of Complex Numbers

Let a # 0 be a complex number. Every number z which satisfies the equation
e =a,; z=1x+1y, (1.2)
is called logarithm of a and denoted by

z=1In a.

The logarithm of @ = 0 does not exist.
Let us consider a in the exponential form

a = |ale™.
Then, the equation (1.2) is
eF = "t = %W = |ale®.
Hence, we get

e =lal, z=lInla|, y=Arg(a)+2rk, k==0,%1,£2 ..,

Thus, there are infinite number of logarithms of a complex number a # 0
which are given by the formula

Ina=Inla|+i Arg(a) +1i2rk, k=0,£1,£2, ...,
However, there is only one principal value of the logarithm
Ina=lInla| +i Arg(a),
which corresponds to the principal argument Arg(a) of a, (k= 0).
Example 1.2 We compute
In(=1)=Inl+4ir+i2rk =12k + 1), k=0,+1,£2, ...,
and the principal value In(—1) = im.

The command Log[z] in Mathematica gives the principal value of the loga-
rithm of z. For example, the output of the command Log[-1] is Ir.
1.4 Exercises

Question 1.1 Fuvaluate

(i) V-1, (i) V1+i.



Question 1.2 Use Mathematica to evaluate

2 4+2241
244222417

(7) (i1) (2 +z+1)v/z,

for z=1+41.

Question 1.3 Let a = ay + ias and b = by + iby, be two complexr numbers
different from zero. For which values of their arqguments the product a b and

S oa
the quotient 5 are real numbers.

Question 1.4 Prove that

1. (a)

2’1:*:2’2 =21 :f:?g,

(b)

(c)

é = ga 22 7é 07
Z9 Z9
(d)
|21 22| = |21] |22,
(e)
(1) [Rez| <[z, (17)  [Im 2] < |7]

(f)

|21 £ 20| < |z + |22,

(9)

|21 £ 20> = |21]? £ 2Re(21 Z) + | 2|
(h) Check the relations (a), (b) and (d) in Mathematica.
Question 1.5 Assume the z; # 1 is an n-th root of one. Show that
l+zp+zi+.. .+t =0.
Question 1.6 Show that

Question 1.7 Show that

for complex numbers z1, za, ..., 2.



Question 1.8 Prove that

1. (a)

.27 Yy . 6w . 2(n—1m
sin — 4 sin — +sin — 4+ -+ - 4 sin ———— = (),
n n n n
(b)
27 4 6 2(n — 1)m
cos — +cos — +cos — + - -+ +cos ———— = —1.
n n n n

for any even n = 2.4, ...,
Hint: Solve the equation z™ — 1 = 0.

Question 1.9 Prove the following formula:

1. (a)

cosng = cos" ¢ — <Z> cos" 2 ¢ sin® ¢ + <Z> cos" * psint ¢ — ...,

(b)
sinng = <?> cos" 1 ¢ sing — <§> cos" 3 gsin® ¢ + <Z> cos" 0 psin® ¢ — ...,

Question 1.10 Sketch the following sets

1. (a)
D={zeZ: |z—i|<|z—1]}.

(b)
D={2€Z: |2*?>2+7}.

Question 1.11 Show that
1
o+ 0] < max{lal, o]},

for every complex numbers a and b.

Question 1.12 Show that
z—a

=1

az —1
for every |z| =1 and z # a.

Question 1.13 Let z = re and w = Re™, where 0 < r < R. Show that

e (UJ—I-z) w2 R? —r?
w—z) Jw—z2  R?—2rRcos(d —¢)+1r?



Chapter 2

Sets on the Complex Plane

2.1 Examples of Sets

1. (a) Line Segment. For given complex numbers a = a; + ias and b =
b1 + 2by, the line segment with the end points a and b is the following

set:
la,b] ={z(t) = (1 —t)a+tb: 0<t <1},

b
y
a

Fig 2.1 Line Segment

(b) Circle. The circle C(zp,7) with the radius » > 0 and the center at
the point zj is the set of the points z which satisfy the equation

|z — 20| = 1.

Also, the same circle has the following trigonometric equation:

z=2zy+r(cosp+ising), —w<o¢<m,
or exponential equation
z:z0+rei¢, - < ¢ <.
y
<0
0

Fig 2.2 Circle ?
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(c) Disc. The disc D(zp,r) with the center at zy and radius r > 0 is
determined by the following inequality

|z — 20| < 1.

X
0.5 1 1.5 2

Fig.2.3 Disc(zo, )

(d) Annulus. The annulus A(zg,71,72) with the center at zo and the
radii 0 < r; < ry is the set of all points z which satisfy the following
inequality:

r1 < |z — 20| <79,

X
0.5 1 1.5 2

Fig.2.4 Annulus(zg, 1, 72)

(e) Strip. The strip of the width 2r in the direction of z axis or of y
axis is the set of points which satisfy the following inequality, either

—r<Imz<r,

or

—r< Rez<r,
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—r<Imz<r —r<Rez<r

Fig 2.5 Strip

(f) Sector. The sector with the angle between a and [ is the set of all
points z which satisfy the following inequality:

a < Arg(z) < 5,

Z=T 4y

Fig 2.6 Sector

Neighborhood. The e— neighborhood of a complex number zj is the disc

Ne(z0,2) ={2€Z: |z—2| <¢,} €>0,
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where Z is the complex plane.
Interior, exterior and boundary complex numbers of a set D. A
complex number zy is an interior number of the set D, whenever, there is
some neighborhood N(zp, z) of zy which is included in D, that is N(zg, z) C
D. The point zp is an exterior complex number of the set D if there is a
neighborhood N(zp, z) which contains no numbers of D. If z; is neither of
these, it is then a boundary point of D. Thus, zy is a boundary number of D
if every neighborhood of 2, contains both interior and exterior numbers of D.
Open Set. A set D of complex numbers is open if it consists only of interior
numbers, so that, every number 2z € D belongs to D together with its some
neighborhood.
Closed Set. A set D of complex numbers is closed if D contains all its interior
and boundary numbers.
Let us observe that some sets can be neither open nor closed. For example,
the set

D={zeZ:0<z|<1,}
is neither open nor closed.
Connected Set. An open set D is connected if each pair of numbers z1, 29 €
D can be joined by a polygonal path consisting of a finite number of line
segments joined end to end which entirely lie in D.
Bounded Set. A set D is bounded if there is a disc |z|] < R < oo which
contains the set D, otherwise D is an unbounded set.
Domain. An open set D which is connected is called domain.

2.2 Curves on Complex Plane

Let x(t) and y(t) be real continuous functions given for t; <t < t5. Then the
parametric equation

C:  z(t)==x()+iy(t), t1 <t<ty, (2.1)

defines a continuous curve on complex plane joining end points a = z(t;) and
b = z(ty). If the end points coincide, that is, a = z(t;) = z(t2) = b, then the
curve is said to be closed.

Simple Closed Curve. A continuous closed curve which does not intersects
itself is called simple closed curve.

Arc. let us assume that z(¢) and y(t) are continuously differentiable real
functions in the interval [¢1,t5]. Then, the curve C' given by the equation (2.1)
which does not intersect itself is called smooth curve or arc.

Contour. A curve which is composed of a finite number of arcs is called
Contour.

Example 2.1 The parametric equation of an ellipse on complex plane

z(t)=rycos t+irg sint, ro>r >0, —w<t<m.
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represents a closed arc.
Example 2.2 Let

(1+14)t, 0
40:{ L
B—i)+ (-1t 1

IN

t<1

<1
t<2.

IN

This equation defines a contour consisting of two segments.

Length of a contour. The length d of a contour C' : z(t) = z(t) +iy(t), a <
t < (3, open or closed, is given by the formula

B
d:/|z@wt
Indeed, the parametric equations of the contour C' on the cartesian plane are
v=z(t), y=ylt), a<t<p

As we know, from Mathematical Analysis, the length
B B
d:/\@ﬁy+y@wﬁ=/|z@ut

2.3 Exercises

Question 2.1 Sketch the following sets

1. (a)
D={zeZ: [32—-2+1 <1},

(b)
D:{zEZ: |Z—4|2|Z|}>

(c)
D={z€Z: |Rez| <|z|},

(d)
D={z€Z: Im2z*>1},

(¢) '
D={zeZ: |z—|—§|<|z—|—1|}.

Question 2.2 Write the equation of an ellipse, hyperbola, parabola in complex
form.

Question 2.3 Prove that the diagonals of a parallelogram bisect each other
and that the diagonals of a rhombus are orthogonal.
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Question 2.4 Represent graphically the set of values of z for which

1. (a)

|z—3|_

2437
(b) ;

Z—

<2

|z+3| ’
(c)

Re 2% > 1.

Question 2.5 Describe and graph the locus represented by each of the follow-
mg equations

1. (a) |z 4+ 2i| + |z — 2i| = 6,
(b) |z —=3|—|z+3| =4,
(c) 2(Z+2) =3.

Question 2.6 Find the equation of a line passing through the points z; = 141
and z9 = 2 — 3i.

Question 2.7 Show that the equation
|z — 4i| + |z + 4i] = 10

represents an ellipse. Find the equation of this ellipse in the cartesian coordi-
nates x and y and polar coordinates (r,®). Plot the graph of the ellipse with
Mathematica.

Question 2.8 Show that the equation
P2+ =2

represents a hyperbola. Find the equation of the hyperbola in the cartesian
coordinates x and y and polar coordinates (r, ¢). Plot the graph of the hyperbola
with Mathematica.

Question 2.9 Find an equation of the circle passing through the points 1 — i
and 1+ 1. Plot the circle with Mathematica.

Question 2.10 Show that the locus of z such that
|z —allz+a|=a* a>0,

1s a lemniscate. Write the equation of the lemniscate in polar coordinates. Plot
the graph of the lemniscate with Mathematica.

x



Chapter 3

Elementary Functions of a
Complex Variable

3.1 Definition

Let D be a set of complex numbers. A function f defined on D is a rule that
assigns to each z € D a complex number w. The complex number w is called
the value of the function f at the number z, so that, we note

w=f(z2), ze€D o f:zeD — weD.

The set D is called the domain of the function f, and the set D" of all values
of f(2) is called the image of the set D, that is D' = f(D).

3.2 Linear Function.

Consider the linear function
f(z) =az+b, a#0, z€LZ,

where the constant coefficients @ = a; + tay and b = by + ibs.

Clearly, the domain of the linear function f is whole complex plane, and the set
of all values of f(z) is also the whole complex plane. Thus, f(z) maps complex
plane onto itself. Let us note that the linear function f(z) =az+b, a # 0, is
one to one mapping. Indeed, to show this, we observe that

f(z1) = f(22)
if and only if 21 = z5. Since, the equality
az1+b=azy+b

implies z; = 29 if a # 0.
Translation. The mapping

w=2z-+b, z € 4,

15
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is called translation.
For example, the line Re z = 1 on Z—plane is translated on the line Re w = 2
on W —plane, by the translation w =z + 1 + 4.

v
z=x+1y w=u-+iv
w=z+1+i1
Rez=1 - Re w =2
0 1 0 T 12 "
Z —plane W —plane
Fig 3.1. Translation w = z + 1 + 4.
Rotation. The mapping
w = az, la| =1, z€ Z,

of the Z—plane onto W —plane is the rotation around the origin by the angle
a = Arg(a).
Indeed, we have the following exponential forms

a=¢e"  z=|z[e",

Hence, we obtain
i(a+0)

w = |z|e :
For example, the rotation

w =1z, z € 4,

transforms the line Re z = 1 on Z—plane onto line I'm w = 1 on W —plane.
Since, we have

z=1+1y, a=1i, a:Arg(z'):g

and

w=u+iv=|i| |23 =/1 4 y2(cos(h + g) + isin(f + g)) = —y+i.
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v
z=x+1y w=u-+iv
w=iz
Imw=1
Re z=1 <
0 0 "
Z —plane W —plane

Fig. 3.2 Rotation w = iz.

