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PREFACE

This text is intended for science and engineering students pursuing a post
graduate course on solution of ordinary and partial differential equations. It
presents theoretical background and principles for variational methods and fi-
nite element methods with application of polynomial splines. As a pri-requisite
material, it requires basic knowledge in mathematical analysis, differential
equations, numerical analysis and computing. The lecture notes cover the
following related topics:

• Distributions

• Variational Calculus

• Polynomial splines

• Finite element methods

There is extensive literature published on variational methods and finite el-
ement methods, (cf. [1,2,3,4,5,6,7,8,9]) In this text, we present a compact
lecture notes on theory and application of the methods based on variational
principles.
The distributions, weak solutions of differential equations and spline functions
are naturally associated with calculus of variations and finite element meth-
ods. We present these areas of Mathematics in the above listed four chapters.
Each chapter ends with a number of exercises. It is taken for granted that the
reader will have access to computer facilities to aid in the solving of some of
the exercises.
Most of the material of this book has its origin based on lecture courses given
to advanced undergraduate and postgraduate students.
There is also a hope that users will find a number of interesting algorithms,
many variants of polynomial splines and useful models of finite element method.
Basic theory of the methods has been amplified and designed for those readers
who will wish to study effective techniques of solution of differential equations.
The text contains lengthy proofs and formulae. They are not necessary to un-
derstand the methods and to use them practically, but they lead to better
theoretical knowledge.

Tadeusz STYŠ
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Chapter 1

Distributions

1.1 Schwarz’s Definition of Distributions

Let Ω ⊆ Rn be a domain and let C∞
0 (Ω) be the set of all infinitely differentiable

functions which have support in Ω, i.e., ψ ∈ C∞
0 (Ω) if and only if

1. (a) ψ has all derivatives in Ω,

(b) supp ψ(x) ⊂ Ω,

where
supp ψ(x) = {x = (x1, x2, ..., xn) ∈ Ω : ψ(x) 6= 0}.

We note that every function ψ ∈ C∞
0 (Ω) vanishes at the boundary ∂Ω of the

domain Ω together with all its derivatives.

Example 1.1 Let us consider the following function:

ψa(x) =











exp(− a2

a2 − x2
) if |x| < a, a > 0,

0 if |x| ≥ a,

This function has all its derivatives at each x ∈ Ω = R and

supp ψa(x) = [−a, a] ⊂ R

Therefore, ψa ∈ C∞
0 (Ω).

Below, we give Schwarz’s definition of a distribution.

Definition 1.1 A linear functional F (ψ), ψ ∈ C∞
0 (Ω) is said to be a distri-

bution in the domain Ω if and only if for every compact domain S ⊂ Ω there
exist constants m and K such that

|F (ψ)| ≤ K
∑

|α|≤m

sup
x∈S

|Dαψ(x)|

1
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for any ψ ∈ C∞
0 (S), where the multi subscript α = (α1, α2, ..., αn), and the

derivative

Dαu(x) =
∂ |α|u(x)

∂xα1

1 ∂x
α2

2 · · · ∂xαn
n

, |α| = α1 + α2 + · · · + αn.

1.2 Dirac δ and Heaviside Distributions.

Dirac’s δ. Dirac’s δ was introduced by Dirac in a model equation with a
source of energy concentrated at a point. Then, δ was defined by the following
conditions:

1. δ(x) = 0 for x 6= 0,

2.
∫ ∞

−∞
δ(x)dx = 1.

The quantity δ determined by conditions 1 and 2 is not a function, but it is
an original distribution. In the theory of distributions, Dirac’s δ is considered
as a distribution defined by the following formula:

δ(ψ) = ψ(0) for any ψ ∈ C∞
0 (R). (1.1)

Let us check that δ given by formula (1.1) is a distribution in the sense of
Schwarz’s definition (1.1). Indeed, δ is a linear functional, since

δ(λ1ψ1 + λ2ψ2) = λ1ψ1(0) + λ2ψ2(0) = λ1δ(ψ1) + λ2δ(ψ2).

for every numbers λ1, λ2 and ψ1, ψ2 ∈ C∞
0 (Ω).

Also, δ satisfies the inequality

|δ(ψ)| = |ψ(0)| ≤ sup
x∈S

|ψ(x)|,

for the constants m = 0, K = 1 and any ψ ∈ C∞
0 (R).

Let us note that δ − distribution is a limit of the sequence of the following
functions:

δn(x) =



















0 if x < −1

n
or x >

1

n
,

n

2
if − 1

n
≤ x ≤ 1

n
,

for n=1,2,...;
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Indeed
∫ ∞

−∞
δn(x)dx = 1 for every n = 1, 2, ...;

and

lim
n→∞

∫ ∞

−∞
δn(x)dx = 1.

Hence

lim
n→∞

∫ ∞

−∞
δn(x)ψ(x)dx =

n

2
lim

n→∞

∫ 1

n

− 1

n

ψ(x)dx = ψ(0),

for any ψ ∈ C∞
0 (R).

Heaviside’s distribution. Let us consider the following functional:

FH(ψ) =
∫ ∞

0
ψ(x)dx,

for any ψ ∈ C∞
0 (R).

The functional FH(ψ) is called Heaviside’s distribution. Let us note that
FH(ψ) satisfies definition (1.1). Namely, FH(ψ) is a linear functional, since

FH(λ1ψ1 + λ2ψ2) =
∫ ∞

0
[λ1ψ1(x) + λ2ψ2(x)]dx =

= λ1

∫ ∞

0
ψ1(x)dx+ λ2

∫ ∞

0
ψ2(x)dx = λ1FH(ψ1) + λ2FH(ψ2).

for arbitrary numbers λ1, λ2 and ψ1, ψ2 ∈ C∞
0 (R).

Also, we have

|FH(ψ)| = |
∫ ∞

0
ψ(x)dx| ≤ K max

x∈S
|ψ(x)|, ψ ∈ C∞

0 (R).

where K is a measure of the support supp ψ(x).
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1.3 Generalized Functions

Generalized functions are distributions which are determined by locally inte-
grable functions.
Let f be a locally integrable function in the domain Ω, i.e., there exists the
integral

∫

S
f(x)dx <∞

for any compact domain S ⊂ Ω.
Then, we consider the linear functional

Ff (ψ) =
∫

Ω
f(x)ψ(x)dx

for any ψ ∈ C∞
0 (Ω).

The functional Ff(ψ) is a distribution in the sense of definition (1.1) deter-
mined by the locally integrable function f . Indeed, Ff (ψ) is a bounded linear
functional, since

|Ff(ψ)| = |
∫

S
f(x)ψ(x)dx| ≤ K sup

x∈S

|ψ(x)|,

for any ψ ∈ C∞
0 (S) and a compact domain S ⊂ Ω, where

K =
∫

S
|f(x)|dx.

Thus, every locally integrable function f determines a distribution Ff(ψ), ψ ∈
C∞

0 (Ω).
Obviously, the locally integrable functions f and g determine the same dis-
tribution, i.e., Ff(ψ) = Fg(ψ) for any ψ ∈ C∞

0 (Ω), if f(x) = g(x) almost
everywhere in Ω.
1 However, there exist certain distributions which are not generalized func-
tions. For instance, δ − distribution is not a generalized function, since it is
not determined by any locally integrable function. Indeed, if δ is a generalized
function then

δ(ψ) =
∫ ∞

−∞
f(x)ψ(x)dx (1.2)

for any ψ ∈ C∞
0 (R) and certain locally integrable function f in R.

On the other hand δ(ψ) = ψ(0). Therefore

∫ ∞

−∞
f(x)ψ(x)dx = ψ(0) (1.3)

1f(x) = g(x) almost everywhere in Ω if this equality holds for all x ∈ Ω − Ω0, where Ω0 has a
measure equal to zero.
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for any ψ ∈ C∞
0 (R). Let

ψ(x) =











exp(− a2

a2 − x2
) if |x| ≤ a, a > 0,

0 if |x| > a.

Then, by (1.3)

∫ ∞

−∞
f(x)ψ(x)dx =

∫ a

−a
f(x) exp(− a2

a2 − x2
)dx = exp(−1). (1.4)

But, we can choose such a that

|
∫ a

−a
f(x) exp(− a2

a2 − x2
)dx| < exp(−1).

The last inequality contradicts equality (1.4). Therefore, there is not a locally
integrable function on R for which the equality (1.2) holds.
Derivatives of distributions. Let F (ψ) be a distribution given in the do-
main Ω. Then, the first derivative of F (ψ) with respect to xj, j = 1, 2, ..., n;
is defined by the formula

∂F (ψ)

∂xj

= −F (
∂ψ

∂xj

), j = 1, 2, ..., n, (1.5)

for any ψ ∈ C∞
0 (Ω).

If the distribution F (ψ) is a generalized function determined by a locally in-
tegrable function f then, by (1.5), its derivative

∂Ff(ψ)

∂xj

= −
∫

Ω
f(x)

∂ψ

∂xj

dx, j = 1, 2, ..., n.

We can thus say that a derivative of a distribution is also a distribution.
Higher order derivatives of a distribution are determined by the following for-
mula:

∂kF (ψ)

∂xk
j

= (−1)kF (
∂kψ

∂xk
j

), j = 1, 2, ..., n, (1.6)

for any ψ ∈ C∞
0 (Ω) and integer k.

Hence, the derivative of a generalized function is:

∂kFf(ψ)

∂xk
j

= (−1)k
∫

Ω
f(x)

∂kψ

∂xk
j

dx, j = 1, 2, ..., n. (1.7)

for any ψ ∈ C∞
0 (Ω) and an integer k.
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Example 1.2 Find all derivatives of Heaviside’s distribution

FH(ψ) =
∫ ∞

0
ψ(x)dx

.

Since Heaviside’s distribution is a generalized function determined by the fol-
lowing locally integrable function:

H(x) =







1 if x > 0,

0 if x ≤ 0,

by the formula (1.6), its first derivative

dFH(ψ)

dx
= −

∫ ∞

0

dψ

dx
dx = −ψ(∞) + ψ(0) = ψ(0) = δ(ψ).

Thus, the first derivative of Heaviside’s distribution is δ distribution.
In order to find higher order derivatives of FH(ψ), we apply formula (1.7).
Then, we have

dkFH(ψ)

dxk
= (−1)k

∫ ∞

0

dkψ

dxk
dx = (−1)k[

dk−1ψ(∞)

dxk−1
− dk−1ψ(0)

dxk−1
] = (−1)k−1 d

k−1ψ(0)

dxk−1
,

for k ≥ 1.
Let us note that H(x) is a discontinuous function at x = 0. However, H(x)
determines Heaviside’s distribution FH(ψ) which has all derivatives.

Example 1.3 Let us consider the following distributions determined by the
trigonometric functions:

1. Fsin(ψ) =
∫ ∞

−∞
ψ(x) sin x dx,

2. Fcos(ψ) =
∫ ∞

−∞
ψ(x) cos x dx,

By formula (1.7), we obtain

Fsin(ψ)

dx
= −

∫ ∞

−∞

dψ

dx
sinx dx = −[ψ(x) sinx|∞−∞ +

∫ ∞

−∞
ψ(x)cos x dx = Fcos(ψ),

Fcos(ψ)

dx
= −

∫ ∞

−∞

dψ

dx
cosx dx = −[ψ(x) cosx|∞−∞ −

∫ ∞

−∞
ψ(x) sin x dx = −Fsin(ψ),

So that
dFsin(ψ)

dx
= Fcos(ψ),

dFcos(ψ)

dx
= −Fsin(ψ).
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Let us now consider derivatives of the generalized function Fu(ψ). If there
exists a locally integrable function v in the domain Ω such that

∫

Ω
u

∂ |α|ψ

∂xα1

1 ∂x
α2

2 · · · ∂xαn
n

dx = (−1)|α|
∫

Ω
v(x)ψ(x)dx

for any ψ ∈ C∞
0 (Ω), then the generalized function

Fv(ψ) = (−1)|α|
∫

Ω
v(x)ψ(x)dx

is the generalized derivative of u of order |α|.

Example 1.4 The function u = exp(x1 + x2) determines the distribution

Fu(ψ) =
∫ ∞

−∞

∫ ∞

−∞
exp(x1 + x2)ψ(x1, x2)dx1dx2, ψ ∈ C∞

0 (R2).

Because

∫ ∞

−∞

∫ ∞

−∞
exp(x1 + x2)

∂2ψ

∂x1∂x2
dx1dx2 =

∫ ∞

−∞

∫ ∞

−∞
exp(x1 + x2)ψ(x1, x2)dx1dx2.

therefore, the generalized derivative of u = u = exp(x1 + x2) is the same func-
tion u.

1.4 Weak Solutions

Let us consider equation (2.1)

du

dx
= f(x), x ∈ (0, 1), (1.8)

where

f(x) =



















1 if 0 ≤ x ≤ 1

2
,

0 if
1

2
< x ≤ 1,

As we know, f(x) determines the distribution

Ff(ψ) =
∫ 1

0
ψ(x)dx.

Thus, we can write equation (1.8) in terms of distributions

dFu(ψ)

dx
= Ff(ψ), ψ ∈ C∞

0 (0, 1).
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or in the equivalent form

−
∫ 1

0
u
dψ

dx
dx =

∫ 1

0
f(x)ψ(x)dx, ψ ∈ C∞

0 (0, 1). (1.9)

Let us observe that the function

u(x) =







x if 0 ≤ x ≤ 1
2
,

1
2

if 1
2
< x ≤ 1,

satisfies the variational equation (1.9). Therefore, the distribution

Fu(ψ) =
∫ 1

0
u(x)ψ(x)dx, ψ ∈ C∞

0 (0, 1),

is called a weak solution of the differential equation (1.8). This solution is
not differentiable at x = 1

2
. So, u(x) cannot be a regular solution of equation

(1.8). The function u(x) is the most regular representation of the distribution
Fu(ψ).
We shall now introduce the idea of weak solutions of a linear differential equa-
tion. A linear differential equation can be written in the following form:

Lu ≡
∑

|α|≤k

Aα(x)
∂ |α|u

∂xα1

1 ∂x
α2

2 · · · ∂xαn
n

= f(x), x ∈ Ω, (1.10)

where the coefficients Aα ∈ Ck(Ω) and f is a locally integrable function in Ω.
Then, the Lagrange’s conjugate differential equation to (1.10) is:

L∗v ≡
∑

|α|≤k

(−1)|α|
∂ |α|(Aαv)

∂xα1

1 ∂x
α2

2 · · · ∂xαn
n

= f(x), x ∈ Ω.

Let us write the variational form of the differential equation (1.10) as follows:
∫

Ω
u(x)L∗ψ(x)dx =

∫

Ω
f(x)ψ(x)dx, (1.11)

for any ψ ∈ C∞
0 (Ω).

Then, the distribution

Fu(ψ) =
∫

Ω
u(x)ψ(x)dx, ψ ∈ C∞

0 (Ω)

determined by (1.11) is a weak solution of the differential equation (1.10).

Example 1.5 Let us consider the Poisson equation

∆u ≡ ∂2u

∂x2
1

+
∂2u

∂x2
2

=







0 if x2 6= 1 − x1,

1 if x2 = 1 − x1,
x = (x1, x2) ∈ Ω, (1.12)

with the homogeneous boundary condition, i.e., u(x, y) = 0 for x ∈ ∂Ω, where
Ω = {x = (x1, x2) : 0 < x1, x2 < 1}.
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The Poisson equation does not have a differentiable solution. However, it
possesses a weak solution. Namely, the Lagrange’s conjugate equation to (1.12)
is the same Poisson’s equation. Therefore its variational form is:

∫

Ω
u(x1, x2)∆ψ(x1, x2)dx1dx2 =

∫

Ω
δ(x1 + x2 − 1)ψ(x1, x2)dx1dx2

for any ψ ∈ C∞
0 (Ω), where

f(x1, x2) =







0 if x2 6= 1 − x1,

1 if x2 = 1 − x1.

Then, the continuous function

u(x1, x2) =







x1x2 if x2 ≤ 1 − x1,

(1 − x1)(1 − x2) if x2 > 1 − x1,

is the most regular representative of the weak solution

Fu(ψ) =
∫

Ω
u(x1, x2)ψ(x1, x2)dx1x2

of Poisson’s equation (1.12).

-

6x2

x1

@
@

@
@

@
@

@
@

u=(1−x1)(1−x2)

u=x1x2

1

10

Fig. 7.2. u(x1, x2)

Sobolev’s space W l
m(Ω). The Sobolev’s space W l

m(Ω) is naturally associated
with both regular and weak solutions of differential equations. This space can
be introduced in the following two ways:

1.
W l

m(Ω) = {u : D|α|u ∈ Lm(Ω), |α| ≤ l, }
where

Lm(Ω) = {u : [
∫

Ω
|u(x)|mdΩ]

1

m < +∞, m ≥ 1}.
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2. The space W l
m(Ω) is the closure of the set C∞

0 (Ω) in the norm

||u|| = [
∫

Ω

∑

|α|≤l

|D|α|u|mdΩ]
1

m , m ≥ 1.

For a sufficiently regular domain Ω, conditions 1 and 2 are equivalent. Later
on, we shall also use the subspace W 0l

m (Ω), m ≥ 2, l ≥ 1 of the space W l
m(Ω).

The subspace W 0l
m (Ω) can be obtained as a closure of the set C∞

0 (Ω) in the
norm of the Sobolev’s space W l

m(Ω).
Let us note that every function u ∈W 0l

m (Ω) vanishes at the boundary ∂Ω of the
domain Ω together with all its derivatives up to the order l− 1. For instance,
if u ∈ W 01

2 (R), then u vanishes at ±∞. In fact, elements of the Sobolev’s
space W l

m(Ω) are generalized functions. where the integers m and l determine
regularity of u. For example, if a generalized function u ∈ W 01

2 , then there
exists a continuous function u in C(Ω) which vanishes at the boundary ∂Ω of
Ω. The regularity of any u ∈ W l

m(Ω) has been established in the following
theorem:

Theorem 1.1 (cf. [21]) If u ∈W l
m(Ω) and an integer k satisfies the inequality

m(l − k) > n then there exists a function u ∈ Ck(Ω) and a constant M such
that

||u||Ck(Ω) ≤M ||u||W l
m(Ω).



Chapter 2

Variational Calculus

2.1 Introduction

As we know the finite difference methods for solving differential equations are
applicable when a differentiable regular solution exists. Obviously, the exis-
tence of regular solutions of a differential equation depends on its coefficients.
Differential equations with discontinuous coefficients may not have differen-
tiable solutions, however, they may have weak solutions, instead. This is a
restriction for the range of differential equations for which the finite difference
method can be used successfully. Nevertheless, weak solutions as well as reg-
ular solutions can be approximated by variational methods or finite element
methods. These methods are based on variational principles and the theory
of distributions. In order to present the essence of variational and finite ele-
ment methods we have given in the previous chapter a preliminary description
of distributions, generalized functions and weak solutions. We shall start by
introducing the idea of weak solutions using the following simple differential
equation:

du

dx
=



















1 if 0 ≤ x ≤ 1

2
,

0 if
1

2
< x ≤ 1,

(2.1)

with the initial value condition u(0) = 0.
One can check that

u(x) =



















x if 0 ≤ x ≤ 1

2
,

1

2
if

1

2
< x ≤ 1.

satisfies the equation (2.1) at each x 6= 1
2
. Obviously, u(x) is not differentiable

at x = 1
2
. Thus, u(x) cannot be a regular solution of equation (2.1) in the

interval [0, 1]. However, u(x) is called a weak solution of (2.1), since u(x)

11
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satisfies the following variational equation:
∫ 1

0

du(x)

dx
ψ(x)dx =

∫ 1

0
f(x)ψ(x)dx,

or, integrating by parts
∫ 1

0
u(x)

ψ(x)

dx
dx = −

∫ 1

0
f(x)ψ(x)dx,

for any ψ ∈ C∞
0 (0, 1),1 where

f(x) =



















1 if 0 ≤ x ≤ 1

2
,

0 if
1

2
< x ≤ 1,

In general, regular solutions of a differential equation are differentiable func-
tions up to the order of a differential equation. However, weak solutions of
a differential equation are distributions that satisfy relevant variational equa-
tions and they may not be differentiable at some points.

