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PREFACE

This text is to introduce students of science and engineering to computational
linear algebra. As a prerequisite to the numerical methods basic knowledge
of linear algebra and computing are required. Also, the text assumes a pre-
vious knowledge on Mathematica as the systems for doing mathematics with
computers. So, it is taken for granted that the reader has access to computer
facilities for solving some of examples and exercise questions.
The text contains classical methods for solving linear systems of equations
with emphasis put on error analysis, algorithm design and their implementa-
tion in computer arithmetic. There is also a desire that the reader will find
interesting theorems with examples solved by included Mathematica modules.
The text begins with the notions and theorems concerning norms and oper-
ations on vectors and matrices. In the chapter 2, direct methods for solving
linear systems of equations based on Gauss elimination are described and sup-
ported by examples and Mathematica programs.
The chapter 3, contains standard methods for solving eigenvalue problems
for quadratic matrices. It includes Jacobi method, power method, and QR
method with examples, questions and Mathematica modules.

Iterative methods for solving linear systems of equations are presented in the
chapter 4. It starts with the sufficient and necessary condition for convergence
of linear stationary one step methods. The class of linear stationary one step
methods includes iterative Jacobi and Gauss Seidel methods, Successive Over
relaxation method (SOR), Alternating directions method (ADI) and Gradient
method (CG).

STYŠ Tadeusz
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Chapter 1

Vectors and Matrices

1.1 Vector and Matrix Norms

Let x = (x1, x2, ..., xn) ∈ Rn be a vector. Below, we shall consider the following
three vector norms:

1. ‖ x ‖S=
√

| x1 |2 + | x2 |2 · · ·+ | xn |2,

2. ‖ x ‖1=| x1 | + | x2 | · · ·+ | xn |,

3. ‖ x ‖∞= max
1≤i≤n

| xi | .

The above vector norms satisfy the inequalities:

‖ x ‖S≤‖ x ‖1≤
√
n ‖ x ‖S,

‖ x ‖∞≤‖ x ‖S≤
√
n ‖ x ‖∞,

‖ x ‖∞≤‖ x ‖1≤ n ‖ x ‖∞,

(1.1)

Let us note that if x is an approximate vector to a vector x then
the absolute error

εx =‖ x− x ‖
and the relative error

δx =
‖ x− x ‖
‖ x ‖ , x 6= 0.

Evidently, the relative error measured in the ∞− norm expresses the number
of correct significant digits of the largest component of the approximate x. For
instance, if

‖ x− x ‖∞
‖ x ‖∞

≈ 10−6

then x should have 6 correct significant digits. If the norms ‖ − ‖S or ‖ − ‖1
are used then all components of x may be biased by the error δx = 10−p.

1
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Therefore x may have p correct significant digits.
A norm of a matrix

A =















a11 a12 a13 · · · a1n−1 a1n

a21 a22 a23 · · · a2n−1 a2n

a31 a32 a33 · · · a3n−1 a3n

· · · · · · · · · · · · · · · · · ·
an1 an2 an3 · · · ann−1 ann















is determined by the following relation:

‖ A ‖= sup
x 6=0

‖ Ax ‖
‖ x ‖ .

This means that the norm ‖ A ‖ is the smallest constant for which the in-
equality

‖ Ax ‖≤‖ A ‖ ‖ x ‖

holds for every x ∈ Rn.
One can show that the subordinated matrix norms to the three vector norms
are:

1. (a) ‖ A ‖S= max
1≤i≤n

√

λi(AAT), is the spectral norm of A, where λi(AA
T )

is the i− th eigenvalue of the matrix AAT ,

(b) ‖ A ‖∞= max
1≤i≤n

n
∑

j=1

| aij | is the ∞− norm of A,

(c) ‖ A ‖1= max
1≤j≤n

n
∑

j=1

| aij | is the first norm of A,

The above matrix norms satisfy the following inequalities:

1. (a) i. 1√
n
‖ A ‖∞≤‖ A ‖S≤

√
n ‖ A ‖∞

ii. 1√
n
‖ A ‖1≤‖ A ‖S≤

√
n ‖ A ‖1.

Let us note that if A is a symmetric matrix then the spectral norm of A is
equal to the spectral radius ρ(A), i.e.

‖ A ‖S= ρ(A),

where ρ(A) = max
1≤i≤n

| λi(A) |, λi(A) is i− th eigenvalue of A.
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1.2 Conditional Number of a Matrix

A resistance of a matrix A against perturbation of input data and round-off
errors of partial results is measured by its conditional number

Cond(A) =‖ A ‖ ‖ A−1 ‖ .

In case of a symmetric matrix A, where the spectral norm is involved, the
conditional number of the matrix A is given by the formula

Cond(A) = ρ(A)ρ(A−1).

A large conditional number Cond(A) strongly affects final results of any algo-
rithm that involves the matrix A.
For example, let the matrix

A =

[

1 0.99999
0.99999 1

]

.

One may find that the eigenvalues of A and A−1 are:

λ1(A) ≈ 2, λ2(A) ≈ 0 and ρ(A) = 2,

λ1(A
−1) ≈ 100000, λ2(A

−1) ≈ 0.5 and ρ(A−1) = 100000.

Hence, the conditional number

Cond(A) = 200000.

Now, let us solve the following system of linear equations:

x1 + 0.99999x2 = 2.99999
0.99999x1 − x2 = 0.99998

The solution of the above system of equations is:

x1 = 2 and x2 = 1.

Changing the coefficient at x1 in the first equation, by ε = 0.00001, we obtain
the following system of linear equations:

0.99999x1 + 0.99999x2 = 2.99999
0.99999x1 − x2 = 0.99998

We observe that the solution of the this system of equations

x1 = 100003, x2 = −100001.

differs considerably from the solution of the original system of equations, in
spite of very small change in the coefficient at x1. This is due to the large
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conditional number (Cond(A) = 200000) of the matrix A.
Solving numerically a system of linear equations

Ax = b,

we find an approximate solution x which is the exact solution of the system of
equations

Ax = b.

Having x, we can compute the residual absolute error

rb = Ax− Ax = b− b,

and the residual relative error

δb =
||b− b||
||b|| , b 6= 0.

The relative error

δx =
||x− x||
||x|| , x 6= 0,

satisfies the following inequality

δb

Cond(A)
≤ δx ≤ Cond(A) δb.

Indeed, we have

A(x− x) = b− b, x− x = A−1(b− b),

and
||A|| ||x− x|| ≥ ||b− b||, ||x− x|| ≤ ||A−1|| ||b− b||.

Hence, we get

||b− b||
||A|| ||x|| ≤

||x− x
||x|| ≤

||A−1|| ||b− b||
||x|| , x 6= 0.

Clearly, the solution x satisfies the inequality

||b||
||A|| ≤ ||x|| ≤ ||A

−1|| ||b||.

Combining the above inequalities, we obtain

1

||A−1|| ||A||
||b− b||
||b|| ≤

||x− x||
||x|| ≤ ||A−1|| ||A|| ||b− b||||b|| , x 6= 0, b 6= 0.
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1.3 Positive Definite Matrices

A class of positive definite matrices plays an important role in different areas
of mathematics (statistics, numerical analysis, differential equations, mechan-
ics, algebra, geometry, etc.). Here, we shall consider positive definite matrices
from the numerical point of view. As it is known, the most effective numerical
methods for linear systems of equations are associated with positive definite
matrices. Let us present the following definition:

Definition 1.1 A matrix A is said to be positive definite if and only if the
following conditions hold:

1. A is a symmetric matrix, i.e. AT = A,

2. there exists a constant γ > 0 such that

(A, x, x) =
n

∑

i,j=1

aijxixj ≥ γ
n

∑

i=1

x2
i = γ (x, x)

for every real vector x = (x1, x2, ..., xn) ∈ Rn.

Example 1.1 The matrix

A =

[

4 −1
−1 4

]

is positive definite.

Evidently, A is a symmetric matrix, i.e. AT = A and

(Ax, x) = 4(x2
1 − x1x2 + x2

2) ≥ 2(x2
1 + x2

2) = 2(x, x)

for every x = (x1, x2) ∈ R2. So that γ = 2.

The following theorem holds:

Theorem 1.1 An matrix A is positive definite if and only if all its eigenvalues
are real and positive, i.e. λ1 > 0, λ2 > 0, ..., λn > 0.

Proof. At first, let us assume that A is a positive definite matrix. Then, by
condition 1, A is a symmetric matrix. Therefore all eigenvalues of A are real
and eigenvectors x(1), x(2), ..., x(n) of A are orthonormal in the real space Rn.
Evidently, for each eigenvector x(k), k = 1, 2, .., n; we have

0 < (Ax(k), x(k)) = λk(x
(k), x(k)) = λk, k = 1, 2, ..., n.
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Now, let us assume that all eigenvalues of A are real and positive, i.e.

0 < λ1 < λ2 <, ..., λn.

Then, each vector x 6= 0 can be presented in the form of the following linear
combination:

x = α1x
(1) + α2x

(2) + . . . + αnx
(n),

where (x, x) = α2
1 + α2

2 + . . .+ α2
n > 0.

We thus have

(Ax, x) = (A
n

∑

j=1

αjx
(j),

n
∑

j=1

αjx
(j))

=
n

∑

j=1

n
∑

k=1

αjαk(Ax
(j), x(k))

=
n

∑

j=1

n
∑

k=1

αjαkλj(x
(j), x(k))

=
n

∑

j=1

λjα
2
j ≥ λ1

n
∑

j=1

α2
j = λ1(x, x).

Hence γ = λ1. End of the proof.

1.4 Diagonally Dominant Matrices

Below, we shall show that the class of diagonally dominant matrices is a sub
class of the class of positive definite matrices.

Definition 1.2 A matrix A is said to be diagonally positive dominant if and
only if the following conditions hold:

1. (a) aii ≥
n

∑

j=1,j 6=i

| aij |, i = 1, 2, ..., n,

(b) there exists at least one natural i for which

aii >
n

∑

j=1,j 6=i

| aij |,

(c) if condition (b) is satisfied for all i = 1, 2, .., n, then A is called a
strongly diagonally dominant matrix.

Example 1.2 Evidently, the matrix

A =











4 −1 −1 0
−1 4 −1 −1
−1 −1 3 −1

0 −1 −1 3










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satisfies the conditions (a) and (b) of definition and therefore, A is a diagonally
positive dominant matrix.

Let us note that conditions (a) and (b) are not difficult to check. Thus, we
may easily find whether a matrix is or is not diagonally dominant. We may
also use these conditions to determine whether a matrix is positive definite
applying the following theorem:

Theorem 1.2 Every non-singular symmetric and diagonally dominant matrix
A is positive definite.

Proof. It is sufficient to show that all eigenvalues of matrix A are real and
positive. Then, by the theorem , A is a positive definite matrix. By assump-
tion, A is a non-singular and symmetric matrix, therefore its eigenvalues are
real and different from zero.

Now, we shall show that A does not have a negative eigenvalue. Evidently,
for every negative λ < 0, the matrix A− λE is strongly diagonally dominant.
Therefore, the homogeneous system of linear equations

(A− λE)y = 0

has only one solution, i.e. y = 0. Indeed, let

max
1≤i≤n

| yi |=| yk | .

Of course, without any additional restrictions, we may assume that yk ≥ 0.
Because

0 = ak1y1 + ak2y2 + · · ·+ (akk − λ)yk + · · ·+ aknyn

≥ [(akk − λ)−
n

∑

j=1,j 6=i

|akj]yk ≥ 0,

we get

[akk − λ−
n

∑

j=1,j 6=i

| akj ]yk = 0.

However, since A− λE, (λ < 0) is a strongly diagonally dominant matrix,

akk − λ−
n

∑

j=1,j 6=i

| akj |> 0.

Hence yk = 0 and y1 = y2 = · · · = yn = 0. Thus, the matrix A − λE is
non-singular for every negative λ < 0. This means that the matrix A has all
positive eigenvalues. Finally, by the theorem , A is a positive definite matrix.
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1.5 Monotone Matrices

Let us write the inequalityA ≥ 0 if all entries of the matrixA are non-negative,
i.e. aij ≥ 0, i, j = 1, 2..., n. The monotone matrices are then defined as fol-
lows:

Definition 1.3 A matrix A is said to be monotone if and only if the following
implication his true:

Ax ≥ 0 implies the inequality x ≥ 0.

The following theorem holds (cf. [18], [20]):

Theorem 1.3 A is a monotone matrix if and only if A is non-singular and
the inverse matrix to A satisfies the inequality A−1 ≥ 0.

Proof. At first, let us assume that A is a monotone matrix in the sense of
definition. Then, the homogeneous system of linear equations Ax = 0 has only
one solution x = 0. Indeed, by assumption

the inequality A(±x) ≥ 0 implies the inequality ±x ≥ 0.

Hence x = 0 and therefore A is a non-singular matrix.
Let z be a column of the inverse matrix A−1. Then

Az =





























0
0
...
1
...
0
0





























≥ 0, z ≥ 0.

Thus, the inverse matrix A−1 ≥ 0.
Now, let us assume that A is a non-singular matrix and the inverse matrix
A−1 ≥ 0. Then, for Ax ≥ 0, we have

x = A−1Ax ≥ 0.

Example 1.3 The matrix

A =

[

2 −1
−1 2

]

is monotone.

Indeed, we have

A−1 =
1

3

[

2 1
1 2

]

≥ 0.
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1.6 Matrices of Positive Type

In general, it is not easy to determine, by definition, whether a matrix A is
monotone or not. However, there are so called ”matrices of positive type”
which create a sub class of the class of all monotone matrices. The matrices of
positive type are easy to investigate following the conditions of the definition:

Definition 1.4 (cf. [18]). A matrix A is said to be of positive type if and
only if the following conditions hold:

1. (a) aij ≤ 0 for i 6= j,

(b)
n

∑

j=1

aij ≥ 0,

(c) there exists a non-empty subset J(A) of the set {1, 2, ..., n} such
n

∑

j=1

aij > 0 for i ∈ J(A),

(d) for every k ∈ J(A) there exists l ∈ J(A) and a sequence non-zero
entries of the form akk1

, ak1k2
, ak2k3

, ..., akrl

Let us note that condition (d) can be replaced by the condition:

A is an irreducible matrix (cf. [18]).

Example 1.4 Let us consider the following matrix:

A =





















2 −1 0 0 · · · 0 0
−1 2 −1 0 · · · 0 0

0 −1 2 −1 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · 2 −1
0 0 0 0 · · · −1 2





















Evidently, matrix A is monotone, since it satisfies conditions (a) and (b). Also,
the conditions (c) and (d) hold for the set J(A) = {1, n} while the sequence
akk1

, ak1k2
, ..., akrl = −1,−1, ..− 1.

The relation between matrices that are monotone and those of positive type
is established in the following theorem (cf. [18]):

Theorem 1.4 Every matrix of positive type is a monotone matrix.
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Proof. Let us assume that A is a matrix of positive type. Then, by conditions
(a) and (b)

aii ≥ 0, i = 1, 2, ..., n.

If akk = 0 for a k ∈ {1, 2, .., n} then, (also by (a) and (b)),

akj = 0 j = 1, 2, ..., n.

However, in this case, condition (d) could not be satisfied. Therefore akk > 0
for all k = 1, 2, ..., n.
Now, we shall show that: the inequality Ax ≥ 0 implies the inequality x ≥ 0
Indeed, by conditions (a), (b), (c) and (d)

xi ≥
n

∑

j=1,j 6=i

| aij

aii

| xj, (1.2)

n
∑

j=1,j 6=i

| aij

aii

|< 1 for i ∈ J(A), (1.3)

and
n

∑

j=1,j 6=i

| aij

aii

= 1 for inot ∈ J(A). (1.4)

Let
min

1≤j≤n
xj = xi = α < 0.

Then, by the above inequalities, we get the following contrary inequality

α = xi ≥
n

∑

j=1,j 6=i

| aij

aii

| α > α for i ∈ J(A).

So that xi ≥ 0 if i ∈ J(A).
If i ∈ J(A) and k 6= i then, by condition (d), aik < 0 and xk = α for all k
such that aik < 0 or it contradicts the inequality (1.2). By condition (d), there
exists k1 such that akk1

< 0. Also, in this case when xk1
= α, we have akk1

< 0
or, it contradicts the inequality (1.2). Proceeding in this way, we may find a
sequence

akk1
, ak1k2

, ak2k3
, ..., akrl, l ∈ J(A),

of non-zero entries of A. But then, for l ∈ J(A), we arrive at a contradiction
with inequality (1.2). Therefore, must be α ≥ 0. Hence xk ≥ 0 for all
k = 1, 2, ..., n.

Example 1.5 As we know, the following matrix is of positive type:

A =





















2 −1 0 0 · · · 0 0
−1 2 −1 0 · · · 0 0

0 −1 2 −1 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · 2 −1
0 0 0 0 · · · −1 2




















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Therefore, by the theorem, A is a monotone matrix.

1.7 Exercises

Assignment Questions

Question 1. Consider the following matrix

A =























































5 −2 −1 0 0 · · · 0 0

−2 5 −2 −1 0 · · · 0 0

−1 −2 5 −2 −1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 0 · · · −2 5























































Show that

(a) A is a diagonally dominant matrix

(b) A is a positive definite matrix

(c) A is of a positive type matrix

(d) A is a monotone matrix

(e) A is a Stieltjes matrix

Question 2.

(2a) Show that if A is a monotone matrix then the inverse matrix A−1 exists
and A−1 ≥ 0.

(2b) Let the monotone matrices A and B satisfy the inequality A ≥ B. Show
that the inverse matrices A−1 and B−1 satisfy the inequality

B−1 ≥ A−1 ≥ 0.

(2c) Consider the following matrix

A =























































4 −1 0 0 0 · · · 0 0

−1 4 −1 0 0 · · · 0 0

0 −1 4 −1 0 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 0 · · · −1 4






















































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Show that A is a Stjeltjes matrix. Find the a constant γ > 0 such that
(Ax, x) ≥ γ(x, x) for all real x = (x1, x2, ..., xn).

Quote the definitions and theorems used in the solution.

æ



Chapter 2

Systems of Linear Equations

2.1 Gauss Elimination Method

Introduction. Gauss elimination is a universal direct method. In general,
this method can be successfully applied to any linear system of equations, pro-
vided that all arithmetic operations involved in the algorithm are not biased
by round-off errors. However, it can hardly be the case, since any imple-
mentation of the method in a finite arithmetic yields round-off errors. Thus,
restrictions are imposed on the class of equations because of computations in
a finite arithmetic. For small systems of equations (n ≈ 100, in 8-digit floating
point arithmetic), Gauss method produces acceptable solutions if conditions
of stability are satisfied. The number of equations can be considerably greater
(n >> 100) if partial or full pivoting strategy is applied to a stable system of
equations. For systems of equations with sparse matrices, Gauss elimination
is also successfully applicable to large systems of linear equations. Apply-
ing Gauss elimination to large systems of equations, with multi-diagonal and
diagonally dominant matrices, one can obtain a solution for the number of
arithmetic operations proportional to the dimension n. This number of op-
erations is significantly lower compared with the total number of arithmetic
operations ≈ n3 that is required in Gauss elimination when it is applied to a
system of equations with a full and non-singular matrix A. Although, Gauss
method in its general form is costly in terms of arithmetic operations, the
method provides LU − decomposition of the matrix A and the determinant
det(A), as partial results in computing of the solution x.
Gauss elimination. We shall write a linear system of n equations in the
following form:

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = a1n+1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = a2n+1

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = a3n+1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
an1x1 + an2x2 + an3x3 + · · ·+ annxn = ann+1

(2.1)

13
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or in the matrix form
Ax = a,

where the vectors are:

x =

















x1

x2

x3
...
xn

















, a =

















a1n+1

a2n+1

a3n+1
...
ann+1

















and the matrix is:

A =















a11 a12 a13 · · · a1n−1 a1n

a21 a22 a23 · · · a2n−1 a2n

a31 a32 a33 · · · a3n−1 a3n

· · · · · · · · · · · · · · · · · ·
an1 an2 an3 · · · ann−1 ann















Within this chapter, we shall assume that the matrix A is non-singular, so
that det(A) 6= 0.
Let us demonstrate Gauss elimination solving the following sample system of
four equations with four unknowns

2x1 + x2 + 4x3 − 3x4 = 4 | m21 = 2 | m31 = 3 | m41 = 4
4x1 − 3x2 + x3 − 2x4 = −7
6x1 + 4x2 − 3x3 − x4 = 1
8x1 + 2x2 + x3 − 2x4 = 7

(2.2)

First step of elimination. At first step, we shall eliminate unknown x1 from
second, third and fourth equations. To eliminate x1 from second equation, we
multiply first equation by the coefficient

m21 =
a21

a11
=

4

2
= 2

and subtract the result from second equation. Then, we have

−5x2 − 7x3 + 4x4 = −15.

To eliminate x1 from third equation, we multiply first equation by the coeffi-
cient

m31 =
a31

a11
=

6

2
= 3

and subtract the result from third equation. Then, we have

x2 − 15x3 + 8x4 = −11.
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To eliminate x1 from fourth equation, we multiply first equation by the coef-
ficient

m41 =
a41

a11
=

8

2
= 4

and subtract the result from fourth equation. Then, we have

−2x2 − 15x3 + 10x4 = −9.