In general, the linear mapping
w=az+0b, a # 0,
is a composition of the rotation
s=az, a#0, z€LZ,

and the translation
t=s+0b, se€Z

3.3 The Power Function 2"

Let us consider the power function

.

w = 2", ZED:{ZEZ:—E<AT’Q(Z)§
n

313

for natural n = 1,2, ...,
This function maps a sector D onto whole W —plane. Indeed, let us write the
power function in the following exponential form

w=|2["e", ¢ = Arg(2),

Clearly, if z € D, that is —=< Arg(z) <
therefore w € W.

, then —1 < Arg(w) < 7, and

313
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Z=x+1y w=u-+ v

313
g
Il
w

Z —plane W —plane

Fig. 3.3 Power Function w = 2".

Let us note that if z moves throughout Z—plane than w reaches n times each
point of W —plane. So that, the function is not an one to one mapping. How-
ever, the power function is one to one mapping of the sector

(2k — 1)m (2k+ )7

Dk:{ZEZZ
n

< Arg(z) < b, k=0,1,...,n—1

onto whole W —plane.
In Mathematica, we compute (x + i y)", by the command

(x+I y) n;

3.4 The n —th Root Function

The n — th root function
w= 2z, z2€LZ,

has the following exponential form

" jot2mk

w=/|zle"», ¢=Arg(z), k=0,1,...n—1.

Let us note that the n-th root function possesses n different branches for
k=0,1,...,n — 1. In the case when k£ = 0, the function

i
w= {/|zle™, ¢ = Arg(z),

is called Principal Branch of n — th root function.
This function maps whole Z—plane onto one of the sectors

2k —1
Dy={z€Z7: %gArg(w)<W}, kE=0,1,...n— 1.
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On the figure, we present the graph of the sector Dy under principal branch
of the n — th root function.

\
y . .
Z2=x+1y w=u-+1w
w= Yz .
X Do
0 0 "
Z —plane W —plane

Fig. 3.4 Root Function w = {/z.

z

3.5 The Exponential Function w = e

Let us prove first the following theorem:

Theorem 3.1 The equation
ef=1

holds if and only if z =2 kr v, k=0,£1,£2,...,.
Proof. For z = x + iy, we have
eF = " = %™ = ¢"(cosy + isiny) = 1.
Hence
e“cosy=1 and €"siny =0.

So that
siny =0, for wyr=~km, k=0,£1,%£2, ..,

k must be an even integer, since e” cos yx < 0 for odd k. Therefore, the equality
e“cosy =1

holds for x = 0 and y = 2 7 k, and e* = 1 if and only if z = 2 7k 4, for any
integer k.

From the theorem, it follows that w = f(z) = €* is a periodic function with
the period w = 2 7 4. Indeed, we have

f(z+2mi) = Tl = o7 2T = % = f(2).
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The exponential function w = f(z) = e* is one to one mapping of the strip
D={z=zx+iyeZ: —n<y<n}

onto whole W —plane. Indeed, we have
w=u+1iv=e" =e"(cosy+isiny).

So that —oo < u = e cosy < o0 and —o0 < v = €*siny < oo when —oo0 <
r < oo and —m < y < 7. Also, we note that f(z1) = f(22) if and only if
21 = 29 when z1, zo € D. This means that f(z) = e* maps one to one the strip
D to whole W —plane.

Clearly, f(z) = €* is a periodic function if it is considered on whole Z—plane,
since the function maps every strip

Di={z=zx+iyeZ: 2k—1r<y<2k+1m, k=0,%1,+£2 ..,

onto whole W —plane.

Z=x+1y w=u-+ v
y \
w = e”*
T
X

0 0 "

— 7T
Z —plane W —plane

Fig. 3.5 Exponential Function w = e*

3.6 The Logarithmic Function w = In z.

As we know, the exponential function maps one to one every strip
Di={z=zx+4+iyeZ: 2k—1r<y<2k+1m, k=0,£1,4£2 ..,

onto whole W —plane, so that, the inverse function exists and it maps W —plane
(without z = 0) onto a strip Dy, k = 0,£1,4£2,...,. This inverse function is
called logarithmic function and is given by the following formula:

Inz=Inl|z| +i(Arg(z) + 27k), 2#0, k=0,£1,+2, ...,
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where Arg(z) is the principal value of the argument of z. Let us note that log-
arithmic function possesses infinite number of branches. Therefore, w = In z
is a multivalued function if it is considered on the whole complex plane. The
branch which corresponds to k = 0 is called Principal Branch. Thus, the
principal branch is given by the following formula:

Inz =1In|z| +iArg(z), z#0.

Example 3.1 Let us consider the principal branch of the logarithmic function
Inz=Inl|z|+ip, ¢ = Arg(z),

Show that the principal branch maps

1. (a) circles with center at the origin on Z—plane onto segments parallel
to v axis on W—plane,

(b) lines on rays emanating from the origin on Z—plane onto lines par-
allel to the u axis on W—plane.

(¢) the whole Z—plane onto a strip of width 2 on W —plane.

Solution.

1. (a) Let |z|] = r be a circle on Z—plane. The principal branch of the
logarithmic function

Inz=Inlz| +ip, ¢=Arg(z), —-wT<o¢<m,

maps such a circle onto the segment

w=Inr+1i1p, —-7wT<o¢<m,
z=x+ 1y w=1u+ 1w
Y . v o
w=In|z| +iArg(z)
T9 8 <
I/
Qy 0 Inry In 7y
—iT
Z —plane W —plane

Fig. 3.6 Logarithmic Function w = In|z| + iArg(z)
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(b) A ray from the origin has the following equation

Arg(z) = C' = constant.

Applying the principal branch of the logarithmic function to z with
constant argument, we obtain the line parallel to u axis

w=u+iv=In|z|+iC.

z=x+ 1y w=1u+ 1w
y v
w =1In|z| +iC |
C X
0 0
Z —plane W —plane

Fig. 3.7 Logarithmic Function w = In|z| + iArg(z)

(¢) The whole Z—plane is mapped onto the strip

w=u+iv=1In|z|+iArg(z), z€Z, —m<Arg(z)<m,

since, we have

—oo<u=Inlz| <oo, —mw<v=Arg(z)<m.
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z=x+ 1y w=1u+ 1w
y v
w=In|z| +iArg(z) i
X
0 0
—i
Z —plane W —plane

Fig. 3.8 Logarithmic Function w = In|z| + iArg(z)

3.7 The Trigonometric Functions

The trigonometric functions are related with the exponential function by the
following formulas:

% %

e =cosx +isinx, e ' =cosx—isinx,

from which

) 6im _ 6—im 6im + 6—im
SIHZL’:T, COS[L’:?, —00 < T < 0Q.
1

We define, in the same way, sine and cosine functions of a complex variable
z, so that
6ZZ _ 6—ZZ 6ZZ _l_ 6—ZZ

sing = ————— cosz = ——— 2EZ.
24 ’ 2 ’

For the trigonometric functions tangent and cotangent, we have formulas

sin z e — et T
tan z = S . W — 1), k=0,41,42, ...,
MEZ s 2 (e + e7%) 27 )2
cot z = C?SZ = z(e' re . ), z#kn, k=0,+1,£2, ...,

sinz (e —e7%)
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Let us note some of the properties of trigonometric functions which are known
in a real variable also hold in a complex variable. For example, we have

sin? z + cos? z = 1,
sin(—z) = —sinz, cos(—z) = cos z,
tan(—z) = — tan z,

sin(z; £ z2) = sin 21 cos 29 £ cos 21 sin 2g,

cos(z) & z3) = cos 21 COs 29 £ sinzysinzy, 2z € Z,
However, modulus of sin z or cos z can exceed one. Indeed, we have
—2_ 2

sin2i = | 5

| >3,

for z = 21.

3.8 The Hyperbolic Functions.

The hyperbolic functions sinhz and coshz of a complex variable are given by
the formulas

, e —e”? e +e”?
sinhz = — coshz = — 2 ez

These functions satisfy the following identities
cosh?z — sinh?z = 1,
sinh(—z) = —sinhz, cosh(—z) = coshz,
sinh(z; 4+ 25) = sinh 2 cosh z3 + cosh z; sinh 25,
cosh(z; + z2) = cosh 21 cosh 2z + sinh z; sinh z,.

for all z € Z.

1
3.9 The Function w = —
z

The function
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is one to one mapping of non-zero numbers on Z—plane onto non-zero numbers
on W —plane, since

if and only if z; = 25.
The exponential form of this function is

1 —i6

w:ﬂe , —m<6<m,
z

for z = |z|e®.
Clearly, the function maps a circle
lz|=7r, r>0

onto a circle 1
wf = .
,

Also, under this mapping, the image of the disc
0<|z| <,

is the region

1
|'LU| > ;7

outside of the disc on W —plane.
Example 3.2 Find the image of the line

Re z=a #0,
under the mapping
w=u+1w=—, z=+1y.
Sketch the graph.
Solution. Let us note that
1 T .y

w=u-+iw=—-= —1 )
z rrtyr ri4y?

Hence, we have

T Y
I
and
uz—l—vz:;zg, for Rez=2x=q.
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By simple modification, we find

2 u+ L + 02 L
u - =+ — =
a  4da? 402’

and 1 1
V22— (12

(u 2a) v (QQ)
The above equation represents the circle on W —plane with the center at

1 1
wo = — and the radius r = % So that, the function maps the line Re o # 0
a

a
onto the circle |w — wp| = 7.

v
Z=X+1y wW=u+iv
1
w= -
z
Re z =«
0 « 0 %
Z —plane W —plane

1
Fig. 3.9 The Function w = —
z

3.10 The Linear Fractional Transformation.

Let us consider the linear fractional mapping

az+0b
= — d—bc#0 0.
Ysara c#0, ¢
This mapping has the following equivalent form
a bc—ad 1
= — — d—bc#0 0. 3.1
W= c orqg MWobe#O cf (3.1)

The linear fractional transformation is one to one mapping of complex plane
onto itself. Indeed, the inequality

az1+b _axn+t b

cz1+d e+ d
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holds if and only if z; = 2. Since then
(az1 +b)(cz2 + d) = (az2 + b)(cz1 + d),

and
(ad — be)(z — z2) = 0.
Hence, we have z; = z5.
The inverse to a linear fractional function is also linear fractional function,

since we have dw b
—dw
z2=— w e W.
cw—a

A linear fractional function is the composition of a linear function and the

function w = —.
z
Indeed, by the formula (3.1), we have
bc — ad 1
w=As+B, A= ¢ a’ B:g, s=—, t=cz+d.
c c t
Example 3.3 Show that the equation
Z—p
| | =a,
Z—q

represents a circle for every a > 0, a # 1 and p # q. Find the center and the
radius of the circle.

Solution. By the formula
la — b = |a|? + |b]* — 2Re (ab),
we have
2 = p|* = 2] + [p|* — 2Re pz = &*(|2[*| + |4|” — 2Re 2) = a®|z — ¢[*.

After simple operations, we arrive at the following equation

o 2Re (p— o’z _ —|p]* + o?[g/?
|z|* — = .
1—a? 1—a?
. . p—a’q, . .
Adding to both sides the term | 1 5|7, we obtain the equation
-«
PO a’q) 2 o?[p —qf”
1—a? (1—a2)?’
of the circle with the center at
L _P—a%
O 1—a?’
and the radius
_ lp—adl
r=a«

=
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Example 3.4 Consider the linear fractional mapping

zZ — 20
w =

Z—g(]’

where zy is a fixed point on the upper half of Z—plane, i.e., Im zq > 0.

Show that the function maps one to one the upper half of Z—plane onto unit
disc \w| < 1, on W—plane. Also, show that every point of x axis is mapped
onto unit circle |w| = 1.