2.2 Variational Problems

Variational problems and equations are closely related with Euler-Lagrange-
Ostrogradsky equation. We shall start with derivation of Euler-Lagrange-
Ostrogradsky equation for the following functional (cf. [4]):

F (u) =
∫

Ω
G(x, u, ux)dx, (2.2)

determined by a sufficiently smooth function G(x, q, r) given for x = (x1, x2, ...,
xn) ∈ Ω, q ∈ R and r = (r1, r2, ..., rn) ∈ Rn, where Ω ⊂ Rn is a bounded
domain.
The variational problem to find a minimum of the functional F (u) leads to
Euler-Lagrange-Ostrogradsky equation. This equation is a necessary condition
for the existence of a minimum of the functional F (u) in a convex set. In order
to find a minimum of F (u), we can apply Ritz or Galerkin methods. These
methods, we shall present later on. Now, let us concentrate on Euler-Lagrange-
Ostrogradsky equation.

Variational Principle 2.1 Find a minimum of the functional F (u) in the
convex set C2

φ(Ω) of all twice continuously differentiable functions in the closed

domain Ω which satisfy the boundary condition

v(x) = φ(x), x ∈ ∂Ω.

1C∞

0 (0.1) is the class of all infinitely times differentiable functions on interval [0, 1] which vanish
together with all derivatives at x = 0 and x = 1
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The equivalent statement for the problem (2.1) is:

Variational Principle 2.2 Find a function u ∈ C2
φ(Ω) which satisfies the

inequality
F (u) ≤ F (v)

for all v ∈ C2
φ(Ω).

If u is an element of the space C2
φ(Ω) at which F (u) attains its minimum, then

we shall write it as follows:

F (u) = min
v∈C2

φ
(Ω)
F (v).

The necessary condition. We shall obtain Euler-Lagrange-Ostrogradsky
equation as a necessary condition for existence of a minimum of F (u) in C2

φ(Ω).
Let us assume that u ∈ C2

φ(Ω) is a solution of the variational problem (2.2).
Then, the function

Φ(t) =
∫

Ω
G(x, u+ tη, ux + tηx)dx, −∞ < t <∞, (2.3)

attains its minimum at t = 0 for any η ∈ C2
0(Ω). Therefore

dΦ(t)

dt
= 0 for t = 0. (2.4)

On the other hand

dΦ(t)

dt
=
∫

Ω
[
∂G

∂u
η +

n
∑

i=1

∂G

∂ri

∂η

∂xi

]dx. (2.5)

Integrating by parts, we obtain
∫

Ω

n
∑

i=1

∂G

∂ri

∂η

∂xi

dx = −
∫

Ω
η

n
∑

i=1

∂

∂xi

(
∂G

∂ri

)dx. (2.6)

Hence, by (2.4), (2.5) and (2.6), we arrive at the equation
∫

Ω
η[
∂G

∂u
−

n
∑

i=1

∂

∂xi

(
∂G

∂ri

]dx = 0 (2.7)

for any η ∈ C2
0 (Ω).

Because equation (2.7) holds for each η ∈ C2
0(Ω), and G(x, q, r) is a con-

tinuously differentiable function, therefore by (2.7), we obtain the following
Euler-Lagrange-Ostrogradsky Equation

∂G

∂u
−

n
∑

i=1

∂

∂xi

(
∂G

∂ri

)dx = 0. (2.8)

We shall write this equation in the following explicit form:
n
∑

i,j=1

∂2G

∂ri∂rj

∂2u

∂xi∂xj

+
n
∑

i=1

∂2G

∂u∂xi

∂u

∂xi

+
n
∑

i=1

∂2G

∂ri∂xi

− ∂G

∂u
= 0. (2.9)
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Example 2.1 Let us note that the Euler’s equation of the functional

F (u) =
∫ b

a
G(x, u,

du

dx
)dx, u ∈ C2

φ(a, b).

in one space variable x has the following form:

∂G

∂u
− d

dx
(
∂G

∂r
) = 0, (2.10)

where G(x, q, r) is a given smooth function of the variables x ∈ [a, b], q, r ∈
(−∞,∞).
We can write this equation in the explicit form

∂G

∂q
− ∂2G

∂x∂q
− ∂2G

∂q∂r

du

dx
− ∂2G

∂r2

d2u

dx2
= 0.

Example 2.2 Consider the functional

F (u) =
∫ b

a
[(
∂u

∂x
)2 − σ(x)u2 − 2f u]dx

Find Euler’s equation of the functional F (u).

Example 2.3 Let us find the necessary condition for existence of a minimum
of the following functional:

F (u) =
∫

Ω
[(
∂u

∂x1

)2 + (
∂u

∂x2

)2 + σ(x1, x2)u
2 − 2f(x1, x2)u]dx

in the convex set C2
φ(Ω), where σ(x1, x2) ≥ 0, f(x1, x2) and φ(x1, x2) are

given continuous functions in Ω and on ∂Ω, respectively.

The function
G(x, q, r) = r2

1 + r2
2 + σ(x)q2 − 2f(x)q

is continuous with respect to the variables x, q and r = (r1, r2) and infinitely
continuously differentiable with respect to the variables q and r. Therefore,
by the equation (2.9), we obtain the following Euler-Lagrange-Ostrogradsky
equation:

−∂
2u

∂x2
1

− ∂2u

∂x2
2

+ σ(x)u = f(x), x ∈ Ω,

with the boundary value condition

u(x1, x2) = φ(x1, x2), (x1, x2) ∈ Ω.

Thus, any minimum of the functional F (u) must be a solution of the Euler-
Lagrange-Ostrogradsky equation.
The Euler-Lagrange-Ostrogradsky equation has many important applications
in different areas of mathematics and physics. In this text, Euler’s equation
is used as a base for variational methods and finite element methods. We
shall present these methods in the next sections. As an application of the
Euler-Lagrange-Ostrogradsky equation in mechanics, the Hamilton Principle
and Newton laws of motion can be derived from this equation.
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2.3 Relationship Between Linear Differential Equations

and Variational Problems

In the previous section, we have shown that if the functional F (u) attains its
minimum at u then the function u (or distribution u) is a solution of Euler’s
equation which satisfies the boundary value condition

u = φ on ∂Ω.

As we know, Euler’s equation is the necessary condition for existence of a min-
imum of a functional F (u). For certain class of functionals, Euler’s equation
is also a sufficient condition for existence of the minimum of F (u). This class
of functionals, we present below.
Let us consider the following equation:

Lu = f(x), x ∈ Ω, (2.11)

where L is a linear operator in the Hilbert space H, and a given function f is
an element of H.
We assume that the operator L is positive definite in the space H. Thus, L
satisfies the conditions of the following definition:

Definition 2.1 A linear operator L is said to be positive definite in the Hilbert
space H if

1. L is a symmetric operator, and its domain D(L) is dense everywhere in
H, i.e. (Lu, v) = (u, Lv), for any u, v ∈ D(L) and D(L) = H,

2. there exists a constant γ > 0 such that

(Lu, u) ≥ γ(u, u) for all u ∈ D(L).

Example 2.4 Let us consider the operator L = −d
2u

dx2
with its domain D(L) =

C2
0(0, a). This operator is positive definite in the Hilbert space H = L2(0, a)

of all functions square integrable on the interval [0, a]. Indeed, we know that
the domain D(L) = C2

0 (0, a) is dense everywhere in the space L2(0, a), i.e.

C2
0 = L2(0, a). Also, L is a symmetric operator, since

(Lu, v) =
∫ a

0
−d

2u

dx2
vdx =

∫ a

0

du

dx

dv

dx
dx =

∫ a

0
u(−d

2v

dx2
)dx = (u, Lv)

for any u, v ∈ C2
0(0, a).

To check the last condition of definition, we note that

u(x) =
∫ x

0

du(t)

dt
dt
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Hence, by Cauchy’s inequality

u2(x) = [
∫ x

0

du(t)

dt
dt]2 ≤ a

∫ a

0
[
du

dx
]2dx.

Integrating both sides of the above inequality, we obtain

||u||2 =
∫ a

0
u2dx ≤ a2

∫ a

0
[
du

dx
]2dx. (2.12)

But
∫ a

0
[
du

dx
]2dx = −

∫ a

0
u
du

dx
dx = (Lu, u),

so that, by (2.12)

(Lu.u) ≥ a2(u, u) for any u ∈ C2
0(0, a).

Therefore constant γ =
1

a2
.

Let us consider the class of functionals of the following form:

F (u) = (Lu, u) − 2(f, u), u ∈ D(L), f ∈ H, (2.13)

where L is a positive definite operator in the Hilbert space H.
The real number

√

(Lu, u)

is called energy of u.
Now, we shall show that Euler’s equation is necessary and sufficient condition
for existence of a minimum in domain D(L) of the functional F (u), provided
that L is a positive definite operator.
The following theorem holds:

Theorem 2.1 Let L be a linear operator positive definite in the Hilbert space
H.
If u ∈ D(L) is a regular solution of the linear equation

Lu = f(x), x ∈ Ω, f ∈ H, (2.14)

then the functional F (u) attains its minimum at u ∈ D(L), i.e.,

F (u) = min
v∈D(L)

F (v),

and if the functional F (u) attains its minimum at u ∈ D(L), then u is a
regular solution of the linear equation

Lu = f(x), x ∈ Ω, f ∈ H.
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Proof. At first, let us assume that u ∈ D(L) is a regular solution 2 of the
linear equation

Lu = f(x), x ∈ Ω, f ∈ H.

Then, the following identity holds:

F (v) = (Lv, v)− 2(f, v) = (Lv, v)− 2(Lu, v) = (L(v − u), v − u) − (Lu, u)

for any v ∈ D(L).
Hence

min
v∈D(L)

F (v) = min
v∈D(L)

[(L(v − u), v − u) − (Lu, u)] = −(Lu, u).

Therefore
F (u) = min

v∈D(L)
F (v) = −(Lu, u).

If u ∈ D(L) is a solution of the linear equation (2.14), then the functional
F (u) attains its minimum in D(L) at u.
Now, let us assume that the functional F (u) attain its minimum at certain
u ∈ D(L), i.e.,

F (u) = min
v∈D(L)

F (v), u ∈ D(L).

Then, the following inequality holds:

F (u) ≤ F (u+ tη)

for any η ∈ D(L) ∪C0(Ω) and t ∈ (−∞.∞). 3 Because the quadratic function
of the real variable t

F (u+ tη) = t2(Lη, η) + 2t[(Lu, η)− (f, η)] + F (u)

attains its minimum at t = 0, it follows that

dF (u+ tη)

dt
= (Lu− f, η) = 0, at t = 0,

for any η ∈ D(L) ∪ C0(Ω).
Hence u ∈ D(L) is the regular solution of the linear equation Lu = f, f ∈ H.
This ends the proof.
Let us note that Lu = f is the Euler’s equation for the functional F (u) which
is determined by a positive definite operator L in the Hilbert space H. Also,
by theorem (2.1), this equation has a regular solution u ∈ D(L) if and only if
the functional F (u) attains its minimum at u ∈ D(L).
Theorem (2.1) concerns only regular solutions of differential equations. We
shall consider existence and uniqueness of weak solutions of a linear equation
in the next section. Now, let us illustrate theorem (2.1) with the following
example:

2u is a regular solution of the equation Lu = f if u ∈ D(L)
3C0(Ω) is the set of all continuous functions in Ω which vanish at the boundary ∂Ω of Ω.
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Example 2.5 Since the operator L = − d2

dx2
is positive definite in the space

H = L2(0, a), when D(L) = C2
0(0, a), therefore, u ∈ D(L) is a regular solution

of the boundary value problem

−d
2u(x)

dx2
= f(x), f ∈ L2(0, a), 0 ≤ x ≤ a,

u(0) = 0, u(a) = 0

if and only if the functional

F (u) = (Lu, u)− 2(f, u) =
∫ a

0
[(
du

dx
)2 − 2f(x)u(x)]dx

attains its minimum at u ∈ D(L) = C2
0(0, a).

2.4 Existence and Uniqueness of Weak Solutions

Let us consider the linear equation

Lu = f(x), x ∈ Ω, f ∈ H, (2.15)

where L is a positive definite operator in the Hilbert space H.
By theorem (2.1), this equation has a regular solution u ∈ D(L) if and only if
the functional

F (v) = (Lv, v)− 2(f, v), v ∈ D(F ), f ∈ H, (2.16)

attains its minimum at u ∈ D(L).
At first, let us note that the domain D(F ) of the functional F is essentially
greater than the domain D(L) of the operator L. Indeed, if v ∈ D(L) then,
evidently v ∈ D(F ), so that D(L) ⊆ D(F ). However, there are elements of
D(F ) which do not belong to D(L). For instance, when

Lv = −d
2v

dx2
and D(L) = C2

0(0, a), (2.17)

the functional

F (v) = (Lv, v)− 2(f, v) =
∫ a

0
[−d

2v

dx2
v − 2fv]dx =

∫ a

0
[(
dv

dx
)2 − 2fv]dx (2.18)

is well defined at all v ∈ D(F ) = W 01
2 (0, a) 4. However, there are functions in

the Sobolev space W 01
2 (0, a) which are not twice differentiable in the interval

[0, a]. Therefore, D(L) is a proper subset of D(F ), i.e., D(L) ⊂ D(F ).
4W 01

2 (0, a) is the space of all functions which have first derivatives integrable with square and
vanish at the ends of the interval [0, a]
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Nevertheless, the domain D(L) can be enlarged up to the domain D(F ) by the
so-called Fridrich’s closure of the set D(L). By the assumption, the operator
L is positive definite in the Hilbert space H. We can therefore introduce the
new inner product

(u, v)L = (Lu, v), for any u, v ∈ D(L),

in the domain D(L) ⊂ H, determined by the operator L. Then, the new norm

||u||L =
√

(Lu, u), u ∈ D(L).

Now, we shall consider the closure D(L) of the domain D(L) in the norm
|| − ||L. This closure is the new Hilbert space

HL = D(L) ⊆ H

in which the functional F (u) is well definite. The domain D(F ) of the func-
tional F (u) equals HL, i.e., D(F ) = HL. In the literature, HL is called as the
Fridrich’s space or energetic space, since the norm ||u||L is the energy of u.

Example 2.6 As we know, the differential operator

Lv = −d
2v

dx2
, v ∈ D(L) = C2

0(0, a)

is positive definite in the space L2(0, a). Therefore, the inner product

(u, v)L = (Lu, v), u, v ∈ C2
0(0, a)

determines energy of u as the norm

||u||L =
√

(Lu, u) =

√

∫ a

0
(
du

dx
)2dx, u ∈ C2

0(0, a).

Thus, the closure of the domain C2
0(0, a) in the norm ||−||L implies the Sobolev

space W 01
2 (0, a), i.e., then the energetic space

HL = D(L) = C2
0(0, a) = W 01

2 (0, a).

Let us observe that || − ||L is the norm in the energetic space HL = W 01
2 (0, a),

and it is a pseudo-norm in the Hilbert’s space H = L2(0, a),
5

Below, we shall state and prove the fundamental theorem of variational calcu-
lus on existence and uniqueness of extremals of a functional.

5note that, the norm ||c||L of a constant c is equal to zero, but, if c ∈ W 01
2 , then c = 0.
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Theorem 2.2 If operator L is positive definite in the Hilbert space H, then
there exists a unique element u0 ∈ HL at which the functional

F (u) = (Lu, u)− 2(f, u), f ∈ H,

attains its minimum in the energetic space HL, and

F (u0) = min
v∈HL

F (v) = −(u0, u0)L = −(Lu0, u0).

Proof. By the assumption, the operator L is positive definite in the Hilbert
space H. Therefore, there exists a constant γ > 0 such that

(u, u)L = (Lu, u) ≥ γ(u, u), for any u ∈ D(L).

Hence, by Cauchy’s inequality

|(f, u)| ≤ ||f || ||u|| ≤ ||f ||√
γ
||u||L for any u ∈ HL.

The linear functional (f, u) is continuous in the Hilbert space HL. Therefore,
by Riesz theorem, there exists an element u0 ∈ HL such that

(f, u) = (u0, u)L for any u ∈ HL, f ∈ H.

Then, we have

F (u) = (u, u)L − 2(u0, u)L = (u− u0, u− u0)L − (u0, u0)L, u ∈ HL. (2.19)

Hence, the functional F (u) attains its minimum at u0 ∈ HL, i.e.,

min
v∈HL

F (v) = −(u0, u0)L = F (u0).

Now, let us show that u0 is a unique element in HL at which the functional
F (u) attains its minimum. Let u1 ∈ HL be also an element at which F (u)
attains its minimum in HL. Then, we have

F (u0) ≤ F (u1) and F (u1) ≤ F (u0)

This means that
F (u0) = F (u1).

On the other hand, by (2.19)

F (u1) = (u1 − u0, u1 − u0) − (u0, u0)L = (u1 − u0, u1 − u0) − F (u0).

Hence (u1 − u0, u1 − u0) = 0 and u1 = u0. This ends the proof.
The element u0 ∈ HL at which the functional F (u) attains its minimum in the
energetic space HL is called a weak solution of the linear equation

Lu = f(x), x ∈ Ω, f ∈ H.

If u0 ∈ D(L) then u0 becomes a regular solution of this equation.
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Example 2.7 Let us consider the following equation:

Lu ≡ −d
2u(x)

dx2
=







0 if 0 ≤ x ≤ 1
2
,

−4 if 1
2
< x ≤ 1,

(2.20)

with the homogeneous boundary conditions u(0) = 0, u(1) = 0.

As we know, the operator L is positive definite in the space H = L2(0, 1)
and the energetic space HL = W 01

2 (0, 1). Therefore, by theorem (2.2) the
functional

F (u) = (Lu, u)− 2(f, u) =
∫ 1

0
[(
du(x)

dx
)2 − 2f(x)u(x)]dx, u ∈ HL,

f(x) =







0 if 0 ≤ x ≤ 1
2
,

−4 if 1
2
< x ≤ 1,

attains its minimum in W 01
2 (0, 1) at the unique function

u0(x) =







−1
2
x if 0 ≤ x ≤ 1

2
,

2x2 − 5
2
x+ 1

2
if 1

2
< x ≤ 1.

(2.21)

Then, the value of this minimum is:

F (u0) = −(u0.u0)L = −
∫ 1

0
f(x)u0(x)dx = − 1

12
.

So that, u0 ∈W 01
2 (0, 1) is the unique weak solution of the differential equation

(2.20), but u0 is not a regular solution of this equation, since u0(x) is not twice
differentiable at x = 1

2
.

2.5 Variational Equations

In this section, we shall consider variational equations associated with positive
definite operators. We shall then show that such equations are equivalent with
relevant variational problems. Let L be a positive definite operator in the
Hilbert space H. Multiplying the linear equation

Lu = f(x), x ∈ Ω, f ∈ H, (2.22)

by η ∈ HL, we obtain the variational form of this equation

(Lu, η) = (f, η), f ∈ H, (2.23)

for any η ∈ HL.
The following theorem holds:
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Theorem 2.3 If L is a positive definite operator in the Hilbert space H, then
there exists a unique solution u0 ∈ HL of the variational equation

(Lu, η) = (f, η), for any η ∈ HL (2.24)

at which the functional

F (u) = (Lu, u)− 2(f, u), f ∈ H,

attains its minimum in the energetic space HL.