After first step of elimination, we arrive at
First reduced system of equations

2x1 +x2 +4x3 −3x4 = 4
−5x2 −7x3 +4x4 = −15 | m32 = −1

5
| m42 = 2

5
x2 −15x3 +8x4 = −11

−2x2 −15x3 +10x4 = −9

(2.3)

Second step of elimination. At second step, we shall eliminate x2 in (2.3) from
third and fourth equations. To eliminate x2 from third equation, we multiply
second equation by the coefficient

m32 =
a

(1)
32

a
(1)
22

=
1

−5

and subtract the result from third equation. Then, we have

−82

5
x3 +

44

5
x4 = −14.

To eliminate x2 from fourth equation, we multiply second equation by the
coefficient

m42 =
a

(1)
42

a
(1)
22

=
−2

−5

and subtract the result from fourth equation. Then, we have

−61

5
x3 +

42

5
x4 = −3.

After second step of elimination, we arrive at
Second reduced system of equations

2x1 + x2 + 4x3 − 3x4 = 4
− 5x2 − 7x3 + 4x4 = −15

− 82

5
x3 +

44

5
x4 = −14 | m43 =

61

82

− 61

5
x3 +

42

5
x4 = −3

(2.4)
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Third step of elimination. At third step, we shall eliminate x3 in (2.4) from
fourth equation. To eliminate x3 from fourth equation, we multiply third
equation by the coefficient

m43 =
a

(2)
43

a
(2)
33

=
61

82

and subtract from fourth equation.
Then, we have

76

41
x4 =

304

41
.

Finally, we have arrived at
Third reduced system of equations

2x1 + x2 + 4x3 − 3x4 = 4
− 5x2 − 7x3 + 4x4 = −15

− 82

5
x3 +

44

5
x4 = −14

76

41
x4 =

304

41

(2.5)

Let us observe that third reduced system of equations has upper-triangular
form and its solution can be easily found by backward substitution. Indeed,
from fourth equation

x4 =
304
41
76
41

= 4,

from third equation

x3 = − 5

82
(−14− 44

5
4) = 3,

from second equation

x2 = −1

5
(−15 + 7 ∗ 3− 4 ∗ 4) = 2,

and from first equation

x1 =
1

2
(4− 1 ∗ 2− 4 ∗ 3 + 3 ∗ 4) = 1.

Solving this example with the Mathematica program

n=4;

a={{2,1,4,-3,4},{4,-3,1,-2,-7},{6,4,-3,-1,1},{8,2,1,-2,7}};

fi[a_,i_]:=ReplacePart[a,a[[i]]- a[[s]]*a[[i,s]]/a[[s,s]],i];

iter[a_,s_]:=Fold[fi,a,Range[s+1,n]];

Do[a=iter[a,s],{s,1,n}];

MatrixForm[a]
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we obtain the upper triangular matrix

2 1 4 −3 4
0 −5 −7 4 −15

0 0 −82

5

44

5
−14

0 0 0
76

41

304

41

Then, we find the solution x = {1, 2, 3, 4} using the following program

x=Table[0,{i,1,n}]; x[[n]]=a[[n,n+1]]/a[[n,n]];

Do[x[[n-i]]=(a[[n-i,n+1]]-

Sum[a[[n-i,j]]*x[[j]],{j,n-i+1,n}])/a[[n-i,n-i]],{i,1,n-1}];

Now, let us present Gauss elimination in the general form.
First step of elimination. At first step, we shall eliminate x1 from second, third,
. . .,n-th equations, provided that a11 6= 0. To eliminate x1, let us multiply first
equation in (2.1) by the coefficient

mi1 =
ai1

a11
, i = 2, 3, . . . , n

and subtract first equation from i-th equation for i = 2, 3, . . . , n. Then, we
obtain
First reduced system of Gauss elimination

a
(0)
11 x1+ a

(0)
12 x2 + a

(0)
13 x3 + · · · + a

(0)
1nxn = a

(0)
1n+1

a
(1)
22 x2 + a

(1)
23 x3 + · · · + a

(1)
2nxn = a

(1)
2n+1

a
(1)
32 x2 + a

(1)
33 x3 + · · · + a

(1)
3nxn = a

(1)
3n+1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

a
(1)
n2 x2 + a

(1)
n3 x3 + · · · + a(1)

nnxn = a
(1)
nn+1

(2.6)

where
a

(0)
ik = aik, i = 1, 2, . . . , n, k = 1, 2, . . . , n+ 1,

a
(1)
ik = a

(0)
ik −mi1a

(0)
1k , i = 2, 3, . . . , n; k = 2, 3, . . . , n+ 1.

Second step of elimination. At second step, we shall eliminate x2 from third,

fourth,..., n-th equations in (2.6), provided that a
(1)
22 6= 0. Let us multiply

second equation in (2.6) by the coefficient

mi2 =
a

(1)
i2

a
(1)
22

, i = 3, 4, . . . , n
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and subtract second equation from i-th equation for i = 3, 4, . . . , n. Then, we
obtain
Second reduced system of Gauss elimination

a
(0)
11 x1+ a

(0)
12 x2+ a

(0)
13 x3 + · · ·+ a

(0)
1nxn = a

(0)
1n+1

a
(1)
22 x2+ a

(1)
23 x3 + · · ·+ a

(1)
2nxn = a

(1)
2n+1

a
(2)
33 x3 + · · ·+ a

(2)
3nxn = a

(2)
3n+1

a
(2)
43 x3 + · · ·+ a

(2)
4nxn = a

(2)
4n+1

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

a
(2)
n3 x3 + · · ·+ a(2)

nnxn = a
(2)
nn+1

(2.7)

where

a
(2)
ik = a

(1)
ik −mi2a

(1)
2k , i = 3, 4, . . . , n, k = 3, 4, . . . , n+ 1.

We continue elimination of the unknowns x3, x4 . . . , xn−1, provided that a
(2)
33 6=

0, a
(3)
44 6= 0, a

(4)
55 6= 0, ... a

(n−2)
n−1n−1 6= 0. As the final step of elimination, we

obtain
Last reduced system of Gauss elimination

a
(0)
11 x1+ a

(0)
12 x2+ a

(0)
13 x3+ · · · +a

(0)
1nxn = a

(0)
1n+1

a
(1)
22 x2+ a

(1)
23 x3+ · · · +a

(1)
2nxn = a

(1)
2n+1

a
(2)
33 x3+ · · · +a

(2)
3nxn = a

(2)
3n+1

· · · · · · · · · · · · · · · · · · · · · · · ·

a(n−1)
nn xn = a

(n−1)
nn+1

(2.8)

where

a
(s)
ik = a

(s−1)
ik −misa

(s−1)
sk , mis =

a
(s−1)
is

a
(s−1)
ss

.

s = 1, 2 . . . , n− 1, i = s+ 1, s + 2, . . . , n, k = s+ 1, s+ 2, . . . , n+ 1.

The system of equations (2.8) has upper-triangular form. Therefore, we can
easily find its solution by backward substitution

xn =
a

(n−1)
nn+1

a
(n−1)
nn

xi =
1

a
(i−1)
ii

[a
(i−1)
in+1 −

n
∑

j=i+1

a
(i−1)
ij xj],

(2.9)
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for i = n− 1, n− 2, . . . , 1.
Below, we give the above elimination step by step in Mathematica.
At step s, s = 1, 2, ..., n, we change i−th row of the matrix A, i = s + 1, s+
2, ..., n, by replacing it with

i−th row − s−th row ∗ i, s−th element
s, s−th element

When s is fixed, the following Mathematica function would change i−th row:

oneRow[a_, i_]:=

ReplacePart[a, a[[i]]-a[[s]]*a[[i,s]]/a[[s,s]], i];

Then, the s − th iteration of Gausian elimination would require the use of
oneRow with i = s+ 1, s + 2, ..., n, which can be achieved using Fold:

iter[a_,s_]:=Fold[oneRow, a, Range[s+1,n]];

Let us take the sample numerical example, again:

n=4;

a={{2,1,4,-3,4}, {4,-3,1,-2,-7},

{6,4,-3,-1,1},{8,2,1,-2,7}};

TableForm[a]

2 1 4 -3 4

4 -3 1 -2 -7

6 4 -3 -1 1

8 2 1 -2 7

Executing the following program

Do[oneRow[a_,i_]:=

ReplacePart[a, a[[i]]-a[[s]]*a[[i,s]]/a[[s,s]], i];

iter[a_,s_]:= Fold[oneRow, a, Range[s+1,n]];

a = iter[a, s],{s, 1, n}];

we obtain the upper triangular matrix as in (2.5).
In general, the following module gaussDirectElimination solves a linear sys-
tem of equations, provided that the diagonal elements a(s−1)

ss 6= 0, s = 1, 2, ..., n.

gaussDirectElimination[a_]:=Module[{c,n,oneRow,iter,x },

c=a;

n=Length[a[[1]]]-1;

oneRow[c_,i_]:=

ReplacePart[c, c[[i]]-c[[s]]*c[[i,s]]/c[[s,s]], i];

iter[c_,s_]:=Fold[oneRow, c, Range[s+1,n]];

Do[c= iter[c, s],{s, 1, n}];
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x=Table[0,{i,1,n}]; x[[n]]=c[[n,n+1]]/c[[n,n]];

Do[x[[n-i]]=(c[[n-i,n+1]]-Sum[c[[n-i,j]]*x[[j]],

{j,n-i+1,n}])/c[[n-i,n-i]],{i,1,n-1}];

x

]

Solving the sample axample, we input data matrix

a={{2,1,4,-3,4}, {4,-3,1,-2,-7}, {6,4,-3,-1,1},{8,2,1,-2,7}};

and invoke the module

gaussDirectElimination[a]

to obtain the solution x = 1, 2, 3, 4.
Let us note that, we can apply the general Gauss elimination to a system of
linear equations if the pivotal elements

a
(0)
11 6= 0, a

(1)
22 6= 0, a

(2)
33 6= 0, . . . , a(n−1n−1)

nn 6= 0,

are different from zero. Such a system of equations can be solved by the
Mathematica program given in the above example. However, this straight
forward application of Gauss elimination might lead to a strong accumulation
of round-off error. In applications, pivotal strategy is used to minimize accu-
mulation of round-off errors. In the case when at least one pivotal element is

equal to zero, say a
(k−1)
kk = 0, we can apply partial or full pivoting strategy.

2.2 Partial Pivoting

If the pivotal element a
(k−1)
kk = 0 then Gauss elimination cannot be continued

without rearrangement of rows or columns of the matrix

A(k−1) =



















































a
(0)
11 a

(0)
12 a

(0)
13 · · · a

(0)
1k · · · a

(0)
1n a

(0)
1n+1

a
91)
22 a

(1)
23 · · · a

(1)
2k · · · a

(1)
2n a

(1)
2n+1

a
(2)
33 · · · a

(2)
3k · · · a

(2)
3n a

(2)
3n+1

. . .
... · · · ...

...

zero element → a
(k−1)
kk

· · · a
(k−1)
kn a

(k−1)
kn+1

a
(k−1)
k+1k

· · · a
(k−1)
k+1n a

(k−1)
k+1n+1

...
...

...
...

largest element → a
(k−1)
sk

· · · a(k−1)
sn a

(k−1)
sn+1

...
...

...
...

a
(k−1)
nk

· · · a(k−1)
nn a

(k−1)
nn+1


















































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Also, if a
(k−1)
kk , k = 1, 2, . . . , n− 1, are small then pivoting strategy will min-

imize affect of round-off errors on the solution. Thus, to eliminate unknowns
xk, xk+1, . . . , xn, k = 1, 2, . . . , n − 1, we find the greatest absolute value of
the elements

a
(k−1)
k+1k

, a
(k−1)
k+2k

, . . . , a
(k−1)
nk

,

and interchange k-th equation with s-th equation to have the pivotal element

a
(k−1)
sk which has the greatest absolute value on the pivotal place in k-th row

and k-th column. Then, we can continue elimination of remaining unknowns
xk, xk+1, . . . , xn taking pivotal entries with the greatest absolute values. The
partial pivoting strategy always succeeds, ifA is a non-singular matrix. Partial
pivoting can be also done with interchange of relevant columns in matrix A.
Then, the greatest absolute values of elements

a
(k−1)
kk , a

(k−1)
kk+1 , . . . , a

(k−1)
kn

allocated in k-th row of the matrix A should be found.
In order to illustrate the partial pivoting strategy, let us consider the following
examples:

Example 2.1 Solve the system of equations

5x1 + x2 + 2x3 + 3x4 = 5
10x1 + 2x2 − 6x3 + 9x4 = 4
5x1 − x2 + x3 + 4x4 = 1
15x1 − 3x2 − 3x3 + 9x4 = 9

(2.10)

using

1. (a) partial pivoting strategy for interchange of rows,

(b) partial pivoting strategy for interchange of columns.

Solution (a). According to partial pivoting, we interchange fourth equation
with first equation to have the greatest pivotal element 15 on first pivotal place
in first row and first column. Then, we obtain

15x1 − 3x2 − 3x3 + 9x4 = 9
10x1 + 2x2 − 6x3 + 9x4 = 4
5x1 − x2 + x3 + 4x4 = 1
5x1 + x2 + 2x3 + 3x4 = 5

(2.11)

Thus, first reduced system of equations is:

15x1 − 3x2 − 3x3 + 9x4 = 9
4x2 − 4x3 + 3x4 = −2

2x3 + x4 = −2
2x2 + 3x3 + = 2

(2.12)
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To get second reduced system, we do not need to make any interchange since

a
(1)
22 = 4 is the greatest entry in 2-nd column on the pivotal place. Thus, second

reduced system is:

15x1 − 3x2 − 3x3 + 9x4 = 9
4x2 − 4x3 + 3x4 = −2

2x3 + x4 = −2
5x3 − 3

2
x4 = 3

(2.13)

Obviously, third (last) reduced system of equations has upper-triangular form

15x1 − 3x2 − 3x3 + 9x4 = 9
4x2 − 4x3 + 3x4 = −2

5x3 − 1.5x4 = 3
− 1.6x4 = 3.2

(2.14)

Hence, the solution is

x4 = −2,

x3 =
1

2
[−2− (−2)] = 0,

x2 =
1

4
[−2 + 4 ∗ 0− 3 ∗ (−2)] = 1,

x1 =
1

15
[9 + 3 ∗ 1 + 3 ∗ 0− 9 ∗ (−2)] = 2.

Solution (b). Let us come back to the original system of equations (2.10).

Evidently, the entry a
(0)
11 = 5 has greatest absolute value among all entries in

first row of A. Therefore, there is no a need to interchange columns in A.
Then, we obtain
First reduced system of equations:

5x1 + 2x2 + x3 + 3x4 = 5
− 10x3 + 3x4 = −6

− 2x2 − x3 + x4 = −4
− 6x2 − 9x3 + = −6

(2.15)

We shall interchange second and fourth equations in (2.15) to obtain the fol-
lowing system of equations:

5x1 + x2 + 2x3 + 3x4 = 5
− 6x2 − 9x3 = −6
− 2x2 − x3 + x4 = −4

− 10x3 + 3x4 = −6

(2.16)
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Next, we shall interchange second and third columns in (2.16) to get the pivotal

entry a
(1)
22 = −9 on the pivotal place in second row and second column.

5x1 + 2x3 + x2 + 3x4 = 5
− 9x3 − 6x2 = −6
− x3 − 2x2 + x4 = −4
− 10x3 + 3x4 = −6

(2.17)

Now, we shall eliminate x3 from third and fourth equations in (2.17) to obtain
the second reduced system of equations:

5x1 + 2x3 + x2 + 3x4 = 5
− 9x3 − 6x2 = −6

− 4

3
x2 + x4 = −10

3
20

3
x2 + 3x4 =

2

3

(2.18)

The pivotal entry a
(2)
33 = −4

3
has the greatest absolute value in first row of the

matrix

A(2) =











−4

3
1

20

3
3











.

Therefore, according to the partial pivoting, we shall not make any change of
columns to eliminate x2 from fourth equation in (2.18). Then, we obtain third
(last) reduced system of equations:

5x1 + 2x3 + x2 + 3x4 = 5
− 9x3 − 6x2 = −6

− 4

3
x2 + x4 = −10

3

8x4 = −16

(2.19)

Hence, by backward substitution, we find the solution

x4 = −2,

x2 = −3

4
[−10

3
− 2 ∗ (−2)] = 1,

x3 = −1

9
[−6 + 6 ∗ 1] = 0,

x1 =
1

5
[5− 2 ∗ 0− 1− 3(−2)] = 2.

In the programming approach to the partial pivoting on rows, in Mathematica,
we shall use the following algorithm
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1. Set the matrix m = [a|b] that includes right side vector b and the empty
list {}.

2. Find the maximum element in the first column of m and denote it by
mk.

3. Denote by k the position of mk in the first column of m.

4. Set rowk = m[[k]]/mk

5. Append rowk to e.

6. Drop k-th row of m.

7. Replace each row of m by the row − rowk ∗ F irst[row]

8. Drop first column of m

9. Return {m, e}.

10. Nest steps
tt 1 - 7 n times, where n is the number of rows in m.

The Mathematica module eliminatepivo based on the partial pivoting re-
duces a system of algebraic equations to the upper triangular form and gives
its solution.

eliminatepivo[a_, b_]:= Module[

{oneIter, mat, elimMatrix},

oneIter[{m_,e_}]:= Module[

{column1, mk, k, rowk, changeOneRow},

column1=Map[First[#]&, m];

mk= Max[column1];

{{k}}= Position[column1, mk];

rowk= m[[k]]/mk;

changeOneRow[row_]:= row - rowk*First[row];

{Map[Rest[#]&,

Map[changeOneRow, Drop[m, {k}]]] ,

Append[e, Rest[rowk]]} ];

mat = Transpose[ Append[Transpose[a], b]];

{{}, elimMatrix}=

Nest[oneIter, {mat, {}}, Length[First[mat]]-1];
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Fold[Prepend[#1, Last[#2] - Drop[#2, -1] . #1]&,

Last[elimMatrix],

Rest[Reverse[elimMatrix]]]

]

To solve the system of equations (2.11) using the module eliminatepivo, we
input data

m={{5,1,2,3,},{10,2,-6,9},{5,-1,1,4},{15,-3,-3,9}};

b={5,4,1,9}

and invoke the module eliminatepivo[m,b].

2.3 Principal Element Strategy

We apply principal element strategy to operate with possibly greatest pivotal
entries in Gauss elimination. First, we find the greatest absolute value of
entries in matrix A. Let

|ars| = max
1≤i,j≤n

|aij|.

Then, we interchange first row with r-th row and first column with s-th col-
umn to place the greatest value as first pivotal element. We should renumer-
ate equations and unknowns, respectively. Next, we eliminate the relevant
unknown from second, third,. . .,n-th of the newly renumerate equations to get
first reduced system of equations. Secondly, we find the greatest absolute value

among the entries a
(1)
ij , i, j = 2, 3, . . . , n. Let

| a(1)
rs |= max

2≤i,j≤n
| a(1)

ij | .

Then, we interchange second row with the r-th row and second column with s-
th column to place the greatest pivotal entry on second row and second column.
We should renumerate equations and unknowns, again. After, elimination of
x2 from third, fourth,. . . , n − th equations, we get second reduced system of
equations. We repeat this process till upper-triangular systems appears.

Example 2.2 Solve the system of equations

5x1 + x2 + 2x3 + 3x4 = 5
10x1 + 2x2 − 6x3 + 9x4 = 4
5x1 − x2 + x3 + 4x4 = 1
15x1 − 2x2 − x3 + 10x4 = 8

(2.20)

using full pivoting strategy.
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Solution. Evidently a14 = 15 is the greatest entry of the matrix

A =











5 1 2 3
10 2 −6 9
5 −1 1 4
15 −2 −1 10











.

Therefore, we interchange first equation with fourth equation to get the great-
est pivotal entry on first pivotal place. Then, we consider the system of equa-
tions

15x1 − 2x2 − x3 + 10x4 = 8
10x1 + 2x2 − 6x3 + 9x4 = 4
5x1 − x2 + x3 + 4x4 = 1
5x1 + x2 + 2x3 + 3x4 = 5

(2.21)

After first step of elimination, we shall obtain the first reduced system of
equations:

15x1 − 2x2 − x3 + 10x4 = 8

10

3
x2 −

16

3
x3 +

7

3
x4 = −4

3

− 1

3
x2 − 4

3
x3 +

2

3
x4 = −5

3
5

3
x2 +

7

3
x3 − 1

3
x4 =

7

3

(2.22)

Now, we shall find the greatest absolute entry in the matrix




















10

3
−16

3

7

3

−1

3
−4

3

2

3
5

3

7

3
−1

3





















.

The greatest absolute entry

| a(1)
23 |=| −

16

3
| .

