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PREFACE

This text is to introduce students of science and engineering to computational
linear algebra. As a prerequisite to the numerical methods basic knowledge
of linear algebra and computing are required. Also, the text assumes a pre-
vious knowledge on Mathematica as the systems for doing mathematics with
computers. So, it is taken for granted that the reader has access to computer
facilities for solving some of examples and exercise questions.

The text contains classical methods for solving linear systems of equations
with emphasis put on error analysis, algorithm design and their implementa-
tion in computer arithmetic. There is also a desire that the reader will find
interesting theorems with examples solved by included Mathematica modules.
The text begins with the notions and theorems concerning norms and oper-
ations on vectors and matrices. In the chapter 2, direct methods for solving
linear systems of equations based on Gauss elimination are described and sup-
ported by examples and Mathematica programs.

The chapter 3, contains standard methods for solving eigenvalue problems
for quadratic matrices. It includes Jacobi method, power method, and QR
method with examples, questions and Mathematica modules.

Iterative methods for solving linear systems of equations are presented in the
chapter 4. It starts with the sufficient and necessary condition for convergence
of linear stationary one step methods. The class of linear stationary one step
methods includes iterative Jacobi and Gauss Seidel methods, Successive Over
relaxation method (SOR), Alternating directions method (ADI) and Gradient
method (CG).
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Chapter 1

Vectors and Matrices

1.1 Vector and Matrix Norms

Let x = (x1, z9, ..., x,) € R™ be a vector. Below, we shall consider the following
three vector norms:

Lfalls= o P+ a2+ |2 2,
2. || =l @i | + @2 |-+ |z |,

3. | % floo= max | i ].
The above vector norms satisfy the inequalities:
Iz ls<lzh<Vnll = s,
|2 o<l 2 [[s< VR [l % ||, (1.1)
[z <[z i< n [z ||,

Let us note that if 7 is an approximate vector to a vector x then
the absolute error
& =[z—z

and the relative error

S e )

Evidently, the relative error measured in the co— norm expresses the number
of correct significant digits of the largest component of the approximate Z. For
instance, if

|7 — 2 |l

~ 1076
|2 lloo

then T should have 6 correct significant digits. If the norms || — ||s or || — |1
are used then all components of T may be biased by the error §, = 1077.
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Therefore T may have p correct significant digits.
A norm of a matrix

i1 Q12 A3 - Ain-1 QAin
Q21 Q22 A23 -+ A2p—1 A2n
A= a3 as as -+ ap—1 asp
Ap1 Ap2 Qp3 - App—1 Qnpp

is determined by the following relation:

A
| A= sup L A2
e

This means that the norm || A || is the smallest constant for which the in-
equality

I Az <[l Al || ]

holds for every x € R".
One can show that the subordinated matrix norms to the three vector norms
are:

— ) Ty j . T
1. (a) || A|ls= f??g’%‘/’\l(AA ), is the spectral norm of A, where \;(AA")

is the 7 — th eigenvalue of the matrix AAT,

n

(b) || A lo= max > | a;; | is the co— norm of A,
=1

1<i<n
J

(c) || A= lr%zg%jz::l | ai; | is the first norm of A,

The above matrix norms satisfy the following inequalities:

Lo(a) izl Alle<lAlls< vl Al
Vi
i = | A< Alls< va | Al

Let us note that if A is a symmetric matrix then the spectral norm of A is
equal to the spectral radius p(A), i.e.

| A lls= p(A),

where p(A) = max | \;(A) |, \i(A) is i — th eigenvalue of A.

1<i<n



1.2 Conditional Number of a Matrix

A resistance of a matrix A against perturbation of input data and round-off
errors of partial results is measured by its conditional number

Cond(A) =[| A [ A7 .

In case of a symmetric matrix A, where the spectral norm is involved, the
conditional number of the matrix A is given by the formula

Cond(A) = p(A)p(A™").

A large conditional number C'ond(A) strongly affects final results of any algo-
rithm that involves the matrix A.
For example, let the matrix

1 0.99999

A=10.09999 1

One may find that the eigenvalues of A and A~! are:
M(A)~ 2, XN(A)=0 and p(A) =2,
A (A1) & 100000, A (AH) ~ 0.5 and p(A~") = 100000.
Hence, the conditional number
Cond(A) = 200000.
Now, let us solve the following system of linear equations:

1 + 099999z, = 2.99999
0.99999x; — Ty = 0.99998

The solution of the above system of equations is:
1 =2 and x5 = 1.

Changing the coefficient at x; in the first equation, by € = 0.00001, we obtain
the following system of linear equations:

0.99999z; + 0.99999z, = 2.99999
0.99999x; — Ty = 0.99998

We observe that the solution of the this system of equations
71 = 100003, Ty = —100001.

differs considerably from the solution of the original system of equations, in
spite of very small change in the coefficient at x;. This is due to the large



conditional number (Cond(A) = 200000) of the matrix A.
Solving numerically a system of linear equations

Ax =b,

we find an approximate solution T which is the exact solution of the system of
equations
AT =b.

Having Z, we can compute the residual absolute error
ry = Ar — AT = b — b,

and the residual relative error

The relative error

satisfies the following inequality

b
—— <, < Cond(A) d.
Cond(A) — 7 — ond(4) %
Indeed, we have

Alx —T)=b-b, x—-T=A"1(b-0),

and ) )
Al |z = =[] > [[b=0l, e =z < [JATH]||b—b|.

Hence, we get

—-b _7 -1 b
o0l _llz—7 _ [IA][ b~ 0

< < , T #0.
HA[Hll] =[] |||
Clearly, the solution x satisfies the inequality
[10]] 1
o < lll < AT bl
[1A]|
Combining the above inequalities, we obtain
1 b—0]| _ [Jz—=] 1 ||b— 0]
< <147 4] 2 A0, b
A= {IA[L {lol] ||| [151]



1.3 Positive Definite Matrices

A class of positive definite matrices plays an important role in different areas
of mathematics (statistics, numerical analysis, differential equations, mechan-
ics, algebra, geometry, etc.). Here, we shall consider positive definite matrices
from the numerical point of view. As it is known, the most effective numerical
methods for linear systems of equations are associated with positive definite
matrices. Let us present the following definition:

Definition 1.1 A matriz A is said to be positive definite if and only if the
following conditions hold:

1. A is a symmetric matriz, i.e. AT = A,
2. there exists a constant v > 0 such that
(A, z,x) Z Qi T;T; > 72:5 =~ (z,x)
,5=1

for every real vector x = (x1,x2,...,x,) € R".

Example 1.1 The matriz

A
I

4-%
-1 4
18 positive definite.
Evidently, A is a symmetric matrix, i.e. AT = A and
(Az, x) = 4(2% — 2129 + 13) > 2(27 + 23) = 2(2, 1)
for every r = (21, 25) € R% So that v = 2.

The following theorem holds:

Theorem 1.1 An matrix A is positive definite if and only if all its eigenvalues
are real and positive, i.e. Ay > 0, Ao > 0,..., \, > 0.

Proof. At first, let us assume that A is a positive definite matrix. Then, by
condition 1, A is a symmetric matrix. Therefore all eigenvalues of A are real
and eigenvectors (M, 2(?) ... 2™ of A are orthonormal in the real space R™.
Evidently, for each eigenvector at(k), k=1,2,..,n; we have

0< (Az® 20y = X (2™, ™)y =\, k=1,2,....n



Now, let us assume that all eigenvalues of A are real and positive, i.e.
0< A <A <yoiy Ao

Then, each vector & # 0 can be presented in the form of the following linear
combination:
T = alx(l) + Oégl’(z) + ...+ an:p("),
where (z,z) =a?+ a2+ ...+ a2 > 0.
We thus have

(Az,z) = (A) oz, > ajz))
j=1 =1

ajap(AzW) ™)

[=_
\GE

<

I
—
£

Il
—

ajak)\j(x(j), I(k))

I
=1
M=

<

I
—

Il
—

I
[]=1
N

2
jOG > M
1 J

a? =\ (z, ).
1

n

<.
Il

Hence v = A\;. End of the proof.

1.4 Diagonally Dominant Matrices

Below, we shall show that the class of diagonally dominant matrices is a sub
class of the class of positive definite matrices.

Definition 1.2 A matriz A is said to be diagonally positive dominant if and
only if the following conditions hold:

1. ((Z) aiiz Z |aij|, z'zl,Q,...,n,
j=Li#i
(b) there exists at least one natural i for which

n
ag > Y lail,
j=Lyi

(c) if condition (b) is satisfied for all 1 = 1,2,...,n, then A is called a
strongly diagonally dominant matriz.

Example 1.2 Fuvidently, the matriz

4 -1 -1 0
1 4 -1 -1
A=1_41 4 3 4

0 -1 -1 3



satisfies the conditions (a) and (b) of definition and therefore, A is a diagonally
positive dominant matrix.

Let us note that conditions (a) and (b) are not difficult to check. Thus, we
may easily find whether a matrix is or is not diagonally dominant. We may
also use these conditions to determine whether a matrix is positive definite
applying the following theorem:

Theorem 1.2 FEvery non-singular symmetric and diagonally dominant matrix
A is positive definite.

Proof. It is sufficient to show that all eigenvalues of matrix A are real and
positive. Then, by the theorem , A is a positive definite matrix. By assump-
tion, A is a non-singular and symmetric matrix, therefore its eigenvalues are
real and different from zero.

Now, we shall show that A does not have a negative eigenvalue. Evidently,
for every negative A < 0, the matrix A — AFE is strongly diagonally dominant.
Therefore, the homogeneous system of linear equations

(A= AE)y =0
has only one solution, i.e. y = 0. Indeed, let

max | i [=| i |-

Of course, without any additional restrictions, we may assume that y; > 0.
Because

0 =apyr + arayo + -+ (ark — Nyr + -+ + Qkn¥n

n

> [(akk — )\) — Z |akj]yk >0,

j=1.j#i

we get

lae = A= > Jarlyx = 0.

j=1,#i
However, since A — AE, (X < 0) is a strongly diagonally dominant matrix,

n

akk—)\— Z |akj|>0.

J=1,j#i

Hence yp = 0 and y; = yo = --- = y, = 0. Thus, the matrix A — AF is
non-singular for every negative A < 0. This means that the matrix A has all
positive eigenvalues. Finally, by the theorem , A is a positive definite matrix.



1.5 Monotone Matrices

Let us write the inequality A > 0 if all entries of the matrix A are non-negative,
ie. a;; >0, 4,7 =1,2...,n. The monotone matrices are then defined as fol-
lows:

Definition 1.3 A matriz A is said to be monotone if and only if the following
implication his true:

Ax >0 implies the inequality x > 0.
The following theorem holds (cf. [18], [20]):

Theorem 1.3 A is a monotone matriz if and only if A is non-singular and
the inverse matriz to A satisfies the inequality A= > 0.

Proof. At first, let us assume that A is a monotone matrix in the sense of
definition. Then, the homogeneous system of linear equations Az = 0 has only
one solution x = 0. Indeed, by assumption

the inequality A(4x) > 0 implies the inequality +x > 0.

Hence x = 0 and therefore A is a non-singular matrix.
Let z be a column of the inverse matrix A~!. Then

0
0

0
0

Thus, the inverse matrix A=t > 0.
Now, let us assume that A is a non-singular matrix and the inverse matrix
A71 > 0. Then, for Az > 0, we have

x=A"1tAzr > 0.

R

Example 1.3 The matriz

18 monotone.

Indeed, we have



1.6 Matrices of Positive Type

In general, it is not easy to determine, by definition, whether a matrix A is
monotone or not. However, there are so called "matrices of positive type”
which create a sub class of the class of all monotone matrices. The matrices of
positive type are easy to investigate following the conditions of the definition:

Definition 1.4 (¢f. [18]). A matriz A is said to be of positive type if and
only if the following conditions hold:

1. (a) a;; <0 for i# j,
(b) > ai; >0,
j=1

(c) there exists a non-empty subset J(A) of the set {1,2,...,n} such
> a;; >0 forie J(A),

j=1
(d) for every k € J(A) there exists | € J(A) and a sequence non-zero
entries of the form apk,, Qkyky, Qkyks s -5 Cheyl

Let us note that condition (d) can be replaced by the condition:

A is an irreducible matrix (cf. [18]).

Example 1.4 Let us consider the following matriz:

2 -1 0 0 - 0 0
-1 2 -1 0 - 0 0

ac| 071 21000
0 0 0 0 - 2 -1

0 0 0 0 - -1 2]

Evidently, matriz A is monotone, since it satisfies conditions (a) and (b). Also,
the conditions (c) and (d) hold for the set J(A) = {1,n} while the sequence
Akky s Akikgy -y Akl = —1, —1, o= 1.