Proof. By theorem (2.2), there exists a unique element u0 ∈ HL at which the
functional F (u) attains its minimum in the energetic space HL, so that

F (u0 + tη) ≤ F (u0)

for any η ∈ HL, −∞ < t <∞.
Since

F (u0 + tη) = (L(u0 + tη), u0 + tη)− 2(fu0 + tη)

= (Lη, η)t2 + 2[(Lu0, η) − (f, η)]t+ F (u0) ≥ F (u0),

it follows that
(Lη, η)t2 + 2[(Lu0, η) − (f, η)]t ≥ 0

for any η ∈ HL and t ∈ (−∞,∞).
Hence

(Lu0, η) = (f, η) for any η ∈ HL.

To complete the proof, we should show that at each solution u0 ∈ HL of (2.24),
the functional F (u) attains its minimum in the space HL. Since L is a positive
definite operator in the Hilbert space H, we have

F (η)− F (u0) = F (u0 + (η − u0)) − F (u0) = (L(η − u0), η − u0) ≥ 0

for any η ∈ HL.
Hence

F (u0) ≤ F (η) for any η ∈ HL,

and
F (u0) = min

v∈HL

F (v).

Example 2.8 Let us recall equation (2.20)

Lu ≡ −d
2u(x)

dx2
=







0 if 0 ≤ x ≤ 1
2
,

−4 if 1
2
< x ≤ 1,

(2.25)
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with the homogeneous boundary conditions u(0) = 0, u(1) = 0.
The variational form of this equation is:

−
∫ 1

0

d2u(x)

dx2
η(x) dx =

∫ 1

0

du(x)

dx

η(x)

dx
dx = −4

∫ 1

1

2

η(x)dx

for any η ∈ HL = W 01
2 (0.1).

By theorem (2.3), this equation has the unique weak solution u0 ∈ HL given
by the formula (2.21). Indeed

−
∫ 1

0

d2u(x)

dx2
η(x) dx =

∫ 1

0

du0

dx

dη

dx
dx = −1

2

∫ 1

2

0

dη

dx
dx+

∫ 1

1

2

(4x− 5

2
)
dη

dx
dx = −4

∫ 1

1

2

ηdx.

for any η ∈W 01
2 (0, 1).

2.6 Ritz and Galerkin Methods

The Ritz’s Method. We shall apply Ritz’s method to find a minimum of
the functional

F (v) = (Lv, v)− 2(f, v), v ∈ HL, f ∈ H, (2.26)

in the energetic space HL, where L is a positive definite operator in the
Hilbert’s space H.
First, we choose a complete set of elements in the space HL,

φ1, φ2, ..., φn, ...; φi ∈ HL, i = 1.2....;

The elements φi, 1, 2, ...; are called the Ritz’s coordinates in the space HL. We
can approximate an element u ∈ HL by a linear combination

a1φ1 + a2φ2 + · · · + aNφN

with a given accuracy ε > 0, so that for every ε > 0 there exists an integer N
such that

||u− (a1φ1 + a2φ2 + · · · + aNφN )||L < ε.

Next, we find
uN = a1φ1 + a2φ2 + · · · + aNφN

at which the functional F (v) attains minimum in the subspace

XN = span{φ1, φ2, ..., φN}

of the space HL. Obviously, uN ∈ XN approximates the element u ∈ HL with
the error ||uN − u||L.
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In order to determine the coefficients a1, a2, ..., aN, we consider the following
function:

Φ(a1, a2, ...aN) = F (a1φ1 + a2φ2 + · · · + aNφN )

=
N
∑

i=1

N
∑

k=1

(Lφi, φk)aiak − 2
N
∑

i=1

(f, φi)ai.

This quadratic function has its minimum at a point a∗1, a
∗
2, ..., a

∗
N if and only if

∂Φ(a∗1, a
∗
2, ..., a

∗
N)

∂ak

= 0, for k = 1, 2, ..., N. (2.27)

On the other hand

∂Φ(a1, a2, ...aN)

∂ak

= 2
N
∑

i=1

(Lφi, φk)ai − 2(f, φk), for k = 1, 2, ..., N. (2.28)

Comparing (2.27) and (2.28), we arrive at the following Ritz’s system of linear
equations:

(Lφ1, φ1)a1 + (Lφ2, φ1)a2 + · · · + (LφN , φ1)LaN = (f, φ1)

(Lφ1, φ2)a1 + (Lφ2, φ2)a2 + · · · + (LφN , φ2)aN = (f, φ2)

(Lφ1, φ3)a1 + (Lφ3, φ1)a2 + · · · + (LφN , φ3)aN = (f, φ3)

..........................................................................

..........................................................................

(Lφ1, φN)a1 + (Lφ2, φN )a2 + · · · + (LφN , φN)aN = (f, φN)

(2.29)

Let us note that the matrix A = {(φi, φk)}, i, k = 1, 2, ..., N of Ritz’s system
of equations (2.29) is non-singular, since it is a Gram’s matrix of linearly in-
dependent elements φ1, φ2, ..., φN. Therefore, this system of equations has the
unique solution a∗1, a

∗
2, ..., a

∗
N which uniquely determines uN ∈ XN ⊂ HL.

Example 2.9 let us recall equation (2.7)

Lu ≡ −d
2u(x)

dx2
=







0 if 0 ≤ x ≤ 1
2
,

−4 if 1
2
< x ≤ 1,

(2.30)

with the homogeneous boundary conditions u(0) = 0, u(1) = 0.
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As we know, in this example the energetic space HL = W 01
2 (0, 1). We can

choose the set of linearly independent functions in the space W 01
2 (0, .1) as

follows:
φk(x) = sin kπx, 0 ≤ x ≤ 1, k = 1, 2, ...

So that

(Lφk, φl) = k2π2
∫ 1

0
sin kπx sin lπxdx =











k2π2

2
if k = l,

0 if k 6= l,

(2.31)

and

(f, φk) = −4
∫ 1

1

2

sin k πx dx =
4

kπ























−1 if k = 1, 3, 5, 7, ...;

2 if k = 2, 6, 10, 14, ...;

0 if k = 4, 8, 12, 16, ...;

(2.32)

Whence

a∗k =
8

k3π3























−1 if k = 1, 3, 5, 7, ...;

2 if k = 2, 6, 10, 14, ...;

0 if k = 4, 8, 12, 16, ...;

(2.33)

Thus, the Ritz’s approximation of the weak solution u0(x) is:

uN(x) =
8

π3
[− sinπx+

2

23
sin 2πx− 1

33
sin 3πx−

− 1

53
sin 5πx+

2

63
sin 6πx− 1

73
sin 7πx− 1

93
sin 9πx+

+
2

103
sin 10πx− 1

113
sin 11πx− · · · + a∗N sinNπx].

(2.34)

Let us note that the function uN(x) given by formula (2.34) is the partial sum
of the Fourier series of the weak solution u0(x).
In order to solve the equation

−d
2u(x)

dx2
= f(x), a ≤ x ≤ b (2.35)

with the homogeneous boundary value conditions for a continuous function
f(x), we can use the following Mathematica module

Program 2.1 Mathematica module that solves the equation (2.35).
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ritz[f_,psi_,n_,a_,b_]:=

Module[{ },

m=Table[Integrate[D[psi[x,i],x]*D[psi[x,k],x],{x,a,b}],

{i,1,n},{k,1,n}];

p=Table[Integrate[f[x]*psi[x,i],{x,a,b}],{i,1,n}];

c=LinearSolve[m,p];

Print["u(x,",n,") = ",Sum[c[[i]]*psi[x,i],{i,1,n}]]

]

By executing the following instructions

f[x_]:=-4;

psi[x_,i_]:=Sin[Pi*x*i];

ritz[f,psi,8,0,1];

we obtain the solution 6

u(x, 8) = −8 sin πx

π3
+

2 sin 2πx

π3
− 8 sin 3πx

27π3

−8 sin 5πx

125π3
+

2 sin 6πx

27π3
− 8 sin 7πx

343π3
− 8 sin 9πx

729π3
.

(2.36)

The Galerkin’s Method. We can apply the Galerkin’s method to solve the
following variational equation:

(Lu, η) = (f, η), f ∈ H, (2.37)

for any η ∈ HL, where L is a positive definite operator in the Hilbert space H.
Similarly as for the Ritz’s method, at first, we choose in the energetic space
HL a complete set7 of elements

φ1, φ2, ..., φn, ...; φi ∈ HL, i = 1.2....;

Thus, we can approximate any element u ∈ HL by a linear combination

a1φ1 + a2φ2 + · · · + aNφN

with a given accuracy ε > 0, i.e., for every ε > 0 there exists an integer N such
that

||u− (a1φ1 + a2φ2 + · · · + aNφN )||L < ε.

Then, the variational equation (2.37) is equivalent to the following:

(Lu, φk) = (f, φk), k = 1, 2, ...; (2.38)
6Note that in module, we set 1/2 instead of a, in the evaluation of right sides p, since f(x) = 0

for 0 ≤ x ≤ 1/2.
7It is sufficient to choose a set which determines such subspace X ⊆ HL that the solution u ∈ X
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In order to approximate the solution u ∈ X ⊆ HL, we consider the subspace

XN = span{φ1, φ2, ..., φN}

of the space X. Then, we find

uN = a1φ1 + a2φ2 + · · · + aNφN ∈ XN

which satisfies the equations

(LuN , φk) = (f, φk), k = 1, 2, ..., N,

or
N
∑

i=1

(Lφi, φk)ai = (f, φk), k = 1, 2, ..., N (2.39)

Let us observe that this system of linear equations is the same as the Ritz’s
system (2.29). Both Ritz’s and Galerkin’s method produce the same approx-
imate solution uN , provided that the operator L is positive definite in the
Hilbert space H.
Now, let us estimate the error of the Ritz’s and Galerkin’s methods.
Error Bound. Again, we assume that the operator L is positive definite in
the Hilbert’s space H. Then, both Ritz’s and Galerkin’s methods determine
the same approximate solution uN of the equation

Lu = f, f ∈ H, (2.40)

so that
(LuN , η) = (f, η) (2.41)

for any η ∈ XN ⊂ X ⊆ HL,
The following theorem holds:

Theorem 2.4 If u is a solution of the equation (2.40) and uN is a solution
of the equation (2.41), then the error uN − u satisfies the inequality

||uN − u||L ≤ ||η − u||L (2.42)

for any η ∈ XN , and

min
η∈XN

||η − u||L = ||uN − u||L. (2.43)

Proof. Since
F (η) = (η − u, η − u)L − (u, u)L

for any η ∈ HL, therefore

min
η∈XN

F (η) = min
η∈XN

(η − u, η − u)L − (u, u)L.
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On the other hand

min
η∈XN

F (η) = F (uN) = (uN − u, uN − u)L − (u, u)L,

and
min
η∈XN

||η − u||L = ||uN − u||L

and
||uN − u||L ≤ ||η − u||L,

for any η ∈ XN .

2.7 Exercises

Question 2.1 Let χ(x) be characteristic function of the interval [a, b], i.e.,

χ(x) =







1 if x ∈ [a, b],

0 if x /∈ [a, b].

Define a distribution Fχ(u), u ∈ C∞
0 (R) and check that this distribution

satisfies definition (1.1). Find all derivatives of the distribution Fχ(u).

Question 2.2 Let E(x) be the step-function, i.e., E(x) is the greatest integer
not greater than x. Find all derivatives of the distribution FE(u).

Question 2.3 State the following initial value problem in terms of distribu-
tions:

du(x)

dx
=







1 if 0 ≤ x ≤ 1,

0 if 1 < x ≤ 2,
u(0) = 0. (2.44)

Find a weak solution of the initial value problem (2.44).

Question 2.4 Solve Euler’s equation of the functionals

1. (a) F (u) =
∫ 2

1
[(
du

dx
)2 + 2u

du

dx
+ u2]dx when u(1) = 1, u(2) = 0,

(b) F (u) =
∫ π

0
[4u cos x+ (

du

dx
)2 − u2]dx when u(0) = 0, u(π) = 0.

Determine the minimum of functionals (a) and (b) under given boundary value
conditions.

Question 2.5 Find Euler’s equation for the following functionals:

1. (a) F (u) =
∫

Ω
[(
∂u

∂x1
)2 + (

∂u

∂x2
)2]dx1dx2, u ∈W 01

2 (Ω).



29

(b) F (u) = [2(
∂u

∂x1
)2 + 3(

∂u

∂x2
)2]dx1dx2, u ∈W 01

2 (Ω).

where Ω = {x = (x1, x2) : 0 < x1, x2 < 1}.

Question 2.6 Assume that, in polar coordinates, u(ρ, θ) minimizes the func-
tional

F (u) =
∫

Ω
′

[(
∂u

∂ρ
)2 +

1

ρ2

∂u

θ
)2]ρ dρdθ.

Show that u(ρ, θ) satisfies the equation

∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2

∂2u

∂θ2
= 0.

Question 2.7 Show that the following operators are positive definite in the
indicated spaces:

1. (a) Lu ≡ −∂
2u

∂x2
1

− ∂2u

∂x2
2

, u ∈W 01
2 (Ω),

(b) Lu ≡ ∂4u

∂x4
1

+ 2
∂4u

∂2x2
1∂x

2
2

+
∂4u

∂x4
2

, u ∈W 02
2 (Ω).

where Ω = {x = (x1, x2) : 0 < x1, x2 < 1}.

Question 2.8 Show that the boundary value problem

−d
2u

dx2
= sign x, −1 < x < 1,

u(−1) = 0, u(1) = 0,

has a unique weak solution in the Sobolev space W 01
2 (−1, 1).

Find the weak solution u of this boundary problem.

Question 2.9 Solve the boundary value problem

−d
2u

dx2
=







1 if 0 ≤ x ≤ 1,

2 if 1 < x ≤ 2,

u(0) = 0 and u(2) = 0,

by Ritz’s method using Ritz’s coordinates

φk(x) = sin
kπx

2
, k = 1, 2, ...; 0 ≤ x ≤ 2.
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Question 2.10 Consider the following boundary value problem:

−∂
2u

∂x2
1

− ∂2u

∂x2
2

= 1, (x1, x2) ∈ Ω,

u(x1, x2) = 0, (x1, x2) ∈ ∂Ω,

where Ω = {x = (x1, x2) : 0 < x1, x2 < 1}.

1. Use Ritz’s method to find u2 ∈ X2 which approximates the solution u ∈
W 01

2 (Ω), where the subspace

X2 = span{φ1, φ2} ⊂ W 01
2 (Ω),

φ1(x1, x2) = x1x2(1 − x1)(1 − x2), φ2(x1, x2) = x1x2(1 − x2
1)(1 − x2

2).

2. Solve this boundary value problem by the Ritz’s method using the following
Ritz’s coordinates:

φkm(x1, x2) =
2

π
√
k2 +m2

sin kπx1 sinmπx2, k,m = 1.2, ...;



Chapter 3

Polynomial Splines

3.1 Space Sm(∆, k).

Polynomial splines of the class Sm(∆, k) are successfully applied in the theory
of approximation of functions as well as in solving of problems which arise in
the fields of differential equations and engineering.
In order to introduce the definition of polynomial splines of degree m, let us
first define normal partition ∆ of the interval [a, b].
A partition

∆ : a = x0 < x1 < · · · < xN = b,

is normal if there exits constant σ such that

max0≤i≤N−1(xi+1 − xi)

min0≤i≤N−1(xi+1 − xi)
= σN ,

and σN ≤ σ for all natural N .

Definition 3.1 A function s(x) is said to be a polynomial spline of degree m
if the following conditions are satisfied:

• s(x) is a polynomial of degree at most m on each subinterval [xi, xi+1],
i = 0, 1, . . . , N − 1.

• s(x) and its first m−1 derivatives are continuous functions on the interval
[a, b].

The class of all polynomial splines of degree m spanned over the partition ∆
shall be denoted by the symbol Sm(∆, m− 1).

The Basis. Now, we shall determine a basis of the space Sm(∆, m− 1). Let
us consider the following auxiliary function:

(x− t)m
+ =







(x− t)m if x ≤ t,

0 if x > t.

31
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-r

xi xi+m+1

r

xi−m−1

r

t
Fig. 4.1. (xi − t)m

+

The finite difference of order m+ 1 of the auxiliary function is

∆m+1(xi − t)m
+ = (−1)m−1

m+1
∑

ν=0

(−1)ν

(

m+ 1

ν

)

(xi+ν − t)m
+ .

Example 3.1 We compute the differences

m = 1, ∆2(xi − t)+ = (xi − t)+ − 2(xi+1 − t)+ + (xi+2 − t)+

m = 2, ∆3(xi − t)2
+ = −(xi − t)2

+ + 3(xi+1 − t)2
+ − 3(xi+2 − t)2

+

−(xi+3 − t)2
+

m = 3, ∆4(xi − t)3
+ = (xi − t)3

+ − 3(xi+1 − t)3
+ + 6(xi+2 − t)3

+

−3(xi+3 − t)3
+ + (xi+4 − t)3

+

Assuming that ∆ is a uniform partition of interval [a, b], so that

xi = a+ ih, i = 0, 1, ..., N ; h =
b− a

N
.

we find the difference

∆m+1(xi − t)m
+ = 0 for t ≥ xi.

Indeed, the function

(xi+ν − t)m
+ = (xi+ν − t)m, for t ≥ xi+ν , ν = 0, 1, ..., m+ 1

is the polynomial of degree m, therefore its difference of order m+1 is equal
to zero.
Also, we note that

∆m+1(xi − t)m
+ = 0 for t ≤ xi,

Because
(xi+ν − t)m+1

+ = 0, t ≤ xi
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for ν = 0, 1, .., m+ 1.

Hence, we have
∆m+1(xi − t)m

+ = (3.1)














m+1
∑

ν=0

(−1)ν+m+1

(

m+ 1

ν

)

(xi+ν − t)m
+ , xi+q−1 < t < xi+q, q = 1, 2, ..., m+ 1,

0, t ≤ xi or t > xi+m+1

It is clear, by (3.1), that the functions

Km(xi, t) = ∆m+1(xi − t)m
+ , i = 0, 1, ..., N, (3.2)

are polynomials of degree m on each subinterval [xi, xi+1], and they are m− 1
times continuously differentiable in the interval [a, b], i.e.,Km(xi, t) ∈ Cm−1[a, b].
Therefore, each Km(xi, t) is a polynomial spline of the class Sm(∆, m− 1).
Obviously, Km(xi, t) can be considered on the whole real line with infinite
number of knots xi, i = 0,±1,±2, ...; However, only N +m of them are not
identically equal to zero on the interval [a, b]. These non-zero and linearly
independent splines are:

Km(x−m, t), Km(x−m+1, t), Km(x−m+2, t), · · · , Km(xN−1, t).

Example 3.2 Let m = 1, then, by (3.2), we obtain

K1(i, t) =























0, t ≤ i, or t ≥ i+ 2,

−i+ t, i ≤ t ≤ i+ 1,

i− t+ 2, i+ 1 ≤ t ≤ i+ 2.

-t
0

6K1(i, t)

�
�

�
�

�

@
@

@
@

@

q q q

i i+ 1 i+ 2
Fig 4.2. Linear spline K1(i, t)

For the uniform partion of the interval [a, b], we shall consider normalized
splines

1

hm
Km(xi−m+1, x), i = 1, 2, ..., N + 3, a ≤ x ≤ b,

as a basis of the space Sm(∆, m− 1) of the dimension

dim(Sm(∆, m− 1)) = N +m.
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3.2 Properties of Splines.