We interchange second and third columns in the matrix

A(1) =





























15 −2 −1 10

0
10

3
−16

3

7

3

0 −1

3
−4

3

2

3

0
5

3

7

3
−1

3





























.
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to get the greatest absolute pivotal entry on the pivotal place in second row and
in second column. Then, x2 takes the position of x3 and x3 takes the position
of x2. For second step of elimination, we consider the following system of
equations:

15x1 − x3 − 2x2 + 10x4 = 8

− 16

3
x3 +

10

3
x2 +

7

3
x4 = −4

3

− 4

3
x3 − 1

3
x2 +

2

3
x4 = −5

3
7

3
x3 +

5

3
x2 − 1

3
x4 =

7

3

(2.23)

Now, we shall eliminate x3 from third and fourth equations in (2.23) to get
second reduced system of equations:

15x1 − x3 − 2x2 + 10x4 = 8

− 16

3
x3 +

10

3
x2 +

7

3
x4 = −4

3

− 7

6
x2 +

1

12
x4 = −4

3

+
25

8
x2 +

11

16
x4 =

7

4

(2.24)

We us observe that a
(2)
43 = 25

8
is the greatest entry in the matrix











−7

6

1

12
25

8

11

16











Thus, we shall interchange third and fourth equations in (2.24) to get the
greatest pivotal entry on the pivotal place in third row and third column.
Then, we consider the following system of equations:

15x1 − x3 − 2x2 + 10x4 = 8

− 16

3
x3 +

10

3
x2 +

7

3
x4 = −4

3

+
25

8
x2 +

11

16
x4 =

7

4

− 7

6
x2 +

1

12
x4 = −4

3

(2.25)
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Finally, we shall eliminate x2 from fourth equation in (2.25) to get the last
reduced system of equations in the upper-triangular form

15x1 − x3 − 2x2 + 10x4 = 8

− 16

3
x3 +

10

3
x2 +

7

3
x4 = −4

3
25

8
x2 +

11

16
x4 =

7

4
17

50
x4 = −17

25

(2.26)

Hence, the solution is:

x4 = −2

x2 = −6

7
[−4

3
− 1

12
(−2)] = 1

x3 = − 3

16
[−4

3
− 10

3
− 7

3
(−2)] = 0

x1 =
1

15
[8 + 2− 10(−2)] = 2.

2.4 LU-Decomposition.

Applying Gauss elimination method, we obtain the solution x = (x1, x2, . . . , xn)
of the system of equations

Ax = a (2.27)

and the following factorized form of the matrix A:

A = LU,

where the lower triangular matrix

L =





















1 0 0 0 · · · 0 0
m21 1 0 0 · · · 0 0
m31 m32 1 0 · · · 0 0
m41 m42 m43 1 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
mn1 mn2 mn3 mn4 · · · mnn−1 1





















,
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and the upper-triangular matrix

U =























a
(0)
11 a

(0)
12 a

(0)
13 a

(0)
14 · · · a

(0
1n−1 a

(0)
1n

0 a
(1)
22 a

(1)
23 a

(1)
24 · · · a

(1)
2n−1 a

(1)
2n

0 0 a
(2)
33 a

(2)
34 · · · a

(2)
3n−1 a

(2)
3n

0 0 0 a
(3)
44 · · · a

(3)
4n−1 a

(3)
4n

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 a(n−1)

nn























,

Indeed, the product of i-th row of the matrix L by k-th column of the matrix
U is:

n
∑

s=1

LisUsk =
p

∑

s=1

misa
(s−1)
sk ,

where p = min{i, k}.
Let us note that

a
(s)
ik = a

(s−1)
ik −misa

(s−1)
sk ,

By taking the sum of both hand sides, we obtain

a
(p)
ik = aik −

p−1
∑

s=1

misa
(s−1)
sk .

Hence

aik = a
(p)
ik +

p
∑

s=1

misa
(s−1)
sk .

One can check that the following equalities hold:

a
(p)
ik = a

(i)
ik if i ≤ k

and
a

(p)
ik = 0 if i > k.

Thus, for mii = 1, we have

aik =
p

∑

s=1

misa
(s−1)
sk =

n
∑

s=1

LisUsk.

As an example of LU decomposition, we note that the matrix of the system
of equations in (2.2) has the following LU decomposition:

A =











2 1 4 −3
4 −3 1 −2
6 4 −3 −1
8 2 1 −2











=























1 0 0 0
2 1 0 0

3 −1

5
1 0

4
2

5

61

82
1













































2 1 4 −3
0 −5 −7 4

0 0 −82

5

44

5

0 0 0
76

41























. = LU
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2.5 Root Square Method

It is possible to present a symmetric matrix A = {Aij}, i, j = 1, 2, ..., n as the
square of a triangular matrix (cf. [6])

L =















L11 L12 L13 · · · L1n

0 L22 L23 · · · L2n

0 0 L33 · · · L3n

· · · · · · · · · · · · · · ·
0 0 0 · · · Lnn















so that A = LTL. Indeed, we note that

Aij = L1iL1j + L2iL2j + · · · + LiiLij, i = 1, 2, ..., j − 1

and
Aii = L2

1i + L2
2i + · · ·+ L2

ni, i = j.

Hence

L11 =
√
A11, L1j =

A1j

L11

, j = 2, 3, ..., n,

Lii =

√

√

√

√Aii −
i−1
∑

k=1

L2
ki, i = 2, 3, ..., n,

Lij =
1

Lii

[Aij −
i−1
∑

k=1

LkiLkj ], j = i+ 1, i+ 2, ..., n,

Lij = 0, j = 1, 2, ..., i− 1.

The LL-decomposition algorithm always succeeds if A is a positive definite
matrix. However, the algorithm is also applicable when A is a symmetric ma-
trix, provided that Lii 6= 0, i = 1, 2, ..., n. In the case when complex numbers
appear (Aii−

∑

L2
ki < 0) the algorithm produces complex entries of the trian-

gular matrix L.
Having LL-decomposition of the matrix A, we can find solution x of the system
of linear equations

Ax = b

by the substitution
LT z = b and Lx = z.

So that

z1 =
b1
L11

, zi =
1

Lii

[bi −
i−1
∑

k=1

Lkizk], i = 2, 3, ..., n,

and by backward substitution

xn =
zn

Lnn

, xi =
1

Lii

[zi −
n

∑

k=i+1

Likxk], i = n− 1, n− 2, ..., 1.
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Example 2.3 Let us solve the following system of linear equations (cf. [6])

x1 + 0.42x2 + 0.54x3 + 0.66x4 = 0.3
0.42x1 + 1x2 + 0.32x3 + 0.44x4 = 0.5
0.54x1 + 0.32x2 + 1x3 + 0.22x4 = 0.7
0.66x1 + 0.44x2 + 0.22x3 + 1x4 = 0.9

using the following Mathematica module choleva

choleva[a_,b_]:=Module[{l,i,j,k,m,m1,n,x,z},

n=Length[a[[1]]];

l[1,1]:=l[1,1]=Sqrt[a[[1,1]]];

l[1, j_]:=l[1,j]=a[[1,j]]/l[1,1];

l[i_,i_]:=l[i,i]=Sqrt[a[[i,i]]- Sum[l[k,i]^2, {k, 1,i-1}]];

l[i_, j_]:=l[i,j]=

(a[[i,j]]-Sum[l[k,i] l[k,j], {k,1,i-1}])/l[i,i];

m=Table[Join[Table[0,{i-1}],Table[l[i,j],{j,i,n}]],

{i,1,n}];l[n,n];

m1=Transpose[m];

z[1]=b[[1]]/m1[[1,1]];

z[i_]:=z[i]=(b[[i]]-Sum[m1[[i,j]]*z[j],{j,1,i-1}])/m1[[i,i]];

x[n]=z[n]/m[[n,n]];

x[i_]:=x[i]=(z[i]-Sum[m[[i,j]]*x[j],{j,i+1,n}])/m[[i,i]];

Print["x = ",Table[x[i],{i,1,n}]];

Print["Matrix L =",MatrixForm[m]]

]

We input the matrix a and the right side vector b

a={{1.,0.42,0.54,0.66},{0.42,1.,0.32,0.44},

{0.54,0.32,1.,0.22},{0.66,0.44,0.22,1.}};

b={0.3,0.5,0.7,0.9};

Then, we invoke the module

choleva[a,b]

to obtain the solution

x = {-1.25779, 0.0434873, 1.03917, 1.48239}

and the upper triangular matrix

L =











1. 0.42 0.54 0.66
0 0.907524 0.102697 0.179389
0 0 0.835376 −0.185333
0 0 0 0.7056











.
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2.6 Gauss Elimination for Tri-diagonal Matrices.

Let us note that for a tri-diagonal matrix A, the system of linear equations
(2.1) takes the following form:

a11x1 + a12x2 = a1n+1

a21x1 + a22x2 + a23x3 = a2n+1

a32x2 + a33x3 + a34x4 = a3n+1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
aii−1xi−1 + aiixi + aii+1xi+1 = ain+1

· · · · · · · · · · · · · · · · · · · · · · · ·
ann−1xn−1 + annxn = ann+1

Applying Gauss elimination to the above tri-diagonal system of equations, we
obtain the last reduced system of equations:

a11x1 + a12x2 = a1n+1

a
(1)
22 x2 + a23x3 = a

(1)
2n+1

a
(2)
33 x3 + a34x4 = a

(2)
3n+1

· · · · · · · · · · · · · · · · · · · · · · · ·
a

(i−1)
ii xi + aii+1xi+1 = a

(i−1)
in+1

· · · · · · · · · · · · · · ·
a(n−1)

nn xn = a
(n−1)
nn+1

(2.28)

where (see (2.8) and (2.9))

a
(i−1)
ii = aii −

aii−1

a
(i−2)
i−1i−1

ai−1i,

a
(i−1)
in+1 = ain+1 −

a
(i−2)
i−1n+1

a
(i−2)
i−1i−1

aii−1,

for i = 2, 3, . . . , n.
From formulae (2.9), we have

xn =
a

(n−1)
nn+1

a
(n−1)
nn

,

and

xi =
1

a
(i−1)
ii

[a
(i−1)
in+1 − aii+1xi+1],

for i = n− 1, n− 2, . . . , 1.
Let us denote by

αi =
aii+1

a
(i−1)
ii

, i = 1, 2, ..., n− 1 βi =
a

(i−1)
in+1

a
(i−1)
ii

i = 1, 2, ..., n.
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Then, we have

α1 =
a12

a11
, β1 =

a1n+1

a11

and

αi =
aii+1

aii − αi−1aii−1
, βi =

ain+1 − βi−1aii−1

aii − αi−1aii−1
.

We obtain the following algorithm for solving a system of equations with a
tri-diagonal matrix.
Algorithm.

Set :

α1 =
a12

a11
, β1 =

a1n+1

a11

for i = 2, 3, . . . , n− 1, evaluate :

αi =
aii+1

aii − αi−1aii−1

for i = 2, 3, . . . , n, evaluate :

βi =
ain+1 − βi−1aii−1

aii − αi−1aii−1

set : xn = βn

evaluate : for i = n− 1, n − 2, . . . , 1

xi = βi − αixi+1.

(2.29)

The above algorithm is stable with respect to round-off errors if the tri-diagonal
matrix A satisfies the following conditions:

a11 >| a12 |, ann >| ann−1 |,

aii ≥| aii−1 | + | aii+1 |, i = 2, 3, . . . , n− 1.

Then all α′s coefficients are less than one.
Indeed, we have

| α1 |< 1

| αi |≤ |
aii+1

aii − αi−1aii−1
|≤ | aii+1 |
| aii+1 | +(1− | αi−1 |) | aii−1 |

< 1.

for i = 2, 3, . . . , n− 1.

The solution x can be obtained by this algorithm with total number of 8n− 6
arithmetic operations.
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In order to implement the algorithm in Mathematica, we input data matrix
and the right side vector as the lists

a = {a1, a2, ..., an}, b = {b1, b2, ..., bn−1, 0}
c = {0, c2, c3, ..., cn}, f = {f1, f2, ..., fn}

and invoke the following module

soltri[a_,b_,c_,f_]:=Module[{al,be,n,x},

n=Length[a];

al[1]=b[[1]]/a[[1]];

al[i_]:=al[i]=b[[i]]/(a[[i]]-al[i-1]*c[[i]]);

be[1]=f[[1]]/a[[1]];

be[i_]:=be[i]=(f[[i]]-be[i-1]*c[[i]])/

(a[[i]]-al[i-1]*c[[i]]);

x[n]=be[n];

x[i_]:=x[i]=be[i]-al[i]*x[i+1];

Table[x[i],{i,1,n}]

]

Example 2.4 Let us consider the following system of linear equations:

2x1 − x2 = f1

−x1 + 2x2 − x3 = f2

− x2 + 2x3 − x4 = f3

· · · · · · · · · · · · · · · · · ·
− xi−1 + 2xi − xi+1 = fi

· · · · · · · · · · · · · · · · · ·
− xn−1 + 2xn = fn

To solve this system of equations when n = 8, we input data

a = {2., 2., 2., 2., 2., 2., 2., 2.}, b = {−1.,−1.,−1.,−1.,−1.,−1.,−1., 0}
c = {0,−1.,−1.,−1.,−1.,−1.,−1.,−1.}, f = {0., 2.,−2., 2.,−2., 2.,−2., 0.}

and invoke the module

soltri[a,b,c,f]

to obtain the solution x = {1., 2., 1., 2., 1., 2., 1., 2.}.

2.7 Gauss Elimination for Block Tri-diagonal Matrices

Let us consider the system of linear equations with tri-diagonal block matrix
(cf. [7])

AX = B, (2.30)
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where the right side vector and unknown vector are:

B =

















B1

B2

B3
...
Bn

















, Bi =

















Bi1

Bi2

Bi3
...
Bin

















, X =

















X1

X2

X3
...
Xn

















, Xi =

















xi1

xi2

xi3
...
xim

















,

and the block matrix

A =















A11 A12 0 0 · · · 0 0
A21 A22 A23 0 · · · 0 0
0 A32 A33 A34 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 Ann−1 Ann















,

Aij =











a11
ij a12

ij · · · a1m
ij

a21
ij a22

ij · · · a2m
ij

· · · · · · · · · · · ·
am1

ij am2
ij · · · amm

ij











, i, j = 1, 2, ..., n.

Clearly, the system of equations (2.30) takes the following form in the block
notation:

A11X1 +A12X2 = B1

A21X1 +A22X2 +A23X3 = B2

A32X2 +A33X3 +A34X4 = B3

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
An−1n−1Xn−1 +An−1nXn = Bn−1

Ann−1Xn−1 +AnnXn = Bn

(2.31)
Applying non-pivoting strategy, we can find the solution X, provided that the
pivotal matrices are non-zero entries.
In order to get the first reduced system of equations, we multiply from the left
first row-block in (2.31) by the matrix

M21 = A21A
−1
11

providing that the inverse matrix A−1
11 exists. Then, we obtain

the first reduced system of equations:

A11X1 +A12X2 = B1

A
(1)
22 X2 +A23X3 = B

(1)
2

A32X2 +A33X3 +A34X4 = B3

· · · · · · · · · · · · · · · · · · · · ·
An−1n−1Xn−1 +An−1nXn = Bn−1

Ann−1Xn−1 +AnnXn = Bn

(2.32)
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where
A

(1)
22 = A22 − A21A

−1
11 A12,

B
(1)
2 = B2 − A21A

−1
11 B1.

Next, multiplying from the left second row-block in (2.32) by the matrix

M32 = A32A
−(1)
22

we obtain
the second reduced system of equations:

A11X1 +A12X2 = B1

A
(1)
22 X2 +A23X3 = B

(1)
2

A
(2)
33 X3 +A34X4 = B

(2)
3

· · · · · · · · · · · · · · · · · · · · ·
An−1n−1Xn−1 +An−1nXn = Bn−1

Ann−1Xn−1 +AnnXn = Bn

(2.33)
where

A
(2)
33 = A33 − A32A

−(1)
22 A23,

B
(2)
3 = B3 − A32A

−(1)
22 B

(1)
2 .

We continue the block elimination process if the pivotal matrices A
(i−1)
ii , i =

1, 2, ..., n; are non-singular. As the final step of elimination, we obtain
the last reduced system of equations:

A11X1 +A12X2 = B1

A
(1)
22 X2 +A23X3 = B

(1)
2

A
(2)
33 X3 +A34X4 = B

(2)
3

· · · · · · · · · · · · · · · · · · · · ·
A

(n−2)
n−1n−1Xn−1 +An−1nXn = B

(n−2)
n−1

A(n−1)
nn Xn = B(n−1)

n

(2.34)
where

A
(i−1)
ii = Aii − Aii−1A

−(i−2)
i−1i−1Ai−1i,

B
(i−1)
i = Bi − Aii−1A

−(i−2)
i−1i−1B

−(i−2)
i−1 ,

i = 2, 3, ..., n.
Hence, the solution is

Xn = A−(n−1)
nn B(n−1)

n ,

Xi = A
−(i−1)
ii [B

(i−1)
i − Aii+1Xi+1], i=n-1,n-2,...,1.

(2.35)

The following theorem holds:
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Theorem 2.1 (cf. [5], p.112) If the block matrices Aii, i = 1, 2, ..., n are
non-singular and satisfy the inequalities

‖ A−1
ii ‖1 (‖ Aii−1 ‖1 + ‖ Aii+1 ‖) < 1

for i = 1, 2, ..., n. when A10 = Ann+1 = 0,
then the Gauss block elimination can be completed and the solution X of the
system of equations (2.32) is determined by the formula (2.35).

Example 2.5 Let us solve the system of equations

4x1 −x2 +x3 = 5
−x1 +4x2 +x4 = 11
x1 +4x3 −x4 +x5 = 14

x2 −x3 +4x4 +x6 = 21
x3 +4x5 −x6 = 17

x4 −x5 +4x6 = 23

by Gauss block elimination.

Solution. We can write the above system of equations in the block form

A11X1 + A12X2 = B1

A21X1 + A22X2 + A23X3 = B2

A32X2 + A33X3 = B3

(2.36)

where the vector B = (B1, B2, B3)
T has the components

B1 =

[

5
11

]

, B2 =

[

14
21

]

, B3 =

[

17
23

]

,

and the unknown vector X = (X1, X2, X3)
T has the components

X1 =

[

x11

x12

]

, X2 =

[

x21

x22

]

, X3 =

[

x31

x32

]

,

and the matrices

A11 = A22 = A33 =

[

4 −1
−1 4

]

, A12 = A21 = A23 = A32 =

[

1 0
0 1

]

.

Multiplying from the left first row-block in (2.36) by the matrix

M21 = A21A
−1
11 =

1

15

[

4 1
1 4

]

,
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and then subtracting the result from the second row-block, we obtain
the first reduced system of equations:

A11X1 + A12X2 = B1

A
(1)
22 X2 + A23X3 = B

(1)
2

A32X2 + A33X3 = B3

(2.37)

where

A
(1)
22 = A22 − A21A

−1
11 A12 =

[

4 −1
−1 4

]

− 1

15

[

4 1
1 4

]

=
1

15

[

56 −16
−16 56

]

,

B
(1)
2 = B2 − A21A

−1
11 B1 =

[

14
21

]

− 1

15

[

4 1
1 4

] [

5
11

]

=
1

15

[

179
266

]

.

To eliminate the unknownX2 from third equation in (2.37), we multiply second
row-block by the matrix

M32 = A32A
−(1)
22 =

1

24

[

7 2
2 7

]

and we subtract the result from third row-block in (2.37). Then, we obtain
the second reduced system of equations:

A11X1 + A12X2 = B1

A
(1)
22 X2 + A23X3 = B

(1)
2

+ A
(2)
33 X3 = B

(2)
3

(2.38)

where

A
(2)
33 = A33−A32A

−(1)
22 A23 =

[

4 −1
−1 4

]

− 1

24

[

7 2
2 7

]

=
1

24

[

89 −26
−26 89

]

,

B
(2)
3 = B3 − A−(1)

22 B
(1)
2 =

[

17
23

]

− 1

24

[

7 2
2 7

]

1

15

[

179
266

]

=
1

24

[

289
404

]

.

Hence, by formula (2.35), we obtain

X3 = A
−(2)
33 B

(2)
3 =

24

7245

[

89 26
26 89

]

1

24

[

289
404

]

=
1

7245

[

36225
43470

]

=

[

5
6

]

,

X2 = A
−(1)
22 [B

(1)
2 − A23X3] =

1

24

[

7 2
2 7

] {

1

15

[

179
266

]

−
[

5
6

]}

=

[

3
4

]

.

X1 = A−1
11 [B1 − A12X2] =

1

15

[

4 1
1 4

] {[

5
11

]

−
[

3
4

]}

=

[

1
2

]
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2.8 Gauss Elimination for Pentediagonal Matrices.

Let us write the system of linear equations (2.1) in the case when A is a
pentadiagonal matrix

a11x1 + a12x2 + a13x3 = a1n+1

a21x1 + a22x2 + a23x3 + a24x4 = a2n+1

a31x1 + a32x2 + a33x3 + a34x4 + a35x5 = a3n+1

a42x2 + a43x3 + a44x4 + a45x5 + a46x6 = a4n+1

. . .
...