The relation between matrices that are monotone and those of positive type
is established in the following theorem (cf. [18]):

Theorem 1.4 FEvery matrixz of positive type is a monotone matrix.
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Proof. Let us assume that A is a matrix of positive type. Then, by conditions
(a) and (b)

a;; > 0,
If a, = 0 for a k € {1,2,..,n} then, (also by (a) and (b)),

Qr; = 0 ] = 1,2,...,71.

i=1,2, .. n

However, in this case, condition (d) could not be satisfied. Therefore ax, > 0
forall k =1,2,....n.

Now, we shall show that: the inequality Az > 0 implies the inequality z > 0
Indeed, by conditions (a), (b), (¢) and (d)

n

> Y |2y, (1.2)
j=1gzi i
S 18 <1 for i€ J(A), (1.3)
j=tgzi i
and .
> Y _ 1 for inot € J(A). (1.4)
j=1g#i Qi
Let
min r; =x; = o < 0.
1<j<n

Then, by the above inequalities, we get the following contrary inequality
a=z;> Y |%|a>a for i€ J(A).
j=tgzi i

So that x; > 0if i € J(A).

If i € J(A) and k # i then, by condition (d), a; < 0 and xp = « for all k
such that a;; < 0 or it contradicts the inequality (1.2). By condition (d), there
exists k; such that agg, < 0. Also, in this case when xy, = «, we have agg, < 0
or, it contradicts the inequality (1.2). Proceeding in this way, we may find a

sequence
leJ(A),

of non-zero entries of A. But then, for [ € J(A), we arrive at a contradiction
with inequality (1.2). Therefore, must be « > 0. Hence z; > 0 for all

Ak s Akikos Qkokss -y Ayl s

k=1,2,...n.
Example 1.5 As we know, the following matrix is of positive type:
2 -1 0 0 0 0]
-1 2 -1 0 0 0
e T
0O 0 0 0 2 -1
| 0 0 0 0 -1 2




11

Therefore, by the theorem, A is a monotone matriz.

1.7 Exercises
Assignment Questions

Question 1. Consider the following matrix

5 -2 -1 0 0 -+~ 0 0

-2 5 -2 -1 0 -~ 0 0

A=<¢ -1 -2 5 -2 -1 --- 0 O
o 0 0 0 0 -2 5

Show that
(a) A is a diagonally dominant matrix
(b) A is a positive definite matrix
(c) Ais of a positive type matrix
(d) A is a monotone matrix
(e) A is a Stieltjes matrix
Question 2.

(2a) Show that if A is a monotone matrix then the inverse matrix A~ exists
and A=t > 0.

(2b) Let the monotone matrices A and B satisfy the inequality A > B. Show
that the inverse matrices A=' and B! satisfy the inequality

Bt'>A1>0.

(2¢) Consider the following matrix

4 -1 0 O O -~ 0 O
-1 4 -1 0 0 -~ 0 O
A= o -1 4 -1 0-- 0 O
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Show that A is a Stjeltjes matrix. Find the a constant v > 0 such that
(Az,x) > v(x,z) for all real x = (21, 22, ..., Ty).

Quote the definitions and theorems used in the solution.

x



Chapter 2

Systems of Linear Equations

2.1 Gauss Elimination Method

Introduction. Gauss elimination is a universal direct method. In general,
this method can be successfully applied to any linear system of equations, pro-
vided that all arithmetic operations involved in the algorithm are not biased
by round-off errors. However, it can hardly be the case, since any imple-
mentation of the method in a finite arithmetic yields round-off errors. Thus,
restrictions are imposed on the class of equations because of computations in
a finite arithmetic. For small systems of equations (n ~ 100, in 8-digit floating
point arithmetic), Gauss method produces acceptable solutions if conditions
of stability are satisfied. The number of equations can be considerably greater
(n >> 100) if partial or full pivoting strategy is applied to a stable system of
equations. For systems of equations with sparse matrices, Gauss elimination
is also successfully applicable to large systems of linear equations. Apply-
ing Gauss elimination to large systems of equations, with multi-diagonal and
diagonally dominant matrices, one can obtain a solution for the number of
arithmetic operations proportional to the dimension n. This number of op-
erations is significantly lower compared with the total number of arithmetic
operations ~ n? that is required in Gauss elimination when it is applied to a
system of equations with a full and non-singular matrix A. Although, Gauss
method in its general form is costly in terms of arithmetic operations, the
method provides LU — decomposition of the matrix A and the determinant
det(A), as partial results in computing of the solution z.

Gauss elimination. We shall write a linear system of n equations in the
following form:

a1121 + a12T2 + @133 + - -+ + A1pTy = A1n+1
Qa21%1 + A22T2 + Q233 + - -+ + A2pTy = A2p41
3171 + a32%2 + A33T3 + - - - + A3pTy, = A3n41 (2.1)

Ap1T1 + Ap2X2 + Ap3T3 + - -+ + AppTy = Ann+1

13
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or in the matrix form

Ar =a,
where the vectors are:
1 A1n+1
X2 A2n+1
r=| T3 , a= | @3n+1
Tn Apn+1
and the matrix is:
a1 Q12 A3 - Ain-1 QAin
Q21 Q22 A23 -+ (A2p—1 A2n
A= | a3 asx ass -+ azp_1 a3p
Apl Ap2 Qp3 - App—1 Qpp

Within this chapter, we shall assume that the matrix A is non-singular, so
that det(A) # 0.

Let us demonstrate Gauss elimination solving the following sample system of
four equations with four unknowns

21’1+l’2+41’3—3l’4 = 4 |m21:2|m31:3|m41:4

41’1 — 31’2 + Tr3 — 21’4 = -7 (2 2)
61’1 + 41’2 — 31’3 — Xy = 1 ’
81’1 + 21’2 + Tr3 — 21’4 = 7

First step of elimination. At first step, we shall eliminate unknown z; from
second, third and fourth equations. To eliminate z; from second equation, we
multiply first equation by the coefficient

m21:—: :2

a91 4
a1 2

and subtract the result from second equation. Then, we have
—51’2 — 71’3 + 41’4 = —15.

To eliminate z; from third equation, we multiply first equation by the coeffi-

clent
asy 6
a1 2

and subtract the result from third equation. Then, we have

To — 151’3 + 81’4 = —11.
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To eliminate z; from fourth equation, we multiply first equation by the coef-

ficient
aq1 8
m41 = ——= = = 4
a1 2

and subtract the result from fourth equation. Then, we have
—2x9 — 1523 + 1024 = —9.

After first step of elimination, we arrive at
First reduced system of equations

21’1 +I9 —|—4ZL’3 —31’4 = 4

hry ey tdn= <15 |mp=-ilme=1 g
Ty —15x3 +8xy = —11 ‘
—2xy —15x3 +10x4 = -9

Second step of elimination. At second step, we shall eliminate x5 in (2.3) from
third and fourth equations. To eliminate x5 from third equation, we multiply
second equation by the coefficient

and subtract the result from third equation. Then, we have

82 44
——x3+ —x4 = —14.
500 5
To eliminate x5 from fourth equation, we multiply second equation by the

coefficient

Mg — ai) _ =2
=2
agz) =5

and subtract the result from fourth equation. Then, we have

61 n 42 5
——T3+ —x4 = —3.
5° 0 5"
After second step of elimination, we arrive at

Second reduced system of equations

21’1 + x9 + 41’3 — 31’4: 4
- 51’2 — 71’3 + 41’4 = —15
82 M6
— 51’3 + 51’4— —1 |m43—8—2 (2 )
61 42
— —r3 + —m= -3

) )
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Third step of elimination. At third step, we shall eliminate 3 in (2.4) from
fourth equation. To eliminate x3 from fourth equation, we multiply third
equation by the coefficient

m afo,) 61
3= 73y = 55
ol 82
and subtract from fourth equation.
Then, we have
304
att T
Finally, we have arrived at
Third reduced system of equations
21’1 + X9 + 41’3 — 31’4 = 4
- 51’2 — 71’3 + 41’4 = —15
82 44
- 31'3 + 31’4 = —14 (25)
™, 30
4™t T s

Let us observe that third reduced system of equations has upper-triangular
form and its solution can be easily found by backward substitution. Indeed,

from fourth equation
304

_ 41 _
Ty = 76 47
41

from third equation

) 44
= (14— —4) =

from second equation
Ty = —é(—15+7*3—4*4) =2,
and from first equation
Ty = %(4—1*2—4*3—{—3*4) =1

Solving this example with the Mathematica program

n=4;

a={{2,1,4,—3,4},{4,—3,1,—2,—7},{6,4,—3,—1,1},{8,2,1,—2,7}};
fila_,i_]:=ReplacePart[a,al[[i]]- allsll*alli,s]]/alls,s]],il;
iter[a_,s_]:=Fold[fi,a,Range[s+1,n]];

Do[a=iter[a,s],{s,1,n}];
MatrixForm[al
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we obtain the upper triangular matrix

2 1 4 -3 4
0O -5 =7 4 -15

82 44
o 0 — — —-14
5 5
76 304
0 0 0 1 4l

Then, we find the solution = = {1,2, 3,4} using the following program

x=Table[0,{i,1,n}]; x[[n]l]l=alln,n+1]1]/al[n,nl];
Do[x[[n-ill=(al[n-i,n+1]1]-
Sum[a[[n-i,jl1*x[[j]1],{j,n-i+1,n}])/alln-i,n-1]1],{i,1,n-1}];

Now, let us present Gauss elimination in the general form.
First step of elimination. At first step, we shall eliminate z; from second, third,
.. ,n-th equations, provided that a;; # 0. To eliminate x1, let us multiply first
equation in (2.1) by the coefficient

and subtract first equation from i-th equation for ¢ = 2,3,...,n. Then, we
obtain
First reduced system of Gauss elimination

aﬁ)iﬂﬁ— agg):cz + agg):cs +-- 4 aggz)f’fn = aﬁ)ﬂ

aglz)zcz + a%):cg + -+ a&)zn = aggﬂ

aglz)Iz + ag?:cs +--- 4 agz)f’fn = aé&l (2:6)

1 1 1)

where
aV =ap, i=1,2,....n, k=12....n+1,

agi):agg)—mﬂaﬁ), 1=2,3,...,n; k=23,...,n+1.

Second step of elimination. At second step, we shall eliminate x5 from third,
fourth,..., n-th equations in (2.6), provided that aSy # 0. Let us multiply
second equation in (2.6) by the coefficient
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and subtract second equation from i-th equation for i = 3,4,...,n. Then, we
obtain
Second reduced system of Gauss elimination

(0) (0)

551 zl‘l’ aq9 l’g—l— ag%)l’g + ..o 4 a(o) (0)

InTn = Ainy

abgTat alws+ oo+ ab)e, = b,
aé?il??) +oet aéi):vn = aéi)ﬂ
(2.7)
az(f%)ifs +eoet aﬁ)zn = azﬁ)ﬂ
afs)f?) +oe aﬁzn = aggﬂ
where
al(-,z) = al(-,? —migagf), 1=3,4,...,n, k=3,4,...,n+1.
We continue elimination of the unknowns x3,x4...,2,_1, provided that aé? +

0, aﬁ) #+ 0, a§)45) #0, .. aif_‘li)_l # 0. As the final step of elimination, we
obtain
Last reduced system of Gauss elimination

(0) (0) (0) (0) (0)

ajp L1+ A9 Tt ajgx3t+ o FA1,Tp = Gipq
a ot alas+ g, = agi)“
Gort o rolle =l @Y

n—1 _ (n—1)
aﬁm )x, = Ayt
where (o)
o
() _ (s=1) __  (s=1) o G
a;, = a;. Mistgy,  Mis = — -
Qss

s=1,2....n—-1, 1=s+1,s+2,...,n, k=s+1,s+2,...,n+1.

The system of equations (2.8) has upper-triangular form. Therefore, we can
easily find its solution by backward substitution
n—1
_ a£m+1)
Ty =
L)
nn (2.9)
L 6y~ 6o
Ti= W[amﬂ - Z @;j 4],
i j=i+t1
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fori=n—-—1,n—-2,...,1

Below, we give the above elimination step by step in Mathematica.