Minimum property. Below, we shall consider the space Sm(∆, m− 1) when
m = 2q + 1 is an odd positive integer. Splines from this space minimize the
following functional

F (g) =
∫ b

a
[g(q+1)(x)]2dx, g ∈ C(q+1)[a, b].

Precisely, let us consider the following variational problem (cf. [15], [20]):
Variational Problem. Find a function s ∈ C(q+1)[a, b] at which the func-
tional F (g) attains its minimum under the interpolation conditions:

g(xi) = f(xi), i = 0, 1, ..., N,

and either

g(j)(a) = g(j)(b) = 0, j = q + 1, q + 2, ..., 2q,

or

g(j)(a) = g(j)(b) = 0, j = 1, 2, ..., q,

(3.3)

for a given function f(x), x ∈ [a, b].
1 The following theorem holds:

Theorem 3.1 There exists a unique spline s ∈ Sm(∆, m− 1) which satisfies
the interpolation conditions (3.3).

Proof. Every spline s ∈ Sm(∆, m− 1) can be written as the following linear
combination:

s(x) = a−mKm(x−m, x) + a−m+1K−m+1(xm+1, x) + · · · + aN−1Km(xN−1, x).

By the interpolation conditions, N +m coefficients a−m, a−m+1, ..., aN−1 must
satisfy the following system of N +m linear equations:

s(xi) = f(xi), i = 0, 1, ..., N

s(j)(a) = s(j)(b) = 0, j = q + 1, q + 2, ..., 2q, m = 2q + 1.

Clearly, there exists a unique interpolating spline s ∈ Sm(∆, m − 1) if the
corresponding system of homogeneous equations possesses only trivial solution.
To show this, we assume that f(xi) = 0, for i = 0, 1, ..., N.

1The conditions put on the derivatives can be replaced by periodicity conditions.
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Then, we have

F (s) =
∫ b

a
[s(q+1)(x)]2dx

= −
∫ b

a
s(q)(x)s(q+2)(x)dx

................................................

= (−1)q
∫ b

a
s′(x)s(2q+1)(x)dx

(−1)q
N−1
∑

i=0

{s(xi+1)s
(2k+1)(xi+1) − s(xi)s

(2k+1)(xi)

−
∫ xi+1

xi

s(x)s(2q+2)(x)dx}.

Hence, F (s) = 0, since s(xi) = 0, for i = 0, 1, ..., N and s(2q+2)(x) = 0, for
xi ≤ x ≤ xi+1. Thus, s(q+1)(x) = 0 in the interval [a, b]. Therefore, s(x) is a
polynomial of degree at most q which has at least N +1, (q ≤ N) roots in the
interval [a, b]. Then, s(x) = 0, for x ∈ [a, b] and a−m = a−m+1 = ... = aN−1 =
0. This means that s(x) is a unique interpolating spline in Sm(∆, m− 1).
The following theorem holds:

Theorem 3.2 There exists a unique solution s ∈ Sm(∆, m− 1) of the varia-
tional problem.

Proof. Let s ∈ Sm(∆, m−1) be the unique interpolating spline which satisfies
the conditions (3.3). Then, we note that

∫ b

a
[g(q+1)]2dx =

∫ b

a
[s(q+1)]2dx+

∫ b

a
[g(q+1) − s(q+1)(x)]2dx

+2
∫ b

a
s(q+1)(x)(g(q+1)(x) − s(q+1)(x))dx.

Integrating by parts under the conditions (3.3), we find
∫ b

a
s(q+1)(x)[g(q+1)(x)− s(q+1)(x)]dx

=
N−1
∑

i=0

∫ xi+1

xi

s(q+1)(x)[g(q+1)(x)− s(q+1)(x)]dx =

.....................................................................

= (−1)q
N−1
∑

i=0

∫ xi+1

xi

s(2q+1)(x)[g
′

(x) − s
′

(x)]dx

= (−1)q+1
N−1
∑

i=0

∫ xi+1

xi

s(2q+2)(x)[g(x)− s(x)]dx.
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Recalling the equality

s(2k+2)(x) = 0 for xi ≤ x ≤ xi+1, i = 0, 1, ..., N,

we find
∫ b

a
s(q+1)(x)(g(q+1)(x) − s(q+1)(x))dx = 0.

and

F (g) =
∫ b

a
[g(q+1)(x)]2 =

∫ b

a
[s(q+1)(x)]2dx−

∫ b

a
[g(q+1)(x) − s(q+1)(x)]2dx

Hence, the functional F (g) attains minimum at g(x) = s(x), x ∈ [a, b].
In order to prove that there is a unique spline which minimizes the functional
F (g), let us assume for contrary that there are at least two such splines s1(x)
and s2(x). Then, the difference s(x) = s1(x)−s2(x) is the spline which satisfies
homogeneous interpolation conditions. Therefore, s(x) ≡ 0, x ∈ [a, b].

Example 3.3 Let us consider the space S3(∆, 2) of cubic splines. Then, the
interpolation conditions (3.3) take the following form:

g(xi) = f(xi), i = 0, 1, ..., N, g
′′

(a) = g
′′

(b) = 0. (3.4)

By theorems (4.2) and (4.3), there exists a unique cubic spline s ∈ S3(∆, 2) at
which the functional

F (g) =
∫ b

a
[g

′′

(x)]2dx, g ∈ C(2)[a, b],

attains minimum under the interpolation conditions (3.4), i.e.

F (s) ≤
∫ b

a
[g

′′

(x)]2dx, for all g ∈ C(2)[a, b].

3.3 Examples of Polynomial Splines

Space S1(∆, 0) of Piecewise Linear Splines. Elements of the space S1(∆, 0)
are piecewise linear splines of the following form:

s(x) = a0ψ0(x) + a1ψ1(x) + · · · + aNψN(x),

where the basis splines

ψi(x) =































x− xi−1

xi − xi−1
if xi−1 ≤ x < xi

xi+1 − x

xi+1 − xi

if xi ≤ x < xi+1

0 ifx < xi−1 or x ≥ xi+1

(3.5)
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For the uniform distribution of the points xi = ih, i = 0,±1,±2 . . . , the
piecewise linear splines ψi(x) are given by the following formulae:

ψi(x) =
1

h























x− xi−1 if xi−1 ≤ x < xi

xi+1 − x if xi ≤ x < xi+1

0 ifx < xi−1 or x ≥ xi+1

(3.6)

Let us note that there are N + 1 piecewise linear splines not identically equal
to zero on the interval [a, b]. Thus, the space of piecewise linear splines

S1(∆, 0) = span{ψ0, ψ1, . . . , ψN}

has dimension N + 1.
Now, we observe that every piecewise linear spline s(x) can be written as the
following linear combination:

s(x) = a0ψ(x) + a1ψ1(x) + · · · + aNψN(x).

In particular, we find the Lagrange’s interpolating piecewise linear spline

s(x) = f(x0)ψ0(x) + f(x1)ψ1(x) + f(x2)ψ2(x) + · · · + f(xN )ψN(x),

to a given function f(x) which satisfies the following conditions of interpola-
tion:

s(xi) = f(xi), i = 0, 1, ..., N.

The following theorem holds:

Theorem 3.3 If f is a function twice continuously differentiable on the in-
terval [a, b], then the error of interpolation f(x)− s(x) satisfies the inequality:

| f(x) − s(x) |≤ h2

8
M (2), x ∈ [a, b].

Proof. Let xi ≤ x ≤ xi+1. Then, we have

f(x) − s(x) =
f ′′(ξx)

2!
(x− xi)(x− xi+1).

Since

| (x− xi)(x− xi+1) |≤
h2

4
,

we get

| f(x) − s(x) |≤ h2

8
M (2),

where
M (2) = max

a≤x≤b
| f ′′(x) | .
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Example 3.4 Approximate the function

f(x) =
√

1 + x, 0 ≤ x ≤ 2

by a piecewise linear spline with accuracy ε = 0, 01.

Solution. We shall start by determining h. The error of interpolation of a
function f(x) by a piecewise linear spline s(x) satisfies the following inequality:

| f(x) − s(x) |≤ h2

8
M (2), a ≤ x ≤ b.

Since

M (2) = max
a≤x≤b

| f ′′(x) |= max
a≤x≤b

1

4
√

(1 + x)3
=

1

4
,

we may choose h such that

h2

8
M (2) =

h2

32
≤ ε = 0.01.

Hence, we find h = 0.5.
For h = 0.5, N = 4, x0 = 0, x1 = 0.5, x2 = 1; x3 = 1.5, and x4 = 2, the
piecewise linear spline is given by the following formula

s(x) = (2x(
√

1.5 − 1) + 1)θ0(x)

+(2x(
√

2 −
√

1.5) + 2
√

1.5 −
√

2)θ1(x)

+(2x(
√

2.5 −
√

2) + 3
√

2 − 2
√

2.5)θ2(x)

+(2x(
√

3 −
√

2.5) + 4
√

2.5 − 3
√

3)θ3 =

=







































0.4495x + 1 if 0 ≤ x ≤ 0.5,

0.3789x + 1.0353 if 0.5 ≤ x ≤ 1,

0.3339x + 1.0804 if 1 ≤ x ≤ 1.5,

0.3018x + 1.1284 if 1.5 ≤ x ≤ 2.

Now, let us solve this example using the following Mathematica module

Program 3.1 Mathematica module that finds linear spline for a given data
table.
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linearSpline[f_,a_,b_,n_,xstep_]:=Module[{h,sol},

h=(b-a)/n;

onex[x_]:=Module[{xr,r},

xr=Table[a+r*h,{r,0,n+1}];

k=Floor[(x-a)/h+1];

N[f[xr[[k]]]+(f[xr[[k+1]]]-f[xr[[k]]])*(x-xr[[k]])/h]

];

Print[" Linear spline approximating f(x) "];

Print[" --------------------------------------------"];

linear=Table[{N[t],onex[t],N[f[t]]}, {t,a,b,xstep}];

TableForm[PrependTo[linear,{" x "," linear ",f[x]}]]

]

By executing the following instructions

f[x_]:=Sqrt[1+x];

linearSpline[f,0,2,4,0.2];

we obtain the following table:

linearSpline[f,0,2,4,0.2]

Linear spline approximating f(x)

----------------------------------------

Out[3]/TableForm=

x linear Sqrt[1+x]

0 1. 1.

0.2 1.0899 1.09545

0.4 1.1798 1.18322

0.6 1.26264 1.26491

0.8 1.33843 1.34154

1. 1.41421 1.41421

1.2 1.48098 1.48324

1.4 1.54775 1.54919

1.6 1.61132 1.61245

1.8 1.67169 1.67322

2. 1.73205 1.73205

Space S3(∆, 2) of Cubic Splines. As we know, a function f can be approx-
imated by a piecewise linear spline with the accuracy O(h2). More accurate
approximation of a smooth function can be found in the space S3(∆, 2) of
cubic splines. To determine a base of the space S3(∆, 2), we start with the
auxiliary function

K3(xi, t) = ∆4(xi − t)3
+, xi = ih, i = 0.± 1 ± 2, . . . ,
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where

(xi − t)3
+ =

{

(xi − t)3 if x ≤ t,
0 if x > t.

We can consider the following cubic splines as the basis of the space S3(∆, 2)
when the points xi, i = 0,±, 1,±2, ..., are uniformly distributed.

Bi(x) =
1

h3
K3(xi−2, x), i = −1, 0, 1, 2, . . . , N + 1.

The explicit form of the cubic splines Bi(x), i = 0,±1,±2, ..., is given below:

Bi(x) =
1

h3































































































































0
if x ≤ xi−2

(x− xi−2)
3

if xi−2 ≤ x ≤ xi−1,

h3 + 3h2(x− xi−1) + 3h(x− xi−1)
2 − 3(x− xi−1)

3

if xi−1 ≤ x ≤ xi,

h3 + 3h2(xi+1 − x) + 3h(xi+1 − x)2 − 3(xi+1 − x)3

if xi ≤ x ≤ xi+1,

(xi+2 − x)3

if xi+1 ≤ x ≤ xi+2,

0
if x ≥ xi+2,

(3.7)

for i = 0,±1,±2, . . . . x ∈ (−∞,∞).
Now, let us note that the splines Bi(x) = 0 for x ≤ xi−2 or x ≥ xi+2,
so that the only non-zero cubic splines in the interval [a, b] are Bi(x) for
i = −1, 0, 1, . . . , N + 1, N + 2, . Therefore, any cubic spline s(x) can be repre-
sented on the interval [a, b] as a linear combination of cubic splines Bi(x), i =
−1, 0, 1, ..., N + 1 i.e.,

s(x) = a−1B−1(x) + a0B0(x) + · · · + aNBN (x) + aN+1BN+1(x)

for x ∈ [a, b].

x xi−2 xi−1 xi xi+1 xi+2

Bi(x) 0 1 4 1 0

B ′
i(x) 0

3

h
0 −3

h
0

B ′′
i (x) 0

6

h2
−12

h2

6

h2
0
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xixi−1xi−2 xi+1 xi+2

q q

Fig. 4.3 Bi(x)

4

1 1

It can be proved that the cubic splines B−1(x), B0(x), . . . , BN+1(x) create
the complete basis of the space S3(∆, 2), so that

S3(∆, 2) = span{B−1, B0, . . . , BN+1}.
In order to find an interpolating cubic spline s(x) in the space S3(∆, 2), we
can use the following conditions:

s
′

(x0) = f ′(x0),

s(xi) = f(xi), i = 0, 1, . . . , N,

s
′

(xN) = f ′(xN),

where f(x) is a given function on the interval [a, b].
There exists only one interpolating cubic spline s(x) which satisfies the above
conditions. From these conditions, we get the following linear system of equa-
tions:

s′(x0) = a−1B
′
−1(x0) + a0B

′
0(x0) + · · · + aN+1B

′
N+1(x0) = f ′(x0)

s(x0) = a−1B−1(x0) + a0B0(x0) + · · · + aN+1BN+1(x0) = f(x0)
s(x1) = a−1B−1(x1) + a0B0(x1) + · · · + aN+1BN+1(x1) = f(x1)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
s(xN) = a−1B−1(xN ) + a0B0(xN) + · · · + aN+1BN+1(xN ) = f(xN )
s′(xN) = a−1B−1(xN) + a0B0(xN ) + · · · + aN+1BN+1(xN) = f ′(xN)

(3.8)

where a−1, a0, a1, . . . , aN+1 are unknown coefficients of the cubic spline s(x).
The system of equations (3.8) has a unique solution, since the matrix

M =



















































−3

h
0

3

h
0 · · · 0 0 0

1 4 1 0 · · · 0 0 0
0 1 4 1 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 4 1

0 0 0 0 · · · −3

h
0

3

h


















































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is non-singular.
The following theorem holds (cf. [1], [9], [18]):

Theorem 3.4 If s(x) is interpolating cubic spline to a function f(x) four
times continuously differentiable on the interval [a, b], then the error of inter-
polation satisfies the following inequality:

|| f (r) − s(r) ||∞≤ εrh
4−r||f (4)||∞, r = 0, 1, 2, 3;

where

ε0 =
5

384
, ε1 =

1

216
(9 +

√
3) ε2 =

1

12
(3σ + 1), ε3 =

1

2
(σ2 + 1),

h = max
1≤i≤N

(xi − xi−1), || f ||∞= inf
µ(Ω)=0

sup
a≤x≤b

| f(x) |,

µ(Ω) is the measure of the set Ω, and σ is the constant which defines the
normal partition of the interval [a, b], and σ = 1 for the uniform partition of
the interval [a, b]

Now, let us determine the coefficients a−1, a0, a1, ..., aN+1 of the cubic spline
s(x). Using the table, we can reduce the system of equations (3.8). Namely,
from the first equation, we find

a−1 = a1 −
h

3
f

′

(x0),

and from the last equation, we find

aN+1 = aN−1 +
h

3
f

′

(xN).

Then, the other N + 1, equations, we write in the following form:

2a0 + a1 =
1

2
[f(x0) +

h

3
f ′(x0)]

ai−1 + 4ai + ai+1 = f(xi), i = 1, 2, ..., N − 1,

aN−1 + 2aN =
1

2
[f(xN) − h

3
f ′(xN)]

In order to solve this system of equations with tri-diagonal matrix

M =







































2 1 0 0 · · · 0 0 0
1 4 1 0 · · · 0 0 0
0 1 4 1 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 4 1
0 0 0 0 · · · 0 0 2







































(N+1)(N+1)
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we apply Gauss elimination method for the vector F = {F0, F1, ..., FN} in right
sides:

Fi =



































1

2
(f(x0) +

h

3
f

′

(x0), i = 0,

f(xi), i = 1, 2, ..., N − 1,

1

2
(f(xN ) − h

3
f

′

(xN), i = N

Then, we apply the following algorithm:

α0 =
1

2
, β0 =

1

2
F0,

for i = 1, 2, ..., N − 1,

αi =
1

4 − αi−1
, βi =

Fi − βi−1

4 − αi−1
,

αN =
1

2 − αN−1
, βN =

FN − βN−1

2 − αN−1
,

aN = βN ,

for i = N − 1, N − 2, ..., 1, 0,

ai = βi − αiai+1,

a−1 = a1 −
h

3
f

′

0, aN+1 = aN−1 +
h

3
f

′

N .

Below, we give the Mathematica module based on the above algorithm which
produces the table of the cubic spline for a give f(x) in the interval [a, b]. How
to invoke the module, we shall explain in the example.

Program 3.2 Mathematica module that finds a cubic spline in the form of a
table for given data table.

cubicSpline[f_,a_,b_,n_,tstep_]:=Module[{h,sol,sp3,onet,cub},

h=(b-a)/n;

sol=sp3[h];

sp3[h_]:=Module[{xi,f1a,f1b,fx,al,be,sa,sb,s},

xi=Table[a+i*h,{i,0,n}];

fx=N[Map[f,xi]];

df[x_]:=D[f[x],x];
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f1a=N[df[x]/.x->a];

f1b=N[df[x]/.x->b];

fx[[1]]=(fx[[1]]+h*f1a/3)/2;

fx[[n+1]]=(fx[[n+1]]-h*f1b/3)/2;

al[1]=1/2;

al[i_]:=al[i]=If[i<n+1,1/(4-al[i-1]),N[1/Sqrt[3]]];

be[1]=fx[[1]]/2;

be[i_]:=be[i]=If[i<n+1,(fx[[i]]-be[i-1])/(4-al[i-1]),

(fx[[n+1]]-be[n])/Sqrt[3]];

s[n+1]=be[n+1];

s[i_]:=s[i]=be[i]-al[i]*s[i+1];

sol=N[Table[s[i],{i,1,n+1}]];

sa=sol[[2]]-h*f1a/3;

PrependTo[sol,sa];

sb=sol[[n+1]]+h*f1b/3;

AppendTo[sol,sb]

];

onet[t_]:=Module[{ },

k=Floor[(t-a)/h+2];

N[ ((xr[[k+1]]-t)^3*sol[[k-1]]+

(h^3+3*h^2*(xr[[k+1]]-t)+

3*h*(xr[[k+1]]-t)^2-3*(xr[[k+1]]-t)^3)*sol[[k]]+

(h^3+3*h^2*(t-xr[[k]])+

3*h*(t-xr[[k]])^2-3*(t-xr[[k]])^3)*sol[[k+1]]+

(t-xr[[k]])^3*sol[[k+2]])/h^3]

];

Print["Cubic spline approximating f(x) "];

Print["Coefficients of the cubic spline :",Take[sol,n+3]];

Print["-------------------------------------------------"];

xr=Table[a+r*h,{r,-1,n+1}];

cub=Table[{N[t],onet[t],N[f[t]]}, {t,a,b-tstep,tstep}];

AppendTo[cub,{N[b], N[((xr[[n+2]]-b)^3*sol[[n]]+

(h^3+3*h^2*(xr[[n+2]]-b)+

3*h*(xr[[n+2]]-b)^2-3*(xr[[n+2]]-b)^3)*sol[[n+1]]+

(h^3+3*h^2*(b-xr[[n+1]])+

3*h*(b-xr[[n+1]])^2-3*(b-xr[[n+1]])^3)*sol[[n+2]]+

(b-xr[[n+1]])^3*sol[[n+3]])/h^3],N[f[b]]}];
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TableForm[PrependTo[cub,{" x "," cubic ",f[x]}]]

]

Example 3.5 Find a cubic interpolating spline for the following function:

f(x) = ex, 0 ≤ x ≤ 2,

spanned on the knots: x0 = 0, x1 = 0.5, x2 = 1, x3 = 1.5, and x4 = 2.
Determine an approximate value f(1.4). Estimate the error of interpolation
for the function f(x).