· · ·+ annxn = ann+1

This system of equations has the following pentadiagonal structure:
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




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
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where ∗ = aik = a
(0)
ik , i = 1, 2, ..., n, k = 1, 2, ..., n+ 1.

Eliminating unknown x1, we obtain the first reduced system of equations which
has the following structure
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where

∗(1)
ik = aik −mi1a1k, mi1 =

ai1

a11
, i = 2, 3; k = 2, 3, n + 1.

After second step of elimination, we obtain the second reduced system of
equations which has the following structure
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a
(1)
ik −mi2a

(1)
2k , mi2 =

a
(1)
i2

a
(1)
22

, i = 3, k = 3, n + 1,

aik −mi2a2k, mi2 =
a

(1)
i2

a
(1)
22

, i = 3, k = 4,

aik −mi2a
(1)
2k , mi2 =

ai2

a
(1)
22

, i = 4, k = 3, 4, n + 1

Continuing elimination of successive unknowns, we obtain the following upper
triangular system of equations:
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In general, the coefficients are determined by the formulas

∗(s)ik =











































a
(s−1)
ik −misa

(s−1)
sk , mis =

a
(s−1)
is

a
(s−1)
ss

, i = s+ 1, k = s+ 1, n + 1,

aik −misask, mis =
a

(s−1)
is

a
(s−1)
ss

, i = s+ 1, k = s+ 2,

aik −misa
(s−1)
sk , mis =

ais

a
(s−1)
ss

, i = s+ 2, k = s+ 1, s + 2, n+ 1

for s = 2, 3, ..., n− 2, and for s = n− 1, we have

∗(n−1)
nn = a(n−2)

nn −mnn−1a
(n−2)
n−1n , mnn−1 =

a
(n−2)
nn−1

a
(n−2)
n−1n−1

.

and
∗(n−1)

nn+1 = a
(n−2)
nn+1 −mnn−1a

(n−2)
n−1n+1.

Hence, by backward substitution, we find the solution

xn =
a

(n−1)
nn+1

a
(n−1)
nn

xn−1 =
1

a
(n−2)
n−1n−1

[a
(n−2)
n−1n+1 − a(n−2)

n−1n xn]

xn−2 =
1

a
(n−3)
n−2n−2

[a
(n−3)
n−2n+1 − a(n−3)

n−2n−1xn−1 − an−2nxn]

xn−3 =
1

a
(n−4)
n−3n−3

[a
(n−4)
n−3n+1 − a(n−4)

n−3n−2xn−2 − an−3n−1xn−1]

................................................................................

xs =
1

a
(s−1)
ss

[a
(s−1)
sn+1 − a(s−1)

ss+1 xs+1 − ass+2xs+2]

.................................................................................

x2 =
1

a
(1)
22

[a
(1)
2n+1 − a(1)

23 x3 − a24x4]

x1 =
1

a11
[a1n+1 − a12x2 − a13x3]

(2.39)

The module solvefive in Mathematica solves a system of linear equations
with a pentadiagonal matrix A. The input entries of the pentadiagonal matrix
are to be stored on the following list

a = {{a31, a42, ..., ann−1}, {a21, a32, ..., ann−1},
{a11, a22, ..., ann}, {a12, a23, ..., an−1n},
{a13, a24, ..., an−2,n}, {an+1,1, an+1,2, ..., an+1,n}}.
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solvefive[a_]:=

Module[{a1,a2,d,a3,a4,f,x,x1,y,n},

{a1,a2,d,a3,a4,f}=Table[a[[i]],{i,1,6}];

n=Length[d];

Do[x=a2[[i-1]]/d[[i-1]];

d[[i]]=d[[i]]-x*a3[[i-1]];

a3[[i]]=a3[[i]]-x*a4[[i-1]];

f[[i]]=f[[i]]-x*f[[i-1]];

x=a1[[i-1]]/d[[i-1]];

a2[[i]]=a2[[i]]-x*a3[[i-1]];

d[[i+1]]=d[[i+1]]-x*a4[[i-1]];

f[[i+1]]=f[[i+1]]-x*f[[i-1]],{i,2,n-1}];

x1=a2[[n-1]]/d[[n-1]];

d[[n]]=d[[n]]-x1*a3[[n-1]];

y[n]=(f[[n]]-x1*f[[n-1]])/d[[n]];

y[n-1]=(f[[n-1]]-a3[[n-1]]*y[n])/d[[n-1]];

y[i_]:=y[i]=

(f[[i]]-a4[[i]]*y[i+2]-a3[[i]]*y[i+1])/d[[i]];

Table[y[i],{i,1,n}]

]

Entering the input data

a={{1.,1.,1.,1.,1.,0.},

{-16.,-16.,-16.,-16.,-16.,-16.,-12.},

{24.,30.,30.,30.,30.,30.,30.,24.},

{-12.,-16.,-16.,-16.,-16.,-16.,-16.},

{0.,1.,1.,1.,1.,1.},

{12.,-1.,0.,0.,0.,0.,-1.,12.}};

we obtain the solution x = {1, 1, 1, 1, 1, 1, 1, 1} by executing the command

solvefive[a].

2.9 Exercises

Question 2.1 Solve the following system of equations:

5x1 + x2 + 2x3 + 5x4 = 1
10x1 + 2x2 − 6x3 + 9x4 = 4
3x1 − 2x2 + 4x3 + x4 = 2
15x1 − 2x2 − x3 + 10x4 = 8

(2.40)

using

1. (a) partial pivoting,
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(b) full pivoting.

Question 2.2 Using a calculator, solve the following system of equations:

0.000003x1 + 0.001x2 = 6
10x1 + 3333.333x2 = 19999999

by

1. (a) Gauss elimination without any pivoting,

(b) Gauss elimination with partial pivoting,

(c) Gauss elimination with full pivoting.

Note that the exact solution : x1 = 1000000, x2 = 3000.
Explain why Gauss elimination fails to get the accurate solution.

Question 2.3 .
(a). Solve the following system of equations:

3x1 + x2 + 2x3 + 3x4 = 10
6x1 + 4x2 − 6x3 + 9x4 = 25
9x1 − 6x2 + 4x3 + 8x4 = 20
15x1 − 8x2 − x3 + 10x4 = 32

(2.41)

(b). Find LU-decomposition of the matrix

A =











3 1 2 3
6 4 −6 9
9 −6 4 8
15 −8 −1 10











.

Question 2.4 Solve the following system of linear equations by the root square
method

4x1 + 2x2 + x3 + x4 = 0
2x1 + 6x2 + x3 − x4 = 4
x1 + x2 + 5x3 + 2x4 = 27
x1 − x2 + 2x3 + 7x4 = 19

Question 2.5 .

1. (a) Find the upper-triangular form of the system of linear equations us-
ing Gauss elimination method

2x1 + 3x2 − x3 = 1

4x1 + 2x2 + x3 = 2

6x1 + x2 + 4x3 = 7

Solve the above system of equations.
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(b) Find the LU-decomposition of the matrix

A =







2 3 −1
4 2 1
6 1 4





 .

Calculate the determinant of the matrix A using the LU-decomposition.

Question 2.6 Consider the following system of equations:

4x1 + x2 = 1
x1 + 4x2 + x3 = 4

x2 + 4x3 + x4 = 9
· · · · · · · · · · · · · · · · · ·
xi−1 + 4xi + xi+1 = i2

· · · · · · · · · · · · · · · · · ·
xn−1 + 4xn = n2

Write an algorithm based on Gauss elimination to solve the above system of
equations. Find the solution when n = 10.

Question 2.7 .

Derive the algorithm based on Square Root Method for solving the system
of equations Ax = F , where the tri-diagonal matrix

A =























































a b 0 0 0 · · · 0 0

b a b 0 0 · · · 0 0

0 b a b 0 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · · a ≥ 2b > 0

0 0 0 0 0 · · · b a























































(a)(b) Use the algorithm, which you have found in (a), to solve the system of
equatins

4x1 − x2 = 3

−x1 + 4x2 − x3 = 2

−x2 + 4x3 − x4 = 2

−x3 + 4x4 − x5 = 2

−x4 + 4x5 = 3
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Question 2.8 .

Consider the system of equations

3x1 − x2 = F1

−x1 + 3x2 − x3 = F2

................ ... .....

−xi−1 + 3xi − xi+1 = Fi, i = 2, 3, ..., n− 1,

................ ... .....

−xn−2 + 3xn−1 − xn = Fn−1

−x4 + 3x5 = Fn

(a)(a) Derive the algorithm based on Gause Elimination Method for solving the
system of equations and show that the algorithm is numerically stable.

(b) Use the algorithm which you have found in (a) to solve the system of
equatins

3x1 − x2 = 2

−x1 + 3x2 − x3 = 1

−x2 + 3x3 − x4 = 1

−x3 + 3x4 − x5 = 1

−x4 + 3x5 = 2
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Chapter 3

Eigenvalues and Eigenvectors of
a Matrix

3.1 Eigenvalue Problem

In this chapter, we shall consider the following eigenvalue problem:

Find all real or complex values of λ and corresponding non-zero vectors
x = (x1, x2, . . . , xn)

T 6= 0, such that















a11 a12 a13 · · · a1n−1 a1n

a21 a22 a23 · · · a2n−1 a2n

a31 a32 a33 · · · a3n−1 a3n

· · · · · · · · · · · · · · · · · ·
an1 an2 an3 · · · ann−1 ann































x1

x2

x3
...
xn

















= λ

















x1

x2

x3
...
xn

















. (3.1)

Clearly, this system of equations possesses non-zero solutions if and only if the
homogeneous system of equations

(a11 − λ)x1 + a12x2 + a13x3 + · · ·+ a1nxn = 0
a21x1 + (a22 − λ)x2 + a23x3 + · · ·+ a2nxn = 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
an1x1 + an2x2 + an3x3 + · · ·+ (ann − λ)xn = 0

(3.2)

has non-zero solutions. It is well known, the homogeneous system of equations
(3.2) has non-zero solutions if and only if the determinant

∆n(λ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 − λ a12 a13 · · · a1n−1 a1n

a21 a22 − λ a23 · · · a2n−1 a2n

a31 a32 a33 − λ · · · a3n−1 a3n

· · · · · · · · · · · · · · · · · ·
an1 an2 an3 · · · ann−1 ann − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (3.3)

47
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Let us note that

∆n(λ) = (−1)nλn + an−1λ
n−1 + an−2λ

n−2 + · · ·+ a1λ+ a0,

is the polynomial of degree n with the leading term (−1)nλn. This polynomial
is called characteristic polynomial of the matrix

A =















a11 a12 a13 · · · a1n−1 a1n

a21 a22 a23 · · · a2n−1 a2n

a31 a32 a33 · · · a3n−1 a3n

· · · · · · · · · · · · · · · · · ·
an1 an2 an3 · · · ann−1 ann















Thus, all eigenvalues of the matrix A are roots of the characteristic polynomial
∆n(λ). Let a non-zero eigenvector X(k) corresponds to the root λk, so that

AX(k) = λkX
(k), k = 1, 2, ..., n.

For a real and symmetric matrix A, there exists exactly n orthonormal eigen-
vectors X(1), X(2), . . . , X(n), i.e.

(X(k), X(l)) =

{

1 if k = l,
0 if k 6= l

where X(k) = [x
(k)
1 , x

(k)
2 , . . . , x(k)

n ] and (X(k), X(l)) =
n

∑

i=1

x
(k)
i x

(l)
i .

A matrix A for which there exists an orthonormal base of its eigenvectors is
diagonalizable by the orthonormal matrix

X =













x
(1)
1 x

(2)
1 · · · x

(n)
1

x
(1)
2 x

(2)
2 · · · x

(n)
2

· · · · · · · · · · · ·
x(1)

n x(2)
n · · · x(n)

n













,

This means that
XTAX = Λ,

where XT denotes transposed matrix to X and

Λ = diagonal(λ1, λ2, . . . , λn) =











λ1 0 · · · 0
0 λ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · λn











.

Let us note that any matrix A can be transformed either to a diagonal form
or to a Jordan form (cf. [6]). In the case when a matrix A (symmetric or not)
possesses all distinct eigenvalues, so that λk 6= λl, for k 6= l, then there exists
a non-singular matrix T such that

T−1AT = Λ.

and A is a diagonalizable matrix.
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Example 3.1 Let us find all eigenvalues and corresponding eigenvectors for
the matrix

A =







20 6 8
6 20 0
8 0 20






.

Solution Evidently, the characteristic polynomial of A is

∆3(λ) =

∣

∣

∣

∣

∣

∣

∣

20− λ 6 8
6 20− λ 0
8 0 20− λ

∣

∣

∣

∣

∣

∣

∣

= −λ3 + 60λ2 − 1100λ + 6000.

The eigenvalues of the matrix A are the roots of the equation

∆3(λ) = 0.

and these roots are:

λ1 = 10, λ2 = 20 and λ3 = 30.

In order to find eigenvectors corresponding to the eigenvalues λ1, λ2 and λ3,
we shall solve the following homogeneous system of linear equations:

(20− λ)x1 + 6x2 + 8x3 = 0
6x1 + (20− λ)x2 = 0
8x1 + (20− λ)x3 = 0

(3.4)

when λ1 = 10, λ2 = 20 and λ3 = 30.
Thus, for λ1 = 10, the homogeneous system of equations

10x1 + 6x2 + 8x3 = 0
6x1 + 10x2 = 0
8x1 + 10x3 = 0

(3.5)

has the normalized solution

X(1) = [− 1√
2
,

3

5
√

2
,

4

5
√

2
].

For λ2 = 20, the homogeneous system of equations

6x2 + 8x3 = 0
6x1 = 0
8x1 = 0

(3.6)

has the normalized solution

X(2) = [0,−4

5
,
3

5
].
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For λ3 = 30, the homogeneous system of equations

−10x1 + 6x2 + 8x3 = 0
6x1 − 10x2 = 0
8x1 − 10x3 = 0

(3.7)

has the normalized solution

X(3) = [
1√
2
,

3

5
√

2
,

4

5
√

2
].

One can check that, X(1), X(2) and X(3) are orthonormal eigenvectors, so that,
the orthonormal matrix

X =





















− 1√
2

0
1√
2

3

5
√

2
−4

5

3

5
√

2
4

5
√

2

3

5

4

5
√

2





















transforms the matrix A to the following diagonal matrix:

XTAX =







10 0 0
0 20 0
0 0 30





 = Λ.

Example 3.2 Let us find eigenvalues and eigenvectors of the tri-diagonal ma-
trix

A =





















2 −1 0 0 · · · 0 0 0
−1 2 −1 0 · · · 0 0 0
0 −1 2 −1 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · −1 2 −1
0 0 0 0 · · · 0 −1 2





















(n×n)

Solution. The eigenvalues λk and corresponding eigenvectors X(k), k =
1, 2, . . . , n, satisfy the following system of linear equations:

2x1 − x2 = λx1

· · · · · · · · · · · · · · · · · ·

−xk−1 + 2xk − xk+1 = λxk

· · · · · · · · · · · · · · · · · ·

−xn−1 + 2xn = λxn

(3.8)
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In order to find all non-zero solutions of equations (3.8), we shall substitute
to (3.8)

xk = αk, k = 1, 2, . . . , n,

where α is a parameter.
Then, we obtain

α2 − (2− λ)α + 1 = 0.

All non-zero bounded solutions of (3.8) correspond to the complex roots of the
quadratic equation for 0 < λ < 4. Thus, the non-zero bounded solutions of
the system of equations (3.8) are:

x
(1)
k = sin kψ x

(2)
k = cos kψ, k = 1, 2, . . . , n − 1.

From the first equation in (3.8), we have

λ = 2(1− cos ψ).

From the last equation in (3.8), we have

sin(n+ 1)ψ = 0.

Hence

ψk =
kπ

n+ 1
, k = 1, 2, . . . , n.

So that, the eigenvalues of the matrix A

λk = 2(1− cos ψk) = 4sin2ψk

2
= 4sin2 kπ

2(n + 1)
, k = 1, 2, . . . , n

and the eigenvectors

X(k) = [x
(k)
1 , x

(k)
2 , . . . , x(k)

n ],

where

x(k)
s = sin

skπ

n+ 1
, for k, s = 1, 2, . . . , n.

The eigenvectors X(1), X(2), . . . , X(n) are orthogonal. Indeed, it can be proved
in an elementary way that

(X(k), X(l)) =
n

∑

s=1

x(k)
s x(l)

s =
n

∑

s=1

sin
skπ

n+ 1
sin

slπ

n+ 1
=







n+1
2

if k = l,

0 if k 6= l.

Thus, the orthonormal set of eigenvectors of the matrix A is

X
(k)

=

√

2

n+ 1
X(k) =

√

2

n+ 1

























sin kπ
n+1

sin 2kπ
n+1

sin 3kπ
n+1

...

sin nkπ
n+1

























, k = 1, 2, . . . , n.
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Let us note that any Hermitian matrix A 1 possesses all real eigenvalues. If
A is a real symmetric matrix then A has also a real orthonormal base of
eigenvectors. Indeed, we have

AX = λX

and the scalar
X∗AX = λX∗X.

Since A∗ = A, we get

(X∗AX)∗ = X∗A∗X∗∗ = X∗AX

Then, the scalars X∗X and X∗AX are real. Therefore, λ must be also real.

3.2 Jacobi Method for Real and Symmetric Matrices

The idea of Jacobi method is to find an orthonormal matrix V (i.e. V −1 = V T )
such that

V TAV = Λ,

where Λ is a diagonal matrix, V T is transposed matrix to V and V −1 is the
inverse matrix to V . As we know, such unitary matrix V exists for any real
and symmetric matrix A. Evidently, if A is a diagonal matrix then V = E is
a unite matrix. Let A be a non-diagonal matrix. Then, we may choose k and
l such that

| akl |= max
i,j=1,2,...,n; i6=j

| aij |> 0.

Now, let us consider the orthogonal matrix

column column
k l
↓ ↓

C(1) =

















































1
. . .

1
cosψ 0 · · · 0 − sinψ

0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0
sinψ 0 · · · 0 cosψ

1
. . .

1

















































← rowk

← rowl

k < l

(3.9)

1A is a Hermitian matrix if A∗ = A, where A∗ denotes transposed to A with conjugate entries
of A
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We can determine the angle ψ in such a way to nullify the entry a
(1)
kl of the

matrix C(1)TAC(1). Namely, let akl be entry of the matrix AC(1). Then, we
find

akl = − sinψ akk + cosψ akl

all = − sinψ alk + cosψ all

a
(1)
kl = cosψ akl + sinψ all

(3.10)

Hence, we have

a
(1)
kl = cosψ(− sinψ akk + cosψ akl) + sinψ(− sinψ akl + cosψ all) =
akl((cosψ)2 − (sinψ)2) + cosψ sinψ(all − akk).

and a
(1)
kl = 0 if the angle ψ satisfies the following equation:

akl(cosψ)2 + (all − akk) cosψ sinψ − akl(sinψ)2 = 0.

So that

akl cos 2ψ − 1

2
(akk − all) sin 2ψ = 0.

and

tan2ψ =







2akl

akk − all

if akk 6= all,

∞ if akk = all.

Hence, we get

ψk =















1

2
arctan

2akl

akk − all

if akk 6= all,

π

4
if akk = all,

We can transform matrix A to an almost diagonal form by the orthogonal
mappings C(1), C(2), . . . , C(r). of the form (3.9). Then, we shall show that the
sequence of matrices

A(0) = A,
A(1) = C(1)TAC(1),
A(2) = C(2)TC(1)TAC(1)C(2),
· · · · · · · · · · · · · · · · · · · · ·
A(r) = C(r)TC(r−1)T . . . C(1)TAC(1)C(2) . . . C(r),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(3.11)

converges to a diagonal matrix Λ.
Indeed, let

A(q) = {a(q)
ij }, i, j = 1, 2, . . . , n; q = 0, 1, . . . , r.

The matrices A(q+1), q = 0, 1, . . . , r − 1; are determined by the condition

a
(q+1)
kqlq

= 0, (3.12)
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where
a

(q+1)
kqlq

= max
i,j=1,2,...,n; i6=j

| a(q)
ij | . (3.13)

In order to prove that the sequence (3.11) converges to a diagonal matrix Λ,
it is sufficient to show that the non-diagonal entries of A(r) tend to zero when
r →∞, so that

lim
r→∞

µ(r) = 0,

where

µ(r) =
n

∑

i,j=1, i6=j

[a
(r)
ij ]2. (3.14)

Let

S(A) =
n

∑

i,j=1

a2
ij .

Then, the following equality holds:

S(A) = Sp(ATA) = Sp(A2)

for a symmetric matrix A, where Sp(A) =
n

∑

i=1

aii is the trace of the matrix A.

For two symmetric matrices B and M = ATBA, we have

S(M) = Sp(M2) = Sp((ATBA)2) = Sp(A−1BA) = Sp(B2) = Sp(B). (3.15)

Next, let

A =

[

akk akl

alk all

]

, M =

[

mkk mkl

mlk mll

]

, C =

[

cosψ sinψ
−sinψ cosψ

]

.