Solution.
\
o Z=X-+1y w=u-+1v
Imz=y>0 PO,
e 20 = To+ 1Yo 20

)

a u
0 le

Z —plane W —plane

zZ — 20

Fig. 3.10 The Function w = —
Z — 20
Let us note that
2 2
|’LU|2 — ($ $0)2 + (y y0)2 S 1
(x —x0)% + (y + yo)

for Imz=y>0and Im zy =y > 0.
Clearly, the equality |w|* = 1 holds if and only if y = 0, so that, the z axis
(Im z =y = 0) is mapped on the circle |w| = 1.
To show that the function is one to one mapping, we observe that the equality

Y

Z1 — 20 Z92 — 20

Z1 — Zo 29 — Zo ’
is equivalent to the following equality
(2’1 - 2’2)(50 — Z(]) =0.

Hence, for I'mzy > 0, we get z; = 2. This means that the linear fractional
function is one to one mapping of the upper half of complex plane onto disc
lw| < 1.
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3.11 Exercises

Question 3.1 Find the image of the circle
|z —1] =2
under the linear mapping
w=(1+1i)z+1—1i.
Write the image in polar coordinates and plot it with Mathematica.
Question 3.2 .

1. (a) Let f(z) = 2% Ewvaluate f(—2+1) and f(1 — 3i)

(b) Show that the line joining the numbers z; = —2+1i and zo = 1 —1i on
Z—nplane is mapped into a curve on W—plane joining the numbers
wy and we. Find the equation of the curve in polar coordinates and
plot it with Mathematica.

Question 3.3 Find the image of the hyperbola
(1) 2*—y*=1, (ii) zy=2.
under the mapping w = z%. Plot the image with Mathematica.

Question 3.4 Find the image of the sector

0< Arg(z) < g

under the mapping

Sketch the graph.
Question 3.5 .
1. (a) List all branches of the function

(b) Find the image of the region
D={z€Z: Rez>0, Imz>0}
under the principal branch of f(z). Sketch the graph.
Question 3.6 Find the image of the line segment
S={z€Z: Rez=0, and —n<Imz<m},

under the mapping w = e*. Write the image in polar coordinates and plot it
with Mathematica.
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Question 3.7 .
1. (a) Show that the function

maps the lines y = x and y = —x onto unit circle |w| = 1.

(b) Show further that f(z) maps each of the two pieces of the region
D={z=0+iyc Z: 2*>y*},

onto the set
Q={w=u+weW: |w >1}.

Question 3.8 . Solve the following equations:

1. (a)

(i) In z:%, (@) In2=@n+Dri n=0+1,42, ..,

(b)
(1) e =-1, (1i) e* = —-3.
Question 3.9 Find the image of the annulus
2 < |z| <4,
under the principal branch of the logarithmic function. Sketch the graph.
Question 3.10 Find the image of the sector
1 < Re z <2,

1
under the mapping w = —, z # 0. Sketch the graph.
z

Question 3.11 Find the image of the line Re z = 3, under the following
mappings:

1. (a)

(b)

Plot the graphs of the images in Mathematica.
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Question 3.12 Find the image of the line Re z
mappings:

1. (a)

2, under the following

flz) =2

(b) '
1) =5
(c) e
J(2) = lnz +2

Plot the 1mages with Mathematica.

Question 3.13 Find the fized points of the mapping

22— 5
f(z) = ZZ+4'

Note that: a complex number z is the fized point of f(z) if z = f(2)
Question 3.14 Solve the following equations:

1. (a)

(1) sinz=1, (17) cosz=1.

(b)
(1) sinz=2, (17)
Question 3.15 Show that

1. (a)

cosz = 2.

sin z =sin x cosh y +¢cos x sinh y,

z=x+1y.
(b)
|sin z| > [sin x|, z=2x+1y.
(¢ 2
(1) |sin z|* =sin? x +sinh® y, 2z =x+dy.
(i1) |cos z|* = cos® x+sinh® y, 2= +iy.
for z =x +1y.

Question 3.16 Find the region onto which the half complex plane Im z =
y > 0 is mapped by the transformation

(2) = 1+

z

Y

by using
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1. (a) Cartesian coordinates

(b) polar coordinates

Sketch the graph.

Question 3.17 Find the linear fractional transformation that maps the com-
plex numbers z_2, zo =1, z3 = —2, onto the numbers wy = 1, wy =1, w3z =
—1.

Question 3.18 .
1. (a) Show that equation
|z -2
z+2

represents a circle. Find the center and the radius of this circle.
Sketch the graph.

(b) Show that the function

| =4

Y

maps one to one

i. the circle |z| =1 on the circle lw| =1,

it. the disc |z] <1 on the disc |w| <1 if [p| < 1,
iti. the disc |z| <1 on the set |w| > 1, if |p| > 1.



Chapter 4

Continuous and Differentiable
Functions

4.1 Limits

Let w = f(z) be a function defined in some neighborhood of a number zj, and
not necessary at 2.

Definition 4.1 A number g is said to be the limit of f(z) at zo, if and only
if for every e > 0 there exists 6.(zo) > 0, such that, the inequality

0 < |z — 20| < de(20)

implies the inequality
1f(z) =gl <e

If the limit g exists in the sense of this definition, then we apply the following
notation:

lim f(z) =g.
z2—20
We can write the definition in terms of logical quantifies as follows:
Vez036.(20)>010 < |2 — 20| < dc(20) = [f(2) — g| <€}

Infinite Limit. The limit g of f(2) at zj is infinite, if for every R > 0 there
exists 0g > 0, such that, the inequality

0<|z—2)]|<dr

implies the inequality
|f(z)| > R.

In symbols, we note
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Limit in Infinity. A function f(z) has a limit ¢ in infinity, if and only if for
every € > 0 there exists R. > 0, such that, the inequality

|z| > R
implies the inequality
1f(z) =gl <e

In terms of logical quantifies, we write
Vesodrsollz| > Re = [f(2) — g| <€}

In symbols, we note
lim f(z) =g.

Example 4.1 Using definition show that

. 2(22+1) 4,

lim ——= = —i.

—i 3(z—1i) 3

2(z2+1)
3(z—1)

4
however f(z) has the limit g = 52 Indeed, we consider € > 0 for which

Let us note that at zp = 4, the function f(z) = is not definite,

202241) 4. 2

|f(z)—9|:|m—52|=§|z—z’|<e.

3
Hence, the inequality holds for |z —i| < §. = €

A limit of a complex valued function f(z) at a point zp in Mathematica is
given by the command:

Limit[f(z), z— > 2.
For example

Limit[(z- I)/(z"2+1) ,z—>I]
1

gives 3 or

Limit[2(z"2+1)/(3(z-1)), z->I]
4]

gives —
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4.2 Continuity

Let f(z) be a function definite in a neighborhood of a complex number z,
and also at zp. Continuity of such a function is considered in the sense of the
following definition:

Definition 4.2 A function f(z) is continuous at zy if f(z) has the limit g at
zo and g = f(z0).

Also, we have the € — ¢ definition

Definition 4.3 A function f(z) is said to be continuous at zo, if and only if
for every € > 0 there exists 6.(zo) > 0, such that, the inequality

0 < |z — 20| < de(20)

implies the inequality

1f(2) = f(z0)| <e.

In the terms of logical quantifies, we say that a function is continuous at zy, if
and only if the following implication holds:

Ves035.50{0 < |2 — 20| <0 = [f(2) — f(20)] < €}

Consequently, a function f(z) is continuous in a region, if it is continuous at
every complex number of the region.

One can easily show that polynomials, exponential function, sine and cosine
are continuous functions on the whole complex plane.

The following theorem holds:

Theorem 4.1 If f(z) and g(z) are continuous functions then

f2) x9(2), f(2)9(2), —=. 9(2) #0,

are also continuous functions.

The proof of this theorem is the same as for real valued functions of a real
variable.

Let us note that every function of complex variable can be written in the
following form:

f(z) = ulz,y) +iv(z,y), =z=x+1y.

Thus, f(z) is a continuous function, if and only the real part Re f(z) = u(z,y)
and the imaginary part Im f(z) = v(x,y) are continuous functions.
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4.3 Uniform Continuity

We consider uniform continuity of a function f(z) in a region D in the sense
of the following definition:

Definition 4.4 A function f(z) is uniformly continuous in a region D, if and
only if for every e > 0 there exists 0. > 0, such that, for any two numbers
z1 € D and zo € D, the inequality

0<|Z1—Z2|<5E

implies the inequality

|f(z1) = fz2)| <e
In logical notation, we write
Vesodss0{|21 — 22| < 0 = |f(21) — f(22)] < €}

Clearly, every function f(z) which is uniformly continuous in a region D is
also continuous in the region D, but not vice versa. Let us note that for a
uniformly continuous function there exists one 6. > 0 independent of location
of points z; and 25 in a region.

1
Example 4.2 For example, f(z) = — is continuous in the region
z

D={zeZ: 0<|z] <1}
However, this function is not uniformly continuous in D.
Indeed, for zy, z € D, we have

I, |z—2| 22— 2|

R P P

£ (2) = f(20)

Y

for .
|2 — 20| < de(20) = §|z0|2.

Thus, the function is continuous at every point zy € D. However, this func-

tion is not uniformly continuous in D, since for z; = and zo = —, the
n

n+1

|f(z1) — f(z2)|=|(n+1)—n|=1

is not less than small € > 0, in spite of the small distance between the argu-
ments

difference

for large n.
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4.4 Derivatives

Let f(z) be a single valued function defined in a neighborhood of a complex
number zo. Then, the derivative of f(z) at z is defined as the limit

o 1) = 1)

220 Z— 20

(4.1)

provided that this limit exists, independently of a path, how z approaches zj.
If the limit exists then f(z) is said to be differentiable at 2y, and its derivative
df (20)

is denoted by f (zg) or I

function.
Clearly, we can write the limit (4.1) in the equivalent form

. flzo+ Az) — f(20)
Alirfo Az

, otherwise, it is referred to as not differentiable

where Az = z — 2.

Example 4.3 Let us consider the function
f(z) =vV1+z, at 2z =i.

Following the definition, we compute

I Vitz—=V1+i z—1i 1 1 —iz
11m = 11m = = .
7 z—1 =i (z—D)V1+2+V14+i 2/1+0 /32

Hence, we have

¥e)  _dTE:E 1 g
dz o= dz 2= /32 '

ool

One can find a derivative of a function f(z) at a point 2o in Mathematica as
the limit of the Newton’s quotient

flel = flz]

Limit]
zZ — 20

, 2— > 2.

For example, let f(z) =+/1+ z. Then, the command
Limit [(Sqrt[1+z]-Sqrt[1+I])/(z-I), z->I]

N
1 1 1 -3
gives the derivative (Z - Z)\/l +1= \4/3_26 8.

All rules for derivatives known for real functions are also applicable to complex
variable functions.
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e Derivatives of some elementary functions. Using the definition of
a derivative, one can find the following formulae:

dz" 1 de? ;

rE nz""", = e®,

dsin z dcos z i
o cos z, e sin z,

dtan z 1 deot z 1
dz  cos? z, dz — sin? z,

dln z 1 da* ;
i = a®ln a.

e Arithmetic operations on derivatives. Let f(z) and g(z) be differen-
tiable functions in a region D. Then the functions f(z) £ ¢g(z), f(2)g(z)
f(2)

9(2)
formulae

are also differentiable in D and their derivative are given by the

and

d(f(2) £9(2) _ df(2) _dg(2)

dz dz dz
V) _ )T 1 @2,
4G, SR - R
e T gm0 97

e The derivative of a composed function. Let g(z) be a differentiable
function at z and f(w) be a differentiable function at w = g(z). Then,
the composed function f(g(z)) is differentiable at z and its derivative is
given by the formula

df(9(2)) _ df(w) dg(z)

dz  dw dz ’ w=4g(z).

e The derivative of an inverse function. Let w = f(z) be a continuous
function in a neighbourhood of a point zy which maps one to one the
neighbourhood of zy into neighbourhood of wy = f(z) . If there exits the
derivative f'(z9) # 0 then the inverse function z = f~!(w) has derivative
at wy given by the formula

D ()t — _
{7 (wo)} = 7 (z0) wo = f(z0)-

In general, derivatives in Mathematica are given by the following commands:

D[f([z],z]; DI[flz],{z,n}}; Dtlflz[t]l],t];



39

where D[f [z] ,z] stands for the first derivative, D[f [z] ,{z,n}] stands for the
derivative of order n, and D[f [z[t]],t] stands for the total derivative.
For example, let f(z) =+/1+ z. Then, the commands

f[z_]:=Sqrt[1+z];
D[f[z],z]

give the derivative , and the commands

1
21+ 2
f[z_]:=Sqrt[1+z];
D[f[z],{z,2}]

give the derivative — and the commands

44/1 +z3/2’

flz_]:=Sqrt[1+z];
z[t_]:=2(Cos[t]+I Sin[t]);
D[f[z],z]

give the total derivative
I cos|t] + sin[t]
/1 + 2(cos[t] + I sint])

4.5 Exercises

Question 4.1 Use the definition to show that
1. (a) the function

224+ 4
f(z) = 23 —222442 -8
I
has the limit g = 4+ Z, at zp = —24i.