At step s, s =1,2,...,n, we change :—th row of the matrix A, i=s+1,s+
2, ...,n, by replacing it with

, s—th row * 1,s—th element
i—th row —

s, s—th element
When s is fixed, the following Mathematica function would change i—th row:

oneRowla_, i_]:=
ReplacePart([a, al[i]]l-alls]]l*al[i,s]]/alls,s]], il;

Then, the s — th iteration of Gausian elimination would require the use of
oneRow with ¢ = s+ 1,5 + 2, ..., n, which can be achieved using Fold:

iter[a_,s_]:=Fold[oneRow, a, Rangel[s+1,n]];
Let us take the sample numerical example, again:

n=4;
a={{2:1a4:_3:4}: {4:_3:1:_2,_7}:
{6:4’_3’_1:1}:{8:2’1:_2:7}};

TableForm[al]
2 1 4 -3 4
4 -3 1 -2 -7
6 4 -3 -1 1
8 2 1 -2 7

Executing the following program

Do[oneRow[a_,i_]:=
ReplacePart[a, al[[il]l-alls]]l*alli,s]]/alls,s]], il;
iter[a_,s_]:= Fold[oneRow, a, Range[s+1,n]];
a = iter[a, s],{s, 1, n}];

we obtain the upper triangular matrix as in (2.5).
In general, the following module gaussDirectElimination solves a linear sys-
tem of equations, provided that the diagonal elements a*™ # 0, s = 1,2, ..., n.
gaussDirectElimination[a_] :=Module[{c,n,oneRow,iter,x },
c=a;
n=Length[a[[1]]]-1;
oneRow[c_,i_]:=
ReplacePart([c, c[[il]-c[[s]ll*c[[i,s]]/cl[s,s]], il;
iter[c_,s_]:=Fold[oneRow, c, Rangel[s+1,n]];
Dolc= iterlc, sl,{s, 1, n}];
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x=Table[0,{i,1,n}]; x[[n]l]l=cl[n,n+1]1]1/c[[n,nl];

Do[x[[n-i]l=(c[[n-i,n+1]1]1-Sum[c[[n-1i,j]11*x[[jI1],
{j,n-i+1,n}1)/clln-i,n-i]]1,{i,1,n-1}]1;

X

]
Solving the sample axample, we input data matrix

a={{2,1,4,-3,4}, {4,-3,1,-2,-7}, {6,4,-3,-1,1},{8,2,1,-2,7}};
and invoke the module

gaussDirectElimination[a]

to obtain the solution x = 1,2, 3, 4.

Let us note that, we can apply the general Gauss elimination to a system of
linear equations if the pivotal elements

0 1 2 Cne
aif £0, ay) £0, aff £0, ... a7V £,

are different from zero. Such a system of equations can be solved by the
Mathematica program given in the above example. However, this straight
forward application of Gauss elimination might lead to a strong accumulation
of round-off error. In applications, pivotal strategy is used to minimize accu-
mulation of round-off errors. In the case when at least one pivotal element is

equal to zero, say a,i’;‘” = 0, we can apply partial or full pivoting strategy.

2.2 Partial Pivoting

If the pivotal element a,i’;‘” = 0 then Gauss elimination cannot be continued

without rearrangement of rows or columns of the matrix

[ (0) (0) (0) (0) (0) (0) |

S O SN ) S S
91 1 1 1 1
" ot T
2 2 2 2
Qg - Agg Tt A3 A3p+1
(k1) (k=1) (k1)
(k1) zero element — g Ceeay, Ay |
A = (k-1) (k-1)  (k-1)
A1k 7 Apgain Dptingr
k—1 — k—1
largest element — aﬁk ) ag’; b agn—l—l)
(k—1) k—1 (k1)
L Ank agm ) Apn+1 |
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Also, if a,(flz_l), k=1,2,...,n—1, are small then pivoting strategy will min-

imize affect of round-off errors on the solution. Thus, to eliminate unknowns
Thy Thal,- -, Tn, k=1,2,...,n—1, we find the greatest absolute value of
the elements

(k-1) _(k-1) (k—1)
A1k A2k - - -1 Ank

and interchange k-th equation with s-th equation to have the pivotal element
ag’,z_l) which has the greatest absolute value on the pivotal place in k-th row
and k-th column. Then, we can continue elimination of remaining unknowns
Tk, Tga1,---, T, taking pivotal entries with the greatest absolute values. The
partial pivoting strategy always succeeds, if A is a non-singular matrix. Partial
pivoting can be also done with interchange of relevant columns in matrix A.
Then, the greatest absolute values of elements

N o
allocated in k-th row of the matrix A should be found.
In order to illustrate the partial pivoting strategy, let us consider the following
examples:

Example 2.1 Solve the system of equations

51’1 + x9 + 21’3 + 31’4 =5
10x;1 + 229 — 6z3 + 924 =4
51’1 — X3 + T3 + 41’4 =1 (210)
151’1 — 31’2 - 31’3 + 91’4 =9

using
1. (a) partial pivoting strateqy for interchange of rows,

(b) partial pivoting strategy for interchange of columns.

Solution (a). According to partial pivoting, we interchange fourth equation
with first equation to have the greatest pivotal element 15 on first pivotal place
in first row and first column. Then, we obtain

151’1 — 31’2 — 31’3 + 91’4 =9
10x;1 + 229 — 6z3 + 924 =4
51’1 — X3 + T3 + 41’4 =1 (211)
51’1 + x9 + 21’3 + 31’4 =5
Thus, first reduced system of equations is:
151’1 — 31’2 — 31’3 + 91’4 = 9
41’2 — 41’3 + 31’4 = =2
203 + x4 = -2 (2.12)
21’2 + 31’3 + = 2
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To get second reduced system, we do not need to make any interchange since

aglz) = 4 is the greatest entry in 2-nd column on the pivotal place. Thus, second

reduced system is:

151’1 — 31’2 - 31’3 + 91’4 = 9
41’2 — 41’3 + 31’4 = =2

2y + m = -2 (2.13)
51’3 — %l’4 = 3

Obviously, third (last) reduced system of equations has upper-triangular form

151’1 — 31’2 - 31’3 + 91’4 = 9
41’2 — 41’3 + 31’4 = =2

brs — 154 = 3 (2.14)
— 1.6zy = 3.2

Hence, the solution is

Ty = —2,
1
vy = 22— (-2 =0,
1
To = Z[_2+4*0_3*(_2)] =1,

1
:ElzE[9—|—3*1—|—3*0—9*(—2)]:2.

Solution (b). Let us come back to the original system of equations (2.10).
Evidently, the entry aﬂ) = 5 has greatest absolute value among all entries in
first row of A. Therefore, there is no a need to interchange columns in A.
Then, we obtain

First reduced system of equations:

51 + 2z9 + 3 + 3r4 = 5
— 101’3 + 31’4 = —6
— 21’2 — T3 + x4 = —4 (215)
— 6xy — 9x3 —+ = —6

We shall interchange second and fourth equations in (2.15) to obtain the fol-
lowing system of equations:

51’1 + x9 + 21’3 + 31’4 = 5
- 61’2 — 91’3 = —6
— 21’2 — T3 + x4 = —4 (216)

— 101’3 + 31’4 = —6
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Next, we shall interchange second and third columns in (2.16) to get the pivotal

entry aglz) = —9 on the pivotal place in second row and second column.
501 + 23 4+ x9 + 3x4 = O
- 91’3 — 61’2 = —6
— T3 — 21’2 —+ Xy = —4 (217)
— 101’3 + 31’4 = —6

Now, we shall eliminate 3 from third and fourth equations in (2.17) to obtain
the second reduced system of equations:

S5r1 + 2z3 + T2 + 3ry = 5
— 91’3 — 61’2 = —6
_ 10 (2.18)
3552 + x4 = 3
20 43 2
— Ty = =
37" ! 3
The pivotal entry aé? = —3 has the greatest absolute value in first row of the
matrix
4
-3 1
AR —
20 5
3

Therefore, according to the partial pivoting, we shall not make any change of
columns to eliminate xo from fourth equation in (2.18). Then, we obtain third
(last) reduced system of equations:

51 + 2x3 + x2 + 314 = 5
- 91’3 — 61’2 = —6
L 10 (2.19)
- -z ry = ——
377 ! 3
8ry = —16
Hence, by backward substitution, we find the solution
Ty = —2,
3. 10
XTo = —Z[—g —2x(=2)] =1,
1
T3 = —5[—6+6*1] =0,

1
$1:E[5—2*0—1—3(—2)]:2.

In the programming approach to the partial pivoting on rows, in Mathematica,
we shall use the following algorithm
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10.

L »® N e g W

. Set the matrix m = [a|b] that includes right side vector b and the empty

list {}.

Find the maximum element in the first column of m and denote it by
mk.

Denote by k the position of mk in the first column of m.
Set rowk = m|[[k]]/mk

Append rowk to e.

Drop k-th row of m.

Replace each row of m by the row — rowk * First[row]
Drop first column of m

Return {m,e}.

Nest steps
tt 1 - 7 n times, where n is the number of rows in m.

The Mathematica module eliminatepivo based on the partial pivoting re-
duces a system of algebraic equations to the upper triangular form and gives
its solution.

eliminatepivo[a_, b_]:= Module[
{onelter, mat, elimMatrix},

onelter[{m_,e_}]:= Modulel
{columnl, mk, k, rowk, changeOneRow},

columnl=Map[First [#]&, m];
mk= Max[columnl];

{{k}}= Position[columnl, mk];
rowk= m[[k]]/mk;

changeOneRow [row_] := row - rowk*First[row];
{Map [Rest [#] &,

Map [changeOneRow, Drop[m, {k}]]] ,
Append[e, Rest[rowk]]l} 1;

mat = Transpose[ Append[Transposelal, bl];

{{}, elimMatrix}=
Nest [oneIter, {mat, {}}, Length[First[mat]]-1];
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Fold[Prepend[#1, Last[#2] - Drop[#2, -1] . #1]&,
Last[elimMatrix],
Rest [Reverse[elimMatrix]]]

]

To solve the system of equations (2.11) using the module eliminatepivo, we
input data

m={{5,1,2,3,},{10,2,-6,9},{5,-1,1,4},{15,-3,-3,9}};
b={5,4,1,9}

and invoke the module eliminatepivo[m,b].

2.3 Principal Element Strategy

We apply principal element strategy to operate with possibly greatest pivotal
entries in Gauss elimination. First, we find the greatest absolute value of
entries in matrix A. Let

lars| = max fail
Then, we interchange first row with r-th row and first column with s-th col-
umn to place the greatest value as first pivotal element. We should renumer-
ate equations and unknowns, respectively. Next, we eliminate the relevant
unknown from second, third,. .. ,n-th of the newly renumerate equations to get
first reduced system of equations. Secondly, we find the greatest absolute value
among the entries aﬁ?, 1,7 =2,3,...,n. Let

o)) |= max |afj|.
2<4,5<n
Then, we interchange second row with the r-th row and second column with s-
th column to place the greatest pivotal entry on second row and second column.
We should renumerate equations and unknowns, again. After, elimination of
2o from third, fourth,...,n — th equations, we get second reduced system of
equations. We repeat this process till upper-triangular systems appears.

Example 2.2 Solve the system of equations

51 + xo9 4+ 2x3 + 3x4 =

10zy + 229 — 6xz3 + 924 =

51’1 — X3 + T3 + 41’4 =1 (220)
151’1 — 21’2 — X3 + 101’4 =38

using full pivoting strategy.
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Solution. Evidently a4 = 15 is the greatest entry of the matrix

5 1 2 3
10 2 -6 9
A=17%5 1 1 4

15 -2 -1 10

Therefore, we interchange first equation with fourth equation to get the great-
est pivotal entry on first pivotal place. Then, we consider the system of equa-

tions
151’1 21’2 — X3 + 101’4 =38

1001 + 229 — 63 + 924 =4
51’1 — X3 + T3 + 41’4 =1
51’1 + x9 + 21’3 + 31’4 =5

After first step of elimination, we shall obtain the first reduced system of
equations:

(2.21)

15217 — 229 — T3 + 10z, = 8
10 16 7 4
ER R R S
1 4 2 5 (2.22)
o3t Togmotogmo= 73
5 7 1 7
g Tt T 3™ T3
Now, we shall find the greatest absolute entry in the matrix
r 10 16 77
3 3 3
1 4 2
3 3 3
5 7 1
L 3 3 3.

The greatest absolute entry
m _ _16
| asg |=| 3 |

We interchange second and third columns in the matrix

(15 -2 -1 10]
0 16 7
0 - —
A0 — 3 3 3
, L 42
3 3 3
5 07 1
0o = -z
I 3 3 3.