Solution. The interpolating cubic spline is

s(x) = a−1B−1(x) + a0B0(x) + a1B1(x) + · · · + a5B5(x),

The coefficients a−1, a0, a1, a2, a3, a4 and a5 are determined by the following
system of linear equations:

−6a−1 + 6a1 = 1,

ai−1 + 4ai + ai+1 = eih, i = 0.1, 2, 3, 4; h = 0.5,

−6a3 + 6a5 = e2.

Solving this system of equations, we find

s(x) = 0.0969067B−1(x) + 0.159880B0(x) + 0.263573B1(x)

+0.434548B2(x) + 0.7116517B3(x) + 1.18107B4(x) + 1.94803B5(x),

and
s(1.4) = 4.05511, f(1.3) = e1.4 = 4.055199967.

So that the error of interpolation

f(1.4) − s(1.4) = 0.0000899668.

satisfies the estimate given in the theorem, i.e.,

0.0000899668 = |e1.4 − s(1.4)| ≤ 5

384
0.54 e2 = 0.006,

Also, we can find the cubic interpolating spline to f(x) = ex using the Mathematica
module by executing the following instructions

f[x_]:=Exp[x];

cubicSpline[f,0,1,4,0.1];



46

Then, we obtain the following table:

cubicSpline[f,0,1,4,0.1]

Cubic spline approximating f(x)

Coefficients of the cubic spline

{0.128454, 0.16494, 0.211787, 0.271938, 0.349184,

448327, 0.575707}

-------------------------------------------------

Out[3]/TableForm=

x cubic Exp(x)

0 1 1

0.1 1.10316 1.10517

0.2 1.2214 1.2214

0.3 1.34985 1.34986

0.4 1.49181 1.49182

0.5 1.64872 1.64872

0.6 1.82211 1.82212

0.7 2.01376 2.01375

0.8 2.22551 2.22554

0.9 2.45952 2.4596

1. 2.71828 2.71828

One can draw the graph of the cubic spline by the following Mathematica

instructions

data={{0,1},{0.1,1.10517},{0.2,1.2214}, {0.3,1.34986},

{0.4,1.49182},{0.5,1.64872},{0.6,1.82212},{0.7, 2.01375},

{0.8,2.22554},{0.9,2.4596}, {1.0,2.71828}};

Show[Graphics[{Line[data],Spline[data,Cubic]},PlotRange->All]];

Program 3.3 Mathematica module that finds a cubic spline in the form of a
list of piecewise cubic polynomials for a given data table.

cubicSpline[f_,a_,b_,n_]:=

Module[{h,sol,sp3,onet,cub,xr,k,r},

h=(b-a)/n;

sol=sp3[h];

sp3[h_]:=Module[{xi,f1a,f1b,fx,al,be,sa,sb,s},
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xi=Table[a+i*h,{i,0,n}];

fx=N[Map[f,xi]];

df[x_]:=D[f[x],x];

f1a=N[df[x]/.x->a];

f1b=N[df[x]/.x->b];

fx[[1]]=(fx[[1]]+h*f1a/3)/2;

fx[[n+1]]=(fx[[n+1]]-h*f1b/3)/2;

al[1]=1/2;

al[i_]:=al[i]=If[i<n+1,1/(4-al[i-1]),

N[1/Sqrt[3]]];

be[1]=fx[[1]]/2;

be[i_]:=be[i]=If[i<n+1,

(fx[[i]]-be[i-1])/(4-al[i-1]),

(fx[[n+1]]-be[n])/Sqrt[3]];

s[n+1]=be[n+1];

s[i_]:=s[i]=be[i]-al[i]*s[i+1];

sol=N[Table[s[i],{i,1,n+1}]];

sa=sol[[2]]-h*f1a/3;

PrependTo[sol,sa];

sb=sol[[n+1]]+h*f1b/3;

AppendTo[sol,sb]

];

onet[t_,k_]:=Module[{ },

((xr[[k+1]]-t)^3*sol[[k-1]]+

(h^3+3*h^2*(xr[[k+1]]-t)+

3*h*(xr[[k+1]]-t)^2-3*(xr[[k+1]]-t)^3)*sol[[k]]+

(h^3+3*h^2*(t-xr[[k]])+

3*h*(t-xr[[k]])^2-3*(t-xr[[k]])^3)*sol[[k+1]]+

(t-xr[[k]])^3*sol[[k+2]])/h^3

];

xr=Table[a+r*h,{r,-1,n+1}];

cub=Table[Expand[onet[t,k]], {k,2,n+1}]

]

Solving the example 4.4, we find the cubic interpolating spline to the function
f(x) = ex, x ∈ [0, 2], by executing the following instructions

f[x_]:=Exp[ x];
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cubicSpline[f,0,2,4]

Then, we obtain the following list of piecewise cubic splines determined on the
subintervals [0, 0.5], [0.5, 1], [1, 1.5] and [1.5, 2].

2 3

{1. + 1. t + 0.48864 t + 0.21249 t ,

2 3

0.982848 + 1.10291 t + 0.282818 t + 0.349704 t ,

2 3

0.759801 + 1.77205 t - 0.386323 t + 0.572752 t ,

2 3

-0.541948 + 4.37555 t - 2.12199 t + 0.958444 t }

3.4 Lagrange Interpolating Splines

In the previous section, we have introduced splines of the space Sm(∆, m− 1)
giving explicit form of the basis. These splines are defined on a set of spline
knots {x0, x1, ..., xn}. The Lagrange’s interpolating splines are determined by
Lagrange’s conditions of interpolation given at the Lagrange’s interpolating
points {t0, t1, ..., tp}. In general, these two sets of points do not coincide.
However, in the case of piecewise linear splines both sets of points are the
same. In order to determine higher order polynomial splines, by Lagrange’s
interpolating conditions, one has to consider the number of conditions equal
to the number of coefficients in a piecewise polynomial. For example, to deter-
mine quadratic piecewise splines aix

2 +bx+ci, i = 0, 1, ..., n−1, by Lagrange’s
conditions of interpolation, we have to find 3n coefficients for which 3n con-
ditions are needed. In the following example, we shall give the Lagrange’s
interpolating quadratic splines spanned at the spline knots {x0, x1, ..., xn} and
with two different sets of interpolating points.

Example 3.6 Find the piecewise quadratic polynomial spline P
(i)
2 (x) spanned

on knots x0, x1, ..., xn, which satisfies Lagrange’s conditions of interpolation

P
(i)
2 (xi) = f(xi), i = 0, 1, ..., n,

for a given function f(x) in the interval [x0, xn].

Such a spline must be continuous and continuously differentiable in the interval
[x0, xn]. First, let us consider the interpolating points the same as spline knots,
that is, ti = xi, i = 0, 1, ..., n. By the Newton’s formula, we find the piecewise
quadratic polynomial

P
(i)
2 (x) = fi +

fi+1 − fi

xi+1 − xi

(x− xi) + ai(x− xi)(x− xi+1), i = 0, 1, ..., n− 1,
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which satisfies the Lagrange’s conditions for any values of parameters ai, and
for given fi = f(xi), i = 0, 1, ..., n.
The parameters ai, i = 0, 1, ..., n− 1, are determined by the following conti-
nuity conditions

lim
x→x−

i

dP
(i−1)
2 (x)

dx
= lim

x→x+

i

dP
(i)
2 (x)

dx
, i = 1, 2, ..., n− 1. (3.9)

Hence, we obtain the equations

ai(xi+1 − xi) + ai−1(xi − xi−1) =
fi+1 − fi

xi+1 − xi

− fi − fi−1

xi − xi−1
, i = 1, 2, ..., n− 1.

In the case when xi = x0 + ih, i = 0, 1, ..., n, these equations lead to the
following recursive formula

ai = −ai−1 +
1

h2
[fi+1 − 2fi + fi−1], i = 1, 2, ..., n− 1.

at which the initial value of the parameter a0 is free, and can be arbitrarily
chosen.
The following Mathematica module spanned on knots x0, x1, ..., xn tabulates
the quadratic spline that approximates a given function f(x)

Program 3.4 Mathematica module that tabulates the quadratic spline approx-
imating a given function.

quadraticSpline1[f_,a_,b_,n_,tstep_]:=Module[{h,xi,fx,k,t},

h=(b-a)/n;

xi=Table[a+i*h,{i,0,n+1}];

fx=Map[f,xi];

al[1]=1;

al[i_]:=al[i]=-al[i-1]+(fx[[i-1]]-2 fx[[i]]+fx[[i+1]])/h^2;

onet[t_]:=Module[{ },

k=Floor[(t-a)/h+1];

N[f[a+(k-1)*h]+(f[a+(k+1)*h]-f[a+k*h])*(t-xi[[k]])/h+

al[k]*(f[a+(k-1)*h]-2 f[a+k*h]+

f[a+(k+1)*h])*(t-xi[[k]])*(t-xi[[k+1]])]

];

Print["Quadratic1 spline approximating f(x)"];

Print["--------------------------------------"];

quad=Table[{N[t],onet[t],N[f[t]]},{t,a,b-tstep,tstep}];
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AppendTo[quad,{N[b],onet[b],N[f[b]]}];

TableForm[PrependTo[quad,{"x"," quadratic1 ",f[x]}]]

]

How to use the Mathematica module, we explain by the following example:

Example 3.7 Let
f(x) = ex, 0 ≤ x ≤ 1,

Tabulate the quadratic spline with step tstep = 0.1 which is spanned on knots
xi = i h, i = 0, 1, 2, 3, 4, 5, and approximates f(x)

When Mathematica is active, we enter the function

f[x_]:=Exp[x];

and call

quadraticSpline1[f,0,1,5,0.1];

where a = 0, b = 1, number of intervals n = 5, and tstep = 0.1.
Then, obtain the following table:

quadraticSpline1[f,0,1,5,0.1]

Out[3]/TableForm=

quadratic spline approximating f(x)

------------------------------------

x quadratic1 E^x

0 1. 1.

0.1 1.134721 1.105171

0.2 1.221403 1.221403

0.3 1.386415 1.349859

0.4 1.491825 1.491825

0.5 1.692601 1.648721

0.6 1.822119 1.822119

0.7 2.067992 2.013753

0.8 2.225541 2.225541

0.9 2.524663 2.459601

1. 2.718282 2.718282

Now, let us consider n+ 2 interpolating points

ti =



























x0, if i = 0,

1

2
(xi−1 + xi), if i = 1, 2, ..., n,

xn if i = n+ 1.
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at which fi = f(ti), i = 0, 1, ..., n+ 1.
For the equidistance points xi = a+ih, i = 0, 1, ..., n, nh = b−a, the Newton’s
quadratic interpolating polynomial through the points ti, ti+1, ti+2 is

P
(i)
2 (x) = fi +

1

h
(fi+1 − fi)(x− ti) +

1

2h2
[fi − 2fi+1 + fi+2](x− ti)(x− ti+1),

xi ≤ x < xi+1, i = 1, 2, ..., n− 2,

This polynomial satisfies the Lagrange’s interpolating conditions

P
(i)
2 (ti) = fi, P

(i)
2 (ti+1) = fi+1, P (i)(ti+2) = fi+2, i = 1, 2, ..., n− 2.

and the continuity conditions (3.9).
Additionally, we need to find two quadratic splines that correspond to the
points t0, t1, and tn, tn+1 which satisfy the continuity conditions at the points
x1 and xn−1. One can check that the following quadratic polynomials hold
these conditions

P
(0)
2 (x) = f0 +

2

h
(f1 − f0)(x− t0) +

2

3h2
(2f0 − 3f1 + f2)(x− t0)(x− t1),

x0 ≤ x < x1,

and

P
(n−1)
2 (x) = fn +

2

h
(fn+1 − fn)(x− tn)+

+
2

3h2
(fn−1 − 3fn + 2fn+1)(x− tn)(x− tn+1), xn−1 ≤ x ≤ xn.

-

6

r r r r r r r r

x0 x1

t0 t
t1 t

t2 t t
ti t

ti+1 t t
tnt tn+1

f0
P0(x)

f1

r

Pi(x)

fi

r

P1(x)

f2

r

Pn−1(x)

fn

r

fn+1

xixi−1 xn−1 xnxi+1

Fig. 4. Quadratic Spline

The error of interpolation is given by the formula

f(x) − P
(i)
2 (x) =

f
′′′

(ξi)

3!
(x− ti)(x− ti+1)(x− ti+2).



52

Hence, we have the following error estimate

|f(x) − P
(i)
2 (x)| ≤ M (3)

√
3

27
h3, xi ≤ x ≤ xi+1, i = 0, 1, ..., n− 1,

where M (3) = sup
x

|f (′′′)(x)|.
The following module in Mathematica tabulates the quadratic spline spanned
on the Lagrange’s interpolating knots {t0, t1, ..., tn} that approximates a func-
tion f(x).

Program 3.5 Mathematica module that tabulates the Lagrange’s quadratic
spline approximating a given function.

quadraticSpline2[f_,a_,b_,n_,tstep_]:=Module[{h},

h=N[(b-a)/n];

xi=Table[N[a+i*h],{i,0,n}];

xt=Table[N[(xi[[i]]+xi[[i+1]])/2],{i,1,n}];

PrependTo[xt,a];

AppendTo[xt,b];

p0[t_]:=Module[{ },

f[a]+2*(f[xt[[2]]]-f[a])*(t-xt[[1]])/h+

2*(2*f[a]-3*f[xt[[2]]]+

f[xt[[3]]])*(t-a)*(t-xt[[2]])/(3*h^2)

];

pi[t_]:=Module[{ },

r=Floor[N[(t-a)/h]];

f[xt[[r+1]]]+(f[xt[[r+2]]]-

f[xt[[r+1]]])*(t-xt[[r+1]])/h+

(f[xt[[r+1]]]-2*f[xt[[r+2]]]+f[xt[[r+3]]])*

(t-xt[[r+1]])*(t-xt[[r+2]])/(2*h^2)

];

pn[t_]:=Module[{ },

f[xt[[n+1]]]+2*(f[xt[[n+2]]]-

f[xt[[n+1]]])*(t-xt[[n+1]])/h+

2*(2*f[xt[[n]]]-3*f[xt[[n+1]]]+f[xt[[n+2]]])*

(t-xt[[n+1]])*(t-xt[[n+2]])/(3*h^2)

];

onet[t_]:=Module[{ },

Which[t<=xt[[2]],N[p0[t]],

t>=xt[[n+1]],N[pn[t]],True,N[pi[t]]]

];
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Print[" Quadratic2 spline approximating f(x) "];

Print[" -----------------------------------------"];

quad=Table[{N[t],onet[t],N[f[t]]}, {t,a,b,tstep}];

TableForm[PrependTo[quad,{" x "," quadratic2 ",f[x]}]]

]

Coming back to the example 4.6, we invoke the module quadraticSpline2

by the instructions

f[x_]:=Exp[x];

quadraticSpline2[f,0,1,5,0.1]

Then, we obtain the following table

quadraticSpline2[f,0,1,5,0.1]

Quadratic spline approximating f(x)

-----------------------------------

Out[2]/TableForm=

x quadratic2 E^x

0 1. 1.

0.1 1.10517 1.10517

0.2 1.22074 1.2214

0.3 1.34986 1.34986

0.4 1.49102 1.49182

0.5 1.64872 1.64872

0.6 1.82113 1.82212

0.7 2.01375 2.01375

0.8 2.22658 2.22554

0.9 2.4596 2.4596

1. 2.71828 2.71828

3.5 Polynomial Splines of Two Variables on Rectangu-
lar Networks

Let us first consider polynomial splines associated with a rectangular network
∆ = (∆x,∆y) which are defined an the rectangle

R = (x, y) : a ≤ x ≤ b, c ≤ y ≤ d,
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where

∆x : a = x0 < x1 < · · · < xN1
= b,

∆y : c = y0 < y1 < · · · < yN2
= d,

P1P4

P3 P2

(xi, yj)

(x0, y0) (xN1
, y0)

(xN1
, yN2

)(x0, yN2
)

Fig. 4.5. Network ∆

Definition 3.2 A function s(x, y) is said to be a polynomial spline defined on
a rectangular network if the following conditions are satisfied:

(i) s;∈ Sm1
(∆x, k1) for any y ∈ [c, d],

(ii) s ∈ Sm2
(∆y, k2) for any x ∈ [a, b],

where Sm1
(∆x, k) and Sm2

(∆y, k2) are polynomial spaces of one variable (see
definition 4.1) In symbols, we write s ∈ Sm1,m2

(∆, k1, k2).

Space S11(∆, 0, 0) of bilinear splines. As the base of the space S11(∆, 0, 0)
we can consider the following products:

ψij(x, y) = ψi(x)ψj(y), i = 0, 1, . . . , N1, j = 0, 1, . . . , N2, (x, y) ∈ R,

where

ψ0(x), ψ1(x), . . . , ψN1(x)

is the basis of the space S1(∆x, 0),
and

ψ0(y), ψ1(y), . . . , ψN2
(y)
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is the basis of the space S1(∆y, 0).
The explicit form of the spline ψij(x, y) is given below (cf. [16]):

ψij(x, y) =







































































xi+1 − x

xi+1 − xi

y − yj−1

yj − yj−1

in P1,

xi+1 − x

xi+1 − xi

yj+1 − y

yj+1 − yj

in P2,

x− xi−1

xi − xi−1

yj+1 − y

yj+1 − yj

in P3,

x− xi−1

xi − xi−1

y − yj−1

yj − yj−1
in P4,

0 in R − (P1 ∪ P2 ∪ P3 ∪ P4).

for i = 0, 1, . . . , N1, j = 0, 1, . . . , N2.
Thus, we can write any piecewise linear spline given on a rectangular network
∆ in the form of the following linear combination:

s(x, y) =
N1
∑

i=0

N2
∑

j=0

aijψij(x, y).

Interpolation in the space S11(∆, 0, 0). Let f(x, y) be a given function
twice continuously differentiable in the closed rectangle R. The interpolating
spline s ∈ S11(x, y) which satisfies the conditions:

s(xi, yj) = f(xi, yj); i = 0, 1, . . . , N1; j = 0, 1, . . . , N2,

has the following form:

s(x, y) =
N1
∑

i=0

N2
∑

j=0

f(xi, yj)ψij(x, y).