(b) the function
fz) =

ISEIRN]

does have a limit at zg = 0.
Question 4.2 Let f(z) = 32% 4+ 2z. Use the definition to show that
o F) = T()

= 62’0 + 2,
zZ—20 z — ZO

at any point zg

Question 4.3 Find the limit



40

lim [z +4(27 4 y)).

z—1—1

(b)

sin z

lim Anw : —
=5 Z ™
(c)
z 2
lim 22 cosh —, Anw : —

Question 4.4 Use the definition to show that the function
f(2)=z2"+2"+1
is uniformly continuous in the disc |z| < R.

Question 4.5 Show that the function

is not uniformly continuous in the disc |z| < R, but it is uniformly continuous
. R
i the annulus 5 <lz| <R.

Question 4.6 Use the definition of a derivative to show that the functions
f(z) =z =2, Re z and g(z) = I'm z are nowhere differentiable.

Question 4.7 Show that the function f(z) = |z|* is differentiable at zy = 0,
but it is not differentiable at any point zy # 0.

Question 4.8 Let
sin z

) Z%O?
0, z=10

f(z) =

Show that the function f(z) is differentiable on whole complex plane.

Question 4.9 Let f(z) = u(x,y) + iv)x,y) has derivative f'(z). Show that
the function g(z) = u(zx,y) —iv(z,y) has derivative ¢'(z) if and only f'(z) = 0.
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Analytic Functions

5.1 Cauchy Riemann Equations

Let us consider a complex variable function in the following form:
f(z) =ulz,y) +iv(z,y), z=z+iy.
Suppose that f(z) is differentiable function, that is, there exists limit

flao+Az) — flzo) _ o

lim f(z), Az=z-—z,

Az—0 Az
and it is independent on a path through which z approaches zy, (A z — 0)
Choosing the path along the x axis, we compute

lim flzo+Az) = f(20) _ lim

u(zo + Az, yo) — u(xo, Yo)

Az—0 Az Az—0 Az
4 lim v(zo + Az, y0) — v(20, Yo)
Axz—0 A{L‘

_ Ou(xo, o) +Z.3U($0,y0)
ox or

Similarly, choosing the path along y axis, we compute

f(zo + Az) — f(z)

u(xo, Yo + Ay) — u(xo, Yo)

Alir—n»o Az - AIZI/IBO 1Ay
i lim v(zo, 2, Yo +.Ay) — v(20,Yo)
Ay—0 1Ay

Ou(zo, yo) N 0v(zo, yo)
dy dy

Comparing the right hand sides
du(zo, yo) +Z.8U(5170>y0) _ _Z.au(%,yo) i dv(zo, yo)

ox ox dy dy

41
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we arrive at the Cauchy-Riemann equations

@ v

dr Oy’

v (5.1)
ou_ o

oy Oz

Example 5.1 The exponential function e*, z = x + iy, satisfies Cauchy-Riemann
equations, since

e* =e"(cos y+isin y) = u(x,y) + w(z,y),

where
u(z,y) =e"cos y, v(z,y)=e"sin y.

Clearly, we have

O _ s g = 0¥
o © cosy—ay
@——emsin _
oy Y= o

In this way, we have proved the following theorem
Theorem 5.1 If a function
f(z) =ulz,y) +iv(z,y), z=z+iy,

possesses derivative f (2), then functions u(x,y) and v(x,y) satisfy Cauchy-
Riemann equations.

However, there are complex variable functions which satisfy Cauchy-Riemann
equations and are not differentiable.

Example 5.2 The function

£(2) = ]yl +i 2y = u(z, y) + iv(z,y),

satisfies Cauchy-Riemann equations at z = 0, since

ou(z,0)  0v(0,y)

or Oy =0
u(0,y) _ Ov(x,0) _ 0
oy or

However, the derivative of f(z) at z =0 does not exists.

Indeed, for x = at and y = 3t, we have Newton’s quotient

f&-fO) _ Vel ey | Vof | aB
N T + iy T+ iy a+if a+if3
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Thus, the limit

R I I

a+1i8
This limit depends on a path along which z approaches zero. Because for
different o or  the limit attains different values, therefore, the derivative
f'(0) does not exist at z = 0.
The following theorem holds:

Theorem 5.2 If the functions u(x,y) and v(x,y) have continuous partial

deriwatives

Ju Ou Ov Ov
i a neighborhood of a complex number z and if Cauchy-Riemann equations
hold at z, then the function f(z) possesses the derivative f (z) at z.

Thus, Cauchy-Riemann equations are equivalent to differentiability of f(z) =
u(z,y)+iv(z,y), provided that the partial derivative u,(z,y), va(x, y), uy(z,y
and vy(z,y) are continuous functions.
The following module checks whether or not a function f(z) = u(x,y)+iv(x,y)
satisfies Cauchy Riemann’s equations:

cauchyRiemann [u_,v_] :=Module [{ux,uy,vx,vy },
ux=D[u,x];
vx=D[v,x];
uy=D[u,y];
vy=D[v,y];
(ux===vy) And (uy===-vx)
]

For example, for f(z) = x? — y? + 2i xy, input u(z,y) and v(x,y) and activate
the module by the commands

u=x"2-y"2;

v=2 X y;

cauchyRiemann [u, v]

to obtain the output True.

5.2 Definition of Analytic Functions

The class of analytic functions is determined by the following definition:
Definition 5.1 .

o A function f(z) is said to be analytic at a complex number z if f(z)
possesses the derivative f'(z) at z and in a neighborhood of z.
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e A function f(z) is analytic in a domain D if it is analytic at each complex
number of D.

1
o A function f(z) is analytic in z = oo if f(—) is analytic at z = 0.
z

Later on, we shall show that if an analytic function f(z) possesses its first
derivative then f(z) possesses all derivatives, that is, any analytic function is
infinite times differentiable.

In the class of analytic functions, there are two important of subclasses

e Entire functions.
e Harmonic functions.
These subclasses are defined as follows:

Definition 5.2 f(z) is called entire function if it is analytic in whole complex
plane.

Definition 5.3 f(z) = u(z,y) +iv(z,y) is called harmonic function if its real
part u(x,y) and imaginary part v(x,y) are harmonic functions, that is, if they
satisfy Laplace’s equations

ou
ox?  oy?
o o
ox2  oyr

Now, let us show that real part u(z,y) and imaginary part v(z,y) of an ana-
lytic function f(z) = u(z,y) + iv(z,y) are harmonic functions. Indeed, these
functions satisfy Cauchy-Riemann equations

ou(x,y)  Ov(z,y)

Ox oy
u(z,y) _ dv(z,y)
dy or

By differentiation of the first equation with respect to x, and the second equa-
tion with respect to y, we get

Pu(r,y) _ 0%v(z,y)

ox? 0x0y
Pulz,y)  Pulwy)

0y? Oyox
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Hence, we have
Puls,y) | Pulry)
Ox? 0y?
Let us note that if f(z) is an analytic function then the derivative

ﬁ_g_ﬁu Ov

dz_ﬁzv_aat+z%

=0.

and also
df of Ou  Ov
— =l =—1—+ .
dz dy Jdy Oy
Thus, any analytic function satisfies the following partial differential equation:
of Of
A 5.2
9c = oy (5.2)
which implies the real Cauchy-Riemann equations. Let f(x,y) be a complex
valued function of two real variables x and y. Clearly, for a complex number

1
z=x+1iy, we have x = —(2 + %) and y = 2—(z —Z). So that, we can consider
i
f(z(2,2),y(z,%)) as a function of two variables z and Z. Applying the rule of
differentiation of a composed function, we compute

of 1.0f of of _1,0f , .of

2: 2o oy oz 2ler Tiay)
Hence, by equation (5.2), we obtain the following necessary condition to be
the function f analytic
of _

0z
This means an analytic function is independent of Z.
The following module checks the necessary condition of anslysity of a function
f(z) = ulz,y) +iv(z,y),

analyticCondition[u_,v_] :=Module[{z,s,f ,pu,pv},
pu=ul(z+s) /2, (z-s)/(2%I)];
pv=v[(z+s) /2, (z-s)/(2%I)];
f=pu+Ix*pv;
Simplify([D[f,s]]===

0.

]
For example, let f(z) = 2% Then, input data functions
ulx_,y_1:=x"2-y72; vx_,y_]:=2xx*y;
and execute the module
analyticCondition[u,v]

to obtain the answer True.
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5.3 Liouville’s Theorem

Let us state Liouville’s theorem for entire functions.

Theorem 5.3 If f(z) is an entire function bounded on the complez plane, that
18, there exists a generic constant M such that

[ <M, z€Z,
then f(z) is a constant function throughout the whole complex plane.

Proof. f(z) as an entire function satisfies Cauchy’s inequality

n!M

R’
for |z| < R and any radius R, where M is a constant independent of R.
For n =1, we have

£ ()] < n=01,..,

7)< 5

Hence, when R — oo, we get f/'(z) = 0 for z € Z. This means that f(z) =
constant on the whole complex plane.

As an implication of Liouville’s theorem, we shall prove the Fundamental The-
orem of Algebra.

5.4 Fundamental Theorem of Algebra

Theorem 5.4 Every polynomial
Py(2) = ao+ a1z +azz® + -+ + a,z",
of degree n > 1 has at least one zero on complex plane.

Proof. Proving by contradiction, suppose that P,(z) # 0 for all z on the
complex plane Z. This means that the function

is analytic on the whole complex plane, that is, f(z) is an entire function.
Now, let us show that f(z) is a bounded function on the whole complex plane.
Namely, we have

1 > —qy_ Jaol | ad |an—1] _ |ax]
W|ao+a12+a22’ + a2t < W—l- = + -+ |Z| < —
and
|an] [2]"

lag + a1z + -+ ap_12" 7 < 5
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for all |z] > R and sufficiently large R.
To estimate f(z), we write

JIO— ! <2 -
Z =

|Pu(2)] 7 lanl [2]" = a0 + a1z + -+ + an-1 |27 T an| [2]" T Jan| R
for all |z] > R.

Thus, f(z) is a bounded by in the region |z| > R and as an analytic

2
|an| |R"
function is also bounded by a constant Mg in the disc |z| < R. Thus, f(z) is
bounded by the total constant

2

M = maX{MR, W

}?

so that
If(z)| <M, forall 2ze€Z.

By Liouville’s theorem, f(z) is a constant function. This contradicts the as-

sumption P, (z) # 0 for all z € Z. Thus, G is not an entire function and
(2

P,(z) has at least one zero on complex plane. The end of the proof.