Since
M = C

T
AC,

by (3.15)
S(A) = S(M). (3.16)

Also, by (3.15), we obtain

µ(M) − µ(A) = S(M)−
n

∑

i=1

mii − [S(A)−
n

∑

i=1

a2
ii] =

n
∑

i=1

a2
ii −

n
∑

i=1

m2
ii.

Hence, we have

mij = aij, for i 6= k, j 6= l, i, j = 1, 2, . . . , n.

Therefore

µ(M)− µ(A) = a2
kk + a2

ll −m2
kk −m2

ll = S(A)− 2a2
kl − S(M) + 2m2

kl.
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By (3.16), we get equality

µ(M) − µ(A) = 2(m2
kl − a2

kl) (3.17)

Now, we shall compute the difference µ(q+1) − µ(q). Namely, by (3.12) and
(3.17), we have

µ(q+1) − µ(q) = µ(C(q+1))− µ(C(q)) = 2[(c
(q+1)
kq lq

)2 − (c
(q)
kq lq

)2] = −2(c
(q)
kq lq

)2.

Therefore
µ(q+1) = µ(q) − 2(a

(q)
kqlq

)2, q = 0, 1, . . . , r − 1.

Because the entry a
(q)
kqlq

has been chosen to have the greatest absolute value

(see 3.13), therefore

(a
(q)
kq lq

)2 ≥ µq

n(n + 1)
,

and

µ(q+1) ≤ µ(q) − 2µ(q)

n(n + 1)
, q = 0, 1, . . . , r − 1,

Then, we have

0 < µ(r+1) ≤ µ(r)[1− 2

n(n+ 1)
]r.

Hence, we obtain the limit
lim
r→∞

µ(r) = 0.

This means that the sequence of matrices (3.11) converges to the diagonal
matrix

Λ =











λ1 0 · · · 0
0 λ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · λn











.

The diagonal entries λ1, λ2, . . . , λn are eigenvalues of the matrix A, so that

AV = V Λ,

where
V = lim

r→∞
C(0)C(1) · · ·C(r).

Since a product of orthonormal matrices is also an orthonormal matrix, there-
fore C(∞) is the orthonormal matrix of eigenvectors of A. In order to stop
Jacobi iterations, we can use the condition

µ(C(0)C(1) · · ·C(r)) ≤ ε,

where ε is a given accuracy.
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Example 3.3 Let us use Jacobi method to find all eigenvalues and eigenvec-
tors of the matrix

A =







20 6 8
6 20 0
8 0 20






.

Solution . The greatest entry of A out of diagonal

max
i,j=1,2,3; i6=j

| aij |= a13 = 8.

Hence, k = 1, l = 3 and

C(1) =







cosψ 0 −sinψ
0 1 0

sinψ 0 cosψ






,

where by (3.10) ψ = π
4
, since a11 = a33 = 20.

First Jacobi iteration for k = 1, l = 3, a
(0)
13 = 8 and ψ = 0.785

A(1) = C(1)TAC(1) =







1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2













20 6 8
6 20 0
8 0 20













1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2






.

C(1) =







0.707 0.000 −0.707
0.000 1.000 0.000
0.707 0.000 0.707






,

Hence, we have

A(1) = C(1)TAC(1) =







28.000 4.243 0.000
4.243 20.000 −4.243
0.000 −4.243 12.000





 ,

and
X(1) X(2) X(3)

V (1) = C(1) =







0.707 0.000 −0.707
0.000 1.000 0.000
0.707 0.000 0.707






.

Second Jacobi iteration for k = 1, l = 2, a
(1)
12 = 4.243 and ψ = 0.407

C(2) =







0.918 −0.396 0.000
0.396 0.918 0.000
0.000 0.000 1.000





 ,
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Hence, we have

A(2) = C(2)TA(1)C(2) =







29.831 0.000 −1.681
0.000 18.169 −3.895
−1.681 −3.895 12.000






.

and
X(1) X(2) X(3)

V (2) = C(1)C(2) =







0.649 −0.280 −0.707
0.396 0.918 0.000
0.649 −0.280 0.707






.

Third Jacobi iteration for k = 2, l = 3, a
(2)
23 = −3.895 and ψ = −0.451

C(3) =







1.000 0.000 0.000
0.000 0.900 0.435
0.000 −0.435 0.900






,

Hence, we have

A(3) = C(3)TA(2)C(3) =







29.831 0.732 −1.513
0.732 20.053 0.000
−1.513 0.000 10.116






,

and
X(1) X(2) X(3)

V (3) = C(1)C(2)C(3) =







0.649 0.056 −0.759
0.396 0.827 0.400
0.649 −0.560 0.515






.

Fourth Jacobi iteration for k = 1, l = 3, a
(3)
13 = −1.513, and ψ = −0.076

C(4) =







0.997 0.000 0.076
0.000 1.000 0.000
−0.076 0.000 0.997






,

Hence, we have

A(4) = C(4)TA(3)C(4) =







29.946 0.730 0.000
0.730 20.053 0.056
0.000 0.056 10.000





 ,

and
X(1) X(2) X(3)

V (4) = C(1)C(2)C(3)C(4) =







0.705 0.056 −0.707
0.365 0.827 0.429
0.608 −0.560 0.562





 .
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Fifth Jacobi iteration for k = 1, l = 2, a
(4)
12 = 0.73 and ψ = 0.073

C(5) =







0.997 −0.073 0.000
0.073 0.997 0.000
0.000 0.000 1.000






,

Hence, we have

A(5) = C(5)TA(4)C(5) =







30.000 0.000 0.004
0.000 20.000 0.056
0.004 0.056 10.000





 ,

and
X(1) X(2) X(3)

V (5) = C(1)C(2)C(3)C(4)C(5) =







0.707 0.004 −0.707
0.424 0.798 0.429
0.566 −0.603 0.562





 .

Sixth Jacobi iteration for k = 2, l = 3, a
(5)
23 = 0.056, and ψ = 0.006

C(6) =







1.000 0.000 0.000
0.000 1.000 −0.006
0.000 0.006 1.000





 ,

Hence, we have

A(6) = C(6)TA(5)C(6) =







30.000 0.000 0.004
0.000 20.000 0.000
0.004 0.000 10.000





 ,

and

X(1) X(2) X(3)

V (6) = C(1)C(2)C(3)C(4)C(5)C(6) =







0.707 0.000 −0.707
0.424 0.800 0.424
0.566 −0.600 0.566





 .

Seventh Jacobi iteration for k = 1, l = 3, a
(6)
13 = 0.004, and ψ = 0

C(6) =







1.000 0.000 0.000
0.000 1.000 0.000
0.000 0.000 1.000





 ,

Hence, we have

A(7) = C(7)TA(6)C(7) =







30.000 0.000 0.000
0.000 20.000 0.000
0.00 0.000 10.000





 ,
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and

X(1) X(2) X(3)

V (7) = C(1)C(2)C(3)C(4)C(5)C(6)C(7) =







0.707 0.000 −0.707
0.424 0.800 0.424
0.566 −0.600 0.566






.

Finally, the matrix A has the following eigenvalues

λ1 = 30.00
λ2 = 20.00
λ3 = 10.00

and eigenvectors
X(1) X(2) X(3)

0.707 0.000 −0.707
0.424 0.800 0.424
0.566 −0.600 0.566

The following module in Mathematica finds eigenvalues and eigenvector of a
symmetric matrix a by Jacobi method of iterations

Program 3.1 Mathematica module that solves an eigenvalue problem by iter-
ative Jacobi’s method.

jacobi[a_]:=Module[{m,n,ckl,v},

n=Length[a[[1]]]; v=IdentityMatrix[n];m=a;

(* Module ckl finds orthogonal matrix *)

ckl[m_]:=Module[{b,p,k,l,psi,c,s},

b=Abs[m];

Do[b[[i,i]]=0,{i,1,n}];

p=Position[b,Max[b]]; p=First[p];

k=p[[1]]; l=p[[2]];

e=IdentityMatrix[n];

psi=If[m[[k,k]]-m[[l,l]]==0,Pi/4,ArcTan[2*m[[k,l]]/

(m[[k,k]]-m[[l,l]])]/2];

c=N[Cos[psi]]; s=N[Sin[psi]];

e[[k,k]]=c; e[[k,l]]=-s; e[[l,k]]=s; e[[l,l]]=c;

e

];

Do[e=ckl[m];m=Transpose[e].m.e;v=v.e,{7}];

Print["Diagonal matrix of eigenvalues "];
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Print[Chop[m]//TableForm];

Print["Matrix of eigenvectors"];

Print[Chop[v]//TableForm];

];

Solving the example by the above program, we invoke the module jacobi

(* Data segment *);

a={{20.,6.,8.},{6.,20.,0.},{8.,0.,20}};

jacobi[a];

Then, we find the diagonalmatrix of eigenvalues and orthonormal matrix of
eigenvectors.

Diagonal matrix of eigenvalues

30. 0 0

0 20. 0

0 0 10.

Matrix of eigenvectors

0.707107 0 -0.707107

0.424264 0.8 0.424264

0.565685 -0.6 0.565685

3.3 Power Method

Let λ1, λ2, · · · , λn be eigenvalues of a matrix A (real or complex). We shall
consider λ1 as dominant eigenvalue of A, so that

1. (a) λ1 = λ2 = · · · = λr for certain 1 ≤ r ≤ n, i.e. λ1 can be repeating
eigenvalue of A,

(b) | λ1 |=| λ2 |= · · · =| λr |>| λr+1 |≥| λr+2 |≥ · · · ≥| λn | .
In order to find a dominant eigenvalue λ1 of the matrix A and corresponding
eigenvector X(1), we can apply the power method, provided that the eigenvec-
tors X(1), X(2), . . . , X(n) of A are linearly independent in the real space Rn,
(or in the complex space Cn). Therefore, every vector Y ∈ Rn can be written
as the following linear combination:

Y = a1X
(1) + a2X

(2) + · · ·+ anX
(n).

Now, let us choose a starting vector Y to determine the iterations:

AY = a1λ1X
(1) + a2λ2X

(2) + · · ·+ anλnX
(n),

A2Y = a1λ
2
1X

(1) + a2λ
2
2X

(2) + · · · + anλ
2
nX

(n),
A3Y = a1λ

3
1X

(1) + a2λ
3
2X

(2) + · · · + anλ
2
nX

(n),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
AkY = a1λ

k
1X

(1) + a2λ
k
2X

(k) + · · ·+ anλ
k
nX

(n).

(3.18)
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Hence, we have

AkY = λk
1 [a1X

(1) + a2(
λ2

λ1

)kX(2) + a3(
λ3

λ1

)kX(3) + · · ·+ an(
λn

λ1

)kX(n)]. (3.19)

Since

|λi

λ1
| < 1, i = r + 1, r + 2, . . . , n,

we get
λi

λ1

→ 0 when k →∞, i = r + 1, r + 2, . . . , n.

Thus, if a1 6= 0 then

AkY ≈ λ1a1X
(1),

and the vectorAkY approximates the eigenvectorX(1). It can happen that the
component a1 = 0. Then, we can change the starting vector Y to get non-zero
component a1. (In practice, it is reasonable to choose Y = [1, 1, · · · , 1]). How-
ever, round-off errors yield a non-zero term λ1εX

(1), so that, in the presence of
round-off errors AkY → X(1) when k →∞. In the absence of round-off errors,
when a1 = 0, we can get the next eigenvalue λ2 and corresponding eigenvec-
tor X(2). For a distinct dominant eigenvalue λ1, from (3.18), we obtain the
following formula:

[Ak+1Y ]i
[AkY ]i

= λ1

[a1X
(1) + a2(

λ2

λ1

)k+1X(2) + · · ·+ an(
λn

λ1

)k+1X(n)]i

[a1X(1) + a2(
λ2

λ1

)kX(2) + · · ·+ an(
λn

λ1

)kX(n)]i

= λ1 +O((
λ2

λ1
)k+1),

where [X(k)]i denotes i− th component of the vector X(k).
Hence, the approximate value of λ1 is

λ∗1 =
[Ak+1Y ]i
[AkY ]i

. (3.20)

for i = 1, 2, . . . , n.

We shall use the dominant component to evaluate

λ∗1 = diminant components
[Ak+1Y ]j
[AkY ]j

.

Similar formula can be obtained for a repeating dominant eigenvalue λ1.
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Example 3.4 Let us find the dominant eigenvalue λ1 and corresponding eigen-
vector X(1) for the matrix

A =







2 0 3
1 4 2
7 0 6





 .

using power method.

Solution. One can find, in elementary way, that the eigenvalues and eigen-
vectors of A are:

λ1 = 9, λ2 = 4, λ3 = −1

X(1) =







0.359700
0.407661
0.839309






, X(2) =







0
1
0






, X(3) =







−0.7001401
0.140028

−0.7001401






.

Choosing the starting vector Y = [1, 1, 1], we obtain
The first iteration:

Y1 = AY =







2 0 3
1 4 2
7 0 6






.







1
1
1






=







5
7
13






.

Thus, the dominant component of Y1 is: λ1 ≈ λ
(1)
1 = 13

The second iteration:

Y2 = AY1 =







2 0 3
1 4 2
7 0 6





 .







5
7
13





 =







49
59
113





 .

The dominant component of Y2 is : λ1 ≈ λ(2)
1 = 9.8

The third iteration:

Y3 = AY2 =







2 0 3
1 4 2
7 0 6





 .







49
59
113





 =







437
511
1021





 .

The dominant component is : λ1 ≈ λ
(3)
1 = 9.035399

The fourth iteration :

Y4 = AY3 =







2 0 3
1 4 2
7 0 6





 .







437
511
1021





 =







3937
4523
9185





 .
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The dominant component is: λ1 ≈ λ(4)
1 = 9.00915

The fifth iteration :

Y5 = AY4 =







2 0 3
1 4 2
7 0 6






.







3937
4523
9185






=







35429
40399
82669






.

The dominant component is λ1 ≈ λ(5)
1 = 9.00044.

In computations, the scaled power method is used to avoid large numbers.
Then, we consider the following vectors as an approximation of X(1):

Yk =
AkY

√

[A1Y ]21 + [AkY ]22 + · · ·+ [AkY ]2n
, k = 1, 2, . . . ;

The following module in Mathematica finds the dominant eigenvalue and cor-
responding eigenvector of a given matrix A.

Program 3.2 Mathematica module that finds a dominant eigenvalue by power
method.

power[a_,iter_]:=Module[{lambda,n,s,x,vector1,vector2},

n=Length[a];vector2=Table[1,{n}];

Do[{vector1=a.vector2; vector2=a.vector1;

vector3=Table[vector2[[i]]/vector1[[]],{i,1,n}];

lambda=Max[Abs[vector3]];

x=Sqrt[Sum[vector1[[i]]^2,{i,1,n}]];

vector1=vector1/x;

x=Sqrt[Sum[vector2[[i]]^2,{i,1,n}]];

vector2=vector2/x},

{iter}];

Print["Eigenvalue lambda = ",N[lambda,4]];

Print["Eigenvector vector2 = ",vector2];

{lambda,vector2}

]

In order to evaluate the dominant eigenvalue of the matrix

a={{2.,0.,3.},{1.,4.,2.},{7.,0.,6.}};

we enter the number of required iterations iter=3 and execute the command
power[a,iter] .
Then, we obtain the following output
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Eigenvalue lambda = 9.

Eigenvector vector2 = {0.359539, 0.408585, 0.838922}

{8.99995,{0.35954, 0.40859, 0.83892}}

3.4 The Householder Transformation and Hessenberg

Matrices

Let us state the definition of the Hessenberg matrix

Definition 3.1 A matrix B = {Bij}, i, j = 1, 2, ..., n, is upper Hessenberg if
Bij = 0 for i > j + 1, that is, B has the following diagram:

B =































∗ ∗ ∗ · · · ∗ ∗
∗ ∗ ∗ · · · ∗ ∗
0 ∗ ∗ · · · ∗ ∗
...

...
. . .

. . .
...

...

0 0 0 · · · ∗ ∗
0 0 0 · · · ∗ ∗































.

To reduce a matrix A to the Hessenberg matrix B, we apply the Householder
transformation given below.

Definition 3.2 The matrix

H = I − 2x x∗.

is called Householder transformation. 2 where I is n-th order identity matrix
and the unitary vector

x =













x1

x2
...
xn













, x∗ = (x∗1, x
∗
2, ..., x

∗
n) ∈ Cn, ||x||2 =

√
x∗x = 1.

Let us note that the Householder transformation is Hermitian orthogonal ma-
trix. Indeed, we have

H∗ = I∗ − (2x x∗)∗ = I − 2x x∗ = H,

and

H∗H = H2 = (I − 2x x∗)(I − 2x x∗) = I − 2x x∗ − 2x x∗ + 4x x∗ x x∗ = I,

2Householder transformation is also applicable to a matrix with complex entries, then x∗i means
conjugate to xi, i = 1, 2, ..., n.
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since x x∗ x x∗ = x x∗.
We shall consider the following Householder transformation:

R = I − 2
u

||u||2
u∗

||u||2
, ||u||2 =

√
u∗u,

where

u =







x+ ||x||2e1 if x+ ||x||2e1 6= 0,

x− ||x||2e1 if x+ ||x||2e1 = 0,

for any non zero real vector x with components xi, i = 1, 2, ..., n, and e1 =
(1, 0, 0, ..., 0)T .
The transformation R maps a non zero vector x to the vector ±||x||22e1, that
is

Rx = ±||x||22e1. (3.21)

Indeed, we note that

Rx = x− 2

||u||22
uu∗x = x− 2

||u||22
(x± ||x||2e1)(x± ||x||2e1)

∗x

= x− 2

||u||22
(x± ||x||2e1)(||x||22 ± ||x||2x1).

Since
||u||22 = (x± ||x||2e1)

∗(x± ||x||2e1) = 2(||x||22 ± ||x||2x1),

we have

Rx = x− (x± ||x||2e1) = ±||x||2e1 =







−||x||2e1, x+ ||x||2e1 6= 0,

||x||2e1, x+ ||x||2e1 = 0.

In order to transform a real matrix A = (aij), i, j = 1, 2, ..., n, to the upper
Hessenberg form B, we apply the following algorithm:
Algorithm

1. Set
A1 = A, x = (a21, a31, ..., an1)

∗,

u = x± ||x||2e1 =







x+ ||x||2e1 x+ ||x||2e1 6= 0,

x− ||x||2e1 x+ ||x||2e1 = 0.

Rn−1 = In−1 −
2

||u||22
uu∗,

V1 =

[

I1 0
0 Rn−1,

]

,
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where I1 is the identity matrix of order 1, and Rn−1 is the Householder
transformation of order n− 1.
To get zeros in the first column down, we compute the matrix

A2 = V1A1V
∗
1 =

































a
(1)
11 a

(1)
12 a

(1)
13 · · · a

(1)
1n

a
(1)
21 a

(1)
22 a

(1)
23 · · · a

(1)
2n

0 a
(1)
32 a

(1)
33 · · · a

(1)
3n

· · · · · · · · · · · · · · ·

0 a
(1)
n2 a

(1)
n3 · · · a(1)

nn

































2. Set
x = (a32, a42, ..., an2)

∗, u = x± ||x||2e1,

Rn−2 = In−2 −
2

||u||22
uu∗,

V2 =

[

I2 0
0 Rn−2,

]

,

where I2 is the identity matrix of order 2, and Rn−2 is the Householder
transformation of order n− 2.
To get zeros in the second column down, we compute the matrix

A3 = V2A1V
∗
2 =











































a
(2)
11 a

(2)
12 a

(2)
13 · · · a

(2)
1n

a
(2)
21 a

(2)
22 a

(2)
23 · · · a

(2)
2n

0 a
(2)
32 a

(2)
33 · · · a

(2)
3n

0 0 a
(2)
43 · · · a

(2)
4n

...
...

...
. . .

...

0 0 a
(2)
n3 · · · a(2)

nn











































3. Set, for k = 3, 4, ..., n− 2,

x = (ak+1k, ak+2k, ..., ank)
∗, u = x± ||x||2e1,

Rn−k = In−k −
2

||u||22
uu∗,

Vk =

[

Ik 0
0 Rn−k ,

]

,
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where Ik is the identity matrix of order k, and Rn−k is the Householder
transformation of order n− k.
To get zeros in the k-th column down, we compute the matrix

Ak+1 = VkAkV
∗
k =









































a
(k)
11 a

(k)
12 a

(k)
13 · · · a

(k)
1n−1 a

(k)
1n

a
(k)
21 a

(k)
22 a

(k)
23 · · · a

(k)
2n−1 a

(k)
2n

0 a
(k)
32 a

(k)
33 · · · a

(k)
3n−1 a

(k)
3n

0 0 a
(k)
43 · · · a

(k)
4n−1 a

(k)
4n

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · a
(k)
nn−1 a(k)

nn









































Clearly, we get the Hessenberg matrix B = Vn−1An−1V
∗
n−1.