27

to get the greatest absolute pivotal entry on the pivotal place in second row and
in second column. Then, x5 takes the position of x3 and x3 takes the position
of x5. For second step of elimination, we consider the following system of
equations:

151’1 — X3 — 21’2 + 101’4 = 8
16 . 10 . T 4

37 312 3% T T3

T3t T o3 togmo= 73

7 . 5 1 7

ST Xy — Iy = =

373 372 371 3

Now, we shall eliminate z3 from third and fourth equations in (2.23) to get
second reduced system of equations:

151’1 — X3 — 21’2 + 101’4 = 8
16 10 7 4
33 312 37 T 73
. . A (2.24)
T T o™ T T3
T S SO
g 167" = 1
@) _

We us observe that a5 = %5 is the greatest entry in the matrix

71
6 12
25 11
8 16

Thus, we shall interchange third and fourth equations in (2.24) to get the
greatest pivotal entry on the pivotal place in third row and third column.
Then, we consider the following system of equations:

151’1 — X3 — 21’2 + 101’4 = 8
6 o0 T
33 312 37 T 73

25 11 7 (2.25)
+ gl’g + EZL’4 = Z
Ll
67> % T 73
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Finally, we shall eliminate xo from fourth equation in (2.25) to get the last
reduced system of equations in the upper-triangular form

151’1 — I3 — 21’2 + 101’4 =
16 . 10 7
378 372 37
25 n 11
—x —r, =
g7 16"
17
—2x —
50"
Hence, the solution is:
1’4——2
6. 4 1
s - = (=2)] =1
T2 7[ 3 12( )]
3.4 10 7
2 Y=o
B=—153 73 372
1
= —[8+2-10(-2)] =2
T 15[8+ 0(—2)]

2.4 LU-Decomposition.

Applying Gauss elimination method, we obtain the solution z = (z1, x, . . .

of the system of equations

Axr =a

and the following factorized form of the matrix A:

A= LU,
where the lower triangular matrix
[ 1 0 0 0
o1 1 0 0
ms3; M3z 1 0
L =
Mg Maz Mgz 1
L Mp1 Mp2 Mp3 Mpyg

oo oo

Mpn—1

—_

oo oo

(2.26)



and the upper-triangular matrix

EEE Rk
S T B
U= 0 0 a3z A3 3n—1 3p
0 0 0 aff - afl, af)

10 0 0 0 0 a1 |
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Indeed, the product of i-th row of the matrix L by k-th column of the matrix

U is:
- (s
s—
Z LisUsk = Z misQg,
s=1 s=1

where p = min{i, k}.
Let us note that

(s) (s—1)

_ (s—1)
Qi = Qg

- misask )

By taking the sum of both hand sides, we obtain

p—1
() _ Z (s—1)
s=1

Hence »
(») (s—1)
ik, = Q. + Z Mgy -
s=1

One can check that the following equalities hold:

(p) ()

and
a? =0 if i > k.

Thus, for m;; = 1, we have
p (5—1) n
s
Qi = Z misQgy, = Z LisUsk-
s=1 s=1

As an example of LU decomposition, we note that the matrix of the system
of equations in (2.2) has the following LU decomposition:

10 0 07[2 1 4 -3
5 1 4 _3 2 1 0 0|0 -5 -7 4
14 -3 1 -2
A=lg 4 3 1 =|3 -2 1 0flo o B ¥ =w
5 5 5
502 1= L2, T8
L5 5 %2 L a1
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2.5 Root Square Method

It is possible to present a symmetric matrix A = {A;;}, 7,7 =1,2,...,n as the
square of a triangular matrix (cf. [6])

Lyw Ly Lz -+ L

0 Loo Loz -+ Loy

L= 0 0 Ls3 --- L,
0 0 0 -+ Ly,

so that A = LT L. Indeed, we note that
Aij = Lyilyj + LoiLoj + -+ - + Ly Lij, 1=1,2,...,5—1

and
Aig = LY+ Ly + -+ Ly, =,
Hence
Alj .
Ly, = VA, Llj:L—> J=2,3,..,n,
11

i1
L= | A —>_ L%, i=2,3,...,n,
k=1

1 — . :
—[Ay; =Y LiiLyj], j=i+1i4+2,..,n,
L k=1

Li; =0, B j=1,2,..i—1.

Lij =

The LL-decomposition algorithm always succeeds if A is a positive definite
matrix. However, the algorithm is also applicable when A is a symmetric ma-
trix, provided that L; # 0, i = 1,2, ...,n. In the case when complex numbers
appear (A; — > L2, < 0) the algorithm produces complex entries of the trian-
gular matrix L.

Having LL-decomposition of the matrix A, we can find solution x of the system
of linear equations

Ax=1b

by the substitution
LT2=0b and Lz =z

So that

bl 1 i—1
= - i = b — Ly 5 .:2737"'7 )
21 T z Ln’[ kz::l kiZk], @ n

and by backward substitution

Zn, 1
Tp=—, T;=—

Lun Lii[zi— > Laa], i=n—1n-2,..,1

k=i+1
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Example 2.3 Let us solve the following system of linear equations (cf. [6])

1 + 04229 + 0.54z3 + 0.66x4 = 0.3
0.42x, + lze + 0.32z3 + 0.44x4 0.5
0.66x; + 0.44ze + 0.22z3 + lzy = 0.9

using the following Mathematica module choleva

cholevala_,b_]:=Module[{1,i,j,k,m,ml,n,x,z},
n=Lengthla[[1]]];
1[1,1]1:=1[1,1]=Sqrt[al[1,1]1]1];
101, j_1:=1[1,jl=all1,311/101,1];
10i_,i_1:=1[i,il=Sqrt([al[i,il]- Sum[1[k,il"2, {k, 1,i-1}1];
10i_, j_1:=1[1,jl=
(alli,jl1-Sum[1[k,i] 1[k,jl, {k,1,i-1}1)/1[i,i];
m=Table[Join[Table[0,{i-1}],Table[1[i,j],{j,1i,n}]1],
{i,1,n}];1[n,n];
ml=Transpose [m] ;
z[1]1=b[[1]]/m1[[1,1]];
z[i_]:=z[i]=(b[[i]]-Sum[mi[[i,j]l*=z[j],{j,1,i-1}1)/m1[[i,i]];
x[n]=z[n]/m[[n,nl];
x[i_]:=x[il=(z[i]-Sum[m[[i,jl11*x[j],{j,i+1,n}])/m[[i,i]];
Print["x = ",Table[x[i],{i,1,n}]1];
Print["Matrix L =",MatrixForm[m]]

]

We input the matrix a and the right side vector b

a={{1.,0.42,0.54,0.66},{0.42,1.,0.32,0.44},
{0.54,0.32,1.,0.22},{0.66,0.44,0.22,1.}};
b={0.3,0.5,0.7,0.9};

Then, we invoke the module
cholevala,b]
to obtain the solution
x = {-1.25779, 0.0434873, 1.03917, 1.48239}

and the upper triangular matrix

1. 0.42 0.54 0.66
I - 0 0.907524 0.102697  0.179389
|0 0 0.835376 —0.185333

0 0 0 0.7056
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2.6 Gauss Elimination for Tri-diagonal Matrices.

Let us note that for a tri-diagonal matrix A, the system of linear equations

(2.1) takes the following form:

ai1r1 +  a12%2 = A1n+1
ao1x1 + aGTy + 2373 = Q2p+1
az2T2 + 3373 + 34T 4 = U3n+1

Ai—1Ti—1  + i x; +  Qit1Ti41 = Qintl

Upn—1TLn—1 + Apn Ty = Apn+1

Applying Gauss elimination to the above tri-diagonal system of equations, we

obtain the last reduced system of equations:

ai1r1 + Qa2

(1)
QT2 + Q23T3

55_1)$Z T Giit1Tit1
al" Vg,
where (see (2.8) and (2.9))
i— Qj—
az('i Y= @i — Tz)lai—lia
Ai—1i—1
(i—2)
i— Ai_1n
az('n—l—ll) = Qint1 — (i_12)+ - i1,
Ai—1i—1
forve=2,3,...,n.
From formulae (2.9), we have
(n—1)
T, = ann—l—l
abm Y
and
4 a(-?_l) in+1 ii4+1Li+1],
fori=n—-—1n—-2,...,1
Let us denote by
(i-1)

= A1n+1

= A3n+1

Q41 . Qint1 .
=——, 1=12,...,n—1 (= 1=1,2,...,n.

&= "Gy =Y

i i

(2.28)
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Then, we have
@12 3 Ain41
1 pu—

o = —,
a11 a11
and
Qi1 Qip+1 — ﬁz’—1an’—1
a; = , Bi= :
Qi — OGj—1Q4-1 Qi — Qj—1Q45-1

We obtain the following algorithm for solving a system of equations with a
tri-diagonal matrix.

Algorithm.
Set :
ai2 Q1n+1
Oél — — /81 —
a11 a11
for i=2.3,...,n—1, evaluate :
Qi1
o; =
Qi — Qj—1Q45-1
for i1 =2,3,...,n, evaluate :
(2.29)
ﬁ Qin+1 — ﬁi—laii—l
i pu—
Qi — OG—1Q4-1
set : Tn = Bn
evaluate : for 1=n—1n—-2,...,1

T; = i — iTiy1.

The above algorithm is stable with respect to round-off errors if the tri-diagonal
matrix A satisfies the following conditions:

aii >| a2 |> Qnn >| Anpn—1 |>
aii >| Qi1 | + | Giig1 |, ©=2,3,...,n—1L

Then all s coefficients are less than one.
Indeed, we have

|Oé1|<1

< 1.
Qi — 0i—10i-1 | @1 | F(1= | i1 |) | @it |

for 1=23,...,n—1.

| o |§ | 1141 | | 1141 |

The solution x can be obtained by this algorithm with total number of 8n — 6
arithmetic operations.
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In order to implement the algorithm in Mathematica, we input data matrix
and the right side vector as the lists

a = {al,ag,...,an}, b= {bl,bg,...,bn_l,()}
c= {07627637"'7Cn}7 f = {f17f27"'7fn}

and invoke the following module

soltrila_,b_,c_,f_]:=Module([{al,be,n,x},
n=Length[a];
al[1]=b[[1]]/al[1]];
alli_]l:=allil=b[[i]]/(allil]-alli-1]*c[[il]);
be[1]=f[[1]1]/al[1]];
beli_]l:=belil=(f[[i]]-bel[i-11*c[[i]1)/

(allil]-alli-11*c[[i]]);

x [n]=be[n];
x[i_):=x[i]=bel[i]-all[il*x[i+1];
Table[x[i],{i,1,n}]
]

Example 2.4 Let us consider the following system of linear equations:

21’1 — X9 - fl
-1 + 210 — 73 = fa
— T2 + 2x3 — 14 = f3

- ®ia + 2r — wp = fi
- Tp1 + 2xn = fn
To solve this system of equations when n = 8, we input data

a={2,2.2.,2.,2.,2.2,2} b={-1.,-1.,—-1.,—1.,—1.,—1.,—1.,0}
c={0,-1,-1,-1,-1,-1,-1.,-1}, f={0.,2.,-2.,2.,-2.,2.,-2.,0.}

and invoke the module
soltrila,b,c,f]

to obtain the solution x = {1.,2.,1.,2.,1.,2.,1.,2.}.

2.7 Gauss Elimination for Block Tri-diagonal Matrices

Let us consider the system of linear equations with tri-diagonal block matrix

(cf. [7])
AX = B, (2.30)
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where the right side vector and unknown vector are:

[ B [ Bi [ X ] [z ]
Bg BZ’Q X2 Zi2
B = B , B, = Bis , X = X3 , X; = X3 ,
_Bn_ _Bin_ _Xn_ _Iim_
and the block matrix
Ay A O o --- 0 0
A21 A22 A23 0 e 0 0

A= 0 Az Aszz Asgy --- 0 0

0 0 0 0 0 Ann—l Ann

11 12 im
@i Qi mr Qg
_ i, i, i, s
Ay=1| " ¥ o, =120
aml am2 . amm

tj
Clearly, the system of equations (2.30) takes the following form in the block
notation:

i i

AnXy +A412X = B

A Xy +A2Xo +A23X3 = By

A Xy  +A33X3 +A3Xy = B3
An—ln—an—l ‘I’An—lan - Bn—l

Ann—an—l ‘I’Anan - Bn

(2.31)

Applying non-pivoting strategy, we can find the solution X, provided that the
pivotal matrices are non-zero entries.