5.5 Maximum Modulus Principle

If f(z) = u(x,y)+iv(z,y) is an analytic function inside and on a closed curve
C' then the mazimum value of | f(2)| is attainable at a point zy € C, that is

max _|f(2)| =|f(z0)|,

zeDuUeC

for a certaint point zy € C.
Proof. Let

M(z,y) = |f(z)] = vP(z,y) + v*(z,y), z==z+1iy,

be the square of the modulus of f(z). We shall show that function M(x,y)
satisfies the differential inequality

O Ma,y) | PM.y)
0x? 0y?

in the region D enclosed by the curve C. Indeed, we have

62M+82M_2[@2+ @2_‘_ @2_‘_ @z]>0
Ox? oy oz dy ox oy)  —
From the inequality (5.3) it follows that M (z,y) does not attains its maximum

inside of C' unless it is an constant function.
End of the proof.

> 0, (5.3)




48

5.6 Exercises

Question 5.1 .

1. (a) Find Cauchy-Riemann equations of an analytic function f(z) = u(x,y)+
iv(x,y) in the polar coordinates

r=rcos ), y=rsinb, z=x+iy#0.

(b) Check whether or not the function f(z) = z €* satisfies Cauchy-Riemann
equations in polar coordinates.

Question 5.2 Show that a harmonic function u satisfies the following formal
differential equation
0%u B
0207

Question 5.3 Determine the coefficients a,b,c and d, to be

0.

1. (a) the quadratic polynomial
ax® + bry + cy?

an entier function.

(b) the cubic polynomial
az® + b’y + cxy® + dy?
an entier function.

Question 5.4 Check weather or not the following functions are entire and
satisfy the Cauchy-Riemann equations:

1. (a)
f(2) = 2y® +ia®
(b)

f(2) = eve™.

Question 5.5 Let f(z) be an anslytic function in a region D. Show that if
f(2) is real valued function in D then f(z) = constant in the region D.

Question 5.6 Show that the following functions are entire:
1. (a)

f(z) =eve™,  z=ux+1y,

(b) .
f(z)=(*—=2e "™, z=gx+iy.
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Question 5.7 Let f(z) = u(r,0) + iv(r,0), z = r(cos 6+ isin ) € D be
analytic function in a domain D which does not include number z = 0. Using
Cauchy-Riemann equations in polar coordinates, show that function u(r,0)
satisfies Laplace’s equation in polar coordinates equation

282u+rﬁu+82u 0
r'—+r—+ —= = 0.
or? or 002
Also, show that function v(r,0) satisfies Laplace’s equation in polar coordi-
nates.
Question 5.8 Consider the following function
f(z)=z¢€*, z=x+1y.

Show that the real part u(z,y) = Re f(z) and the imaginary part v(zx,y) =
Im f(z) satisfy the following equations:

Pu 0 v

0202 = 0207

Question 5.9 Consider the following function

0.

f(z) =2* —y* + 2izy, z=uax+iy.
Show that this function is analytic and satisfies the equation
of
5 =
Question 5.10 Following details of the proof of fundamental theorem of alge-
bra, show that the particular polynomaial

0.

Py(z) =2 —2* =22+ 2
has exactly four roots. Determine the roots.

Question 5.11 Find the mazimum of |f(z)| in the disc |z| < 1, when f(z) =
b+ 22+ 1.

Question 5.12 Show that for every polynomial
P.(2) =ag+ a1z +axz® + -+ +a,2", ap,#0, n>1,

there exists a number R > 0 such that
|an] |2]"
P, >
Pa(e)] >
for every |z| > R.

Question 5.13 Show that every harmonic function in a domain D 1is either
constant or does not attain its positive mazimum or negative minimum in D.

x
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Chapter 6

Integrals

6.1 The Integral of a Complex Valued Function of a
Real Variable

Let us consider the following complex valued function:
w(t) = u(t) + (),

in real the variable ¢ € [a, f3].
Assuming that the real functions u(t) and v(t) are integrable in the interval
[, 3], we define the integral of the complex valued function w(t) by the formula

/jw(t)dt: /ju(t)dtﬂ'/jv(t)dt.

Example 6.1 Let w(t) =cos t+isin t, 0 <t <

e

We have

/ﬁw(t)dt:/ﬁcostdt+z’/§sintdt:1+i.
0 0 0

The following inequality holds:

|/ (t)dt| < / w(t)|dt (6.1)
Indeed, if
8
/ w(t)dt = 0
then inequality is true.
If
8
/ w(t)dt £ 0

then there exist real ry # 0 and 6y such that
B ”
/ w(t)dt = ree”™.

51
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Hence, we have

8
0 :/ e %o (t)dt

e

and
/ _w‘)w |dt
But ' '
Rele™w(t)] < [e”Pw(t)] = |w(t)].
Thus

|/ dt|</ lw (t)|d.

One can integrate a complex valued function g(t) of real variable ¢ by the
following Mathematica command:

Integratel[g[t],{t,a,b}]
For example, executing the commands

glt_]:=t"2+IxSin[Pi t];
Integrate[g[t],{t,0,1}]

we obtain the value of the integral

1 27

3 T

6.2 Line Integrals

Let f(2) be a function of complex variable z = x 4 iy defined on a contour C
given by the parametric equation

C: z(t)==z)+iy(t), a<t<p.
The line integral of f(z) along the contour C is defined as
& /
/C f(2)dz = /a F(=(0)7 (1)dt. (6.2)

If f(2) =u(z,y)+iv(x,y), 2/(t) =2'(t)+ iy (t) then the line integral takes
the following form:

/C f(2)dz = /j(u:c' — vy )dt +1i /j(v:c' + uy')dt.

In terms of differentials dz = 2/dt and dy = y/dt, this integral is

/f dz-/a udx—vdy)+z/ (vdx + udy).
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Example 6.2 Compute the line integral

/ dz
cz—2z

along the circle C: z(t) = 2o+ Re", 0<t < 2m.

We have 1
— / t) = R it
fe) ==, =ik,
By formula (6.2), we compute
d 2 R it
/ z _ ze' it
CzZ— 2 0o Re

2
= [Tidt=2r1.
0
Example 6.3 Let us consider the line integral

N(C,a) = L/C dz

omi Jo z —a’

along a closed contour C' : z = 2(t) a <t <pf,. Then, N(C,a) is an integer
number.

Let us note that

N(C,a) = L/ﬁ £ (t) dt

2mi Ja 2z(t) —a’
We shall show that N(C,a) is an integer number which depends on allocation

of a with respect to the curve C.
Indeed, the function

has the derivative

Thus, the function
G(t)=e9D[z(t) —a], a<t<p.

has the derivative

dG(t)  d. _,u
A e —a)) =0, a<i<p
and G(t) = constant in the interval [a, §]. Because g(a) = 0, therefore

e 90 [2(t) — a] = z(a) — a.
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Hence, we find

and

when 2(8) = z(«).
By the theorem 3.1, we obtain ¢g((3) = 27 ¢ N. Thus, we find

9(8)

N(C,a) = o 1 =N
for an integer .
The number N(C, a) is called index of the point a with respect to the curve C.
This index indicates how many times point z(¢) passes around a when ¢ moves
from a to 3. For example. if C is the circle z(t) = a + Re®, 0 <t < 2m,
then N(C,a) = 1, since then point z(¢) moves once around the center a when
t changes from 0 to 2.
In order to evaluate a contour integral along a piecewise linear path with
vertices 21, 29, ..., Zm, in Mathenatica, we execute the command

Integratelg|z], {z, z1, 22, .-, Zm}]
For example, executing the commands

glz_]:=z*xExp[z~2];
Integratelglz],{z,0,I,1+I}]

we obtain the value of the integral

1 1
- _EQI‘
2+2

Properties of Line Integrals.

1. (a) From definition of the line integral the following additive properties
can be easily established:

L L@ £9@)dz = [ f()dex [ g()dz
i, L@z = [ f@dz+ [ ez

where the contour C' consists of a contour C; from z; to zo fol-
lowed by a contour Cy from 2z to z3.
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3 f(z)dz=— | f(z)d=.
c c

where the contour C' has positive orientation, that is, if ¢ moves from
a to (8 then z(t) = z(t) + iy(t) moves from 23 = z(a) + iy(«) to
zo = z(B) + 1y(), and the contour —C has opposite orientation to
C

Indeed, the parametric equation of the contour —C' is
2(=t) =a(=t) +iy(—t), —-F<t<—o

Then, by the substitution s = —t, we have

[ eyt = — [ ) o) = - [ 1

_ﬁ «

| [ 7zl < [ 15(:)az
By definition (6.2) and inequality (6.1), we have
[ sael =1 [ s < [5G0 @0 = [ 176
(d) Let |f(2)] < M be bounded function on contour C. Then
| [ £z)de] < ML,

where L is the length of C.
Since, we have
B

[ s@asl <1 [ ool < v [ 1@k < ML

6.3 Antiderivative

Let f(z) be a function given in the domain D. Every differentiable function
F(z) in domain D which satisfies the condition F'(z) = f(z), z € D, is called
antiderivative of function f(z). Let us note that the antiderivative F'(z) is not
uniquely determined since if F'(z) is an antiderivative then F'(z) + constant is
also an antiderivative of f(z).
The following theorem holds:

Theorem 6.1 Let f(z) be a continuous function throughout a domain D and
let F'(z) be antiderivative to f(z), that is,

F'(z) = f(2), z€D.
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Suppose that a contour C': z(t) = x(t) +iy(t), a <t < [ with the end points
a = z(a) and b = z(B) lies within the domain D. Then, the line integral is
independent of the path C and its value is given by the formula

/Cf(z)dz - /abf(z)dz — F(b) - Fla).

Proof. Let us the define function ®(t) = F(z(t)), o <t < . This function
is differentiable and the derivative

() = f(2()2 (1), a<t<p.

Applying the formula (6.2), we obtain the formula

B B
[tz = [T o) = [ @@ =) - o) = Fb) - Fa)

«

Example 6.4 The function f(z) = (z — 20)" has the antiderivative

5 — 2 n+1
By the thesis of the theorem
1
L =)z = — (b= 20" = (=)™, -1

In particular, if the contour C' is close, that is, when a = b, the integral

/ (z — 29)"dz = 0, n # —1,
c

6.4 Cauchy Theorem

Now, let us state Cauchy theorem.

Theorem 6.2 If f(z) is an analytic function within and on a closed contour
C, then

/c f(2)dz = 0.

Example 6.5 If C' is the circle |z| = 1 then the integral

/ dz _0

c24+22+2

Since then the singular points 21 = —1 — 4 and 2z = —1 + ¢ of the integrand
L i 1 L

2242242 2z+1+i0 z+1—i

f(z) =



o7

are outside of the circle. Therefore, by Cauchy theorem, the integral along C
is equal to zero.

If Cp is the circle |z4+1—1i| = 1, then the f(z) is not an analytic function in the
disc D={z€ Z: |24+ 1—1i| <1}. Then, Cauchy theorem is not applicable
in D. However, we can compute the integral (see (6.2))

/ dz / z[ 1 1 ld
_ = — — z = .
Co 22 +22+2 Co2z4+14+1 z4+1—1

Let us note, that Cauchy theorem can be confirmed in Mathematica to show
that the integral of an analytic function f(z) along a closed contour C'is equal
to zero. For example, executing the commands

glz_]:=z*xExp[z~2];
Integratel(gl(z],{z,0,I,1+I,0}]

we obtain the value of the integral equal to zero.

6.5 Cauchy Integral Formula

Let f(z) be an analytic function within and on a closed contour C' which is
positively oriented, that is, oriented in counterclockwise direction.
Then the following Cauchy Integral Formula holds:

() = 1 / f(©)

"~ omi c(—z

dg, (6.3)

for any z interior to C.