Example 3.5 Let us reduce the matrix

A =











1 3 4 5
−2 2 5 6

1 5 3 7
2 6 7 4











to the upper Hessenberg form.
Following the algorithm, we find

1.

x =







−2
1
2






, ||x||2 = 3, u = x+ ||x||2e1 =







1
1
2






, ||u||2 = 6,

R3 = I1 −
2

||u||2u u
∗ =







0.6667 −0.3333 −0.6667
−0.3333 0.6667 −0.6667
−0.6667 −0.6667 −0.3333






,

V1 =











1.0000 0.0000 0.0000 0.0000
0.0000 0.6667 −0.3333 −0.6667
0.0000 −0.3333 0.6667 −0.6667
0.0000 −0.6667 −0.6667 −0.3333











,

and

A2 = V1 A1V1 =











1.0000 −2.6667 −1.6667 −6.3333
−3.0000 −1.4444 0.5556 4.7778

0.0000 0.5556 −2.4444 3.7778
0.0000 4.7778 3.7778 12.8889











.
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2.

x =

[

0.5556
4.7778

]

, ||x||2 = 1.6178,

u = x+ ||x||2e1 =

[

5.3655
4.7778

]

, ||u||2 = 51.6160,

R2 = I2 −
2

||u||2u u
∗ =

[

−0.1155 −0.9933
−0.9933 0.1155

]

,

V2 =











1.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000
0.0000 0.0000 −0.1155 −0.9933
0.0000 0.0000 −0.9933 0.1155











,

and the upper Hessenberg form of the matrix A is

B = A3 = V2 A2V2 =











1.0000 −2.6667 6.4834 0.9240
−3.0000 −1.4444 −4.8100 0.000

0.0000 −4.8100 13.5512 1.9178
0.0000 0.0000 1.9178 −3.1067











.

We can solve the example using the following module in Mathematica

Program 3.3 Mathematica module that finds Householder transformation.

householder[{a_,k_}]:=Module[{n,e,s,t,u,u2,uu,v,ik,ink,rnk,x,x2},

n=Length[a];

x=Take[Map[#[[k]]&,a],{k+1,n}];

e=Prepend[Table[0,{n-k-1}],1];

x2=N[Sqrt[x.x]];

u=If[(x+x2*e).(x+x2*e)==0,x-x2*e,x+x2*e];

u2=u.u; ik=IdentityMatrix[k];

ink=IdentityMatrix[n-k];

s=Length[u];

uu=Table[u[[i]]*u[[j]],{i,1,s},{j,1,s}];

rnk=ink-2*uu/u2;

v=IdentityMatrix[n];

Do[v[[i,j]]=rnk[[i-k,j-k]],{i,k+1,n},{j,k+1,n}];

t=k+1;

{v.a.v,t}

]
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To find Hessenberg form of the input data matrix

a={{1.,3.,4.,5.},{-2.,2.,5.,6.},

{1.,5.,3.,7.},{2.,6.,7.,4.}};

we execute the commands

n=4;

b=Nest[householder,{a,1},n-1];

Chop[b[[1]],10^-4]//TableForm

Then, we obtain the following Hessenberg matrix

1. -2.66667 6.48345 -0.924007

-3. -1.44444 -4.80997 0

0 -4.80997 13.5512 -1.91782

0 0 -1.91782 -3.10672

Let us use the Householder transformation for a matrix deflation, that is,
to reduce an eigenvalue problem of dimension n to an eigenvalue problem of
dimension n− 1.
Matrix Deflation. Let A be a matrix of order n for which an eigenvalue λ
and an eigenvector x, with the norm ||x||2 = 1, are known. Using the deflation,
one can reduce the matrix A to a matrix C of order n− 1, whose eigenvalues
are the same as the remaining eigenvalues of A. To find such a matrix C , we
consider the Householder transformation R of the eigenvector x, so that, by
(3.21), we have

Rx = −e1, e1 = (1, 0, ..., 0)T ,

and

x =













x1

x2
...
xn













= −RTe1 = −













R11

R1,2
...
R1n













.

Hence, the matrix

RT =





















−x1 R21 R31 · · · Rn1

−x2 R22 R32 · · · Rn2

· · · · · · · · · · · · · · ·

−xn R2n R3n · · · Rnn





















= [−x, V ],
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where the matrix V with n rows and (n− 1) columns is

V =





















R21 R31 · · · Rn1

R22 R32 · · · Rn2

· · · · · · · · · · · ·

R2n R3n · · · Rnn





















n(n−1)

.

Clearly, we have
ART = [−Ax,AV ] = [−λx,AV ],

and

RART =





−xT

V T



 [−λx,AV ] =





λ −xTAV

−λV Tx V TAV





Because V Tx = 0, we have

RART =





λ −xTAV

0 V TAV



 ,

Thus, the matrix C = RART of dimension n− 1 is similar to A, and therefore
C has the same eigenvalues as the matrix A, except λ.

3.5 QR Method

In order to compute all the eigenvalues of a square matrix A, the QR method
is widely recommended. This method consists of two the following parts:

• In the first part, the Householder transformation is used to reduce the
matrix A to the Hessenberg matrix B,

• In the second part, the QR decomposition is used to factorize the Hes-
senberg matrix B = QR with an orthogonal matrix Q and an upper
triangular matrix R.

Now, let us consider the QR decomposition of a Hessenberg matrix

B = QR, (3.22)

where Q is an orthogonal matrix and R is an upper triangular matrix.
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We can obtain such a decomposition, multiplying matrix B by plane rotation
matrices C(2,1), C(3,2), ..., C(n,n−1), where

column column
k l
↓ ↓

C(k,l) =

















































1
. . .

1
cosψ 0 · · · 0 − sinψ

0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0
sinψ 0 · · · 0 cosψ

1
. . .

1

















































← rowk

← rowl

k < l

(3.23)
Solving the equation

[C(k+1,k)B]k+1,k = Bkk sinψ +Bk+1k cosψ = 0,

we compute the angle

ψ =











Arctan(−Bk+1k

Bkk

), Bkk 6= 0,

π

2
, Bkk = 0.

(3.24)

One can show that the multiplication of the Hessenberg matrix B by a plane
rotation matrix C(k,k−1) preserves the Hessenberg form of the matrix B.
Thus, the matrix

R = [C(2,1), C(3,2), ..., C(n,n−1)]B = QTB,

is upper triangular.
Hence, we have

B = QR,

where the matrix Q = C(2,1)C(3,2), ..., C(n,n−1), is orthogonal, since the product
of orthogonal matrices C(k,k−1), k = 2, 3, ..., n, is also orthogonal.
Let us note that the Householder transformation as well as orthogonal plane
rotation matrices preserve the eigenvalues, so that, the matrices B and R have
the same eigenvalues as the original matrix A. Assuming that the matrix A
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is reduced to the Hessenberg matrix B, and the decomposition B = QR is
known.
Thus, the QR method is given by the following iterative process:
The sequence of matrices

A(0), A(1), ..., A(m), ....,

is built according to the following recursive rule:

1. Set A(0) = B,

2. For m = 0, 1, ..., compute the orthogonal matrix

Q(m) = C(2,1)C(3,2), ..., C(n,n−1),

where C(k,k−1) depends on the matrix A(m). This dependence is given,
by formula (3.24), to compute the angle ψ.

3. Use the orthogonal matrix Q(m), to find decomposition

A(m) = Q(m)R(m),

with the upper triangular matrix R(m)

4. Compute the matrix
A(m+1) = R(m)Q(m).

The matrices A(m), m = 0, 1, ..., are similar to the matrix B. Indeed, we have

A(m+1) = R(m)Q(m) = [Q(m)]−1Q(m)RQ(m) = [Q(m)]−1A(m)Q(m).

Therefore, all the matrices A(m), m = 0, 1, ..., have the same eigenvalues as
the matrix B.
Clearly, at m-th iteration, the QR decomposition of the matrix A(m) is needed
to compute the next term A(m+1). As we know now, such a decomposition can
be found with use of the orthogonal plane rotation matrices.
Thus, we arrive to the following algorithm:

QR Algorithm

Step 1 Transform the matrix

A =























































a11 a12 a13 a14 · · · a1n−1 a1n

a21 a22 a23 a24 · · · a2n−1 a2n

a31 a32 a33 a34 · · · a3n−1 a3n

· · · · · · · · · · · · · · · · · · · · · · · ·

an1 an2 an3 an4 · · · ann−1 ann






















































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by Householder transformation to the Hessenberg’s matrix

B =







































































b11 b12 b13 b14 · · · b1n−1 b1n

b21 b22 b23 b24 · · · b2n−1 b2n

0 b32 b33 b34 · · · b3n−1 b3n

0 0 b43 b44 · · · b4n−1 b4n

· · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · bnn−1 bnn







































































End of step 1.

1. Compute the sequence of matrices

A(0), A(1), A(2), ..., A(m), ...

as follows:

Step 2

(a) Set A(0) = B

(b) Find the QR factorization of the matrix A(0), that is A(0) = Q(0)R(0)

following the scheme

• Compute the angle

ψ =



















ArcTan(−A
(0)
21

A
(0)
11

), A
(0)
11 6= 0

π

2
, A

(0)
11 = 0.

and compute the orthonormal matrix

C(21) =























































cosψ −sinψ 0 0 0 · · · 0 0

sinψ cosψ 0 0 · · · 0 0

0 0 1 0 0 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 0 · · · 0 1























































• Compute the matrix A(01) = C(21)A(0) = C(21)B.

To eliminate the element A
(0)
21 in A(0).
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• Compute the angle

ψ =



















ArcTan(− A
(01)
32

A
(01)
22 )

, A
(01)
22 6= 0

π

2
, A

(01)
22 = 0.

and compute the orthonormal matrix

C(32) =







































































1 0 0 0 0 · · · 0 0

0 cosψ −sinψ 0 0 · · · 0 0

0 sinψ cosψ 0 · · · 0 0

0 0 0 1 0 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 0 · · · 0 1







































































• Compute the matrix A(11) = C(32)A(01) = C(32)C21)B

To eliminate the element A
(01)
32 in A(01),

• Compute the angle

ψ =



















ArcTan(− A
(01)
32

A
(01)
33 )

, A
(01)
33 6= 0

π

2
, A

(01)
33 = 0.

and compute the orthonormal matrix

C(43) =







































































1 0 0 0 0 · · · 0 0

0 1 0 0 0 · · · 0 0

0 0 cosψ − sinψ 0 · · · 0 0

0 0 sinψ cosψ 0 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 0 · · · 0 1







































































• Compute the matrix A(21) = C(43)A(01) = C(43)C(32)C21)B

• Continue the process of elimination of the elementsA
(0)
21 , A

(0)
32 , A

(0)
43 , ..., A

(0)
n,n−1

in A(0) to obtain the upper triangular matrix

R(0) = Q(0)A(0)
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where Q(0) = [Cn,n−1Cn−1,n−2...C21]T .
Then, set A(1) = R(0)Q(0). We note that the matrix

A(1) = [Q(0)]T B Q(0)

is similar to the matrix B and therefore both matrices A(1) and
B have the same eigenvalues. End of step 2.

In order to compute next matrix A(2) in the sequence, we replace
the matrix A(0) by the matrix A(1) in part 2. Then, we repeat part
2 for A(1) to obtain the QR factorization of the matrix A(1), that is

R(1) = Q(1)A(1)

Then, we set
A(2) = R(1)Q(1) = [Q(1)]TBQ(1).

Thus, the matrix A(2) is similar to the matrix B and both matrices
have the same eigenvalues.

(c) We continue replacement of the matrix A(0) in part 2 by successive
matrices A(1), A(2), A(3), ..., A(m) until certain m.

Under conditions stated in theorem 3.1 , the sequenceA(1), A(2), A(3), ..., A(m), ...
converges to an upper triangular matrix and its diagonal elements are
eigenvalues of the matrix B

Theorem 3.1 If the following assumptions are satisfied:

• The real matrix A is diagonalizable, that is, there exists a non singular
matrix T such that

A = T Diagonal(λ1, λ2, ..., λn) T
−1,

• the eigenvalues λk, k = 1, 2, ..., n, have different absolute values

|λ1| > |λ2| > · · · > |λn|.

Then, the sequence of matrices A(m), m = 0, 1, ..., converges to an upper
triangular matrix R, so that

lim
m→∞

A(m) = R,

and the diagonal entries Rs,s, s = 1, 2, ..., n of the matrix R are the eigenvalues
of the matrix A, that is

λs = Rs,s, s = 1, 2, ..., n.
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In order to accelerate convergence of the sequence A(m), m = 0, 1, ..., one can
use the following algorithm with shift
QR Algorithm with shift. The algorithm with shift is a modification of
the QR algorithm.
Let αm, m = 0, 1, ..., be a sequence of shift numbers. The shift numbers
are chosen to accelerate convergence. In the QR algorithm with shift, the
sequence of matrices

A(0), A(1), ..., A(m), ...,

is constructed according to the following recursive rule:

1. Set A(0) = B,

2. For m = 0, 1, ..., compute orthogonal matrix Q(m) and upper triangular
matrix R(m), to find the decomposition

A(m) − αmI = Q(m)R(m),

3. Compute the matrix

A(m+1) = R(m)Q(m) + αmI.

If we have an estimate of the eigenvalues λk, k = 1, 2, ..., n we are able to find
good shift numbers.
One of a strategy to choose the shift numbers αm, m = 1, 2, ..., is to put
αm = A(m)

nn , to get λn, since A(m)
ss → λs, s = 1, 2, ..., n, when m→∞.

For a broad range of matrices, the sequence A(0), A(1), ..., A(m), ..., which
is produced by the QR algorithm with shift converges to an upper triangular
matrix R, that is

lim
m→∞

A(m) = R,

Then, the diagonal entries of the matrix R are eigenvalues of the original ma-
trix A.

Example 3.6 Let us apply the QR algorithm to find the eigenvalues of the
Hessenberg matrix B that is found in the example 1.
Thus, we have n = 4, and

B =











0.0000 0.5126 0.4954 −0.7013
−5.8523 4.8248 0.7287 −1.3189

0.0000 −0.8535 2.5479 −0.5786
0.0000 0.0000 −0.4931 2.6273











.

Following the algorithm, we set

A(0) = B,
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and, we compute the plane rotation matrices:

Since B[1, 1] = 0, we find ψ =
π

2
and

C(21) =











cosψ − sinψ 0 0
sinψ cosψ 0 0

0 0 1 0
0 0 0 1











=











0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1











,

We compute

ψ = Arctan(− [C(2,1)B]21

[C(2,1)B]11
= 1.0299

and

C(32) =











1 0 0 0
0 cosψ − sinψ 0
0 sinψ cosψ 0
0 0 0 1











=











1 0 0 0
0 0.5149 −0.8573 0
0 0.8573 0.5149 0
0 0 0 1











,

We compute

ψ = Arctan(− [C(32)C(2,1)B]32

[C(32)C(2,1)B]22

= 0.2767

and

C(43) =











1 0 0 0
0 1 0 0
0 0 cosψ − sinψ
0 0 sinψ cosψ











=











1 0 0 0
0 0 0 0
0 0 0.9620 −0.2732
0 0 0.2732 0.9620











,

The orthogonal matrix

Q(0) = C(21)C(32)C(43) =











0 −1 0 0
0.5149 0 −0.8573 0
0.8247 0 0.4953 −0.2732
0.2342 0 0.1406 0.9620











.

The upper triangular matrix

R(0) = QTB =











5.8523 −4.8248 −0.7287 1.3189
0 0.9956 −1.9292 0.1349
0 0 1.8052 −1.5826
0 0 0 2.2818











,

The matrix

A(1) = R(0)Q(0) =











4.8248 3.6378 4.1050 2.5367
−0.9956 1.6538 −0.9924 −0.1415

0 −1.5475 1.3264 −1.2685
0 0 −0.6233 2.1950











.
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In order to get the eigenvalues four decimal places accurate, we need to execute
about 30 iterations so that, the final approximate eigenvalues are diagonal
entries of the matrix

A(30) = R(29)Q(29) =











4.0000 0.3058 0.5249 5.1008
0 3.0000 0.0765 3.8528
0 0 2.0000 2.0646
0 0 0 1.0000











.

Hence, the eigenvalues λ1 = 1, λ2 = 2, λ3 = 3, and λ4 = 4. These eigenvalues,
we can obtain using the following module in Mathematica

Program 3.4 Mathematica module that solves an eigenvalue problem by QR
method.

rq[a_,iter]:=Module[{rq1,r1},

a1=a;

rq1[a1_]:=Module[{b,n,v,r},

b=a1; n=Length[a1]; v=IdentityMatrix[n];

ckl[{b_,v_,k_}]:=Module[{pa,c,s,e,t,n},

n=Length[b]; e=IdentityMatrix[n];

pa=If[b[[k,k]]==0,Pi/2,ArcTan[-b[[k+1,k]]/b[[k,k]]]];

c=Cos[pa]; s=Sin[pa];

e[[k,k]]=c; e[[k,k+1]]=-s; e[[k+1,k]]=s; e[[k+1,k+1]]=c;

t=k+1;{e.b,e.v,t}

];

r=FixedPoint[ckl,{a1,v,1},n-1];

r[[1]].Transpose[r[[2]]]

];

r1=FixedPoint[rq1,a1,iter]

]

To find the eigenvalues of the Hessenberg matrix

a={{0.0,0.5126,0.4954,-0.7013},

{-5.8523,4.8248,0.7287,-1.3189},

{0.0,-0.8535,2.5479,-0.5786},

{0.0,0.0,-0.4931,2.6273}};

we enter the matrix a, the number of iterations iter=30 and execute the
commands
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iter=30;

MatrixForm[N[Chop[qr[a,iter],10^-3],4]]

Then, we obtain the following output

4. 0.3058 0.5249 5.101

0 3. 0.07649 3.853

0 0 2. 2.065

0 0 0 1.

3.6 Exercises

Question 3.1 Find all eigenvalues and all orthonormal eigenvectors of the
matrix

A =







2 −1 0
−1 2 −1

0 −1 2






.

Question 3.2 Find an orthonormal matrix V that transforms the matrix

A =

[

2 3
1 4

]

to a diagonal form.

Question 3.3 Find all eigenvalues and eigenvectors of the following n × n
matrix:

A =





















4 −1 0 0 · · · 0 0 0
−1 4 −1 0 · · · 0 0 0
0 −1 4 −1 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · −1 4 −1
0 0 0 0 · · · 0 −1 4





















(n×n)

Question 3.4 Solve the following eigenvalue problem:

Ax = λx

by Jacobi method with accuracy ε = 0.05, where

A =







2 0 3
1 4 2
9 0 6






.
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Question 3.5 Find the dominant eigenvalue and corresponding eigenvector
of the matrix

A =











5 0 0 3
0 8 0 0
0 0 10 0

10 0 0 12











.

Question 3.6 Use the Householder transformation to reduce the following
matrix to the Hessenberg form:

A =







2 −1 0
0 2 −1
3 −1 2





 .

Question 3.7 Use the QR method to find all eigenvalues and all orthonormal
eigenvectors of the matrix

A =







2 −1 0
0 2 −1
3 −1 2






.

Question 3.8 (a) Let

B =























b11 b12 b13

b21 b22 b23

0 b32 b33























be a Hessenberg’s matrix and let A(0), A(1), A(2), ... be the sequence of ma-
trices determined by QR factorization of the matrix B. Write the algo-
rithm to compute the term A(1) and A(2)

(b) Let the Hessenberg’s matrix

B =























4 0 1

1 2 1

0 1 3























Compute the terms A(0), A(1) and A(2) of the QR sequence A(0), A(1), A(2), ...



Chapter 4

Iterative Methods for Systems
of Linear Equations

4.1 Stationary One Step Linear Methods

In this section, we shall consider a class of one step linear stationary iterative
methods of the following form (cf. [8], [14],[19], [22]):

x(m+1) = Gx(m) + F, m = 0, 1, 2, . . . ; (4.1)

where x(0) is a starting vector, in general, arbitrarily chosen, G is an iterative
matrix, and F is a given vector.

Definition 4.1 An iterative method of class (4.1) is said to be consistent with
the system of linear equations

Ax = b, (4.2)

if and only if the exact solution x(d) of the system of equations (4.2) is a
stationary point of the iterative method i.e.,

x(d) = Gx(d) + F, (4.3)

where the vectors

x =

















x1

x2

x3
...
xn

















, b =

















b1
b2
b3
...
bn

















and the matrix

A =















a11 a12 a13 · · · a1n−1 a1n

a21 a22 a23 · · · a2n−1 a2n

a31 a32 a33 · · · a3n−1 a3n

· · · · · · · · · · · · · · · · · ·
an1 an2 an3 · · · ann−1 ann















81
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In order to determine a consistent iterative method, we should give relation-
ship between matricesA,G and vectors b, F . Later on, we shall establish such
relationship for Jacobi Iterative Method (JI), Gauss Seidel Iterative Method
(GS), Successive Overrelaxation Method (SOR) and Alternating Direction Im-
plicit Method (ADI).
Now, let us state the necessary and sufficient condition for convergence of a
stationary one step linear iterative method.

Definition 4.2 An iterative method of the class (4.1) consistent with the sys-
tem of linear equations (4.2) is convergent if and only if for every starting
vector x(0) the sequence

{x(m)}, m = 0, 1, . . . ;

determined by the iterative method is convergent to the exact solution of the
system of linear equations (4.2), i.e.,

limx(m) = x(d) and Ax(d) = b.