In order to get the first reduced system of equations, we multiply from the left
first row-block in (2.31) by the matrix

My = A21A1_11

providing that the inverse matrix A} exists. Then, we obtain
the first reduced system of equations:

AnXi +A1Xs =B
AWKy +AnXs — ByY

Az Xy +Az3X3 +A3.Xy = B3

An—ln—an—l ‘I’An—lan = Bn—l
Ann—an—l ‘I’Anan = Bn
(2.32)
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where X
AS) = Agy — Ayt A7 Aus,

BY = By — Ay Al B;.
Next, multiplying from the left second row-block in (2.32) by the matrix

My = Az AylY

we obtain
the second reduced system of equations:

A Xy +A1Xo = D5
Aglz)Xz +A23X3 = Bél)
AL X3 + A3 Xy = B

An—ln—an—l ‘I’An—lan = Bn—l
Ann—an—l ‘I’Anan = Bn
(2.33)

where ) )
AR = Ags — A Ayl) Ay,

B = By — A Ay VBV,

We continue the block elimination process if the pivotal matrices Agf_l), 1=
1,2,...,n; are non-singular. As the final step of elimination, we obtain
the last reduced system of equations:

AnXy +ApX, =B
Aglz)Xg +A23X3 _ Bél)
A§23)X3 +A31.Xy _ B?E?)
A(n 11 an 1 A X, = Bfﬁ_lz)
AlpVX, =B
(2.34)
where . »
AEE_ )= Ay — Aii—1A;(iZ %Ai—u,
Bi(i_l) B; — All 1Az 1li— 1Bz (1Z )>
1=2,3,...,.mn
Hence, the solution is
X, = A’I’_W(Ln_l)B’r(Ln_l)?
(2.35)

X = Ai_i(i_l)[Bi(i_l) — A1 Xip], i=n-1n-2,.1,

The following theorem holds:
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Theorem 2.1 (c¢f. [5], p.112) If the block matrices Ay, i = 1,2,...,n are
non-singular and satisfy the inequalities
FAZ H (I Asiea [+ ] A 1) < 1
fori=1,2,....n. when Ay = Anni1 =0,

then the Gauss block elimination can be completed and the solution X of the
system of equations (2.32) is determined by the formula (2.35).

Example 2.5 Let us solve the system of equations

41’1 — X2 +x3 =5
—T1 —|—41’2 +x4 =11
T —|—41’3 —X4 +xs5 =14
) —X3 —|—41’4 +Tg = 21

T3 —|—41’5 —Tg = 17

x4 —x5 +dxre =23
by Gauss block elimination.
Solution. We can write the above system of equations in the block form
AnXi + ApX = B

An Xy 4+ ApXy + AxXs =D (2.36)
A32X2 + A33X3 = Bs

where the vector B = (B, By, B3)T has the components

5 14 17
31:[11]732:l21]> B3:l23]7

and the unknown vector X = (X1, X5, X3)T has the components

):1:[5511]’ ):2:[5521]’ ):3:[2531]’
12 22 €32
and the matrices

4 -1 10
A11=A22=A33=[_1 4]> A12=A21=A23=A32=[0 1]-

Multiplying from the left first row-block in (2.36) by the matrix

_ 1141
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and then subtracting the result from the second row-block, we obtain
the first reduced system of equations:

AnXys + ApX, = B
AR X + ApXs = BY (2.37)
Az Xy + AX3 = DB
where
_ 4 -1 114 1 1 56 —16
Aglz)ZAzz—AzlAnlAH:l_l 4]_ﬁl1 4]:ﬁl—16 56]’

W _p _ (1] 1[4 1[5 ]_1[179
Byt =B AzlAﬂBl_lm] 15[1 40111 ] 15| 266 |

To eliminate the unknown X, from third equation in (2.37), we multiply second
row-block by the matrix

_ 1 7 2
Msy = AgyAys™) = 24 l 2 7]

and we subtract the result from third row-block in (2.37). Then, we obtain
the second reduced system of equations:

A Xy 4+ ApXs = B
AVX, 4+ AyXs = BY (2.38)
- Al - B
where
_ 4 —1 117 2 1 89 —26
Ag?zAgg—AszAzz(l)Az?):l_l 4]—ﬂl2 7]:ﬂl—26 89]’
@) - R 17 _i 7 2 i 179 _i 289
By” = By — Ay, Bz_lggl 24[27 15| 266 | 24| 404 |-

Hence, by formula (2.35), we obtain
v g@p@ _ 24 [8926] 1[280] 1 [36225] _[5
3T TS T o4 | 260 89 | 24 | 404 | T 7245 | 43470 | T | 6 |
_ 4-pl T2 11179 |5 |3
Xy = Ay’ [By A2 X3] = 24 l 2 7 ] {15 266 6 4|

XeAfHBl—AwXﬂ:%H ﬂ{li]-lilHﬂ
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2.8 Gauss Elimination for Pentediagonal Matrices.

Let us write the system of linear equations (2.1) in the case when A is a
pentadiagonal matrix

a11T1 + a12T2 + a1373
2171 + G22T2 + G233 + Q2404
3171 + A32%2 + A33T3 + A34T4 + A35T5

Q42T2 + 4373 + Q4424 + Q4505 + Q4626

"'+'annIn

This system of equations has the following pentadiagonal structure:

*
*

* ¥ X %

* ¥ X %

0
where * = aq;;, = al(-k)

* ¥ X ¥

L i=1,2.n k=12 . n+1

* K% X ¥

xy
X2
z3
Xq

A1n+1
A2n+1
A3n41
A4n+1

Ann+1

* % % ¥

*ox % ¥

Eliminating unknown x;, we obtain the first reduced system of equations which
has the following structure

[ %

*
L+
<)

*

*
L)
<)

*

*
*
*

* ¥ X ¥

* % X ¥

1
X2
z3
Ty

Tpn—3
LTpn—2
Tn—1
Tn

<)
<)

* ¥ X ¥
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where

(1) _ Ga . ) _
*) = Qi — M4101k, m;1 = P 1=2,3;, k=2,3,n+1.
11

After second step of elimination, we obtain the second reduced system of
equations which has the following structure

[ % % * X1 ”
(1) 1) To ey
x2) %@ T3 %(2)
NN R 24 £2)
* * * Tp_3 *
* * Tp9 *
* * Tp_1 *
L * ES ] L Tn ] | * ]
where
1 1 a(-l)
agk) — mi2agk)’ mio = %’ 'l = 3’ k‘ — 3’/)7, —+ 1’
Qg9
2 _ o0
i = ik — M40k,  Myg = %, i =3, k=4,
%
aik—migag?, mio = (—le), 1 :4, k‘:3,4,n—|—1
Qg9

Continuing elimination of successive unknowns, we obtain the following upper
triangular system of equations:

[ * * Tra [ %
+ (D @ T ()
x« 2 %@ T3 «(2)
B %6 x4 %3
>l<(n—3) >l<(n—3) % ;En—2 ;k(n—3)
£(n=2) 4 (n-2) Tpo1 (n=2)
*(n_l) L Tn, ] *(n—l)
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In general, the coefficients are determined by the formulas

(s—1)

5— s5— A, .
agk 1)_mi5agk 1)’ Mis = —(s—l)’ z:$—|—1’ /{JZS—I—l,TL—I—l,
Qss
*(s) —_= az('j_l) .
i Qik — Mslsk, Mis =~y 1 =5+ 1, k=s+2,
Uss
(s—1) Qs .
@ik — MisQgyy, Mis = —77y 1=s+2, k=s+1,s+2,n+1
Uss

for s =2,3,...,n— 2, and for s =n — 1, we have

a(m=2)
(n-1) _ (n—2) (n—2) o nn—1
*nn =Upp ~ — Mpn—18p_1n5 Mon-1 = (n—2)
Qp_1n—1
and
(n—=1) _  (n—2) (n—2)
*ont1l = Oppa1 — Mpn—1Qy_1p41-
Hence, by backward substitution, we find the solution
(n—1)
T, = Apn+1
T (n-1)
ann
1 (n—2) (n—2)
Tn—1 = (n—2) [an—ln—l—l — Qp_1n l’n]
Ay 1n—1
__ b ey (n—3)
Tn—2 = (n—3) [an—2n+1 — Qp_2p—1Tn-1 — an—2n$n]
Ay _9p_9
_ b e (n—4)
Tp-3 = (n—4) [an—3n+1 — Op_3p—2Tn-2 — an—3n—1$n—1]
Ap—3n—3 (2.39)
R SO O ) R P
Ts = (s—1) [asn—l—l T OQggy1 s+l — ass+21’s+2]
Uss
x 1[a(1) —aSyrs —a T4
2 — (1) (¥2n+1 23 43 2444
22
1
X1 = _[aln—l—l — Q1272 — a13ZE3]
a1

The module solvefive in Mathematica solves a system of linear equations
with a pentadiagonal matrix A. The input entries of the pentadiagonal matrix
are to be stored on the following list

a = {{031, 42, .-+, ann—1}> {021, asz, .-, ann—1}>
{011, asg, ..., ann}> {012, ag3, ..., an—ln}>
{013, a4, ..., an—z,n}, {an+1,1, Ap+1,2;5 -+ an+1,n}}-
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solvefivela_]:=

Module[{al,a2,d,a3,a4,f,x,x1,y,n},

{a1,a2,d,a3,a4,f}=Tablelal[[i]],{i,1,6}];
n=Length[d];
Do[x=a2[[i-1]11/d[[i-11];
dl[i]l]=d[[i]]-x*a3[[i-1]];
a3[[i]]=a3[[i]]-x*ad4[[i-1]];
fL0i]]=f[[i]]-x*£[[i-1]];
x=all[[i-1]1/4[[i-1]17;
a2[[i]l]=a2[[i]]-x*a3[[i-1]];
dl[i+1]]=d[[i+1]]-x*ad[[i-1]1];
fLLi+1]]=f[[i+1]]-x*f[[i-1]1],{i,2,n-1}];
x1=a2[[n-111/d[[n-11];
d[[n]]=d[[n]]-x1*a3[[n-11];
y[nl=(f[[n]]-x1*f[[n-1]1)/d[[n]];
y[n-1]=(f[[n-1]1]-a3[[n-1]1]1*y[n])/d[[n-1]1];
yli_1:=yl[il=
(f[[i]]-ad4[[i]]*y[i+2]-a3[[11]*y[i+1])/d[[i]];
Table[y[i],{i,1,n}]

]

Entering the input data

a={{1.,1.,1.,1.,1.,0.3},
{-16.,-16.,-16.,-16.,-16.,-16.,-12.},
{24.,30.,30.,30.,30.,30.,30.,24.%},
{-12.,-16.,-16.,-16.,-16.,-16.,-16.},
{0.,1.,1.,1.,1.,1.},
{12.,-1.,0.,0.,0.,0.,-1.,12.}};

we obtain the solution = = {1,1,1,1,1,1,1,1} by executing the command

solvefivel[al].

2.9 Exercises

Question 2.1 Solve the following system of equations:

51’1 + x9 + 21’3 + 51’4 =1
10071 + 229 — 63 + 924 =4
31’1 — 21’2 + 41’3 + x4 =2 (240)
151’1 — 21’2 — X3 + 101’4 =38

Uusing

1. (a) partial pivoting,
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(b) full pivoting.
Question 2.2 Using a calculator, solve the following system of equations:

0.000003z1 + 0.001z, = 6
10z + 3333.333z2 = 19999999

by
1. (a) Gauss elimination without any pivoting,
(b) Gauss elimination with partial pivoting,
(c) Gauss elimination with full pivoting.

Note that the exact solution : x; = 1000000, x5 = 3000.
Ezplain why Gauss elimination fails to get the accurate solution.

Question 2.3 .
(a). Solve the following system of equations:

3r1 + zo9 + 2z3 + 3x4 =10
61’1 + 41’2 61’3 + 91’4 =25

901 — 6xy + 4dx3 + 8xy =20 (2.41)

151’1 — 81’2 T3 + 101’4 =32
(b). Find LU-decomposition of the matrizx
3 1 2 3
6 4 -6 9
A= 9 -6 4 8

15 -8 -1 10

Question 2.4 Solve the following system of linear equations by the root square
method

dry 4+ 229 + w23 + x4 =0
21’1 + 61’2 + I3 — X4 =4
X1 4+ 29 + bxry + 2x4 =27
Ty — X2 + 2x3 + Tzy =19

Question 2.5 .

1. (a) Find the upper-triangular form of the system of linear equations us-
ing Gauss elimination method

200 + 39 — 23 =1
41’1+21’2+l’3:2

61’1—|—l’2 —|—41’3:7

Solve the above system of equations.
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(b) Find the LU-decomposition of the matriz
3 —1
2 1
1 4

A:

O = N

Calculate the determinant of the matrix A using the LU -decomposition.

Question 2.6 Consider the following system of equations:

dry + 9 =
1 4+ 4dxe + 3 =
X9 + 41’3 + Xy =9
Tio1 + dry + T =2
Tn1 ~+ Az, =n?

Write an algorithm based on Gauss elimination to solve the above system of
equations. Find the solution when n = 10.

Question 2.7 .

Derive the algorithm based on Square Root Method for solving the system
of equations Ax = F', where the tri-diagonal matrix

a b 0 0 0 -~ 0 0

b a b 0 0 --- 0 0

A= 0O b a b 0 --- 0 0
a>2b>0

o 0o o0 o0 0 --- b a

(6) Use the algorithm, which you have found in (a), to solve the system of

equatins
4z — x9 = 3
—x1+ 419 — 3 = 2
—Tot+4x3—2x4 = 2
—xr3+4xy — x5 = 2

—T4 + 41’5 = 3



Question 2.8 .