By the theorem on interpolation (cf. [16]), the error s(x, y) − f(x, y) satisfies
the following inequality:

|| s(r) − f (r) ||≤ αrh
2−r , r = 0, 1,

where h = max{hx, hy}, hx = max{xi+1−xi}, hy = max{yj+1−yj}; αr, r =
0, 1, are constants independent of h.
Space S33(∆, 2, 2) of bicubic splines. The space S33(∆, 2, 2) is determined
by the following linearly independent set of cubic splines:

Bij(x, y) = Bi(x)Bj(y),

i = −1, 0, 1, . . . , N1 + 1, j = −1, 0, 1, . . . , N2 + 1, (x, y) ∈ R,
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where Bi(x), i = −1, 0, 1, . . . , N1 + 1, and Bj(y), j = −1, 0, 1, . . . , N2 + 1
are the corresponding basis of the spaces S3(∆x, 2) and S3(∆y, 2). Therefore,
any bicubic spline given on the rectangular network ∆ has the following form:

s(x, y) =
N1+1
∑

i=−1

N2+1
∑

j=−1

aijBij(x, y).

Interpolation in the space S33(∆, 2, 2). Let f(x, y) be a function four times
continuously differentiable in the closed rectangle R. Then, the interpolating
bicubic spline s(x, y) to the function f(x, y) is uniquely determined by the
following conditions:

s(xi, yj) = f(xi, yj),

i = −1, 0, 1, . . . , N1 + 1; j = −1, 0, 1, . . . , N2 + 1,

∂s

∂x
(xi, yj) =

∂f

∂x
(xi, yj), i = 0, N1, when j = 0, 1, . . . , N2,

∂2s

∂x∂y
(xi, yj) =

∂2f

∂x∂y
(xi, yj), i = 0, N − 1, and j = 0, N2.

By the theorem on interpolation (cf. [16]), the error s(x, y) − f(x, y) satisfies
the following inequalities:

|| s− f ||∞≤ β)h
4,

|| ∂(s− f)

∂x
||∞≤ β0h

3, || ∂(s− f)

∂y
||≤ β1h

3,

|| ∂
2(s− f)

∂x2
||∞≤ β2h

2, || ∂
2(s− f)

∂y2
||≤ β3h

2,

|| ∂
2(s− f)

∂x∂y
||∞≤ β4h

2,

where βi, i = 0, 1, 2, 3, 4 are constants independent of h.

3.6 Space Π1 of Piecewise Linear Polynomial Splines on
Triangular Networks

The piecewise linear splines on a triangular network have a simple structure
and they are applicable to domains of arbitrary shape (cf. [23]). Let us
consider the following triangularization of a bounded domain Ω:

∆ = {T0, T1, . . . , Tn},



57

where

(i) Ω = T0 ∪ T1 ∪ · · · ∪ Tn

(ii) Ti ∩ Tj = ∅ or they have a common side or vertix if i 6= j,
(iii) there exists a positive constant ν0 independent of n such that
ν = minαT ,βT ,γT

≥ ν0, for all T ∈ ∆,

here αT , βT , and γT are the angles of the triangle T .

αT βT

γT

�
�

�
�

�
�

@
@

@
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�
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@
@

@
@

T

Fig. 4.6. Triangular networkLet

pk(x, y) = akx+ bky + ck, (x, y) ∈ Tk,

be a piece of a linear function and let Π1(∆) be the set of all continuous
piecewise linear functions of the form:

s(x, y) = pk(x, y), for (x, y) ∈ Tk, k = 0, 1, . . . , n.

By the theorem on interpolation (cf. [23]), there exists a unique interpolating
piecewise linear spline s ∈ Π1(∆) to a function f(x, y) which satisfies the
following conditions:

s(xkl, ykl) = f(xkl, ykl), for l = 0, 1, 2,

where (xk0, yk0), (xk1, yk1) and (xk2, yk2) are vertices of the triangle Tk for
k = 0, 1, . . . , n.
This spline approximates f(x, y) with the error s(x, y)−f(x, y) which satisfies
the inequality (cf. [23])

|| s− f ||∞≤ βh2,

where β > 0 is a positive constant independent of h, h = max
T∈∆

max{l0T , l1T , l2T},
and dsl0T , l

1
T and l2T are sides of the triangle T.

Space Π3(∆) of Cubic Splines on Triangular Networks. Let us consider
a piece of a cubic polynomial in the following form:

PT (x, y) = α1 +α2x+α3y+α4x
2 +α5xy+α6y

2 +α7x
3+α8x

2y+α9xy
2 +α10y

3.

for (x, y) ∈ T.
We shall use Π3(∆) to denote the set of all piecewise continuous cubic splines
such that

s(x, y) = pTk
(x, y), for (x, y) ∈ Tk, k = 0, 1, . . . , n.
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In order to find an interpolating cubic spline in the space Π3(∆), we shall con-
sider the triangle T with the center at the point Q0,and its vertices at points
Q1, Q2 and Q3.
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Q1 Q2

t Q0

Fig. 4.7. Triangle T

The interpolating piecewise linear cubic spline pT (x, y) is uniquely deter-
mined in the space Π3(∆) by the following conditions (cf. [23]):

PT (Qk) = f(Qk), k = 0, 1, 2, 3,

∂PT (Qk)

∂x
=
∂f(Qk)

∂x
, k = 1, 2, 3,

∂PT (Qk)

∂y
=
∂f(Qk)

∂y
, k = 1, 2, 3,

for every T ∈ ∆.
The following theorem holds:

Theorem 3.5 (cf. [23]) If f is a function four times continuously differen-
tiable in the domain Ω, and pT ∈ Π3(∆) is the linear piecewise interpolating
cubic spline to f , then the error of interpolation s− f satisfies the inequalities

|| s− f ||∞≤ 3M (4)

sinα
h4,

|| ∂(s− f)

∂x
||∞≤ 5M (4)

sinα
h3,

|| ∂(s− f)

∂y
||∞≤ 5M (4)

sinα
h3,

where α = min
T∈∆

, min{αT , βT , γT} > v0 > 0, h = max
T∈∆

max{l1T , l2T , l3T}.
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3.7 Exercises

Question 3.1 Approximate the function

f(x) = ln(1 + x), 0 ≤ x ≤ 2,

by a piecewise linear spline with accuracy ε = 0.01. Find an approximate value
f(1.3).

Question 3.2 Approximate the function

f(x) =
√

1 + x, 0 ≤ x ≤ 2,

and its first, second and third derivatives by a cubic spline with accuracy ε =
0.01.

Question 3.3 Give a basis of S2(∆, 1) space. Use this basis to determine a
quadratic spline that approximates a function f(x).

Question 3.4 Write a module in Mathematica that tabulates a quadratic spline
s ∈ S2(∆, 1) approximating the function f(x).

Question 3.5 Give a basis of the space S5(∆, 4) of quintic splines. Use this
basis to determine a quintic spline approximating a function f(x).

Question 3.6 Write a module in Mathematica that tabulates a quintic spline
s ∈ S5(∆, 4) approximating the function f(x).

Question 3.7 Let s ∈ S3(∆, 2) be a cubic spline. Following the proof of
theorem 4.3, show that s minimizes the functional

F (g) =
∫ b

a
[g

′′

(x)]2dx, g ∈ C2[a, b],

under the interpolation conditions:

g(xi) = f(xi), i = 0, 1, ..., N, g
′

(a) = s
′

(b) = 0.
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Chapter 4

Finite Element Methods

4.1 Introduction

There is broad literature concerning the finite element methods (cf. [3], [4], [5],
[18], [26], [28], [33]). These methods are mainly based on variational princi-
ples and therefore they are associated with the Ritz and Galerkin methods. In
general, Ritz or Galerkin methods may lead to a system of algebraic equations
with full and ill-conditioned matrices. However, choosing proper coordinates,
a system of equations with a sparse and well-conditioned matrix may be ob-
tained. For such coordinates the Ritz or Galerkin method becomes a finite
element method. In fact, finite element methods are characterized by the
coordinates

φ0, φ1, ..., φn, ...;

which have α−disjoint supports, i.e., for a fixed α

supp φi(x) ∩ supp φj(x) = 0, when |i− j| ≥ α.

For example, a basis of polynomial splines may have α−disjoint supports.
Therefore, polynomial splines play an important role in the theory and appli-
cations of the finite element methods.

4.2 Finite Element Method for Elliptic Equations

Let us consider the following model of an elliptic equation:

Lu = f(x), x ∈ Ω, (4.1)

with the boundary value condition

u(x) = φ(x), x ∈ ∂Ω. (4.2)

Equation (4.1) represents an elliptic equation if the differential operator L is
positive definite in the Hilbert space H, i.e., there exists a constant γ > 0 such
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that
(Lv, v) ≥ γ(v, v), v ∈ D(L).

and D(L) = H.
By theorem 7.2, equation (4.1) is equivalent to the following variational equa-
tion:

(Lu, v) = (f, v), v ∈ D(L). (4.3)

In order to solve equation (4.1) by the finite element method, we define the
space of finite elements

XN+1 = span{Φ0,Φ1, ...,ΦN},

where the basis elements Φi, i = 0, 1, ..., N, have α−disjoint supports.
We find then the approximate solution

uN(x) = a0Φ0(x) + a1Φ1(x) + · · · + aNΦN (x).

in the space XN+1, solving the following Ritz - Galerkin system of equations:

(LuN ,Φk) = (f,Φk), k = 0, 1, ..., N. (4.4)

The matrix form of (4.4) is:
Aa = b, (4.5)

where

a = [a0, a1, ..., aN], b = [b0, b1, ..., bN], bk = (f,Φk), k = 0, 1, ..., N,

and the Gram’s matrix

A =















(LΦ0,Φ0) (LΦ1,Φ0) (LΦ2,Φ0) · · · (LΦN−1,Φ0) (LΦN ,Φ0)
(LΦ0,Φ1) (LΦ1,Φ1) (LΦ2,Φ1) · · · (LΦN−1,Φ1) (LΦN ,Φ1)
(LΦ0,Φ2) (LΦ1,Φ2) (LΦ2,Φ2) · · · (LΦN−1,Φ2) (LΦN ,Φ2)

· · · · · · · · · · · · · · · · · ·
(LΦ0,ΦN) (LΦ1,ΦN ) (LΦ2,ΦN ) · · · (LΦN−1,ΦN−1) (LΦN ,ΦN )















Because the basis elements have α−disjoint supports, therefore A is (α + 1)-
diagonal sparse matrix. Also, we note that A is non-singular Gram matrix, so
that, the approximate solution

uN(x) = a∗0Φ0(x) + a∗1Φ1(x) + · · · + a∗NΦN (x),

where a∗0, a
∗
1, ..., a

∗
N, is the solution of the linear system of equations (4.5).

Error estimate. Let eN(x) = uN (x)−u(x) be the global error of the method.
By theorem 7.5, the global error satisfies the inequality

||eN ||L = ||uN − u||L ≤ ||u− η||L, (4.6)
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for every η ∈ HL
1

Let η(x) = s(x), where s is the interpolating generalized polynomial to u.
From (4.6), we obtain the global error estimate

||un − u||L ≤ ||u− s||L, (4.7)

in the norm of the energetic space HL.
Thus, the global error is determined by the error of interpolation, that is, if
the error of interpolation

||u− s||L ≤ C hp,

then the global error
||un − u||L ≤ C hp. (4.8)

4.2.1 Solution of Equation −u′′

(x) + σ(x)u(x) = f(x) in the Space of
Piecewise Linear Splines.

Let us consider the equation

−u′′

(x) + σ(x)u(x) = f(x), 0 ≤ x ≤ 1, (4.9)

with the homogeneous boundary value conditions u(0) = 0, u(1) = 0,
where σ(x) ≥ 0 and f(x) are given continuous functions in interval [0, 1]. We
shall approximate the solution u by the finite element method using piecewise
linear splines.
The differential operator

Lu ≡ −u′′

+ σ(x)u, u ∈ C2
0(0, 1),

is positive definite in the space L2(0, 1), i.e., there exists γ > 0 such that

(Lv, v) ≥ γ||v||2, v ∈ C2
0 (0, 1).

By theorem 7.2, equation (4.9) is equivalent to the following variational equa-
tion
∫ 1

0
[u

′

(x)η
′

(x) + σ(x)u(x)η(x)]dx =
∫ 1

0
f(x)η(x)dx, for any η ∈W 01

2 (0, 1),

(4.10)
We shall find the approximate solution

uN(x) = a0ψ0(x) + a1ψ1(x) + · · · + aNψN(x), 0 ≤ x ≤ 1.

in the space S1(∆, 0).
By the boundary conditions

uN(0) = a0 = 0, and uN(1) = aN = 0.
1HL = D(L) is the closure of D(L) in the norm || − ||L
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The remaining coefficients a1, a2, ..., aN−1 are determined by the variational
equation

∫ 1

0
[u

′

N(x)ψ
′

k(x) + σ(x)uN(x)ψk(x)]dx =
∫ 1

0
f(x)ψk(x)dx, k = 1, 2, ..., N − 1.

(4.11)
From this equation, we obtain the following system of linear equations:

N−1
∑

i=1

ai

∫ 1

0
[ψ

′

i(x)ψ
′

k(x) + σ(x)ψi(x)ψk(x)]dx =
∫ 1

0
f(x)ψk(x)dx, (4.12)

for k = 1, 2, ...N − 1.
The matrix form of (4.12) is:

Aa = b, (4.13)

where a = (a1, a2, ..., aN−1)
T , b = (b1, b2, ..., bN−1)

T 2

bi =
1

h

∫ 1

0
f(x)ψi(x)dx, i = 1, 2, ..., N − 1.

Here, the tri-diagonal matrix A = {Aik}, i, k = 1, 2, ..., N−1 has the following
entries:

Aik =
1

h

∫ 1

0
[ψ

′

i(x)ψ
′

k(x) + σ(x)ψi(x)ψk(x)]dx =































2

h2
+ σii if i = k,

− 1

h2
+ σik if |i− k| = 1,

0 if |i− k| ≥ 2.

where σik =
1

h

∫ 1

0
σ(x)ψi(x)ψk(x)dx.

The matrix A is diagonally dominant and positive definite. Therefore, A is
non-singular matrix and the unique solution a∗1, a

∗
2, ..., a

∗
N−1 of (4.13) deter-

mines the approximate solution

uN (x) = a∗1ψ1(x) + a∗2ψ2(x) + · · · + a∗N−1ψN−1(x).

In order to solve the equation (4.9) with boundary conditions, we can use the
following Mathematica module:

Options[uxxTriDiag]={bound->{0,0}};

uxxTriDiag[f_,sigm_,a_,b_,n_,opts___]:=

Module[{a11,b11,c11,f11,i,h,t,psi1,psi2, boundary},

h=N[(b-a)/n];

2AT denotes transposed matrix A
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boundary=bound/.{opts}/.Options[uxxTriDiag];

f0[x_]:=f[x]-sigm[x]*((boundary[[2]]-boundary[[1]])

(x-a)/(b-a)+boundary[[1]]);

psi1[t_,i_]:=(t-(i-1)*h)/h;

psi2[t_,i_]:=((i+1)*h-t)/h;

a11=Table[2/h^2+Integrate[sigm[t]*psi1[t,i]^2,

{t,(i-1)*h,i*h}]/h+

Integrate[sigm[t]*psi2[t,i]^2,{t,i*h,(i+1)*h}]/h,{i,1,n-1}];

b11=Table[-1/h^2+Integrate[sigm[t]*psi2[t,i]*psi1[t,i+1],

{t,i*h,(i+1)*h}]/h,{i,1,n-1}];

c11=Table[-1/h^2+Integrate[sigm[t]*psi2[t,i]*

psi1[t,i+1],{t,i*h,(i+1)*h}]/h,{i,1,n-1}];

f11=Table[Integrate[f0[t]*psi1[t,i]/h,{t,(i-1)*h,i*h}]+

solveTri[aa_,bb_,cc_,ff_]:=Module[{al,be,m,x},

m=Length[aa];

al[1]=bb[[1]]/aa[[1]];

al[i_]:=al[i]=bb[[i]]/(aa[[i]]-al[i-1]*cc[[i]]);

be[1]=ff[[1]]/aa[[1]];

be[i_]:=be[i]=(ff[[i]]-be[i-1]*cc[[i]])/

(aa[[i]]-al[i-1]*cc[[i]]);

x[m]=be[m];

x[i_]:=x[i]=be[i]-al[i]*x[i+1];

Table[x[i],{i,1,m}]

];

Print[" Approximate Solution"];

sol=solveTri[a11,b11,c11,f11]+

Table[(boundary[[2]]-boundary[[1]])(i*h-a)/(b-a)+boundary[[1]],

{i,1,n-1}];

PrependTo[sol,boundary[[1]]]; AppendTo[sol,boundary[[2]]];

Chop[sol]

]

We invoke the module by the command

uxxTriDiag[f,sigm,a,b,n]

when homogeneous boundary conditions are present, and by the commad

uxxTriDiag[f,sigm,a,b,n,bound ->homogeneous]
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when non- homogeneous conditions are given.

Example 4.1 Let us solve with the module the following boundary value prob-
lem

−d
2u(x)

dx
+ 2u(x) = sinπx, 0 ≤ x ≤ 1,

with the homogeneous boundary value conditions u(0) = u(1) = 0, using n = 10
poitnts in the interval [a, b].

We input data

n=10; a=0; b=1;

sigm[x_]:=2;

f[x_]:=Sin[Pi*x];

and execute the command

uxxTriDiag[f,sigm,a,b,n]

Then, we obtain the following list of the coefficients {a0, a1, ..., a10} as the
output:

{0,0.0260703,0.0495886,0.068253,0.0802360,

0.0843651,0.080236,0.068253,0.049589,0.026070,0}

Thus, the approximate solution is:

u10(x) = 0.0260703 ∗ ψ1(x) + 0.0495886 ∗ ψ2(x) + 0.068253 ∗ ψ3(x)+

+0.0802360)ψ4(x) + 0.0843651 ∗ ψ5(x) + 0.080236 ∗ ψ6(x)

+0.068253 ∗ ψ7(x) + 0.049589 ∗ ψ8(x) + 0.026070 ∗ ψ9(x)

Also, we shall solved the equatiion with the nono-hpmogeneous boundary valus
conditions u(0) = 1 and u(1) = 2, by executing the following command:

uxxTriDiag[f,sigm,a,b,n,bound->{1,2}]

Then, we obtain the list of the coefficients {a0, a1, ..., a10} as the output:

{1,1.072357,1.152386,1.238119,1.328216,1.422169,

1.520433,1.624478,1.736759,1.860596,2}

In this case, the approximate solution is the linear combination of eleven piece-
wise linear splins

u10(x) = ψ0(x) + 1.072357 ∗ ψ1(x) + 1.152386 ∗ ψ2(x) + 1.238119 ∗ ψ3(x)+

+1.328216ψ4(x) + 1.422169 ∗ ψ5(x) + 1.520433 ∗ ψ6(x)

+1.624478 ∗ ψ7(x) + 1.736759 ∗ ψ8(x) + 1.860596 ∗ ψ9(x) + 2 ∗ ψ10(x).
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Error estimate. By theorem (2.4), the global error eN = u− uN satisfies
the inequality

||eN ||L = ||u− uN ||L ≤ ||η − u||L,
for any η ∈ S1(∆, 0), where

||eN ||2L =
∫ 1

0
[(e

′

N)2 + σ(x)e2
N ]dx.