Proof. Let z be a complex number interior to C' and let C). be the circle with
the center at z and radius r which is inside of C' and has positive orientation.
Then, the function

&, e Cud,,

(—z

is analytic in the domain D bounded by contour C' and circle C'.. Therefore,

by Cauchy theorem
/ f(©) dc = 0.
cuc, ( — 2

Hence, we have

£(0) £O) 4o _
Joma o gt =e
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Fig. 6.1 Domain D

Thus, the integral along curve C' is equal to the integral along the circle C,.,

that is, : ©
J¢€ . [
/CC—ZdC_ e (—z

dc.
Using the equality

f(¢) f(Q) — f(2)
o= QC_Z«+/°—7577—M. (6.4)
we obtain
/(2 )dC—me() zeD (6.5)
e (—z ’ ’

Because f(z) is an analytic function, therefore for every ¢ > 0 there exists
r > 0 such that
€

1£(O) = f(2)] < =—, if |¢—z <

2w
Hence, we get the following e—estimate of the integral
[ g ) < (6.0

provided that |¢ — z| <.
Combining equalities (6.4) and the inequality (6.6), we obtain the Cauchy In-
tegral Formula.

Example 6.6 Let us evaluate the integral

/ dz, C:|z—1|:1
cl+22 2
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using Cauchy Integral Formula.

The integrand
z z

1+22  (z—i)(z+1)

has the singular point z = ¢ within the circle C' : |z — | = 1. Thus, the func-
tion

z

fl2) = —.

is analytic within and on the circle C. By Cauchy Integral Formula

Cde (RO
e = L e = s =i

/ zdz o
cl+22 =7

6.6 Cauchy Integral Formula

Hence, we obtain

Theorem 6.3 Let f(z) be an analytic function within and on a closed contour
C' positively oriented, then the following Cauchy formula holds:

T 2mi

fw@y—” L@%%%Hdg n=01,.., (6.7)

for any complex number z interior to C.

Proof. We shall prove the theorem using principle of mathematical induction.
The theorem is true for n = 0, since it is the case of Cauchy Integral Formula
which has been already proved.

Assuming that the formula is true for n = k, we shall show that the formula
is also true for n = k + 1. Indeed, by the assumption, we have

k k! f(©)
1t )(Z):%AWOK-

Now, let us consider the Newton quotient
®) (2 4+ Az) — fB)(2 k! 1 1
S8 ) =Pk _k / FO — ¢
Az 2miAz Jo ((—2z—Az) (¢ —2)

_ K ((— 2 = ((—z— Az
= o= [ 10 AS(C 7 A )y

dc.

Using the limit

' (C o Z)k+1 _ (C — Az)k—i—l
Alirfo Az
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one can show that

AZ—0 Az 271

Fee) = i SUCEHBD =IO 1) SO
c (C _ Z)k+2

As a consequence of this theorem, the following corollary holds:

Corolary 6.1 If a function f(z) possesses first derivative f'(z) in a domain
D, then f(z) possesses all derivatives in D.

Example 6.7 Use Cauchy Integral Formulas to evaluate the integrals

Let us note that we can write the integrals as follows

. dz g dz
(9) /|z_i|:2 Croe—2) W /|z_i|:2 (21 202)(z — 20)2

Choosing f(z) =

-, we can write the first integral as
2+ 2

=g [ Y

211 J|a—ij=2 ( — 2

dc.

Thus, for z = 2i, we have

poLl_ 1 € _ 1 &
f2) =5 = /|z_z-|=2 (C+2i)(¢—2i)  2mi /lz—il=2 2 +4

Hence, the first integral is

/ dz T
mil=2 22 +4 2

Similarly, choosing f(z) = m, we have
_ 1 SO
f(z) = 2mi /|z—z'|:2 (—z e

Thus

_ 1 dg
J(2) = (z4+20)2  2mi /|z_i|:2 (CH+20)2(¢—2)
and the derivative

/ -2 1

F(z) = e

(z+2i)* ~ 2mi /|z—z'|=2 (€ +2i)*(C —2)*
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Hence, for z = 2i, we obtain

—i 1 d¢ B d¢
32 2mi /|z_i|:2 (C+20)2(¢—2)2 /|z_i|:2 (2 +4)¥

and the second integral

/ _dz 7T
mil=2 (22 +4)2 16

Also, one can evaluate, in Mathematica, a contour integral of a function f(z)
which has singular points interior to a closed contour C'. For example, execut-
ing the following commands:

glz_1:=z/(z"2+4);
Simplify[Integratelglz],{z,-1,1,4 I,-1}]1]

we obtain the value 27 ¢ of the integral

z
/c 22+ 4dz,

along the polygon C with vertices —1, 1, 44, —1, and with the singular point
z1 = 2¢ interior to C.

6.7 Cauchy Inequality

If f(z) is analytic inside and on the circle C': |z — a| = R then the following
Cauchy inequality holds:

Mg n!
(n) < R

n=20,1,.., (6.8)

where Mp = max|._q=g | f(2)].
Indeed, by the Cauchy integral formula

2mi

|
f (a) C (C_a)n_l_l C? n ) AR
we obtain the estimate
n! MR . MRTL'

|
If(”)(a)lzg—%l/cﬁdq < 7R —

—%Rn—l—l ™ Rn :

6.8 Morera Theorem

The inverse to Cauchy’s theorem is Morera theorem. This theorem we shall
state and prove below.
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Theorem 6.4 If f(z) is a continuous function in a domain D, and if the
integral

/ f(z)dz=0
c
along any closed curve C' in D, then f(z) is an analytic function.

Proof. Let a be a complex number in the domain D. Then, the function
given by the formula

Fi)= [(fcde,  zeD

is independent of a path in D from a to z. Indeed, if C'; and Cs are two paths
from a to z, then the curve C' = C; U —C5 is closed, and by the assumption,
the integral

L o, @ de= [ 7@ e~ [ 7c)dc =0

Ci &
Hence, we obtain
@ dc= [ o) dc
Thus, F(z) is an antiderivative of f(z), so that
F'(2) = f(2), z e D.

This means that F(z) is an analytic function in D and therefore F'(z) has
the second derivative F"(z) = f/(z), z € D. So that, f(z) possesses first
derivative and it is also analytic function in D.

6.9 Exercises

Question 6.1 Show that for any integer m and n the integral

2w, m =n,

2 )
/ 6zmt6—mt dt —
0 0’

Question 6.2 Fuvaluate the integral

/z?dz,
c

along the positively oriented circle |z| = 1.

m#n

Question 6.3 Fuvaluate the integral

/C(a: +y? + iry) dz,
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along the path
t + 21, 1<t<2

C: z(t)==x()+iy(t) =
24i4—1t) 2<t<3

Question 6.4 Show that if C is the circle z(t) = zo +re', 0 <t < 2, posi-
tively oriented then

2 L
/c f(z) dz = z'r/ f(zo +re™e™ dt,
0
for any continuous function f(z).

Question 6.5 Let f(z) be an analytic function inside and on the circle C' :
2(0) =a+re?, 0 <0< 2r. show that

£ (q) n! /27r =m0 (g 4 rei®)df
= r

“ 2mr™ Jo ‘ ¢ ‘ ’

forn —0,1,2,..., and for z interior to C.

Question 6.6 Fuvaluate the integral

1
=) d
/C (z+2) d
along the path
1. (a)
2(t)=2+¢"  0<t<2m,
(b) ,
2(t)=1+i+2e", 0<t<2m,
(c)

2(t)=3e", 0<t<2rm
Question 6.7 Fuvaluate the integral
1. (a)
/C[a: + 3y? +i(y — 327)]dz,
along the path
(1+ )2, 0<t<1,

C: szxamwwOZ{ .
2—12)i+1 1<t<2
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Question 6.8 Use Cauchy’s theorem to show that the integral

/ 2 sin 2% dz
c

1s independent of a path with end points a =1 —1i and b = 2 + 1.
FEvaluate the integral.

Question 6.9 Consider the following function:

d¢
F(Z):/CC—Z’ C: |z—a| =R,
Show that

2ri, z €D,
F(z) =

0, z¢ DUC,
where D is the disk |z —a| < R.

Question 6.10 Use Cauchy Integral Formulas to evaluate the integral
1. (a)
/ dz
le42ij=2 22 — 2z +1—14’
(b)

/ dz
lz42i=2 (22 + 2 +1—1)%

/ 22 dz
le—1]=2 (4 — 22)’

(c)

(d)

T2

e 2dz . .
/Cm> 2(t) = 3i+2¢", 0<t<2m.

(¢)

TZ

e 2dz . .
/Cm> 2(t) =3i+2¢", 0<t<2m

(f)

dz
— C: — | = 1.
/0(42—1—1)2’ S

(9)

/ sin4z + cos 2z
c

C-D-2) C: |z| =3.
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Question 6.11 Use Cauchy inequality to obtain an estimate for the deriva-
tives of f(z) = sin z.

Question 6.12 FEvaluate

2f'(2)
/|z|=5 f(2) o
where f(z) = 2 + z + 1.
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Chapter 7

Series

7.1 Power Series

Power series about a point z = 2; is an infinite series of the form

e e}

a0+a1(z—zo)+a2(z—zo)2+ +an(Z—Z() . Z Z—Zo s

n=0
(7.1)
where ag, ay, ..., Gy, ..., are complex valued coefficients.
In most cases, we shall consider a power series about z = 0, that is, the series

ap+ a1z + a2+t a2 = a2, (7.2)

Example 7.1 Let us consider the geometric series

e}

L+z+422+- Z (7.3)

The geometric series is convergent for |z| < 1, and diverges outside of the unit

circle, so that
1

o
Zzn: 1—2z
n=0

diverges, |z| > 1.

o <

Indeed, the partial sum

1— Zn—l—l
Sn:1+z+22+---+z":17, z # 1.
-z
Clearly, we have
. . 1
lim 2" =0, and limS, = , |z| < 1.
n—00 n—0 1—2z

67
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For |z| > 1, the geometric series diverges because the necessary condition of
convergence is not satisfied, that is

lim 2" = oo |z| > 1.
n—0 ’

Also, the geometric series diverges for |z| = 1, since then
2" = cosnf + isinnf

But sinnf or cosnf do not tent to zero when n — 0. Thus, the necessary
condition of convergence is not satisfied, too.
The following theorem on convergence of power series holds:

Theorem 7.1 If the power series
Z an 2",
n=0

converges at point z = z1, z1 # 0, then it absolutely converges in the disc
|z| <7 =|z].

Also, if the power series diverges at the point z = zy, then it diverges outside
of the circle, that is for |z| > r.

Proof. Let us assume that the series
o
Z anz",
n=0
is convergent at point z = z1, so that, the number series
o
Z anzy,
n=0
is convergent. This means that all terms a,27, n = 0,1, ..., are bounded, so
that, there exists a constant M for which
lanzt| < M, n=0,1,..,

Let us note that

z z
|anz"| = lanzy| | —[" < M|—[" = Mq",
Z1 Z1
z
forq=|—| < L.
21
(o]
By the comparison test, the series Z a,z" is absolutely convergent within of
n=0

the circle |z| = r = |z].
Now, let the series

o
Z an 2",
n=0
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diverges at point z = z;. Then, the inequality |a,z"| > |a,2}|, holds for
|z| >r, n=0,1,..,
By the comparison test, again, we conclude that the series

[e.e]
Z anz",
n=0

is divergent for |z| > r.
Radius of Convergence. The radius R of the circle |z| = R is called radius
of convergence of the series

(o]
Z an 2",
n=0

if this series converges for |z| < R and diverges for |z| > R.
We compute radius of convergence of a power series using the following for-

mula:
1
R=+, A= lim sup {la,|

The radius R = oo if A =0, and the radius R = 0 if A = oc.
Also, one can compute the radius of convergence of a power series using the
following limit:

T An41
A= i sup =7

Example 7.2 To compute the radius of convergence of the power series

>0
=3+ 1
we find
1 1 1 1
n = s )\:l 0 :—’ R:—:3
T e T A

Let us note that the series
o0
Z anz",
n=0

and the series of derivatives

o

-1
Z na,z"" ",
n=1

have the same radius of convergence, since then

A= lim Sup {/lan| = lim sup v/nlan).
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7.2 Taylor Series.

Let f(z) be an analytic function at a complex number z;. Then, the Taylor
series of f(z) about zj is defined by the formula

0o () (5
§:f (20)

n!