Consider the system of equations

31’1 — T2

-1+ 31’2 — X3 =

—Tp_o + 3$n—1 —Tp =

—x4 + 375

45

(a) Derive the algorithm based on Gause Elimination Method for solving the
system of equations and show that the algorithm is numerically stable.

(b) Use the algorithm which you have found in (a) to solve the system of

equatins

3T1 — T2 = 2
-1+ 319 —23 = 1
—To+3r3—24 = 1
—r3+3r4—x5 = 1
—x4 + 375 = 2
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Chapter 3

Eigenvalues and Eigenvectors of
a Matrix

3.1 Eigenvalue Problem

In this chapter, we shall consider the following eigenvalue problem:

Find all real or complex values of A and corresponding non-zero vectors
v = (21,29,...,2,)7 #0, such that

ai; @12 @13 -+ Qip—1 Q1n 1 1
A21 Q22 G23 -+ QA2p—1 Q29 T2 T2
asi Gz Gz3 " A3p—1 A3p T3 | =X T3 |. (3.1)
Gp1 Ap2 Gp3 - Qppn—1 dnn Tn Tn

Clearly, this system of equations possesses non-zero solutions if and only if the
homogeneous system of equations

(a1 — N1 + a2y + ai3rz +---+ ainx, =10
anx1 + (age — N)zy +  agzrs +---+ agnx, =0
................................. (3.2)
a1 + anaZs + a3ty +-oF+ (G — ANz, =0

has non-zero solutions. It is well known, the homogeneous system of equations
(3.2) has non-zero solutions if and only if the determinant

ap — A a12 a3 o Qip—1 A1n
21 agy — A Q23 s Qop—1 A2n
An()\) = asy aso ass — )\ s A3p—1 a3n =0 (33)
anl an2 an3 ot OQpp—1 Qpn — )\

47
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Let us note that
Ap(A) = (=1)" A" + ap A"+ ap o A2 ag )+ ag,

is the polynomial of degree n with the leading term (—1)"A". This polynomial
is called characteristic polynomial of the matriz

[ a1 Q12 A3 - Ain-1 QAin -I
Q21 Q22 A23 -** (A2p—1 A2n
A= | a3 as as -+ ap—1 asp
Apl Ap2 Qp3 - App—1 Qpp

Thus, all eigenvalues of the matrix A are roots of the characteristic polynomial
A,(N). Let a non-zero eigenvector X*) corresponds to the root My, so that

AX® = )\ X®) k=1,2,..n.

For a real and symmetric matrix A, there exists exactly n orthonormal eigen-
vectors XM, X@ X je

1 if k=l
® )y _ :
(X, X )_{o Ty

where X®) = o9 29, 2] and (X®, X0) =3 22,
=1

1=
A matrix A for which there exists an orthonormal base of its eigenvectors is
diagonalizable by the orthonormal matrix

:Egn :Egz) zgn)
1 2 n
P

2 2@ L g
This means that

XTAX = A,
where X7 denotes transposed matrix to X and

M O - 0

A = diagonal(h, e, ... A) = | © 2 0 0
0 0 --- \,
Let us note that any matrix A can be transformed either to a diagonal form
or to a Jordan form (cf. [6]). In the case when a matrix A (symmetric or not)

possesses all distinct eigenvalues, so that A\ # A\, for k # [, then there exists
a non-singular matrix 7" such that

TIAT = A.

and A is a diagonalizable matrix.



49

Example 3.1 Let us find all eigenvalues and corresponding eigenvectors for
the matriz

20 6 8
A=1]16 20 O
8 0 20

Solution Evidently, the characteristic polynomial of A is

20—\ 6 8
As(N) = 6  20—X 0 |=—X\"+60\%— 1100\ + 6000.
8 0 20—X

The eigenvalues of the matrix A are the roots of the equation
As(N\) = 0.
and these roots are:
A1 =10, A =20 and A3 = 30.

In order to find eigenvectors corresponding to the eigenvalues A\;, Ay and A3,
we shall solve the following homogeneous system of linear equations:

(20 — )\)1’1 + 61’2 + 81’3 = 0
81’1 + (20 - )\)1’3 = 0

when \; = 10, Xy = 20 and A3 = 30.
Thus, for A\; = 10, the homogeneous system of equations

101’1 + 61’2 + 81’3 =0
627 + 10z, = 0 (3.5)
811 + 1023 = 0
has the normalized solution
1 3 4 ]
V2 527 527

For Ay = 20, the homogeneous system of equations

X1 = [

61’2 + 81’3 = 0
61 = 0 (3.6)
81’1 =0

has the normalized solution

X® =10,—=,2].
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For A3 = 30, the homogeneous system of equations

—101’1 + 61’2
61’1 — 101’2
81’1

has the normalized solution

x® L

V2'5v2'5v/2

81’3 =0
= 0 (3.7)
10z3 = O
4

!

One can check that, XM, X®) and X®) are orthonormal eigenvectors, so that,

the orthonormal matrix

52
4
L 5v2

01‘
SRk

S

transforms the matrix A to the following diagonal matrix:

10 0 0
XTAX =0 20 0 | =A.
0 0 30
Example 3.2 Let us find eigenvalues and eigenvectors of the tri-diagonal ma-
triz ) }
2 -1 0 O 0O 0 O
-1 2 -1 0 0 0 0
as| 0 E 0
0O 0 0 O -1 2 -1
0O 0 0 O 0o -1 2
L 4 (nxn)
Solution. The eigenvalues )\, and corresponding eigenvectors X*), &k =
1,2, ..., n, satisfy the following system of linear equations:
21’1 — X9 = )\1’1
—Tp_1 + 2xp — xRy = Axg (3.8)

—Tn-1 + 2$n

= Az,
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In order to find all non-zero solutions of equations (3.8), we shall substitute
o (3.8)

=0 k=12 ...n,

where « is a parameter.
Then, we obtain
—2-XNa+1=0.

All non-zero bounded solutions of (3.8) correspond to the complex roots of the
quadratic equation for 0 < A\ < 4. Thus, the non-zero bounded solutions of
the system of equations (3.8) are:

z,il):sinkw :E,(f):cosk:w, E=1,2,....,n—1.
From the first equation in (3.8), we have
A =2(1—cos ).
From the last equation in (3.8), we have
sin(n + 1)1 = 0.

Hence K
T
=— k=12,...
wk n_|_17 5 &y ,

So that, the eigenvalues of the matrix A
km

)\k—Q(l—coswk)—élsang = 4sin® 1)’ k=1,2,...,n

and the eigenvectors
X0 = 207 289, 2l

rrn

where
k) . skm

:Eg =sin ——, for k,s=1,2,... n.
n+1

The eigenvectors XM, X X™ are orthogonal. Indeed, it can be proved
in an elementary way that

(X®, xO) Z Wl Z sin

_oslm Al k=1,
n—l—l n—l—l_ 0 ’lf ki?él

Thus, the orthonormal set of eigenvectors of the matrix A is

C e -
ST

2km
Sznn—l—l

— 2 2 T
x® _ /n_l_lX(k): — szn%l . k=1,2,...,n.

nkm
L SZTL n+1
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Let us note that any Hermitian matrix A ' possesses all real eigenvalues. If
A is a real symmetric matrix then A has also a real orthonormal base of
eigenvectors. Indeed, we have

AX = \X
and the scalar
X*AX =\ X" X.
Since A* = A, we get
(XTAX)" = XTA'X™ = XTAX
Then, the scalars X*X and X*AX are real. Therefore, A must be also real.

3.2 Jacobi Method for Real and Symmetric Matrices

The idea of Jacobi method is to find an orthonormal matrix V (i.e. V=1 = V1)
such that
VITAV = A,

where A is a diagonal matrix, V7 is transposed matrix to V and V! is the
inverse matrix to V. As we know, such unitary matrix V exists for any real
and symmetric matrix A. Evidently, if A is a diagonal matrix then V = FE is
a unite matrix. Let A be a non-diagonal matrix. Then, we may choose k£ and
[ such that

o |= =1 s i [ @i [> 0.

Now, let us consider the orthogonal matrix

column column
k l
! !
F i}
1
0 1 --- 0 0
oW = : : (3.9)
0 0o --- 1 0
singy 0 --- 0 cosy — Towy
1 k<l
. 1 -

1A is a Hermitian matrix if A* = A, where A* denotes transposed to A with conjugate entries
of A
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We can determine the angle 1 in such a way to nullify the entry a,g) of the
matrix CWTACW), Namely, let @ be entry of the matrix ACW, Then, we
find

Ty = — SINY agr + cosyY ay

ay = —siny ay + cos P ay (3.10)

(1) _ . _
a;; = cosy ay + siny ay

Hence, we have
a,g) = cos(—sin agr + cos ag) + sin(—siny ag + cosy ay) =
ap((cosh)? — (sin))?) + cos v sin ) (ay — ap).

and a,g) = 0 if the angle ¢ satisfies the following equation:

ar(cos®)? + (ay — agk) cos v sint) — ag(sin)? = 0.

So that .
a1 COS 2’(/1 — i(akk — au) sin 2’(/1 =0.
and 9
75 .
o= { ey et
00 if  agr = ay.
Hence, we get
1 2a
“arctan——"1 if  aw # ay,
Y = 72T Qi — ay
1 if  apk = ay,

We can transform matrix A to an almost diagonal form by the orthogonal
mappings C), C?) .. O, of the form (3.9). Then, we shall show that the
sequence of matrices

AW — A,
AW = cOTACW),
AR = cATcMTACMHCO®),

(3.11)

converges to a diagonal matrix A.
Indeed, let

AD = {0}, 0 j=1,2,...,m ¢=01,...,7.
The matrices A@tD, ¢ =0,1,...,r — 1; are determined by the condition

alt! =0, (3.12)
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where
(¢+1) _

(a)
Apgl, = m:lg}%ﬁ; i | a;;’ | (3.13)
In order to prove that the sequence (3.11) converges to a diagonal matrix A,
it is sufficient to show that the non-diagonal entries of A tend to zero when

r — 00, so that

rlinglo 1" =0,
where .
p =3 a2 (3.14)
ij=1, i#j
Let

Then, the following equality holds:
S(A) = Sp(ATA) = Sp(A?)

for a symmetric matrix A, where Sp(A) = zn: a;; is the trace of the matrix A.
For two symmetric matrices B and M = AiT:éA, we have

S(M) = Sp(M?) = Sp((AT"BA)?) = Sp(A~*BA) = Sp(B*) = Sp(B). (3.15)
Next, let

Z:[akk akl] M:[mkk mkl] 6:[ cos sz’nw].

i ay My My —siny - cosy
Since .
I —C'AC,
by (3.15) B o
S(A) = S(M). (3.16)
Also, by (3.15), we obtain
(M) — p(A) = S(M) = > my; — [S(A) = D _ai] =D ai — > mg.
i=1 i=1 i=1 i=1

Hence, we have
mi; = Qiy, for 27& k> ‘77& l> Z>] = 1,2,...,71.
Therefore

w(M) = w(A) = aiy, + aj — miy, — my = S(A) — 2a, — S(M) + 2mj,.