Let η(x) = s(x), where s(x) is the piecewise linear spline interpolating the
theoretical solution u(x). By theorem 8.4

||s− u||L ≤ C h||u′′||, ||u′′|| =

√

∫ 1

0
|u′′|2dx (4.14)

Hence, the global error satisfies the inequality

||eN ||L = ||u− uN ||L ≤ C h||u′′||. (4.15)

where C is a generic constant.
In order to obtain an estimate of eN in the norm of the space L2(0, 1), we
apply the Nitsche procedure (cf. [27]). Let z ∈ W 01

2 (0, 1) be the solution of
the equation

(Lz, η) = (eN , η), η ∈W 01
2 (0, 1). (4.16)

Since eN ∈ HL = W 01
2 (0, 1), therefore z is the solution of the equation equality

(Lz, eN) = (eN , eN) = ||eN ||2, (4.17)

where || − || is the norm in L2(0, 1).
Let zN ∈ S1(∆, 0) be the piecewise linear spline interpolating to z.
Then, zN is orthogonal to eN , i.e.,

(zN , eN)L =
∫ 1

0
[z

′

Ne
′

N + σ zNeN ]dx = 0.

Thus, we have
(Lz, eN) = (L(z − zN ), eN). (4.18)

Hence, by Cauchy’s inequality

|(L(z − zN), eN)| ≤ ||z − zN ||L ||eN ||L, (4.19)

and by inequality (4.14)

||z − zN ||L ≤ C h ||z′′||. (4.20)

Since z is the weak solution of equation (4.16), we have

||z′′|| = ||eN − σ z|| ≤ ||eN|| + ||σ|| ||z||.
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Hence, by the inequality

γ||z||2 ≤ (Lz, z) = (eN , z) ≤ ||eN || ||z||,

we get

||z|| ≤ 1

γ
||eN ||,

and
||z′′|| ≤ C0 ||eN ||, (4.21)

where C0 = 1 + 1
γ
||σ||.

By inequalities (4.20) and (4.21)

||z − zN ||L ≤ C h ||eN ||. (4.22)

From (4.17), (4.18) and (4.19), we get

||eN ||2 ≤ ||z − zN ||L ||eN ||L. (4.23)

Finally, from (4.15), (4.22) and (4.23), we obtain the global error estimate in
the norm of the space L2(0, 1)

||eN || = ||u− uN || ≤ C h2||u′′||, (4.24)

where C is a generic constant independent of h.

4.2.2 Solution of Equation −u′′

(x) + σ(x)u(x) = f(x) in the Space of
Cubic Splines

In the previous section, we have found the solution uN ∈ S1(∆, 0) of equation
(4.9) which approximates the theoretical solution u ∈ C2

0(0, 1) with the global
error |u(x)−uN(x)| = O(h2). We can obtain an O(h4) accurate solution uN of
(4.9) using cubic splines, provided that the fourth derivative u(4) ∈ L∞(0, 1).
We consider the boundary value problem

−u′′(x) + σ(x)u(x) = f(x), 0 ≤ x ≤ 1,

u(0) = 0, u(1) = 0
(4.25)

We write the equivalent variational form of the boundary value problem (4.25)

∫ 1

0
[u

′

(x)η
′

(x) + σ(x)u(x)η(x)]dx=
∫ 1

0
f(x)η(x)dx, (4.26)

for any η ∈ HL = W 01
2 (0, 1).

We find the approximate solution uN(x) in the space of cubic splines

S3(∆, 2) = span{B−1, B0, ..., BN+1},
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where Bi(x) for i = −1, 0, 1, , ..., N+1, is the base of the space S3(∆, 2) given
by (3.7).
Then, we find the approximate solution in the form

uN(x) = a−1B−1(x) + a0B0(x) + a1B1(x) . . .+ anBN(x) + aN+1BN+1

By the homogeneous boundary conditions

uN(0) = a−1B−1(0) + a0B0(0) + a1B1(x) . . .+ anBN (0) + aN+1B(0)N+1 = 0,

uN(1) = a−1B−1(1) + a0B0(1) + a1B1(1) . . . + anBN (1) + aN+1B(1)N+1 = 0,

Because (see the table)

B−1(0) = 1, B0(0) = 4, B1(0) = 1, Bi(0) = 0, i = 2, 3, ..., N + 1

BN−1(1) = 1, BN1 = 4, i = BN+1(1) = 1, Bi(1) = 0, i = −1, 0, ..., N − 2,

Hence, by the table

a−1 + 4a0 + a1 = 0, a1 = −a−1 − 4a0,

aN−1 + 4aN + aN+1 = 0, aN+1 = −4aN − aN ,

Then, the approximate solution

uN(x) = (−a1 − 4a0)B−1(x) + a0B0(x) + a1B1(x) + . . .

+ aN−1[BN−1(x)− BN+1] + (−4aN − aN+1)BN+1(x)

So that

uN(x) = a0[B0(x) − 4B−1(x)] + a1[B1(x) − B−1(x)] . . .

+ aN−1[BN−1(x) − BN+1(x)] + aN [BN(x) − 4BN+1(x)])

and

uN (x) = a0B0(x) + a1B1(x) + a2B2(x) + · · · +aNBN(x) (4.27)

where

B0(x) = B0(x) − 4B−1(x), B1(x) = B0(x)− B−1(x),

Bi(x) = Bi(x), i = 2, 3, ..., N − 2,

BN−1(x) = BN−1(x) − BN+1(x), BN (x) = BN(x) − 4BN+1(x),

(4.28)

In order to find the coefficients a0, a1, ..., aN, we solve the variational equation

∫ 1

0

N
∑

i=1

ai[B
′

i(x)B
′

k(x) + σ(x)Bi(x)Bk(x)]dx =
∫ 1

0
f(x)Bk(x)dx, (4.29)
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for k = 0, 1, ..., N .
The equations (4.29) can be written in the matrix form

Aa = b, (4.30)

where a = (a0, a1, ...aN)T , b = (b0, b1, ..., bN)T ,

bi =
1

h

∫ 1

0
f(x)Bi(x)dx, i = 0, 1, ..., N,

and the five-diagonal matrix

A =





















∗ ∗ ∗
.∗ ∗ ∗ ∗
.∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
· · · · · · · · · · · · · · ·

∗ ∗





















has ntries ∗ik =
1

h

∫ 1

0
[B

′

i(x)B
′

k(x) + σ(x)Bi(x)Bk(x)]dx.

One can check that matrix A is non-singular. Therefore, the system of linear
equations (4.30) has unique solution a∗0, a

∗
1, ...., a

∗
N, and then the approximate

solution

uN (x) = a∗0B0(x) + a∗1B1(x) + · · · + a∗NBN(x), (4.31)

Error estimate. As we know, the operator L is positive definite in the space
L2(0, 1), and its domain D(L) = C2

0 (0, 1). By theorem (2.4), the global error
eN = u− uN satisfies the inequality

||eN ||L = ||u− uN ||L ≤ ||η − u||L for any η ∈ HL = W 01
2 (0, 1). (4.32)

Let s ∈ XN+1 be the cubic interpolating spline to u(x).
Then, from theorem 8.4, for η = s, and by (4.32), we get

||s− u||L ≤ C h3||u(4)||, (4.33)

Combining (4.32) and (4.33), we get the error estimate

||eN||L = ||u− uN ||L ≤ C h3 ||u(4)||, (4.34)

This estimate in the norm of the energetic space HL leads to the following
error estimate

||eN || = ||u− uN || ≤ C h4 ||u(4)||∞, (4.35)

in the norm of the space L2(0, 1), where C is a generic constant.
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4.2.3 Solution of Equation −∆u + σ(x, y)u = f(x, y) in the Space of
Bilinear Splines

Let us solve the boundary value problem

−∆u ≡ −∂
2u

∂x2
− ∂2u

∂y2
+ σ(x, y)u = f(x, y), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω,

(4.36)

by finite element method using bilinear splines.
We assume that σ(x, y) ≥ 0 and f(x, y) are continuous functions given in the
square Ω = {(x, y) : 0 ≤ x, y ≤ 1}.
As it is known, the operator

Lu ≡ −∆u+ σu, u ∈ C2
0(Ω),

is positive definite in the space L2(Ω), i.e., there exists a constant γ > 0 such
that

(Lv, v) ≥ γ||v||2, v ∈ C2
0 (Ω).

Therefore, we can use Ritz’s or Galerkin’s method to find the approximate
solution uN(x, y). Following the Galerkin’s method, let us replace equation
(4.36) by the variational equation

∫

Ω
[
∂u

∂x

∂η

∂x
+
∂u

∂y

∂η

∂y
+ σ u η]dΩ =

∫

Ω
f η dΩ, η ∈W 01

2 (Ω) (4.37)

Then, we find the approximate solution

uN (x, y) =
N
∑

i,j=0

aijφij(x, y),

in the space

XN×N = S11(∆, 0, 0) = span{φ00, φ10, ..., φ1N, φ20, ..., φNN} ⊂ S11(∆, 0),

where
φij(x, y) = ψi(x)ψj(y), i, j = 0, 1, ..., N ;

and ψi(x), ψj(y) are linear splines given by formula (3.6).
Because

u(0, y) = a0j = 0, u(1, y) = aNj = 0, j = 0, 1, ..., N,

u(x, 0) = ai0 = 0, u(x, 1) = aiN = 0, i = 0, 1, ..., N,

therefore

uN (x, y) =
N−1
∑

i,j=1

aijφij(x, y), (4.38)
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where the coefficients aij, i, j = 1, 2, ..., N−1 are determined by the Galerkin
system of equations

N−1
∑

i,j=1

aij

∫

Ω
[
∂φij

∂x

∂φrs

∂x
+
∂φij

∂y

∂φrs

∂y
+ σ φijφrs]dΩ =

∫

Ω
f φrs dΩ, (4.39)

for r, s = 1, 2, ..., N − 1.
The matrix form of (4.39) is:

Aa = b, (4.40)

where

a =













a1

a2
...

aN−1













, ai =













ai1

ai2
...

aiN−1













, i = 1, 2, ..., N − 1,

b =













b1
b2
...

bN−1













, bi =













bi1
bi2
...

biN−1













, i = 1, 2, ..., N − 1,

and the tri-diagonal block matrix

A =















A1
1 A1

2 0 · · · 0 0
A2

1 A2
2 A2

3 · · · 0 0
0 A3

2 A3
3 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · AN−1

N−2 AN−1
N−1















.

The entries of matrices Ai
i = {Ais

ij}, Ai
i+1 = {Ais

i+1j}, Ai+1
i = {Ais

i+1j} are
given by the following formulae:

Ars
ij =

∫

Ω
[
∂φij

∂x

∂φrs

∂x
+
∂φij

∂y

∂φrs

∂y
+ σ φijφrs]dΩ. (4.41)

Hence, we have

Ais
ij =































8

3
+ σis

ij if j = s,

−1

3
+ σis

ij if |j − s| = 1,

0 if |j − s| ≥ 2,

Ais
i±1j =











−1

3
+ σis

i±1j if |j − s| ≤ 1,

0 if |j − s| ≥ 2,

σrs
i±1,j =

∫

Ω
σ(x, y)φi,i±1(x, y)φrs(x, y)dΩ.
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One can check that matrix A is positive definite. Therefore, the system of
linear equations (4.40) has the unique solution a∗ij, i, j = 1, 2, ..., N − 1, and
then, the approximate solution

uN(x, y) =
N−1
∑

i,j=1

a∗ijφij(x, y), (x, y) ∈ Ω.

Error Estimate. By theorem (2.4), the global error eN = u − uN satisfies
the inequality

||eN ||L = ||u− uN ||L ≤ ||η − u||L, (4.42)

for any η ∈W 01
2 (Ω), where

||u||L =

√

∫

Ω
[(
∂u

∂x
)2 + (

∂u

∂y2
)2 + σ u2]dΩ.

Let s(x, y) be the bilinear spline interpolating the theoretical solution u(x, y).
Then, by the theorem on interpolation, we get

||s− u||L ≤ C h ||∆u||. (4.43)

Hence, using (4.42) with η = s, we obtain the following error estimate:

||eN ||L = ||u− uN ||L ≤ C h ||∆u||, (4.44)

where the norm

||∆u|| =

√

∫

Ω
[(
∂u

∂x
)2 + (

∂u

∂y
)2]dΩ, u ∈W 0

2 (Ω).

Applying the Nitsche procedure, we can get the following estimate of the global
error eN in the norm of the space L2(Ω):

||eN || = ||u− uN || ≤ C h2 ||∆u||, (4.45)

where C is a generic constant independent of h.

4.3 Finite Element Method for Parabolic Equations.

Let us consider the following model of a parabolic equation:

∂u(t, x)

∂t
= Lu(t, x) + f(t, x), t ≥ 0, x ∈ Ω, (4.46)

with the initial value condition

u(0, x) = φ(x), x ∈ Ω, (4.47)
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and with the boundary value condition

u(t, x) = 0, t ≥ 0, x ∈ ∂Ω, (4.48)

where φ(x) and f(t, x) are continuous functions given for t ≥ 0 and x ∈ Ω =
{x = (x1, x2, ..., xp) : 0 ≤ xi ≤ li, i = 1, 2, ..., p}.
We assume that the operator −L is positive definite in the Hilbert space H,
i.e., there exists a positive constant α > 0 such that

(−Lv, v) ≥ α(v, v) for any v ∈ D(L), (4.49)

where the domain D(L) of L is dense everywhere in H, so that D(L) = H.
Then, the initial boundary value problem (4.46), (4.47) and (4.48) has a unique
regular solution u(t, x) in D(L). This solution satisfies the following inequality

||u||2(t) ≤ ||φ|| e−γt +
1

2ε

∫ t

0
e−γ(t−τ )||f ||2(τ )dτ , t ≥ 0 (4.50)

for certain γ > 0 and ε > 0.
Indeed, multiplying (4.46) by u, we obtain

(
∂u

∂t
, u) = (Lu, u) + (f, u).

Hence, by assumption (4.49) and by the Cauchy inequality

1

2

∂||u||2(t)
∂t

≤ −α ||u||2(t) + ||f ||(t) ||u||(t), t ≥ 0.

Applying the “epsilon” inequality

|ab| ≤ εa2 +
1

4ε
b2, ε > 0,

we get
∂||u||2(t)

∂t
≤ 2(ε− α)||u||2(t) +

1

2ε
||f ||2(t), t ≥ 0.

Now, choosing ε > 0 so small that 2(ε−α) = −γ < 0, we obtain the following
inequality:

∂||u||2(t)
∂t

≤ −γ||u||2(t) +
1

2ε
||f ||2(t), t ≥ 0,

||u||(0) = ||φ||.

Hence, by integration, we get (4.50).
Finite element approach. In order to solve the equation (4.46) by a finite
element method, we replace this equation by the variational equation

(
∂u

∂t
, v)(t) = (Lu, v)(t) + (f, v)(t), for any v ∈ HL, t ≥ 0, (4.51)
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where HL is the energetic space associated with the operator L.
We shall find the approximate solution uh of (4.51) in the following space:

VN = span{Φ0,Φ1, ...,ΦN},

where the functions Φ0,Φ1, ...,ΦN have α−disjoint supports.
In order to find uh ∈ VN , we solve the following equation:

(
∂uh

∂t
, vh)(t) = (Luh, vh)(t) + (fh, vh)(t), for any vh ∈ VN , t ≥ 0.

(4.52)
Thus, we look for

uh(t, x) = u0(t)Φ0(x) + u1(t)Φ1(x) + · · · + uN(t)ΦN (x),

where the coefficients u0(t), u1(t), ..., uN(t) are determined by the Galerkin
system of equations

N
∑

r=0

dur(t)

dt
(Φr,Φk) =

N
∑

r=0

ur(t)(LΦr,Φk) +
N
∑

r=0

fr(t)(Φr,Φk), k = 0, 1, ..., N,

(4.53)
and

fh(t, x) = f0(t)Φ0(x) + f1(t)Φ1(x) + · · · + fN(t)ΦN (x)

is the interpolating generalized polynomial to f(t, x).
Error estimate. Let

eN(t, x) = uh(t, x)− u(t, x)

be the global error and let

zh(t, x) = uh(t, x)− sh(t, x) = z0(t)Φ0(x) + z1(t)Φ1(x) + · · · + zN(t)ΦN(x),

where
sh(t, x) = s0(t)Φ0(x) + s1(t)Φ1(x) + · · · + sN(t)ΦN (x)

is the interpolating generalized polynomial to u(t, x) for every fixed t ≥ 0.
Then, substituting to (4.52)

uh(t, x) = zh(t, x) + sh(t, x),

we obtain the following variational equation:

(
∂zh

∂t
,Φk) = (Lzh,Φk) +Rk(t, h) k = 0, 1, ..., N, (4.54)

with the initial value condition

zh(0, x) = uh(0, x) − sh(0, x) = 0, x ∈ Ω, (4.55)
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where φh(x) = sh(0, x) = uh(0, x) is the interpolating generalized polynomial
to φ(x) and

Rk(t, h) = (
∂zh

∂t
,Φk) − (Lzh,Φk) = (Lsh,Φk) + (fh,Φk) − (

dsh

dt
,Φk). (4.56)

Because u is the solution of the variational equation, we have

Rk(t, h) = (
∂(u− sh)

∂t
,Φk) − (L(u− sh),Φk) + (f − fh,Φk).

Hence, by the theorem on interpolation, the term Rk(t, h) → 0 when

h =
1

N
→ 0.

Now, let us write equations (4.54) in the matrix form.
We then have

A
dz(t)

dt
= Bz(t) + P (t, h), z(0) = 0, (4.57)

where

P (t, h) = −Ads(t)
dt

+Bs(t) + Af, t ≥ 0,

z(t) =













z0(t)
z1(t)

...
zN (t)













. s(t) =













s0(t)
s1(t)

...
sN (t)













, f(t) =













f0(t)
f1(t)

...
fN(t)













,

A =















(Φ0,Φ0) (Φ1,Φ0) (Φ2,Φ0) · · · (ΦN−1,Φ0) (ΦN ,Φ0)
(Φ0,Φ1) (Φ1,Φ1) (Φ2,Φ1) · · · (ΦN−1,Φ1) (ΦN ,Φ1)
(Φ0,Φ2) (Φ1,Φ2) (Φ2,Φ2) · · · (ΦN−1,Φ2) (ΦN ,Φ2)

· · · · · · · · · · · · · · · · · ·
(Φ0,ΦN ) (Φ1,ΦN ) (Φ2,ΦN ) · · · (ΦN−1,ΦN−1) (ΦN ,ΦN )















,

B =















(LΦ0,Φ0) (LΦ1,Φ0) (LΦ2,Φ0) · · · (LΦN−1,Φ0) (LΦN ,Φ0)
(LΦ0,Φ1) (LΦ1,Φ1) (LΦ2,Φ1) · · · (LΦN−1,Φ1) (LΦN ,Φ1)
(LΦ0,Φ2) (LΦ1,Φ2) (LΦ2,Φ2) · · · (LΦN−1,Φ2) (LΦN ,Φ2)

· · · · · · · · · · · · · · · · · ·
(LΦ0,ΦN) (LΦ1,ΦN ) (LΦ2,ΦN ) · · · (LΦN−1,ΦN−1) (LΦN ,ΦN )















The Gram matrix A is positive definite. Thus, A−1 exists and we can write
equation (4.57) as follows:

dz(t)

dt
= A−1Bz(t) + A−1P (t, h), z(0) = 0, (4.58)

Multiplying both sides of the system of equations (4.58) by z(t) ∈ H, t ≥ 0,
we obtain

1

2

d||z||2(t)
dt

= (A−1Bz(t), z(t)) + (A−1P (t, h), z(t)), t ≥ 0 (4.59)
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The matrices A−1 and −B are positive definite, therefore, from (4.59) and by
(4.49), we have

d||z||2(t)
dt

≤ −2α0||z||2(t)) + 2||A−1P (t, h)|| ||z||(t), t ≥ 0,

z(0) = 0.