Let
ε(m) = x(m) − x(d).

be the error of m− th iteration. Then, from (4.1) and (4.3), we have

ε(m+1) = Gmε(0). (4.4)

Hence, we obtain the following sufficient and necessary condition of conver-
gence:
An iterative method of the class (4.1) is convergent, i.e.,

ε(m) → 0 when m→∞
if and only if

ρ(G) < 1, (4.5)

where ρ(G) = max1≤i≤n | λi |, is the spectral radius of the iterative matrix G,
and λi, i = 1, 2, . . . , n, are eigenvalues of G.
Rates of convergence. In order to estimate the rate of convergence of an
iterative method, we may use the Average Rate of Convergence Rm(G) or the
Asymptotic Rate of Convergence R∞(G).(cf. [19],[22]). The rates Rm(G) and
R∞(G) are defined as follows:
From formula (4.4)

‖ ε(m) ‖≤‖ Gm ‖‖ ε(0) ‖ .
So that, the norm ‖ Gm ‖ determines the rate of approaching x(m) to x(d)

when m → ∞. Usually, we finish an iterative process if the error ε(m) is a
small fraction of the initial error ε(0), i.e.,

‖ ε(m) ‖≤ µ ‖ ε(0) ‖ .
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The above inequality holds if

m ≥ − logµ

− 1
m
log ‖ Gm ‖ .

Hence, the Average Rate of Convergence is:

Rm(G) = − 1

m
log ‖ Gm ‖,

and the Asymptotic Rate of Convergence is:

R∞(G) = lim
m→∞

Rm(G) = −logρ(G).

Now, we note that to reduce the initial error µ times

m ≈ − logµ

R∞(G)
=

logµ

logρ(G)
.

iterations are needed.
Below, we shall give some of well known stationary one-step iterative methods.

4.2 Jacobi Iterative Method

Let A be a non-singular matrix. and let the diagonal entries aii 6= 0, for
i = 1, 2, . . . n. Clearly, the matrix A can be written in the following form:

A = L +D + U,

where the lower-triangular matrix

L =

















0 0 0 · · · 0 0
a21 0 0 · · · 0 0
a31 a32 0 · · · 0 0
...

...
...

. . .
...

...
an1 an2 an3 · · · ann−1 0

















the upper-triangular matrix

U =

















0 a12 a13 · · · a1n−1 a1n

0 0 a23 · · · a2n−1 a2n

0 0 0 · · · a3n−1 a3n

...
...

...
. . .

...
...

0 0 0 · · · 0 0
















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and the diagonal matrix

D =

















a11 0 0 · · · 0 0
0 a22 0 · · · 0 0
0 0 a33 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 ann

















Now, let us write the linear system of equations (4.2) in the following equivalent
form:

Dx = −(L+ U)x+ b,

or
x = −D−1(L+ U)x +D−1b.

Then, Jacobi iterative method is:

x(m+1) = −D−1(L+ U)x(m) +D−1b, m = 0, 1, . . . ; (4.6)

or
x(m+1) = −GJx

(m) + FJ , m = 0, 1, . . . ;

where x(0) is the starting vector, GJ = D−1(L+U) is Jacobi’s iterative matrix,
and Fj is the following vector FJ = D−1b.
In terms of coordinates, Jacobi iterative method takes the following form:

x
(m+1)
i =

1

aii

n
∑

j=1,j 6=i

aijx
(m)
j +

bi
aii

,

for i = 1, 2, . . . , n; and m = 0, 1, . . . ;
In order to stop Jacobi iterations, we can use the condition

| x(m+1)
i − x(m)

i |≤ ε, (4.7)

where ε is a given accuracy and m is the least integer for which condition (4.7)
holds.

Example 4.1 Let us solve the following system of equations

10x1 − x2 − x3 − x4 = 34
−x1 + 10x2 − x3 − x4 = 23
−x1 − x2 + 10x3 − x4 = 12
−x1 − x2 − x3 + 10x4 = 1

by Jacobi iterative method using condition (4.7) to stop the iterations when
ε = 0.0005.
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Solution. Let x(0) = (0, 0, 0, 0) be the starting vector. Following Jacobi iter-
ations, we find
The first iteration:

x
(1)
1 = 1

10
[34 + x

(0)
2 + x

(0)
3 + x

(0)
4 ] = 3.4

x
(1)
2 = 1

10
[23 + x

(0)
1 + x

(0)
3 + x

(0)
4 ] = 2.3

x
(1)
3 = 1

10
[12 + x

(0)
1 + x

(0)
2 + x

(0)
4 ] = 1.2

x
(1)
4 = 1

10
[1 + x

(0)
1 + x

(0)
2 + x

(0)
3 ] = 0.1

The second iteration:

x
(2)
1 = 1

10
[34 + x

(1)
2 + x

(1)
3 + x

(1)
4 ] = 1

10
[34 + 2.3 + 1.2 + 0.1] = 3.76

x
(2)
2 = 1

10
[23 + x

(1)
1 + x

(1)
3 + x

(1)
4 ] = 1

10
[23 + 3.4 + 1.2 + 0.1] = 2.77

x
(2)
3 = 1

10
[12 + x

(1)
1 + x

(1)
2 + x

(1)
4 ] = 1

10
[12 + 3.4 + 2.3 + 0.1] = 1.78

x
(2)
4 = 1

10
[1 + x

(1)
1 + x

(1)
2 + x

(1)
3 ] = 1

10
[1 + 3.4 + 2.3 + 1.2] = 0.79

The third iteration:

x
(3)
1 = 1

10
[34 + x

(2)
2 + x

(2)
3 + x

(2)
4 ] = 1

10
[34 + 2.77 + 1.78 + 0.79] = 3.934

x
(3)
2 = 1

10
[23 + x

(2)
1 + x

(2)
3 + x

(2)
4 ] = 1

10
[23 + 3.76 + 1.78 + 0.79] = 2.933

x
(3)
3 = 1

10
[12 + x

(2)
1 + x

(2)
2 + x

(2)
4 ] = 1

10
[12 + 3.76 + 2.77 + 0.79] = 1.932

x
(3)
4 = 1

10
[1 + x

(2)
1 + x

(2)
2 + x

(2)
3 ] = 1

10
[1 + 3.76 + 2.77 + 1.78] = 0.931

The fourth iteration:

x
(4)
1 = 1

10
[34 + x

(3)
2 + x

(3)
3 + x

(3)
4 ] = 1

10
[34 + 2.933 + 1.932 + 0.931] = 3.9796

x
(4)
2 = 1

10
[23 + x

(3)
1 + x

(3)
3 + x

(3)
4 ] = 1

10
[23 + 3.934 + 1.932 + 0.931] = 2.9797

x
(4)
3 = 1

10
[12 + x

(3)
1 + x

(3)
2 + x

(3)
4 ] = 1

10
[12 + 3.3.934 + 2.933 + 0.931] = 1.9798

x
(4)
4 = 1

10
[1 + x

(3)
1 + x

(3)
2 + x

(3)
3 ] = 1

10
[1 + 3.934 + 2.933 + 1.932] = 0.9799

We can obtain more accurate approximate solution using the following module

Program 4.1 Mathematica module that solves a linear system of equations
by Jacobi iterative method
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jacobiItation[a_,x0_]:=Module[{b,d,d1,i,k,l,n,x,u},

n=Length[First[a]]-1;

b=Map[#[[n+1]]&,a];

l=Table[0,{i,1,n},{k,1,n}]; u=l;d=l;

Do[l[[i,k]]=a[[i,k]],{i,2,n},{k,1,i-1}];

Do[u[[i,k]]=a[[i,k]],{i,1,n-1},{k,i+1,n}];

Do[d[[i,i]]=a[[i,i]],{i,1,n}];

d1=Inverse[d];

x=x0;

Do[x=d1.(-(l+u).x+b),{iter}];

x

Entering input data iter=8; and

a={{10.,-1.,-1.,-1.,34.},{-1.,10,-1.,-1.,23.},

{-1.,-1.,10,-1.,12.},{-1.,-1.,-1.,10.,1.}};

x0={0,0,0,0};

we invoke the module

jacobiIteration[a,x0];

Then, we obtain the approximate solution

{3.9999852376, 2.9999852377, 1.9999852378, 0.9999852379}

This solution satisfies the condition (4.7) for m = 7, so that

| x(8)
i − x(7)

i |< 0.0003 < ε, i = 1, 2, 3, 4.

4.3 Gauss Seidel Iterative Method

Gauss Seidel iterative method is a simple modification of Jacobi iterative

method. Namely, we may use already evaluated x
(m+1)
j , for j = 1, 2, . . . , i− 1

to determine x
(m+1)
j , for j = i, i+ 1, . . . , n.

Then, we have

Dx(m+1) = −Lx(m+1) − Ux(m) + b, m = 0, 1, . . . ;

and the Gauss Seidel iterative method takes the following form:

x(m+1) = GSx
(m) + FS, m = 0, 1, . . . ; (4.8)
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where the iterative matrixGS = −(D+L)−1U and the vector FS = (D+L)−1b.
In the terms of coordinates Gauss Seidel iterations are:

x
(m+1)
i = − 1

aii

[
i−1
∑

j=1

aijx
(m+1)
j +

n
∑

j=i+1

aijx
(m)
j − bi],

for i = 1, 2, . . . , n; m = 0, 1, . . . ;
Let us now state the sufficient condition for convergence of Jacobi and Gauss
Seidel methods.
The following theorem holds:

Theorem 4.1 (cf. [17]). If the matrix A is positive definite then Jacobi and
Gauss Seidel iterative methods are convergent.

Proof. By the assumption, A is a symmetric matrix. Therefore

A = U +D + UT

and hence the iterative matrix of Gauss Seidel method is:

GS = −(D + U)−1UT .

Let −λ be an eigenvalue of the matrix GS corresponding to the eigenvector v.
Then, the following equality holds:

(D + U)−1UTv = λv,

or
UT v = λ(D + U)v.

In general, the iterative matrix GS can have complex eigenvalues, so that

v∗UT v = λv∗(D + U)v, (4.9)

where v∗ is conjugate to v.
Adding the term v∗(D + U)v to both sides of (4.9), we obtain

v∗Av = (1 + λ)v∗(D + U)v. (4.10)

Since A is a symmetric matrix, therefore

(v∗Av) = v∗Av.

Hence, by (4.9)

(1 + λ)v∗(D + U)T v = (1 + λ)v∗(D + U)v =
(1 + λ)[v∗Dv + v∗Uv] =
(1 + λ)[v∗Dv + λv∗(D + U)T v].

(4.11)
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Grouping like terms in (4.11), we arrive at the equality

(1− | λ |2)v∗(D + U)T v = (1 + λ)v∗Dv. (4.12)

Multiplying (4.12) by 1 + λ, we obtain

(1− | λ |2)v∗Av =| 1 + λ |2 v∗Dv. (4.13)

By the assumption, A is a positive definite matrix, thereforeD is also a positive
definite matrix. Moreover, λ = 1 cannot be an eigenvalue of GS = −(D +
U)−1UT since A is a non-singular matrix and v 6= 0 (4.10). Therefore, we have

1− | λ |> 0,

and hence all eigenvalues of GS satisfy the inequality

| λ |< 1.

This means that the spectral radius ρ(GS) < 1. By the necessary and sufficient
condition of convergence, the Gauss Seidel method is convergent.
In order to prove that Jacobi method is also convergent, when A is a positive
definite matrix, we may use the following relations between ρ(GJ ) and ρ(GS).

1. (a) ρ(GJ ) = ρ(GS) = 0,

(b) ρ(Gj) = ρ(GS) = 1,

(c) ρ(GS) < ρ(GJ ) < 1,

(d) 1 < ρ(GJ ) < ρ(GS).

From the above relations, it follows that Jacobi iterative method is convergent
if and only if Gauss Seidel method is convergent. One can show that Gauss
Seidel method is asymptotically twice faster than Jacobi method, i.e.,

R∞(GS) = 2R∞(GJ ).

and the number of iterations needed to reduce µ times the initial error ε(0) by
Gauss Seidel iterations is:

m ≈ − logµ

2R∞(GJ )
.

We can improve the accuracy of the final result of Jacobi iterative and Gauss
Seidel iterative methods using the following formula:

x∗i = x
(m+2)
i − (x

(m+2)
i − x(m)

i+1)
2

x
(m+2)
i − 2x

m+1)
i + x

(m)
i

. (4.14)
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Example 4.2 Let us solve the following system of linear equations

10x1 − x2 − x3 − x4 = 34
−x1 + 10x2 − x3 − x4 = 23
−x1 − x2 + 10x3 − x4 = 12
−x1 − x2 − x3 + 10x4 = 1

(4.15)

by Gauss Seidel iterative method using condition (4.7) to stop the iterations
when ε = 0.01.

Solution. Let x(0) = (0, 0, 0, 0) be the starting vector. Following Gauss Seidel
iterations, we find
The first iteration:

x
(1)
1 = 1

10
[34 + x

(0)
2 + x

(0)
3 + x

(0)
4 ] = 3.4

x
(1)
2 = 1

10
[23 + x

(1)
1 + x

(0)
3 + x

(0)
4 ] = 1

10
[23 + 3.4 + 0 + 0 + 0] = 2.64

x
(1)
3 = 1

10
[12 + x

(1)
1 + x

(1)
2 + x

(0)
4 ] = 1

10
[12 + 3.4 + 2.64 + 0 + 0] = 1.804

x
(1)
4 = 1

10
[1 + x

(1)
1 + x

(1)
2 + x

(1)
3 ] = 1

10
[1 + 3.4 + 2.64 + 1.804 + 0] = 0.8844

The second iteration:

x
(2)
1 = 1

10
[34 + x

(1)
2 + x

(1)
3 + x

(1)
4 ] = 1

10
[34 + 2.64 + 1.804 + 0.8844] = 3.9328

x
(2)
2 = 1

10
[23 + x

(2)
1 + x

(1)
3 + x

(1)
4 ] = 1

10
[23 + 3.9328 + 1.804 + 0.8844] = 2.9621

x
(2)
3 = 1

10
[12 + x

(2)
1 + x

(2)
2 + x

(1)
4 ] = 1

10
[12 + 3.9328 + 2.9621 + 0.8844] = 1.9779

x
(2)
4 = 1

10
[1 + x

(2)
1 + x

(2)
2 + x

(2)
3 ] = 1

10
[1 + 3.9328 + 2.9621 + 1.979] = 0.9873

The third iteration:

x
(3)
1 = 1

10
[34 + x

(2)
2 + x

(2)
3 + x

(2)
4 ] = 1

10
[34 + 2.9621 + 1.9779 + 0.9873] = 3.9927

x
(3)
2 = 1

10
[23 + x

(3)
1 + x

(2)
3 + x

(2)
4 ] = 1

10
[23 + 3.9927 + 1.9779 + 0.9873] = 2.9958

x
(3)
3 = 1

10
[12 + x

(3)
1 + x

(3)
2 + x

(2)
4 ] = 1

10
[12 + 3.9927 + 2.9958 + 0.9873] = 1.9976

x
(3)
4 = 1

10
[1 + x

(3)
1 + x

(3)
2 + x

(3)
3 ] = 1

10
[1 + 3.9927 + 2.9958 + 1.9976] = 0.9986
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The fourth iteration:

x
(4)
1 = 1

10
[34 + x

(3)
2 + x

(3)
3 + x

(3)
4 ] = 1

10
[34 + 2.9958 + 1.9976 + 0.9986] = 3.9992

x
(4)
2 = 1

10
[23 + x

(4)
1 + x

(3)
3 + x

(3)
4 ] = 1

10
[23 + 3.9992 + 1.9976 + 0.9986] = 2.9995

x
(4)
3 = 1

10
[12 + x

(4)
1 + x

(4)
2 + x

(3)
4 ] = 1

10
[12 + 3.9992 + 2.9995 + 0.9986] = 1.9997

x
(4)
4 = 1

10
[1 + x

(4)
1 + x

(4)
2 + x

(4)
3 ] = 1

10
[1 + 3.9992 + 2.9995 + 1.9997] = 0.9998

Evidently, condition (4.7) is satisfied for m = 3, so that

| x(4)
i − x(3)

i |≤ 0.008 < ε, i = 1, 2, 3, 4.

We can solve a system of linear equations by Gauss Seidel method of iterations
using the following Mathematica module:

Program 4.2 Mathematica module that solves a linear system of equations
by Gauss Seidel iterative method

gaussSeidel[a_,x0_]:=Module[{b,d,d1,i,k,l,n,x,u},

n=Length[a[[1]]]-1;

b=Map[#[[n+1]]&,a];

l=Table[0,{i,1,n},{k,1,n}]; u=l;d=l;

Do[l[[i,k]]=a[[i,k]],{i,2,n},{k,1,i-1}];

Do[u[[i,k]]=a[[i,k]],{i,1,n-1},{k,i+1,n}];

Do[d[[i,i]]=a[[i,i]],{i,1,n}];

d1=Inverse[d+l];

x=x0;

Do[x=d1.(-u.x+b),{4}];

x

];

In order to repeat the solution of the above example, using the module seidel,
we enter input data matrix and the starting vector

a={{10.,-1.,-1.,-1.,34.},{-1.,10,-1.,-1.,23.},

{-1.,-1.,10,-1.,12.},{-1.,-1.,-1.,10.,1.}};

x0={0,0,0,0};

Then, we execute the instruction

N[gaussSeidel[a,x0],4]
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to obtain the approximate solution 3.999, 3., 2., 0.9998.

Let us note that, we have got the same numerical solution of the system of
equations (4.15) by Gauss Seidel iterative method for four iterations, and by
Jacobi iterative method for 8 iterations. Still, we can improve the results using
formula (4.14). Namely, we obtain the four digit accurate solution using only
three iterations: the second, the third and the fourth, i.e.,

x
(∗)
1 = x

(4)
1 −

[x
(4)
1 − x(3)

1 ]2

x
(4)
1 − 2x

(3)
1 + x

(2)
1

= 3.9992− [3.9992− 3.9927]2

3.9992− 2 ∗ 3.9927 + 3.9328
= 4.0000

x
(∗)
2 = x

(4)
2 −

[x
(4)
2 − x(3)

2 ]2

x
(4)
2 − 2x

(3)
2 + x

(2)
2

= 2.9995− (2.9995− 2.9958)2

2.9995− 2 ∗ 2.9958 + 2.9621
= 3.0000

x
(∗)
3 = x

(4)
3 −

[x
(4)
3 − x(3)

3 ]2

x
(4)
3 − 2x

(3)
3 + x

(2)
3

= 1.9997− (1.9997− 1.9976)2

1.9997− 2 ∗ 1.9976 + 1.9779
= 2.0000

x
(∗)
4 = x

(4)
4 −

[x
(4)
4 − x(3)

4 ]2

x
(4)
4 − 2x

(3)
4 + x

(2)
4

= 0.9998− (0.9998− 0.9986)2

0.9998− 2 ∗ 0.9986 + 0.9873
= 1.0000

4.4 Successive Overrelaxation Method (SOR)

Let us rewrite the system of equations (4.2) in the following form:

x = (−D−1L −D−1U)x+D−1b. (4.16)

Then, the successive overrelaxation iterations take the following form:

x(m+1) = w[−D−1Lx(m+1) −D−1Ux(m) +D−1b] + (1− w)x(m),
m = 0, 1, . . . ;

(4.17)

where w is a parameter, x(0) is a starting vector.
In terms of coordinates, SOR iterations are:

x
(m+1)
i = −w[

i−1
∑

j=1

aij

aii

x
(m+1)
j +

n
∑

j=i+1

aij

aii

x
(m)
j − bi

aii

] + (1− w)x
(m)
i , (4.18)

i = 1, 2, . . . ; m = 0, 1, . . . ;
Clearly, SOR method is one step linear stationary method, since from (4.17),
we get

x(m+1) = Gwx
(m) + Fw, m = 0, 1, . . . ; (4.19)

where the iterative matrix

Gw = (E + wD−1L)−1[(1− w)E −wD−1U ]

and the vector
Fw = wD−1b
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.
Let us note that for w = 1, SOR iterations (4.19) are the same as Gauss Seidel
iterations (4.8). The rate of convergence of SOR method depends on the value
of the parameter w. Naturally, the fastest convergence of SOR iterations will
be for optimal value of w = wopt for which the spectral radius ρ(Gw) attains
its minimum. The optimal value of the parameter w can be determined by the
following formula (cf. [22]):

wopt =
2

1 +
√

1− ρ2(GJ )
, (4.20)

where ρ(GJ ) is the spectral the matrix GJ .
The conditions of convergence of SOR method are given in the following the-
orem:

Theorem 4.2 Let A be a symmetric matrix with the positive diagonal entries
aii > 0, i = 1, 2, . . . ; Then, SOR method converges if and only if A is a
positive definite matrix and 0 < w < 2.