55

By (3.16), we get equality
p(M) — p(A) = 2(miy — a3y (3.17)

Now, we shall compute the difference ;" — 4@, Namely, by (3.12) and
(3.17), we have

1
plrtD) =l = (€)= (€)= 2(G50)° = (el V] = —2(af,)*
Therefore
D = p = 2(aif) 2, g =0,1,..r = 1.
(9)

Because the entry a;; has been chosen to have the greatest absolute value
(see 3.13), therefore

(@) 2 - e
(akqlq) = atn+ 1)
and “
9,04
(a+1) « (@) _ =M —0.1... 1
M — M n(n —I— 1)7 q ) ) 7T )
Then, we have
2
0 < u+) < o — — 2y,
Hence, we obtain the limit
lim ;" = 0.

r—00

This means that the sequence of matrices (3.11) converges to the diagonal
matrix

N OO - 0
A 0 XN --- 0
0 0 - \,
The diagonal entries A\, Ag, ..., A, are eigenvalues of the matrix A, so that
AV = VA,

where
V = lim COc® ...

r—00

Since a product of orthonormal matrices is also an orthonormal matrix, there-
fore C(*) is the orthonormal matrix of eigenvectors of A. In order to stop
Jacobi iterations, we can use the condition

p(COCH ..My < ¢,

where € is a given accuracy.
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Example 3.3 Let us use Jacobi method to find all eigenvalues and eigenvec-
tors of the matriz

20 6 8
A=1]16 20 O
8 0 20

Solution . The greatest entry of A out of diagonal

max a;; |= a3 =8.
ij=1,2,3; i#j i |

Hence, k =1, [ =3 and

cosyp 0 —siny
cH=1 0 1 0 :
stnyp 0 cosy

where by (3.10) ¢ = 7, since a;; = azz = 20.
First Jacobi iteration for k=1, | = 3, aﬁ? =8 and 1 = 0.785

5 0 57120 6 87[%5 0 —5

V2 V2 V2 V2

A —cWTgcM = | 0 1 0 6 20 0 01 0
1 1 1 1

-5 0 &5 S 0 20 5 0 %

0.707 0.000 —0.707
¢ =10.000 1.000 0.000 |,
0.707 0.000  0.707

Hence, we have

28.000  4.243  0.000
AW = cOTHcM = | 4.243 20.000 —4.243 |,
0.000 —4.243  12.000

and
x@ X2 X3

0.707 0.000 —0.707
v =c®=10000 1.000 0.000
0.707 0.000  0.707

Second Jacobi iteration for k=1, | = 2, aﬁ? = 4.243 and v = 0.407

0.918 —0.396 0.000
Cc® =039 0918 0.000 |,
0.000  0.000 1.000
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Hence, we have

29.831  0.000 —1.681
A?) = cAT JAO () = 0.000 18.169 —3.895
~1.681 —3.895 12.000
and

x@ X2 X3

0.649 —0.280 —0.707

VO =cWo® =1 039 0918  0.000

0.649 —0.280  0.707

(2) _

Third Jacobi iteration for k =2, | = 3, a3

—3.895 and ¢ = —0.451

1.000  0.000 0.000
c® =10.000 0900 0.435 |,
0.000 —0.435 0.900
Hence, we have
20.831 0.732 —1.513
AB) = cBTAR 0B = | 0.732 20.053  0.000 |,
—1.513  0.000 10.116
and
x@ X X3
0.649  0.056 —0.759
VO = cWe@cB) = | 0396 0827  0.400
0.649 —0.560  0.515

(3) _
13

Fourth Jacobi iteration for k =1, | = 3, ayy = —1.513, and ¢ = —0.076

0.997 0.000 0.076
0.000 1.000 0.000
—0.076 0.000 0.997

oW —

Y

Hence, we have

29.946  0.730  0.000
AW = cWTAB MW = | 0.730 20.053 0.056 |,

0.000  0.056 10.000

and

X X2 X3

0.705  0.056 —0.707
v = cWe@eBoW = | 0365 0827 0429 |.

0.608 —0.560  0.562
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Fifth Jacobi iteration for k =1, | = 2, a%) =0.73 and ¢ = 0.073

[0.997 —0.073 0.000]
c® =10.073 0997 0.000 |,
[0.000 0.000 1.000J

Hence, we have

30.000 0.000 0.004
AB) — cOT AWCG) — | 0.000 20.000 0.056
0.004 0.056 10.000

Y

and
x@ X2 X3

0.707  0.004 —0.707
VO — cWo@oBo®We®) = | 0.424  0.798  0.429
0.566 —0.603  0.562

Sixth Jacobi iteration for k =2, | = 3, ag‘? = 0.056, and v = 0.006

1.000 0.000  0.000
C® =1 0.000 1.000 —0.006 |,
0.000 0.006  1.000

Hence, we have

30.000  0.000  0.004
A®) = cOTAG)CE) = | 0.000 20.000 0.000 |,
0.004  0.000 10.000

and

x@ X2 X3

0.707  0.000 —0.707
VO = cWo@oBo®Wo®o® = | 0.424  0.800  0.424
0.566 —0.600  0.566

Seventh Jacobi iteration for k =1, [ =3, aﬁ? = 0.004, and ¢ =0

1.000  0.000 0.000
C® =1 0.000 1.000 0.000 |,
0.000 0.000 1.000

Hence, we have

30.000 0.000  0.000
AN = cMT 4O = | 0.000 20.000 0.000 |,
0.00  0.000 10.000

] |
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and
x@ X2 X3

0.707  0.000 —0.707
vV = cWo@oBoWoGo®c( = | 0.424 0.800 0.424
0.566 —0.600  0.566

Finally, the matrix A has the following eigenvalues

A1 = 30.00
A2 = 20.00
Az = 10.00

and eigenvectors
x®  x® X3
0.707  0.000 —0.707
0.424  0.800 0.424
0.566 —0.600 0.566

The following module in Mathematica finds eigenvalues and eigenvector of a
symmetric matrix a by Jacobi method of iterations

Program 3.1 Mathematica module that solves an eigenvalue problem by iter-
ative Jacobi’s method.

jacobila_]:=Module[{m,n,ckl,v},
n=Length[a[[1]]]; v=IdentityMatrix[n];m=a;

(* Module ckl finds orthogonal matrix *)
ckl[m_]:=Module[{b,p,k,1l,psi,c,s},

b=Abs [m] ;

Do[b[[i,1]]1=0,{i,1,n}];

p=Position[b,Max[b]l]; p=Firstl[p];

k=p[[1]1]; 1=p[[2]];

e=IdentityMatrix[n];
psi=If[m[[k,k]]1-m[[1,1]]==0,Pi/4,ArcTan[2*m[[k,1]1]1/
(ml[k,k]1-m[[1,1]11)1/2];

c=N[Cos[psil]; s=N[Sin[psil];

ellk,kll=c; ellk,1]1]=-s; el[l,kl]l=s; el[1,1]]=c;
e

1;

Do[e=ckl [m] ;m=Transpose[e] .m.e;v=v.e,{7}];
Print["Diagonal matrix of eigenvalues "];
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Print [Chop[m]//TableForm] ;
Print["Matrix of eigenvectors"];
Print [Chop[v]//TableForm];
15

Solving the example by the above program, we invoke the module jacobi

(* Data segment *);
a={{20.,6.,8.},{6.,20.,0.},{8.,0.,20}};
jacobila]l;

Then, we find the diagonalmatrix of eigenvalues and orthonormal matrix of
eigenvectors.

Diagonal matrix of eigenvalues

30. 0 0
0 20. 0
0 0 10.
Matrix of eigenvectors
0.707107 0 -0.707107
0.424264 0.8 0.424264
0.565685 -0.6 0.565685
3.3 Power Method
Let A1, Mg, -+, A, be eigenvalues of a matrix A (real or complex). We shall
consider \; as dominant eigenvalue of A, so that
1. (a) Ay =Xy =---= )\ for certain 1 <r <n, ie. A can be repeating
eigenvalue of A,
(b) [Av]=[ Ao [=- = A > Aq1 [Z2]| Mgz [Z - 2] Aa |

In order to find a dominant eigenvalue A; of the matrix A and corresponding
eigenvector XM, we can apply the power method, provided that the eigenvec-
tors XM X@  X™ of A are linearly independent in the real space R",
(or in the complex space C™). Therefore, every vector Y € R" can be written
as the following linear combination:

Y =1 XY+ aoX® 4+ .04 q, XM,
Now, let us choose a starting vector Y to determine the iterations:

AY = al)\lX(l) + ag)\gX(z) + -4 an)\nX("),
A%Y = a2 XD 4 ap 2 XP a2 XM
AY = a3 XD 4 a3 X3P 4 g, N2 X M) (3.18)

ARY = ) MEX D oo NEXH) o g NEX),

n
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Hence, we have

A A An
ARY = M ay XD 4 0y ()P X @ 4 ag(Z2)XG) 4o 4, (Z2)F XM (3.19)
A A A
Since
| |< 1, i=r+1,r+2,...,n,
we get

Ai .
)\——>0 when k — oo, i=r+1,r+2,...,n
1

Thus, if a; # 0 then
AYY = M XW,

and the vector A*Y approximates the eigenvector X (V. It can happen that the
component a; = 0. Then, we can change the starting vector Y to get non-zero
component a;. (In practice, it is reasonable to choose Y = [1,1,---,1]). How-
ever, round-off errors yield a non-zero term A\ eX ", so that, in the presence of
round-off errors A¥Y — X when k — oo. In the absence of round-off errors,
when a; = 0, we can get the next eigenvalue Ay and corresponding eigenvec-
tor X(?). For a distinct dominant eigenvalue \;, from (3.18), we obtain the
following formula:

[AIH_IY]Z' _ [alX(l + a9 ( 1)k+1X(2 -+ ap, ()\_T)k—l—lX(n)]
AL =N (X004 oo P 4 a0,
A2 &
— A O((22ykH
L+ O3,

where [X*)]; denotes i — th component of the vector X*).
Hence, the approximate value of Ay is
[Ak—l—ly]i

N

(3.20)
forie=1,2,....,n

We shall use the dominant component to evaluate

[Ak—l—ly]j

A1 = diminant components W

Similar formula can be obtained for a repeating dominant eigenvalue \;.
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Example 3.4 Let us find the dominant eigenvalue A\ and corresponding eigen-
vector X for the matrix

2

I
- = N
oo
o N W

using power method.

Solution. One can find, in elementary way, that the eigenvalues and eigen-
vectors of A are:

)\1:9, )\2:4, )\3:—1

0.359700 0 —0.7001401
XM = 10407661 |, X@P=1]1], XO = 0.140028
0.839309 0 —0.7001401
Choosing the starting vector Y = [1, 1, 1], we obtain
The first iteration.:
2 0 3 1 5
Yi=AY =1 4 2 11=17
7 0 6 1 13
Thus, the dominant component of Y is: A\; = )\gl) =13
The second iteration:
2 0 3 5 49
Yo=AY1=|1 4 2|.|7 |=1]259
70 6 13 113
The dominant component of Y5 is : A\ ~ )\gz) =938
The third iteration:
2 0 3 49 437
Va=AY,= |1 4 2|.]5 |=|511
7 0 6 113 1021
The dominant component is : A} = A§3) = 9.035399
The fourth iteration :
2 0 3 437 3937
Y,=AY;=|1 4 2 |.| 511 = | 4523
706 1021 9185



63

The dominant component is: \; ~ )\§4) = 9.00915
The fifth iteration :

2 0 3 3937 35429
Ys=AY,=|1 4 2 4523 | = | 40399
70 6 9185 82669

The dominant component is A\ ~ )\§5) = 9.00044.
In computations, the scaled power method is used to avoid large numbers.
Then, we consider the following vectors as an approximation of X
AFY
Yk: 5 ]{5:1,2,...;
VIAY T+ [AFY] + - 4 [AFY]2

The following module in Mathematica finds the dominant eigenvalue and cor-
responding eigenvector of a given matrix A.

Program 3.2 Mathematica module that finds a dominant eigenvalue by power
method.

power [a_,iter_]:=Module[{lambda,n,s,x,vectorl,vector2},

n=Length[a] ;vector2=Table[1,{n}];

Do [{vectorl=a.vector2; vector2=a.vectorl;
vector3=Table[vector2[[i]]/vector1[[]],{i,1,n}];
lambda=Max [Abs [vector3]];
x=Sqrt [Sum[vector1[[i]]~2,{i,1,n}]];
vectorl=vectorl/x;
x=Sqrt [Sum[vector2[[i]]~2,{i,1,n}]];
vector2=vector2/x},

{iter}];

Print["Eigenvalue lambda = ",N[lambda,4]];
Print["Eigenvector vector2 = ", ,vector2];
{lambda,vector2}

]

In order to evaluate the dominant eigenvalue of the matrix
a={{2.,0.,3.},{1.,4.,2.},{7.,0.,6.}};

we enter the number of required iterations iter=3 and execute the command
power [a,iter] .
Then, we obtain the following output
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Eigenvalue lambda

= 9.
Eigenvector vector2 =

{0.359539, 0.408585, 0.838922}

{8.99995,{0.35954, 0.40859, 0.83892}}

3.4 The Householder Transformation and Hessenberg
Matrices
Let us state the definition of the Hessenberg matrix

Definition 3.1 A matriz B = {B,;}, i,j = 1,2,...,n, is upper Hessenberg if
Bij =0 forv> j+1, that is, B has the following diagram:

EREE
0 * x cee %k
B =
0 Sk ok
I 0 - ok %

To reduce a matrix A to the Hessenberg matrix B, we apply the Householder
transformation given below.

Definition 3.2 The matriz
H=1-2z2x"

2

15 called Householder transformation. = where I is n-th order identity matriz

and the unitary vector
T
xr = . ) x _(x17x27"'7xn)€ ’ ||[L’||2— rr = 1.