(4.60)

for a certain α0 > 0.
By the “epsilon” inequality

||P (t, h)|| ||z||(t) ≤ ε||z||2(t) +
1

4ε
||A−1P (t, h)||2.

We can choose ε > 0 such that

2(ε− α0) = −γ < 0.

Then, from inequality (4.60), we get

d||z||2(t)
dt

≤ −γ||z||2(t)) +
1

2ε
||A−1P (t, h)||2, t ≥ 0,

||z||2(0) = 0.

(4.61)

Integrating (4.61), we obtain the following inequality:

||z||2(t) ≤ 1

2ε

∫ t

0
||A−1P (τ, h)||2e−γ(t−τ )dτ, t ≥ 0. (4.62)

In the most interesting cases, the norm ||A−1|| is uniformly bounded when the
dimension N → ∞. Also, the term P (t, h) → 0, since Rk(t, h) → 0 when

h =
l

N
→ 0. Therefore, by (4.62),

zh(t, x) = uh(t, x)− sh(t, x) → 0 when h→ 0.

Because, the error of interpolation

||sh − u||(t) → 0 when h→ 0,

and

||uh − u||(t) ≤ ||sh − u||(t) + ||uh − sh||(t), t ≥ 0,

the global error

||uh − u||(t) → 0 when h→ 0, t ≥ 0,

with the rate determined by the error of interpolation.
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4.3.1 Solution of Equation ut = uxx + f in the Space of Linear
Splines.

Let us consider the one-dimensional heat equation

∂u(t, x)

∂t
=
∂2u(t, x)

∂x2
+ f(t, x), t ≥ 0, 0 ≤ x ≤ 1, (4.63)

with the initial value condition

u(0, x) = φ(x), 0 ≤ x ≤ 1, (4.64)

and with the boundary value conditions

u(t, 0) = 0, u(t, 1) = 0, t ≥ 0. (4.65)

where φ(x) and f(t, x) are continuous functions given for t ≥ 0 and 0 ≤ x ≤ 1.
The variational equation corresponding to (4.63) is:

∫ 1

0

∂u(t, x)

∂t
η(x) dx =

∫ 1

0
[−∂u(t, x)

∂x

∂η(x)

∂x
+ f(t, x)η(x)]dx, t ≥ 0, (4.66)

for any η ∈W 01
2 (0, 1).

We shall find the approximate solution uh(t, x) in the space S1(∆, 0) in follow-
ing form:

uh(t, x) = u0(t)ψ0(x) + u1(t)ψ1(x) + · · · + uN(t)ψ(x),

for every t > 0, where ψk(x), k = 1, 2, ..., N − 1, are linear splines given by
formula (3.6).
From the boundary conditions (4.65)

uh(t, 0) = u0(t) = 0 and uh(t, 1) = uN(t) = 0 for t ≥ 0.

The remaining coefficients u1(t), u2(t), ..., uN−1(t) satisfy the Galerkin system
of equations

∫ 1

0

∂uh(t, x)

∂t
ψk(x) dx =

∫ 1

0
[−∂uh(t, x)

∂x

dψk(x)

dx
+ fh(t, x)ψk(x)]dx, (4.67)

for t ≥ 0, k = 1, 2, ..., N − 1, where

fh(t, x) = f(t, x0)ψ0(x)+f(t, x1)ψ1(x)+· · ·+f(t, xN−1)ψN−1(x)+f(t, xN)ψN(x).

Let us rewrite (4.67) as follows:

N−1
∑

r=1

dur(t)

dt

∫ 1

0
ψr(x)ψk(x) dx =

=
N−1
∑

r=1

ur(t)
∫ 1

0
−dψr(x)

dx

dψk(x)

dx
dx +

∫ 1

0
fh(t, x)ψk(x)dx,

(4.68)
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for t ≥ 0, uk(0) = φ(xk), k = 1, 2, ..., N − 1.
Let us note that

∫ 1

0
ψr(x)ψk(x)dx =































2h

3
if r = k,

h

6
if |r − k| = 1,

0 otherwise

(4.69)

and

∫ 1

0

dψr(x)

dx

dψk(x)

dx
dx =































2

h
if r = k,

−1

h
if |r − k| = 1,

0 otherwise,

(4.70)

Thus, equations (4.68) can be written in the matrix form:

A
du(t)

dt
= Bu(t) + F (t), t ≤ 0, (4.71)

with the initial value condition

u(0) = φ, (4.72)

where

u(t) =













u1(t)
u2(t)

...
uN−1(t)













, φ =













φ(x1)
φ(x2)

...
φN−1(xN−1)













, F (t) =













F1(t)
F2(t)

...
FN−1(t)













,

Fk(t) =
6

h

∫ 1

0
fh(t, x)ψk(x) dx =

f(t, xk−1) + 4(t, xk) + f(t, xk+1), k = 1, 2, ..., N − 1,

A =















4 1 0 · · · 0 0
1 4 1 · · · 0 0
0 1 4 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 4















, B = − 6

h2















2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·

0 0 0 · · · −1 2















.

The matrices A and B are positive definite, so that, the system of equations
(4.71) possesses the unique solution

u∗1(t), u
∗
2(t), ..., u

∗
N−1(t).
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which determines the approximate solution

uh(t, x) = u∗1(t)ψ1(x) + u∗2(t)ψ2(x) + · · · + u∗N−1(t)ψN−1(x), t ≥ 0.

Error estimate. Let eN(t, x) = uh(t, x)− u(t, x) be the global error and let

zh(t, x) = uh(t, x)− sh(t, x) = z1(t)ψ1(x) + z2(t)ψ2(x) + · · ·+ zN−1(t)ψN−1(x),

where

sh(t, x) = s1(t)ψ1(x) + s2(t)ψ2(x) + · · · + sN−1(t)ψN−1(x)

is the interpolating linear spline to u(t, x) for every fixed t ≥ 0.
Then, we have

sk(t) = u(t, xk), k = 1, 2, ..., N − 1.

Substituting to (4.67),

uh(t, x) = zh(t, x) + sh(t, x),

we obtain the following variational equation:

∫ 1

0

∂zh(t, x)

∂t
ψk(x) dx =

∫ 1

0
−∂zh(t, x)

∂x

dψk(x)

dx
dx+Rk(t, h), k = 1, 2, ..., N − 1.

(4.73)
with the homogeneous initial value condition

zh(0, x) = uh(0, x) − sh(0, x) = 0, 0 ≤ x ≤ 1. (4.74)

Here, φN(x) = uh(0, x) = sh(0, x) is the interpolating linear spline to φ(x) and

Rk(t, h) =
∫ 1

0

∂zh(t, x)

∂x

dψk(x)

dx
+
∫ 1

0

∂zh

∂x

dψk

dx
dx =

= −
∫ 1

0
[
∂sh(t, x)

∂x

dψk(x)

dx
+
∂sh(t, x)

∂t
ψk(x)− fh(t, x)ψk(x)] dx.

(4.75)
The matrix form of (4.73) is:

A
dz(t)

dt
= Bz(t) +R(t, h), z(0) = 0, (4.76)

where

z(t) =













z1(t)
z2(t)

...
zN−1(t)













, R(t, h) =
6

h













R1(t, h)
R2(t, h)

...
RN−1(t, h)













.

Because the matrix A is non-singular, (4.76) is equivalent to

dz(t)

dt
= A−1Bz(t) + A−1R(t, h), z(0) = 0, (4.77)
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Multiplying both sides of the system of equations (4.77) by z(t) ∈ H0
h, t ≥ 0,

we obtain the following equation;

1

2

d||z||2(t)
dt

= (A−1Bz(t), z(t)) + (A−1R(t, h), z(t)), t ≥ 0, (4.78)

where
||z||2(t) = z2

1(t) + z2
2(t) + · · · + z2

N−1(t).

Now, let us note that

A =
h2

6
B + 6I,

(Av, v) =
h2

6
(Bv, v) + 6(v, v) ≥ 2(v, v),

||A−1|| ≤ 1

2
,

(A−1v, v) ≥ 1

6
(v, v), v ∈ H0

h,

(A−1Bv, v) = (BA− 1

2v, A− 1

2v) ≤ −48

l2
(A−1v, v) ≤ − 8

l2
(v, v),

for v ∈ H0
h. Hence, by (4.78)

d||z||2(t)
dt

≤ −16

l2
||z||2(t)) + 2||R(t, h)|| ||z||(t), t ≥ 0,

z(0) = 0.

(4.79)

and by the “epsilon” inequality

||R(t, h)|| ||z||(t) ≤ ε||z||2(t) +
1

4ε
||R(t, h)||2.

We can choose ε > 0 such that

2ε− 16

l2
= −γ < 0.

Then, from inequality (4.79), we obtain

d||z||2(t)
dt

≤ −γ||z||2(t)) +
1

2ε
||R(t, h)||2, t ≥ 0,

||z||2(0) = 0.

(4.80)

Integrating this inequality, we get

||z||2(t) ≤ 1

2ε

∫ t

0
||R(τ, h)||2e−γ(t−τ )dτ t ≥ 0. (4.81)
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To estimate R(t, h), we shall use formulae (4.69), (4.70) and (4.75).
Then, we have

6

h
Rk(t, h) = −6

h

∫ 1

0

N−1
∑

j=1

[sj(t)
dψj

dx

dψk

dx
+
dsj

dt
ψjψk − f(t, xj)ψjψk]dx

=
6

h2
[sk−1(t)− 2sk(t) + sk+1(t)] − [

dsk−1

dt
+ 4

dsk

dt
+
dsk+1

dt
]

+[f(t, xk−1) + 4f(t, xk) + f(t, xk+1)]

= 6[−∂u(t, xk)

dt
+ Λxu(t, xk) + f(t, xk)] + h2[Λt

∂u(t, xk)

dt
+ Λxf(t, xk)]

= −h
2

12

∂4u(t, ξk)

∂x4
+ h2[Λt

∂u(t, xk)

dt
+ Λxf(t, xk)] = O(h2).

for a certain ξk
Hence, by inequality (4.81)

||z||2(t) ≤ C h4

2ε γ
[1 − e−γt], t ≥ 0, (4.82)

or
||z||(t) ≤ C0 h

2, t ≥ 0, (4.83)

where

C0 =

√

C

2ε γ
.

The norm

||zh||2(t) =
∫ 1

0
|z2

h(t, x)|dx =
∫ 1

0
[
N−1
∑

k=1

zk(t)ψk(x)]
2dx

≤ 2
N−1
∑

k=1

z2
k(t)

∫ 1

0
ψ2

k(x)dx ≤ C h4,

(4.84)

where C is a generic constant.
Using the triangle inequality

||uh − u||(t) ≤ ||uh − sh||(t) + ||sh − u)||(t),

and the inequality
||sh − u||(t) ≤ C h2, t ≥ 0,

by (4.84), we obtain the global error estimate:

||uh − u||(t) ≤ C h2, t ≥ 0, (4.85)

where C is a generic constant.
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4.4 Boundary Conditions

So far, we have considered homogeneous Dirichlet boundary conditions for
both elliptic and parabolic equations. Let us now study the non-homogeneous
boundary conditions

A0
du(0)

dx
+B0u(0) = α, A1

du(1)

dx
+B1u(1) = β, (4.86)

associated with the differential equation

Lu ≡ −d
2u

dx2
+ σ(x)u = f(x), 0 ≤ x ≤ 1, (4.87)

where σ(x) ≥ 0, f(x), are given continuous functions.
In order to find finite element solution

uh(x) = ψ(x) +
N
∑

i=1

aiφi(x),

we write equation (4.87) in the variational form

∫ 1

0
[−d

2uh

dx2
+ σ(x)uh]φi(x)dx =

∫ 1

0
f(x)φi(x)dx, i = 1, 2, ..., N.

Integrating by parts
∫ 1

0
[
duh

dx

dφi

dx
+ σ(x)uh]φi(x)dx =

∫ 1

0
f(x)φi(x)dx+

duh(1)

dx
φi(1) −

duh(0)

dx
φi(0),

(4.88)
for i = 1, 2, ..., N.
The function ψ(x) and the coordinates φi(x), i = 1, 2, ..., N, must be chosen
according to specific boundary conditions, that is, Dirichlet’s, Neumann’s or
mixed conditions.
We shall investigate these conditions as special cases of (4.86).
Dirichlet conditions. Setting in (4.86), A0 = A1 = 0 and B0 = B1 = 1, we
get the Dirichlet conditions

uh(0) = α, uh(1) = β.

These non-homogeneous conditions can easily be replaced by homogeneous
ones substituting to (4.88)

uh(x) = ψ(x) +
N
∑

i=1

aiφi(x),

where ψ(x) is a function for which ψ(0) = α, ψ(1) = β, and

vh(x) =
N
∑

i=1

aiφ(x),
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is the solution of variational equation (4.88) holding the homogeneous Dirich-
let’s conditions vh(0) = vh(1) = 0.
It is clear, from (4.88), that the homogeneous conditions must be imposed
on the coordinates φi(x). Thus, we have to choose φi ∈ HL, such that
φi(0) = φi(1) = 0, i = 1, 2, ..., N.
The conditions which must be posed on the coordinates φi, i = 1, 2, ..., N, are
called essential boundary conditions, and any others are referred to as natural
boundary conditions.
Thus, the Dirichlet conditions are essential, since coordinates φi(x), i =
1, 2, ..., N, must carry out the corresponding homogeneous conditions.
Neumann’s conditions. Setting in (4.86) A0 = A1 = 1 and B0 = B1 = 0,
we get the Neumann conditions

duh(0)

dx
= α,

duh(1)

dx
= β.

The Neumann conditions cannot be specified arbitrarily. Data in the Neumann
problem must be compatible. Indeed, for σ(x) ≡ 0 and η(x) ≡ 1, the equation

∫ 1

0
[
du

dx

dη

dx
dx =

∫ 1

0
f(x)η(x)dx+

du(1)

dx
η(1) − du(0)

dx
η(0), i = 1, 2, ..., N,

reduces to the compatibility condition
∫ 1

0
f(x)dx = β − α.

Dealing with the Neumann problem, we note that if u(x) is a solution of the
Neumann problem, then u(x) + constant is also a solution of the Neumann
problem. Therefore, a condition must be set up on u(x) to normalized a unique
solution u(x).
The non-homogeneous Neumann conditions can also be replaced by homoge-
neous ones substituting to (4.88)

uh(x) = ψ(x) +
N
∑

i=1

aiφi(x),

where ψ(x) is a function that satisfies the non homogeneous Neumann condi-
tions

ψ
′

(0) = α, ψ
′

(1) = β.

For example ψ(x) = H3(x) can be the Hermite’s cubic polynomial determined
by the interpolation conditions

H3(0) = uh(0), H3(1) = uh(1), H
′

3(0) = α, H
′

3(1) = β.

Then, the function

vh(x) =
N
∑

i=1

aiφi(x),
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satisfies the variational equation

∫ 1

0
[
dvh

dx

dφi

dx
+ σ(x)vh(x)φi(x)]dx =

=
∫ 1

0
{dψ
dx

dφi

dx
+ [f(x) − σ(x)ψ(x)]φi(x)}dx+ βφi(1) − αφi(0),

(4.89)

for i = 1, 2, ..., N.
In the Neumann problem, we do not impose the boundary conditions on the
coordinates φi ∈ HL, i =, 1, 2, ..., N, since they have been used directly in the
equation (4.89).
Mixed conditions. Setting in (4.86), A0 = 0, B0 = 1 and A1 = 1, B1 = 0,
we get the mixed conditions

uh(0) = α,
duh(1)

dx
= β.

Similarly as for Dirichlet or Neumann problems, we find the finite element
solution in the following form:

uh(x) = ψ(x) +
N
∑

i=1

aiφi(x),

where ψ(x) is to be chosen in a way to satisfy the mixed conditions, i.e.,

ψ(0) = α, ψ
′

(1) = β.

Then, the coordinates φi(x), i = 1, 2, ..., N, must hold the homogeneous con-
dition at x = 0, so that

φi(0) = 0, i = 1, 2, ..., N.

However, at x = 1, there is no restriction posed on φi(x).
In this case, the finite element solution

vh(x) =
N
∑

i=1

aiφi(x),

satisfies the variational equation

∫ 1

0
{dvh

dx

dφi

dx
+ [f(x) − σ(x)ψ(x)]φi(x)}dx+ βφi(1),

for i = 1, 2, ..., N.
In general, non-homogeneous conditions can be replaced by homogeneous ones
using the substitution

uh(x) = ψ(x) + vh(x), x = (x1, x2, ..., xN) ∈ Ω,
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where ψ ∈ HL is a function holding the non-homogeneous conditions

uh(x) = ψ(x), x ∈ ∂Ω.

and vh is the finite element solution of the modified variational equation

(Lvh, η) = (f − Lψ, η), η ∈ HL. (4.90)

Then, the coordinates φi ∈ HL, i = 1, 2, ..., N, must carry out the essential
boundary conditions, while the natural conditions are used in variational equa-
tion (4.90).
Let us note that, we can easily identify the essential boundary conditions for
linear differential operators of order 2s. Then, a boundary condition is essen-
tial if it does not contain a derivative of order greater than s− 1, otherwise it
is referred to be a natural boundary condition.
For example, the Dirichlet condition u(x, y) = g(x, y), at ∂Ω, for the Laplace
operator

Lu ≡ ∂2u

∂x2
+
∂2u

∂y2
,

is essential, since s = 1 and this condition does not contain a derivative (s−1 =

0), while the Neumann’s condition
du

dn
= g(x, y), at ∂Ω, is natural one, since

it contains the derivative of order s = 1.

4.5 Exercises

Question 4.1 Consider the following boundary value problem:

−d
2u

dx2
+ 3u = e−x2

, 0 ≤ x ≤ 1,

u(0) = 0, u(1) = 0.

Give an finite element approximation of the boundary problem using

1. (a) piecewise linear splines,

(b) cubic splines.

Estimate the error of the method in both cases (a) and (b).

Question 4.2 Use the piecewise linear splines with respect to the variable x
to approximate the following initial-boundary value problem:

∂u

∂t
= 4

∂2u

∂x2
+ cos πx, 0 ≤ x ≤ 1, t ≥ 0,

u(0, x) = sin πx, 0 ≤ x ≤ 1,

u(t, 0) = 0, u(t, 1) = 0, t ≥ 0,

by the finite element method. Estimate the error of the method.



87

4.6 References

[1 ] Aubin, J. P., (1972), Approximation of Elliptic Boundary Value Prob-
lems, Wiley- Interscience

[2 ] Berezin, I.S. & Zidkov, N.P. (1962), Numerical Methods, v.II,Moskaw

[3 ] Hall, C.A. (1984), Numerical Analysis of Partial Differential Equations.
Hemisphere Publishing Company.

[4 ] Michlin, S.G. & Smolnicky C.L. (1963), Approximate Methods for Solving
Differential and Integral Equations, Nauka, Moscow.

[5 ] Mitchell, A.R. & Griffiths D.F. (1975), The Finite Difference Method in
Partial Differential Equations, John Wiley & Sons, New York.

[6 ] Quarteroni, A., & Valli, A., (1994), Numerical Approximation of Partial
Differential Equations, Springer-Verag, New York.

[7 ] Smith, G.D. (1985), Numerical Solution of Partial Differential Equations:
Finite Difference Methods, Clarendon Press-Oxford.

[8 ] Stoer, J. & Bulrisch R. (1980), Introduction to Numerical Analysis,
Springer-Verlag, (1980).

[9 ] Wolfram, S., (1992),Mathematica a System for Doing Mathematics by
Computer, Addison-Wesley Publishing Company, New York.