Thus, SOR method as well as Jacobi and Gauss Seidel methods are convergent
for positive definite matrices. Among them SOR method has the greatest rate
of convergence, i.e.,

R∞(Gwopt) = 2
√

R∞(GJ),

where R∞(GJ ) is the asymptotic rate of convergence of Jacobi method. How-
ever, in order to use SOR method with the optimal parameter wopt, we have to
know the radius of convergence ρ(GJ ) of Jacobi method. In some interesting
cases (for example when approximating elliptic equations), ρ(GJ ) is known
and then, we may apply SOR method successfully.

Example 4.3 Let us solve the following system of linear equations

10x1 − x2 − x3 − x4 = 34
−x1 + 10x2 − x3 − x4 = 23
−x1 − x2 + 10x3 − x4 = 12
−x1 − x2 − x3 + 10x4 = 1

by SOR method using condition (4.7) to stop the iterations when ε = 0.05.

Solution. One can find that the spectral radius ρ(GJ ) = 0.3, where Jacobi
iterative matrix

GJ = E −D−1A =











1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1











− 1

10











10 −1 −1 −1
−1 10 −1 −1
−1 −1 10 −1
−1 −1 −1 10











=
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1

10











0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0











Therefore, by formula (4.20) the optimal parameter

wopt =
2

1 +
√

1− 0.32
= 1.023573302.

Let x(0) = (0, 0, 0, 0) be the starting vector. Following SOR iterations, we find
The first SOR iteration:

x
(1)
1 =

w

10
[34 + x

(0)
2 + x

(0)
3 + x

(0)
4 ] + (1−w)x

(0)
1 =

0.1023573302(34 + 0 + 0 + 0) + 0 = 3.4801

x
(1)
2 =

w

10
[23 + x

(1)
1 + x

(0)
3 + x

(0)
4 ] + (1−w)x

(0)
2 =

0.1023573302(23 + 3.4801 + 0 + 0) + 0 = 2.7104

x
(1)
3 =

w

10
[12 + x

(1)
1 + x

(1)
2 + x

(0)
4 ] + (1−w)x

(0)
3 =

0.10235702(12 + 3.4801 + 2.7104 + 0) + 0 = 1.8619

x
(1)
4 =

w

10
[1 + x

(1)
1 + x

(1)
2 + x

(1)
3 ] + (1− w)x

(0)
4 =

0.1023573302(1 + 3.4801 + 2.7104 + 1.8698) = 0.9259

The second SOR iteration:

x
(2)
1 =

w

10
[34 + x

(1)
2 + x

(1)
3 + x

(1)
4 ] + (1− w)x

(1)
1 =

0.1023573302(34 + 2.7104 + 1.8619 + 0.9266) − 0.023573302 ∗ 3.4801 = 3.9610

x
(2)
2 =

w

10
[23 + x

(2)
1 + x

(1)
3 + x

(1)
4 ] + (1− w)x

(1)
2 =

0.1023573302(23 + 3.9610 + 1.8619 + 0.9266) − 0.023573302 ∗ 2.7104 = 2.9812

x
(2)
3 =

w

10
[12 + x

(2)
1 + x

(2)
2 + x

(1)
4 ] + (1− w)x

(1)
3 =

0.10235702(12 + 3.9610 + 2.9812 + 0.9266) − 0.023573302 ∗ 1.8619 = 1.9898

x
(2)
4 =

w

10
[1 + x

(2)
1 + x

(2)
2 + x

(2)
3 ] + (1− w)x

(1)
4 =

0.1023573302(1 + 3.9610 + 2.9812 + 1.9898) − 0.023573302 ∗ 0.9266 = 0.9948
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The third SOR iteration:

x
(3)
1 =

w

10
[34 + x

(2)
2 + x

(2)
3 + x

(2)
4 ] + (1− w)x

(2)
1 =

0.1023573302(34 + 2.9812 + 1.9898 + 0.9948) − 0.023573302 ∗ 3.9610 = 3.9974

x
(3)
2 =

w

10
[23 + x

(3)
1 + x

(2)
3 + x

(2)
4 ] + (1− w)x

(2)
2 =

0.1023573302(23 + 3.9974 + 1.9898 + 0.9948) − 0.023573302 ∗ 2.9812 = 2.9986

x
(3)
3 =

w

10
[12 + x

(3)
1 + x

(3)
2 + x

(2)
4 ] + (1− w)x

(2)
3 =

0.10235702(12 + 3.9974 + 2.9986 + 0.9948) − 0.023573302 ∗ 1.9898 = 1.9993

x
(3)
4 =

w

10
[1 + x

(3)
1 + x

(3)
2 + x

(3)
3 ] + (1− w)x

(2)
4 =

0.1023573302(1 + 3.9974 + 2.9986 + 1.9993) − 0.023573302 ∗ 0.9948 = 0.9996

The condition (4.7) is satisfied for m = 2, so that

| x(3)
i − x(2)

i |≤ 0.0364 < ε

i = 1, 2, 3, 4.
Comparing the results of the three methods, we observe that SOR method
produces the most accurate results at each iteration.
We can solve the above example using the following Mathematica module

Program 4.3 Mathematica module that solves a system of linear equations
by Gauus-Seidel iterative method

sor[a_,x0_]:=

Module[{b,d,d1,i,k,l,n,w,fw,gw,id,u,x},

n=Length[a[[1]]]-1;

b=Map[#[[n+1]]&,a];

w=2/(1+Sqrt[1-0.3^2]);

l=Table[0,{i,1,n},{k,1,n}]; u=l;d=l;

Do[l[[i,k]]=a[[i,k]],{i,2,n},{k,1,i-1}];

Do[u[[i,k]]=a[[i,k]],{i,1,n-1},{k,i+1,n}];

Do[d[[i,i]]=a[[i,i]],{i,1,n}];

d1=Inverse[d]; id=IdentityMatrix[n];

d2=Inverse[id+w*d1.l];

gw=d2.((1-w)*id-w*d1.u);

fw=w*d2.d1.b;

x=x0;
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Do[x=gw.x+fw,{3}];

x

];

Entering data matrix a and starting vector x0

a={{10.,-1.,-1.,-1.,34.},{-1.,10,-1.,-1.,23.},

{-1.,-1.,10,-1.,12.},{-1.,-1.,-1.,10.,1.}};

x0={0,0,0,0};

we obtain the approximate solution 3.9974, 2.9986, 1.9993, 0.99964, by exe-
cution of the command N[sor[a,x0],5].

4.5 Alternating Direction Implicit Method (ADI)

The ADI iterative method in its first version was published by D.W. Peaceman
and H.H. Rachford in 1955. Here, we shall present a stationary variant of ADI
method, (cf. [22]).
1 Let us assume that A is a positive definite matrix. We split A in three
components as follows:

A = L +D + U,

where D is diagonal matrix.
By ADI method, the sequence {x(m)}, m = 0, 1, . . . ; of successive iterations
is determined in two steps. Namely, for a given vector x(m) the next two terms
x(m+ 1

2
) and x(m+1) are computed by the following recursive formulas:

(L1 + βE)x(m+ 1

2
) = b− (U1 − βE)x(m),

(U1 + βE)x(m+1) = b− (L1 − βE)x(m+ 1

2
), m = 0, 1, ...;

(4.21)

where L1 = L + 1
2
D, U1 = U + 1

2
D, and β is a parameter.

Eliminating x(m+ 1

2
) from equations (4.21), we obtain

x(m+1) = G(A, β)x(m) + F (A, β), m = 0, 1, ...;

where the iterative matrix of ADI method

G(A, β) = (U1 + βE)−1(L1 − βE)(L1 + βE)−1(U1 − βE),

and the vector

F (A, β) = (U1 + βE)−1b− (U1 + βE)−1(L1 − βE)−1(L1 + βE)−1b.

1See a broad description of ADI method in [19], [22]
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Thus, ADI method is also one step stationary method, and it is convergent if
the spectral radius ρ(G(A, β)) < 1.
On the other hand, the spectral radius

ρ(G(A, β)) = max
1≤k≤n

[
λk − β
λk + β

]2,

where λk is the eigenvalue of the matrix L1, and

[
λk − β
λk + β

]2

is the eigenvalue of the iterative matrix G(A, β).
By the assumption, A is a positive definite matrix. Therefore, L1 and U1 are
also a positive definite matrices and all their eigenvalues are positive, so that

0 < a ≤ λk ≤ b, k = 1, 2, ..., n;

Then, the spectral radius
ρ(G(A, β)) < 1

for every β > 0. Therefore ADI method is convergent for every β > 0.
In order to reach the greatest rate of convergence, we can choose an optimal
value of the parameter β to obtain the smallest value of ρ(G(A, β)). Thus, we
shall find such βopt for which

ρ(A, βopt) = min
β>0

max
a≤λ≤b

[
λ− β
λ+ β

]2.

One can find that

max
a≤λ≤b

|λ− β
λ + β

| = max{β − a
β + a

,
b− β
b+ β

} =



















b− β
b+ β

if a ≤ β ≤
√
ab,

β − a
β + a

if
√
ab ≤ β ≤ b.

Hence, the optimal value of parameter βopt =
√
ab.

Example 4.4 Let us solve the following system of linear equations:

10x1 − x2 − x3 − x4 = 34
−x1 + 10x2 − x3 − x4 = 23
−x1 − x2 + 10x3 − x4 = 12
−x1 − x2 − x3 + 10x4 = 1

by ADI method using condition (4.7) to stop the iterations when ε = 0.005.
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Solution. Let us note that the matrix

A =











10 −1 −1 −1
−1 10 −1 −1
−1 −1 10 −1
−1 −1 −1 10











can be written as follows:
A = L +D + U,

where

L =











4 −1 0 0
−1 4 −1 0

0 −1 4 −1
0 0 −1 4











, D =











2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2











,

U =











4 0 −1 −1
0 4 0 −1
−1 0 4 0
−1 −1 0 4











.

Evidently, the matrices L, D and U satisfy conditions (a) and (b) and the
assumptions of theorem 1. Therefore, ADI method (4.21) is convergent. In
the example, we shall use the optimal value of the parameters when

βopt = βopt =
√
ab

Namely, one can find that the matrices

L1 == L+
1

2
D =











5 −1 0 0
−1 5 −1 0

0 −1 5 −1
0 0 −1 5











U1 == U +
1

2
D =











5 0 −1 −1
0 5 0 −1
−1 0 5 0
−1 −1 0 5











have the same eigenvalues

ν1 = λ1 = 3.381966, ν2 = λ2 = 4.381966,

ν3 = λ3 = 5.618033, ν4 = λ4 = 6.618033.

Hence a = 3.381966, b = 6.6180340 and βopt =
√
ab = 4.7309579.

Let x(0) = (0, 0, 0, 0) be the starting vector. Following ADI iterations (4.21),
we arrive at the following results:
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ADI Iterations

x(m) x1 x2 x3 x4

x(0) 0.0000 0.0000 0.0000 0.0000
x(0.5) 3.7934 2.9137 1.5596 0.2630
x(1) 3.9858 2.9325 1.9261 0.9667
x(1.5) 3.9891 2.9972 1.9995 0.9924
x(2) 3.9999 2.9989 1.9990 1.0000

The error : max[x
(2)
i − x(0)

i ] = 0.0011

.

Let us note that ADI method produces the most accurate results at each
iteration as compared with the other methods (Jacobi, GS, SOR). However,
ADI method converges well when optimal parameters are used. Then, two
linear systems of equations have to be solved at each iteration. This makes
ADI method less effective. Although, in some cases when the matrices L1 and
U1 have simple structure (for instance, L1 and U1 are tri-diagonal matrices),
ADI method can produce a satisfactory solution using relatively small number
of arithmetic operations. In order to reduce the initial error µ times

m ≈ log(µ)

log(ρ(GA))

arithmetic operations are needed.

4.6 Conjugate Gradient Method (CG)

The conjugate gradient method is applicable to a linear system of n equations

Ax = b, (4.22)

with a positive definite matrix A.
This method produces a solution of the system (4.22) in at most n iterations,
provided that computations are done in exact arithmetic. An implementation
of the method on a computer may affect infinite iterative process.
The method is based on a set v(1) , v(2) , ..., v(n) of A-orthogonal vectors in the
sense of the following inner product

(Av(i), v(j)) =
n

∑

k=1

n
∑

s=1

aksv
(i)
k v(j)

s ,

where the vector v(i) = (v
(i)
1 , v

(i)
2 , . . . , v

(i)
n ) is in the real space Rn. So that

(Av(i), v(j)) =







1, i = j,

0, i 6= j.
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Let us note that if v(1) , v(2) , ..., v(n) are A-orthogonal vectors then the exact

solution x(d) = (x
(d)
1 , x

(d)
2 , . . . , x(d)

n ) can be presented as follows:

x(d) = x(1) +
n

∑

k=1

αkv
(k), (4.23)

where x(1) is a starting vector arbitrarily chosen, and the coefficients

r(1) = b− Ax(1).

αk =
(A(x(d) − x(1)), v(k))

(Av(k), v(k))
=

(v(k), r(1))

(Av(k), v(k))
, k = 1, 2, . . . , n,

Indeed, we have

(A(x(1) +
n

∑

k=1

αkv
(k)), v(s)) =

Ax(1) + αs = (bs, v
(s)),

for s = 1, 2, ..., n.
Hence, we obtain

A(x(1) +
n

∑

k=1

αkv
(k)) = b.

Because the system of equations (4.22) has a unique solution, therefore (4.23)
holds.

The main problem in the CG method is to find an A-orthogonal set of n
vectors. In order to obtain an A-orthogonal set of n vectors in the real space
Rn, we can use Gram-Schmidt like procedure. Namely, let us choose a linearly
independent set of n vectors u(1), u(2), . . . , u(n) and let put

v(1) = u(1) , v(i+1) = u(i+1) −
i

∑

k=1

βi+1kv
(k), (4.24)

where the coefficients

βi+1k =
(Au(i+1), v(k))

(Av(k), v(k))
, k = 1, 2, . . . , i; i = 1, 2, . . . , n.

There are many ways to choose linearly independent vectors u(1), u(2), . . . , u(n).
One way is to set

u(i) = r(i), i = 1, 2, . . . , n,

where the residual vector

r(i) = b− Ax(i), i = 1, 2, .., n,
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with

x(i+1) = x(i) + αiv
(i), i = 1, 2, ..., n− 1,

and with starting vector x(1) .
For the above choice of vectors u(1), u(2), . . . , u(n), the CG algorithm is:

Choose a vector x(1),

then evaluate :

v(1) = r(1) = b− Ax(1),
F or i = 1, 2, ..., n,

αi =
(v(i), r(i))

(Av(i), v(i))
,

x(i+1) = x(i) + αiv
(i),

r(i+1) = r(i) − αiAv
(i),

βi =
(Ar(i+1), v(i))

(Av(i), v(i))
,

v(i+1) = r(i+1) + βiv
(i).

(4.25)

Implementing the above algorithm in exact arithmetic, we obtain the solution
x(d) = x(n+1). As we have mentioned, the CG iterative process can be infinite
if round-off errors are involved in the calculations. To stop CG iterations, in
such a case, we can use the following conditions:

1. (a)
‖ r(m) ‖2= (r(m), r(m)) ≈ 0,

(b) determine the maximum number of iterations m.
For well conditioned matrices the maximum number of iterations is
m ≈ 2n.

The CG method when it is applied to a matrix with n2 entries requires O(n3)
arithmetic operations. So that, the method is equivalent to Gauss elimi-
nation in terms of the number of operations. However, the CG method is
very efficient when it is applied to sparse matrix. Below, we give the module
conjugateGradient that solves a system of linear equations with a positive
definite matrix.

Program 4.4 Mathematica module that solves a system of linear equations
by SOR method
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Options[conjugateGradient]=

{x0value -> zeroVector,

r0value -> bVector,

maxIter -> twon,

tollerance-> 10^-8};

conjugateGradient[a_, b_, opts___]:=Module[

{n, r, v, al, be, oneiter, norm, x0, r0,

iters, eps},

n=Length[b];

twon =2 n;

zeroVector = Table[0, {n}];

bVector = b;

x0= x0value/.{opts}/.Options[conjugateGradient];

r0= r0value/.{opts}/.Options[conjugateGradient];

iters= maxIter/.{opts}/.Options[conjugateGradient];

eps= tollerance/.{opts}/.Options[conjugateGradient];

r[0]=v[0]=r0;

x[0]=x0;

al[i_]:=al[i]=r[i].r[i]/(r[i].a.v[i]);

r[i_]:=r[i]=r[i-1]-al[i-1] a.v[i-1];

be[i_]:=be[i]=-r[i+1].a.v[i]/(v[i].a.v[i]);

v[i_]:=v[i]= r[i] + be[i-1] v[i-1];

x[i_]:=x[i]=x[i-1]+al[i-1] v[i-1];

oneiter[{k_, residuals_, solution_}]:=

{k+1, r[k+1],x[k+1]};

norm[w_]:=Apply[Plus,w^2];

N[FixedPoint[oneiter,{0, b, x0}, iters,

SameTest->((norm[#2[[2]]]<eps)&)]]

]

Example 4.5 Let us solve the same system of linear equations as in example
1.

10x1 − x2 − x3 − x4 = 34
−x1 + 10x2 − x3 − x4 = 23
−x1 − x2 + 10x3 − x4 = 12
−x1 − x2 − x3 + 10x4 = 1
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by CG method using the condition either 1 or 2 to stop the iterations.

Solving this example with Mathematica module, we enter data

n=4;

a={{10,-1,-1,-1},{-1,10,-1,-1},

{-1,-1,10,-1},{-1,-1,-1,10}};

b={34,23,12,1};

and invoke the module conjugateGradient[a,b] to obtain the output {{2., {0, 0, 0, 0}, {4., 3., 2., 1.
where the number of iterations k = 2, the residual vector r = (0, 0, 0, 0), and
the solution x = (4., 3., 2., 1.)
Also, we find the solution x following the algorithm step by step Let

x(1) =











0
0
0
0











, A =











10 −1 −1 −1
−1 10 −1 −1
−1 −1 10 −1
−1 −1 −1 10











.

Then, we find
The first CG iteration

v(1) = r(1) =











34
23
12
1











,

α1 =
(v(1), r(1))

(Av(1), v(1))
= 0.12016,

x(2) = x(1) + α1v
(1) =











4.0854
2.7636
1.4419
0.1202











,

r(2) = r(1) − α1Av
(1) =











−2.5279
1.0112
4.5502
8.0893











,

β1 =
(Ar(2), v(1))

(Av(1), v(1))
= 0.05112,

v(2) = r(2) + β1v
(1) =











−0.7897
2.1870
5.1637
8.1404











,
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The second CG iteration:

α2 =
(v(2), r(2))

(Av(2), v(2))
= 0.10808,

x(3) = x(2) + α2v
(2) =











4.0000
3.0000
2.0000
1.0000











,

r(3) = r(2) − α2Av
(2) =











0.0000
0.0000
0.0000
0.0000











,

β2 =
(Ar(3), v(2))

(Av(2), v(2))
= 0.0000,

v(3) = r(3) + β2v
(2) =











0.0000
0.0000
0.0000
0.0000











.

Since r(3) = 0, by the second iteration, we get the exact solution:

x(d) = x(3) =











4
3
2
1











.

4.7 Exercises

Question 4.1 Solve the following system of linear equations:

10x1 − x2 − x3 = 35
−x1 + 10x2 − x3 = 24
−x1 − x2 + 10x3 = 13

(4.26)

by

1. (a) Jacobi method,

(b) Gauss Seidel method,

(c) SOR method,

(d) ADI method,

using ε = 0.05 to stop the iterations.
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Question 4.2 Investigate the convergence of Jacobi and Gauss Seidel iterative
methods for the following system of linear equations:

2x1 − x2 − x3 = 3
−x1 + 2x2 − x3 = 0
−x1 − x2 + 2x3 = −3

Question 4.3 Solve the system of equations

3x1 − x2 − x3 = −1
−x1 + 3x2 − x3 = 2
−x1 − x2 + 3x3 = 6

by CG method.

Question 4.4 (a) State the necessary and sufficient conditions for conver-
gence of the stationary linear one step iterative methods. Show that the
iterative method

x(m+1) = G x(m) + F, m = 0, 1, 2, ...

satisfies the necessary and sufficient condition when

G =
1

10







3 1

1 3







(b) State a sufficient condition for convergence of the Jacobi and Gauss Seidel
iterative methods. Show the the Jacobi and Gauss Seidel iterative methods
are convergent when they are applied to the system of equations

5x1 − 2x2 − x3 = 10

−2x1 + 10x2 − x3 = 13

−x1 − x2 + 5x3 = 0

(4.27)

(c) Solve the system of equations (4.27) by Jacobi and Gauss Seidel iterative
methods using starting vector x(0) = {2.5, 1.5, 1} with the accuracy ε =
0.01

Question 4.5 (a) State the algorithm of the Conjugate Gradient Method for
solving a linear system of equations Ax = b where A = {aij}, i, j =
1, 2, ..., n. is a symmetric non-singular matrix
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(b) Solve the system of equations

6x1 − 3x2 − x3 = 7

−3x1 + 8x2 − x3 = 0

−x1 − x2 + 6x3 = 9

(4.28)

by the Conjugate Gradient Method.
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