(z — 20)".

n=0

In the case when zy = 0, the Taylor series is called Maclaurin series.
The following theorem holds:

Theorem 7.2 If f(2) is an analytic function at zy, then its Taylor series
converges and

o 4 (5
E:f (20)

n!

f(z) = (z — 20)".

n=0
for |z — 20| < R, where R is the radius of the circle within which the function
f(2) is analytic.

Proof. Let f(z) be an analytic function within the circle |z — zo| = R
Then, by Cauchy integral formula, we have

f(z)zi/K O 4e seD={z: |2—2 <R}

271 Ji¢c—z0)=R ( — 2

Let us note that

I 1
(=2 (€—2)—(2—20)
R 1
=
1 Z— 2 Z— 2 Z— Zp
= 1+ + ot n
C—ZO[ ¢— 20 (C—ZO) (C—Zo) ]
for [( — 20| =R
Hence, we obtain
Z Z_ZO) 12— 20| < ¢ — 20| < R.

—Z n—l—l’

C

Now, coming back to Cauchy formula, we find
= (z— zo)
Z _ n—l—l dC

1 fQ - _t
fz) = 271 /|C—zo|=R C—=z “= 2m /K_ZO' =H = 0

= (F==)" nl f(<€)
=2 '/IC—20|=R (¢ — zo)"H! &

~ nl o 2mi
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Hence, by the formula

) = /&—wm:ﬂz(C e 6

271 — 29)

we obtain the following Taylor series representation of f(z):

= f0(z0)
:Z n!o

f(2) (2 = 20)",

n=0

for |z — 2] < R.

Example 7.3 It is easily to establish Taylor series of the following elementary
functions:

1. (a)

B z 22 2"
C=ltqtogt ot €2,
(b)
) 2’3 2’5 il Z2n—1
SIHZ:Z—a—Fa‘l‘“'—F(—l) m‘l‘"', z € 4,
(c)
2 4 o
cosz:l—g—l—ﬁ—l—---%—(—l)2—n!—|—---, z € Z,
(d)
In(1 + ) Ca IR S 2 < 1
n Z :Z—— —_— DY —_— —_— ---’ Z .
2 3 n

Taylor series with n-th terms of a function f(z) about a point a can be obtained
in Mathematica by the command

Series([f[z],{z,a,n}]
For example, the output of the following commands:

flz_]1:=Sin[z]Exp[z];
Normal [Series[f[z],{z,0,6}]]

is the series

+ 42
2+ —+ = === —.
1



72

7.3 Laurent Series

Let
D(zp,r1,m) ={2€Z: 0<r <|z—z| <ma}.
be the annulus with radii r; and o and the center at the point z5. A Laurent

series is considered in the annulus D(zg,r1,72). A Laurent series takes the
following form:

e}

ia_mz—zw—uian(z—zﬁ)n: S (s )"

n=0 n=-—oo

Let us note that a Laurent series consists of the principal part

o0
Z a_n(z—20)7",
n=1

and the regular part
> an(z — 20)"
n=0

A Laurent series is said to be convergent in annulus D(zo, 71, 7r2) if both series
in regular part and principal part are convergent, otherwise the Laurent series
is divergent. Clearly, the series in the regular part is convergent in the disc

1 _ §
|z — 20| < 19, = A= lim sgp\/|an|.

and divergent outside of the disc, that is, for |z — zo| > ro.

The series in the principal part is divergent in the disc |z — 29| < r1, and
convergent outside of the disc, that is for |z — zg| > 7. Thus, both parts of
the Laurent series are convergent in the annulus D(zg,71,72).

The following theorem holds:

Theorem 7.3 If f(z) is an analytic function in the annulus D(zo,r1,72), then
the Laurent series of f(z) is convergent and

e e}

f(z) = Z an(z — 20)", 2z € D(20,71,72),

n=-—oo

where the coefficients

1 f(©) B
an —/C(Cidc, n=0+142 ..,

 2mi — zp)"H1

Proof. Let z be a complex number in the annulus D(zg, 71, 72) which boundary
consists with two circles C(zg, 1) and Cy (29, 72). Dividing the annulus in two
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parts as on figure 8.1, we obtain the domain D; and Dy with the boundaries
0Dy and 0D,. By Cauchy Integral formula, we have

1 f(Q)
f(z)_%/amadc’ 2 € Dy,

and

1 Q-
%,/{)ch—zdc_o’ ZEDQ,

Adding both integrals and canceling the integrals along the common parts of
the boundaries 0D, and 0D, we obtain the formula

ER GRS R (5

2mi Jo, ( — 2 2mi Jo, ( — 2

f(z) =

dC, z € D(Z(],’f’l,’f’g). (74)

C2
1.5

D1 D2
1
Ci
.z

0.5 uD;

X
0.5 1 1.5 2

Fig. 8.1 Singular point z
Let us note that | — 29| > |z — 20| for { € C5, so that

1 1

(—z (C—ZO)—(Z—ZO)
o 1 o —Z(])
_C—zol— = z:: (2 — zo)"t1’

Also, for |¢ — 2| < |z — 20|, when ¢ € C1, we have

1 1

¢—z (€= 2)—(z—2)
o 1 1 —Zo)nl
R = Z (z —2zo)"

Z2—20 n=1

Both the above series are uniformly convergent with respect to (. Therefore,

we can replace the function in the integrals in (7.4) by these series.
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Then, we obtain the following formula
O e (o
(7.5)

f(Z) - = 2—7TZ /02 (C — Zo)n+1
! /(©) »
3 oy T s K e

We can replace the two integrals in (7.5) along the circles €y and Cy by the
integral along a circle C' within the annulus D(zg, 71, 72). Then, we obtain the

Laurent series
z € D(Z(), T, 7’2),

[e.e] [e.e]
(z—20)" 4+ Y a—n(z—20)7",

=2 an

where the coefficients
n=0,+1,+2, ..,

_ F(©)
an = 2—7”‘/0 (C_Zo)n—l_l dC)

End of the proof.
Example 7.4 Let us consider the following function
1 1
/(z) = z—2+z—1'
cl <z <2}

This function is analytic in the annulus D(0,1,2) = {z € Z
2] <2,

Then
1 1
2—2 51 z __Z2n+1’
and
1 1 > 1
> 1.
i—1 21— nz_:l Zn’ 12
Hence, the Laurent series of f( )
1 S|
:_Z2n+1 s 1< |z <2

Z) =
A Laurent series with n terms of a function f(z) about a point a can be easily

obtained in Mathematica by the command

Series([f[z],{z,a,n}]
6, a = 1. Then, we obtain, in Mathematica

z
F\ le, let ==, n=
or example, let f(z) a1 n
six terms of the Laurent series by the following commands
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flz_]l:=z/(z"2+1);
Normal [Series[f[z],{z,I,6}]1]

I 1 1 1
L D4 —I(s—T1)
4+2(z—l)+8(z )+ el = 1D)

1 1 1 1
(= IP— —I(s— T — I+ —I(z— I
g7~ D = gl e = D' 5e (e = 1) + el (2 = 1)

7.4 Exercises

Question 7.1 Find the region of convergence of the series

1. (a)

i (z42)"
— n_|_2 34n+1’
(b)

0o )n 1.2n—1

Z (2n —1)!

n=1

Question 7.2 Find the region of convergence of the series

1. (a)

© 1
nz::lnz%—zz’

(b)

X cosnz
> .

n=1 77,3
Question 7.3 Use the geometric series
z
242 = 2] < 1,
1—-2
to show the following:
1. (a)
Z o_ rcos — r?
r" cosnf =
= 1—2rcosf +r?’
(b)
Z 0— rsin@ — r?
r’sinnf =
= 1—2rcosf+r?

Question 7.4 Find the Taylor series for the following functions about the
indicated points
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1. (a)

f(Z) = CO8 %, 20 = ga

(b)

g(z) =sinhz, 2y = mi.

Question 7.5 Find the Laurent series for the function

1
f(z) = 2= 2)
1. (a) in the annulus
0<|z] <1,
(b) in the annulus
1<z < 0.

Question 7.6 Find the Laurent series for the function

1 1 1

f(z):;_l_l—z_l—Q—z’
1. (a) in the annulus
0<|z] <1,
(b) in the annulus
1< |z| <2,
(c) in the annulus
2 < |z| < 0.

Question 7.7 Find principal part of the Laurent series for the following func-
tions:

1. (a)

1
f(z) = 22sinz =0
(b) .
f(z) = e 20 =21
Z2+4> 0 )
(c) .
2z —sinz
f(z)27> 2| > 0.
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Residues

8.1 Singular Points

There are three types of singular points of a function f(z) at a point 2.

1. (a) zp is a removable singular point of f(z) if the Laurent series of f(z)
about zg reduces to the regular part.

(b) zp is pole of order m if the principal part of the Laurent series about
2o has m terms, that is, ---a_,,— 2 = a_p,—1 = 0, and a_,, # 0.

(c) zois essential singular point of f(z) if the principal part of the Laurent
series has infinite number of terms.

Example 8.1 Let us consider the following function:
z—1

f(z) = 21
with the singular points zg =i and zg = —1.

This function has the following Laurent series about the point zy = i:

f(2) = o 1 11
VTN T G-+ 2ilt sl
1 z—1 z—1 zZ—1
= 1= 2 (=1 n..
5l =5 T () (=) () ]
1 & noZ = by
= (=D)"(—=—)"

T2 2

Since the principal part of the Laurent series of f(z) has been reduced to zero
(a-y =a_g=+--=a_y, =--- =0), therefore zy = i is a removable singular

point of f(z).
Example 8.2 Let us consider the following function:

/(z) = zil—l'

7
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with the singular points zg =i and zg = —1.
This function has the following Laurent series about zy = 4:
1 1
& =29 ~eohe+d
1 1 1 1
T 2iz—i 2iz+i
1 1 1 1
T 22— 20 (z—i) + 2

1111
_Q_iz—z'_l_zl_l_Z;i

7
1 1 > (z — i)t
— L
2zt 2

1

The principal part of the series consists of one term and a; = % Thus, zg =1
i

is the pole of order one.

Example 8.3 let us consider the following function

1
f(z) =ez.
This function has the following Laurent series about zy = 0:
1
6;:1+L+L+...+ R
1z 2122 nlzn

Because the principal part of the Laurent series has infinite number of terms,
therefore zg = 0 is the essential singular point of f(z).

8.2 Residues

Let f(z) be an analytic function in the annulus 0 < |z — 29| < r. Then, the
coefficient a_; in the Laurent series

f(z) = acn(z —20) " + D an(z — 20)",
n=1 n=0
is called residue of f(z). In symbols, we write Res f(z) |, = a—1.
Example 8.4 The function
1 1 2 1 4(z—3)
f(Z) = 2 . 2 = _ 2 — + = ——
2%(z —3) 9(z—3)2 27(z—3) 27 243

2
has the pole of order two at zy = 3 and the residue Res f(z) |,=3 = a—1 = ~57
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If f(2) has the Laurent series
f(z) = Z a_n(z—20)""+ Z an(z — 20)", (8.1)
n=1 n=0
then the residue

a_1 = Resf(z)], = %m/cf(z) dz. (8.2)

Indeed, integrating both sides of (8.1), we obtain

/Cf(z) dz:ga_n/c(z—zo)_" dz—l—gan/c(z—zo)" dz,

where C' is a closed contour within the annulus 0 < |z — zo| < 7.
(Z _ Zo)n+1

n+1
fore, the integrals

Because is the antiderivative to (z — z0)", when n # —1, there-

/(z—zo)" dz=0, for n#-—1.
c

d
/ : = 2mi.
CzZ—2Z2

Hence, we obtain the formula (8.2).

But, for n = —1, we have

Example 8.5 Compute the residue of the function

f(2)

I
R

at the singular points zo =1 and zy = —i.

Let C(i,1): |z —i| = 1, be the circle with radius r = 1 at the center z; = 1.
Then, by the formula (8.2), we compute the residue

z 1 z 11 1 1 1
=R 7z:i:—./7d Z——./ -+ |ldz = —.
a1 6$1+z2|° omi Jo 1+ 22 N 227i c[z—z z—l—z]

Also, we compute

z 1 z 11 1 1 1
a=R 72:—i:—./7d:—._ -+ |ldz = —.
-1 6$1+z2|° o2mi Jo 1+ 22 : 27 2 c[z—z z—l—z]

for zg = —i and C(—i,1): [z 4+ = 1.
If f(2) has a simple singular pole at zy, that is a pole of order one, then the
residue

Res f(2)|s = lim (2 — 20) f(2). (8.3)
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Indeed, in this case, the Laurent series of f(z) is:

f(z):a—l —l—a0+a1(z—z0)—|—a2(z_zo)2_|_...

zZ — 20
Hence , we obtain
(z—20)f(2) =a_1 +ao(z — 20) +ar(z — 20)* + -+~
and

lim (z — 20) f(2) = Res f(2) |20 = a_1.

z—20

Example 8.6 The function

122
o=y
has simple poles at z =i, z = —i and z = 0.
By the formula (8.3), we compute
1-— 22
R =i = 1Im(2 — 4 . _ =1,
es J(2) zlirzl(z i) 2(z—1)(z +1)
Res f(2)],=—i = lim (z + 1) -2 =1
S — 2z —i)(z4+14)
1— 2
Res f(z)],=0 = lim 2z - =1

=0 z(z—1)(z +1)

Let us assume that f(z) is an analytic function in a neighborhood of zy, and
has a pole of order m at the point zy. Then, the residue of f(z) at z, is given
by the formula

(8.4)
where the function

®(z) = (2 — 20)" f(2)
has a removable singular point at z.

If we define
P(20) = @, A #0,

then ®(z) is analytic function also at zy and has the following series represen-
tation

D(2) = acm + a_my1(z — 20) + - +a_1(z — 2)™ " +aolz — 20)" + - -

Hence, we compute the residue

' <I>(m_1)(zo)
a_q1 = Res f(z)|z() = legt m

One can easily obtain a residue in Mathematica by the following command:
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Residue [f[z],{z,a}]
For example, let f(z) = ﬁ, and a = 2i. Then we compute the residue
z
flz_1:=z/(z"2+4);
Residue [f [z] ,{z,2*i}]

8.3 Residue Theorem

The following residue theorem holds:

Theorem 8.1 Let C be a closed contour positively oriented. Suppose that f(z)
1s an analytic function within and on the contour C, except for a finite number
of singular points z1, 2o, ..., Zm interior to C'. If Ay, Ao, ..., Ay are residues at
those singular points, then

/Cf(z) dz =2mi(A1+ Ay + -+ Ap).

Proof. Let Ck(z, 1) be the circle with the center at z; and the sufficiently
small radius rx, £ = 1,2,...,m, so that, C} is within the region enclosed by
the contour C'. Then, the circles Cy, k = 1,2, ..., m, together with the contour
C' form the boundary 0D of the region D, in which f(z) is analytic.

‘ C

o 37,

y

Fig. 8.2 Domain D

By Cauchy theorem

/8Df(2)dZZ/Cf(z)dz—/qf(z)dz—/czf(z)dz_..._/ £(2) dz =0.

m
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Because
1
A :—/ d k=1,2,..,m,
k 27_” Ch f(Z) Z, m
therefore

/C F(2) dz = 2mi( A1+ Ag + -+ Ay).
End of proof.

Example 8.7 Let us evaluate the integral

5z —4
/|z|:z N CE

The integrand has two singular points z = 1 and z = —1 both interior to the
circle C' : |z| = 2. The residues are:

5z —4 1
ResE)lent = lie ~ 1y =

oz —4 9
R€$f(Z)|Z:_1 = Zl_l)r{ll(z + 1)m = 5

By the residue theorem

bz — 4 1 9
—_dz =2mi(= + =) = 107s.
/|Z|:2 Crneon BT g tg) = lom

Example 8.8 Let us evaluate the integral

el
——————dz
=2 22 + 2z +2

using Mathematica.

The function , has two singular points z; = —1+7and 2o = —1—1

z
2242242
within the circle |z| = 2. We compute the residues at these points by the
following commands:

flz_]:=2z/(z"2+2 z+2);
Residue[f[z],{z,-1+1};
Residue[f[z],{z,-1-1}];

1 1 1 I
equal to A; = 3 + 5 and Ay = 3 g By the residue theorem, the integral

z
————dz = 2mi(Ay + Ay) = 2me
/|z|:2 242,427 mi(Ar+ Az) =2,
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8.4 Applications of the Residue Theorem

As an application of the residue theorem, we shall evaluate the following im-
proper integral:

/oo f(z) dx.

The following theorem holds:

Theorem 8.2 Let f(z) be an analytic function in the upper half plane Im z >
0, except at the singular points zi, za, ..., z2m interior to the upper half of the
complex plane, at which f(z) has residue Ay, As,...;,Am. If f(z) is a real
function on the x axis and satisfies the condition

M
[F(z)] < R

for certain constants M >0, R > 0 and o > 1, then the infinite integral exists
and its value is given by the formula

2| = R,

/OO f(z) de =2mi(A1 + As + - - + Ap).

—0o0

Proof. Let C be the contour consisting with the interval I = [—R, R] and the
half of the circle I' : z(t) = Re®, 0 <t < m, that is C = I UT,(see Figure
8.2). Let us choose R so large to be all singular points interior to the closed
contour C.

'
!

i |

‘ X

-R -R

Fig. 8.2 Residue
By residue theorem

/Cf(z) dZZ/};f(:E) dx+/rf(z) dz:27rz'g:1Ak.

By the assumptions, we have the following estimate of the integral along I':

M M

m
|/1"f(z)dz|§§ﬂ-R:W’ a > 1.
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Clearly, if R — oo, then the integral along I' tends to zero, and the first
integral becomes

/_OO f(z) doe = 27rz'§: Ay

k=1
End of the proof.
Example 8.9 FEvaluate the integral
N _dw
—oo 142
We consider the function
1 1

) =2 = e+

which has one singular point z = ¢ in the upper half of complex plane. By the
residue theorem

dz i 1
/7—/ / =21 i Res———|,—; =
cl+ 22 Rl—l—{l?2 rl4 22 1+ 22

The function f(z) satisfies the inequality

1 1 1 2 2
= < < = — < — f > R>2.
U e R ECE R R E T

2

Therefore, the integral

T
d n
|F1—|—Z2|_R2/ 2= R

Hence, when R — oo, we obtain

dz
=0
/1“1+22 ’

/00 dx
= —_7
—ool—l—l’2

and

Example 8.10 Show that

o dx o
‘/_ma$2+b$+cz\/m’ A:bz_4ac<0, a7£0 (85)

We apply theorem 8.2. Let us consider the function

1

f(z) = az? +bz+c’
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with real coefficients a, b and ¢ and the discriminant A = b? — 4ac < 0, a # 0.
We shall show that the function f(z) satisfies the assumptions of the theorem.
Firstly, we note that f(z) is the real valued function on x-axis, so that, for

z=u,
1

flz) = ar?+br +c
Secondly, the function f(z) satisfies the inequality

2
HOIES=

1 2
where R = m[|b| +/|b]? + 2|ac|], M = Tal a=2.

Indeed, to show the inequality, we estimate

laz® + bz + | > |az?| — |bz + ¢

2| = R,

1
bz + ¢ < [bllz] + [el < Flallzl,

1
slallzl” = [bllz] = lef > 0,

1
The last quadratic inequality holds for |z] > R = ﬂ[|b| + /10| + 2|ac]].
a
Hence, we obtain the estimate
1 1 2 2

< < < .
laz?2 + bz +c| = |az?| — |bz+ | T |allz]? T |a|R?

—b+iv-A

The function f(z) has one singular point z; = 5
a

in the upper half
of complex plane at which

1 :
= lim (z — 21) = :

2=z z—2z1 a(Z — Zl)(z - gl) B V —A

Resf(z)]
By the theorem

00 dx 2
— = 2miR = 0.
/_oo ax? +bxr +c m esf(z)‘zzq Vdac — b2’ a

Example 8.11 Fwvaluate the integral
o0 dx
/_oo ?—xr+1
We apply the formula (8.5), when a = 1, b= —1, ¢ = 1, and the discriminant

A= -3.
Thus, we find

/00 dx 27
o2 —x+1 /3
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Example 8.12 Let us evaluate the integral

/00 dx
—00 (1 + $2)n+1 .

1 1

1&) =y = oG

Clearly, the function

has a pole of order n + 1 at zp = ¢ and zp = —i. Since, z = 7 is only the
singular point of f(z) in upper half of complex plane, therefore, by the residue
theorem
| e = 2 i Res ()], (36)
A w1 Res f(2)].=, :
where the closed contour C'= [-R, R|UT".
Let us compute the residue using formula (8.6). Clearly, we have m = n + 1

and | |
d(2) = (z — )" = )
(2) = (z—1) (1+ 22)nt (2 + 7)1

Because 1 dr 1 (=1)" (2n)!
—-1)" (2n)!

i:l' I —
Res f(z)] L s (z+ i) (202 (nl)2

therefore, the integral

/ dz B /R dx —I—/ dz
o (1 + 22)n+t )R (14 z2)nt! v (14 22)n+l

: (2n)! 7
= 2mi Res f(2)|.= = 2T
Let us note that the function f(z) satisfies the inequality
1 2 2
7@l = |(1 4 22)n+1| < 2 [2n+2 < R2n+2’ 2| > R > 2.

Thus, we get the following estimate of the integral along the curve I

| dz 2

rl+22 - R
Hence, when R — oo, we get

dz
/1“ (1+ 22) =0,

|n+1

and
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One can easily compute an improper integral in Mathematica using the fol-
lowing command:
Integrate[f[x], {z, —00, 00}].

For example, we evaluate the integral
/00 dx
—00 1’2 + 8’

Integrate|

by the command:

m> {$7 — 00, OO}]>

2
to get the value Wzl/_.

Example 8.13 FEvaluate the integral

© grsing
/ ﬁda:, a > 0.
—00 T*+a
Consider the function .
sel?
Z) = —
/() 22+ a?

The fuction f(z) has one simple singular point z; = ia, a > 0, in the upper
half of the complex plane. By the residue theorem

1 1z

/ — dz —l—z’/ ———dx = 2mi Ay, a > 0.
-r 2% + a? r 2% +a?
where the residue
iz 12
ze <€ 1
Ay = lim (2 —ia)——— = lim —=5¢
1 Z_>m( )22 +a2  >iaz4ia 2

8.5 Exercises

Question 8.1 Locate and classify the singularities of the following functions:

1. (a)

iz

e
f(z) = [EFTERITE
() |
zsin z
/(z) = cosz — 1

Question 8.2 Find the residues at singular points for the following functions:
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1. (a)

(b)

f(z) = (z—3)sinzi2,

(c)

U +212)2_(z22z+ 1)
(d) '
f2) =,
(e) )
f(z) = TR

Question 8.3 Using residue theorem, evaluate the following integrals:

1. (a)

/ 323 +2
dz,
lzj=4 (z — 1)(22 +9)
(b)
o1
/ sin —dz,
|z|=1 z

cosh z
/ T—dz,
c oz

where C' 1is the square with vertices £2 + 2i1. Ans. mi.

(c)

Question 8.4 Using residue theorem evaluate the following infinite integrals
1. (a)

/00 dx

oo T2 4224+ 27
/00 dx
o 1+a%

/00 dx
o xt+a224+1’

(b)

(c)
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(d) '
© rsinzx
/_oo 22+ a? dz,
(e)
/00 COS NT
—00 1 ‘l— 1'2 T
(f)

/00 dx
—00 (1 + 1’2)8’

Question 8.5 Use the function f(z) = 6_22, to evaluate Fresnel’s integrals

1. (a)
/ sinz? dx,
0

(v) )
/ cos z* dx,

0
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