Tn

Let us note that the Householder transformation is Hermitian orthogonal ma-
trix. Indeed, we have

H=I"-2za")"=1—-2x2"=H,
and

HH=H=I-2v2)[-2z2%)=1-2v2"—2va*+4va*za* =1,

2Householder transformation is also applicable to a matrix with complex entries, then =} means
conjugate to x;, 1 =1,2,...,n.
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since r x* r ¥ = x x*.
We shall consider the following Householder transformation:

*

u u

R=1-2 ,
[[ull2 [ful]2

[lulla = Vuru,

where .
{ z+ |[z]l2er if @+ ||z]]2e1 # 0,

z — |[xll2er if @+ [[x]]2e1 =0,

for any non zero real vector x with components x;, i« = 1,2,...,n, and e; =
(1,0,0,...,0)7.

The transformation R maps a non zero vector = to the vector £||z||3e;, that
is

Rz = +||z||3e1. (3.21)
Indeed, we note that
* 2 *
Rr =2 — s——uwu's = 1 — —— (v £ |[|z]]2e1) (2 £ ||z||261)
[|ull3 [lull3
2
=1 — o (@ £ [z aen) (| |2]]3 £ ||2]]221)-
[lull3
Since
lull3 = (z £ [|z]]2e1)"(z £ ||2]|261) = 2(]]][3 £ [l2]|221),
we have

—[|x||2e1, @+ [|z||2e1 # 0,
Rx = x — (v & [|z]|2e1) = £|[z[|261 =
|z|[2e1, @+ ||z||2e1 = 0.

In order to transform a real matrix A = (a;;), 4,7 = 1,2,...,n, to the upper
Hessenberg form B, we apply the following algorithm:
Algorithm

1. Set
A1 = A, xr = (agl,agl, ...,anl)*,

z+ |[z|[2e1r @+ [|z]|261 # O,
u=ux=|z|e; =
z — |[z]|2e1 @+ [|z][2e1 = 0.

2
Ry 1=1,1— —QUU*>
[lull2

(5o
Vi“[o RWJ,]’
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where [, is the identity matrix of order 1, and R,,_; is the Householder
transformation of order n — 1.
To get zeros in the first column down, we compute the matrix

B 1 1 1 1) T
) alf o) ol

1 1 1 1

o) oy o) e ol

L U I
0 ) e ]

2. Set
xr = (agg,a42, ...,ang)*,u =z + ||l’||2€1,

2

Rn—Z - In—2 - —uu*>
[|ul[3
(Lo
e[ )

where I, is the identity matrix of order 2, and R,,_5 is the Householder
transformation of order n — 2.
To get zeros in the second column down, we compute the matrix

[ ,2 @2 (2 (2) 7

Ay Qi Q3 - Ay

2 2 2 2

as) asy asy - aly)

2 2 2

0 aff aff - af)

A = VoAV =

0 0 aff - af)
0 0 af - ald) ]

3. Set, for k =3,4,....,n — 2,

T = (Qhgik Qks2k, - Onk)", U = T £ [|7]|2e1,

2
Rn—k = In—k — Wuu*,
2

[ o
V’f‘[o Rn_k,]’
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where [} is the identity matrix of order k, and R,,_j is the Householder

transformation of order n — k.

To get zeros in the k-th column down, we compute the matrix

[aff o) aly el )]
ay) ayy ay) oo oayl, ab)
(k) (k) (k) (k)
0 aszy Az azp—1  A3n
A1 = Vi AV, =
0 0 aff - ol af)
[0 0 0 api aff) |
Clearly, we get the Hessenberg matrix B =V,,_1A4,1V," ;.
Example 3.5 Let us reduce the matrix
1 3 45
-2 2 5 6
A=1 1537
2 6 7 4
to the upper Hessenberg form.
Following the algorithm, we find
1.
—2 1
z=| 1|, |fzlla=3, u=z+|zler=|1, [ul*=6,
2 2
9 0.6667 —0.3333 —0.6667
Ry=1 — —-uu" =| —0.3333  0.6667 —0.6667 |,
[l —0.6667 —0.6667 —0.3333
1.0000  0.0000  0.0000  0.0000
Vi — 0.0000  0.6667 —0.3333 —0.6667
17100000 —0.3333 0.6667 —0.6667 |’
0.0000 —0.6667 —0.6667 —0.3333
and
1.0000 —2.6667 —1.6667 —6.3333
—3.0000 —1.4444  0.5556  4.7778
Az=ViAVi=1" 00000 05556 —24444 3.7778
0.0000  4.7778  3.7778 12.8889
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[ 0.5556
~ | 4.7778

5.3655
u =+ ||z||e1 = l Pt ] . JJul|* = 51.6160,

2 —0. —0.
Ry— I, . l 0.1155 09933]7

2" | —0.9933  0.1155

1.0000 0.0000  0.0000  0.0000
0.0000 1.0000  0.0000  0.0000
0.0000 0.0000 —0.1155 -0.9933 |’
0.0000 0.0000 —0.9933  0.1155

‘/2:

and the upper Hessenberg form of the matriz A is

1.0000 —2.6667  6.4834  0.9240
—3.0000 —1.4444 —4.8100 0.000
0.0000 —4.8100 13.5512  1.9178
0.0000  0.0000  1.9178 —3.1067

B=A3=V, AV, =

We can solve the example using the following module in Mathematica

Program 3.3 Mathematica module that finds Householder transformation.

householder([{a_,k_}] :=Module[{n,e,s,t,u,u2,uu,v, ik, ink,rnk,x,x2},
n=Length[al;

x=Take [Map [#[[k]]&,a] ,{k+1,n}];
e=Prepend[Table[0,{n-k-1}],1];

x2=N[Sqrt [x.x]];
u=If[(x+x2*e) . (x+x2*e)==0,x-xX2%e,x+x2*e] ;
u2=u.u; ik=IdentityMatrix[k];
ink=IdentityMatrix[n-k];

s=Length [u];
uu=Table[u[[i]]*ul[j]1],{i,1,s},{j,1,s}];
rnk=ink-2*uu/u2;

v=IdentityMatrix[n];
Do[v[[i,jll=rnk[[i-k,j-k]],{i,k+1,n},{j,k+1,n}];
t=k+1;

{v.a.v,t}
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To find Hessenberg form of the input data matrix

a={{1.,3.,4.,5. s
{1.,5.,3.,7.},{2.,6.,7.,4.}};

we execute the commands
n=4;
b=Nest [householder,{a,1},n-1];
Chop[b[[1]],107-4]//TableForm

Then, we obtain the following Hessenberg matrix

1. -2.66667 6.48345 -0.924007
-3. -1.44444 -4.80997 0

0 -4.80997 13.5512 -1.91782
0 0 -1.91782 -3.10672

Let us use the Householder transformation for a matrix deflation, that is,
to reduce an eigenvalue problem of dimension n to an eigenvalue problem of

dimension n — 1.

Matrix Deflation. Let A be a matrix of order n for which an eigenvalue \
and an eigenvector x, with the norm ||z||; = 1, are known. Using the deflation,
one can reduce the matrix A to a matrix C' of order n — 1, whose eigenvalues
are the same as the remaining eigenvalues of A. To find such a matrix C', we
consider the Householder transformation R of the eigenvector x, so that, by

(3.21), we have
Rx = —eq, e1 = (1,0,...,0)T,

and
T Rll
X2 R1,2
= . = —Rlej=—| |
T Rln
Hence, the matrix
[ —x1 Ro1 R31 -+ Ry ]
—x2 Ry R3a -+ Rpo
RT = = [~2,V],

—Tn R2n R3n Rnn
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where the matrix V' with n rows and (n — 1) columns is

[ R21 R31 Tt Rnl ]
R22 R32 Tt Rn2
V pu—
L R2n R3n e Rnn

- n(n—1)

Clearly, we have
ART = [~ Ax, AV] = [~ Az, AV],

and
—zT AN —aTAV
RAR" = [z, AV] =
VT Ty VTAV
Because VTz = 0, we have
N —2TAV
RAR" = :
0 V%TAV

Thus, the matrix C' = RART of dimension n — 1 is similar to A, and therefore
C has the same eigenvalues as the matrix A, except A.

3.5 QR Method

In order to compute all the eigenvalues of a square matrix A, the QR method
is widely recommended. This method consists of two the following parts:

e In the first part, the Householder transformation is used to reduce the
matrix A to the Hessenberg matrix B,

e In the second part, the QR decomposition is used to factorize the Hes-
senberg matrix B = QR with an orthogonal matrix ) and an upper
triangular matrix R.

Now, let us consider the QR decomposition of a Hessenberg matrix
B =QR, (3.22)

where () is an orthogonal matrix and R is an upper triangular matrix.
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We can obtain such a decomposition, multiplying matrix B by plane rotation
matrices C2Y, CG2) O where

column column
k l
| |
o -
1
0 1 0 0
Ok —

0O 0 --- 1 0

singy 0 --- 0 cosv — row;

1 k<l
(- 1 -
(3.23)
Solving the equation
[CHTER B 1k = B sing + Byyup cosyp = 0,
we compute the angle
B
Arctan(— §+1k), By # 0,
Y= k (3.24)

™
— Byr = 0.
27 kk

One can show that the multiplication of the Hessenberg matrix B by a plane
rotation matrix C*#=1) preserves the Hessenberg form of the matrix B.
Thus, the matrix

R=[C®Y B2 o YB =QTB,

is upper triangular.
Hence, we have
B =QR,

where the matrix Q = C*VCG2)  C»=1 is orthogonal, since the product
of orthogonal matrices C*+=1 k=2 3, ... n, is also orthogonal.

Let us note that the Householder transformation as well as orthogonal plane
rotation matrices preserve the eigenvalues, so that, the matrices B and R have
the same eigenvalues as the original matrix A. Assuming that the matrix A
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is reduced to the Hessenberg matrix B, and the decomposition B = QR is
known.

Thus, the QR method is given by the following iterative process:

The sequence of matrices

AO AW A
is built according to the following recursive rule:
1. Set AO® =B,
2. For m =0,1,..., compute the orthogonal matrix
Q(m) _ 0(271)0(372)’ s C(nm—l)’

where C*#=1) depends on the matrix A™. This dependence is given,
by formula (3.24), to compute the angle .

3. Use the orthogonal matrix Q™ to find decomposition

Alm) Z m) gm).
with the upper triangular matrix R

4. Compute the matrix
Am+D) — plm) m).

The matrices A™ m = 0,1, ..., are similar to the matrix B. Indeed, we have
Alm+1) — R(m)Q(m) _ [Q(m)]—lQ(m)RQ(m) _ [Q(m)]—lA(m)Q(m)‘

Therefore, all the matrices A™, m = 0,1, ..., have the same eigenvalues as
the matrix B.

Clearly, at m-th iteration, the QR decomposition of the matrix A" is needed
to compute the next term A1, As we know now, such a decomposition can
be found with use of the orthogonal plane rotation matrices.

Thus, we arrive to the following algorithm:

QR Algorithm

Step 1 Transform the matrix

a1 a2 aiz AaAi4 -+ Aip-1 Ain
Q21 Q22 (A23 A24 **+ (A2p—1 A2n
A= 31 Az a33 A3z4 - A3p—1 A3n

Apl An2 Anp3 Qp4 **° Qpp—1 Qpn



by Householder transformation to the Hessenberg’s matrix

bir bz biz biga - bip—1 bin
bar baa bz bas -+ bap—1 bop
0 bsy bsz bzg -+ bgp—1 b3y
B pr—
0 0 bag bag -+ bap—1 ban

End of step 1.
1. Compute the sequence of matrices
AO A - A@) A
as follows:

Step 2
(a) Set A =B

73

(b) Find the QR factorization of the matrix A, that is A® = QO R©

following the scheme

e Compute the angle

A(O)
ArcTan(——2%), Aﬂ) #0

v=1 A
3 AY =o.
and compute the orthonormal matrix
cosyp —smyp 0 0 0 --- O
sty cosy o 0 --- 0
Cce = 0 O 1 0 0 - 0
0 o o o0 0 --- 0

e Compute the matrix AV = CCYAO) = VR,
To eliminate the element Agi) in A©),
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e Compute the angle

(01)

A o1)
ArcTan(——2—, Agz #0
b=9 Afp")
1
and compute the orthonormal matrix
1 0 o o0 0 -~ 0 O
0 cosp —sinyp O O --- 0 O
0 sin cos O --- 0 0
o v cosy
0 0 o 1 0 -+~ 0 O
0 0 o o0 0 --- 0 1

e Compute the matrix AN = CG2A0) = CBAC B
To eliminate the element Aégl) in AV,

e Compute the angle

(01)

A 1
ArcTan(——2—, Ag% ) # 0
b=9 AY)
01
57 Agg ) = 0.
and compute the orthonormal matrix
1 0 0 o 0 --- 0 O
0 1 0 o 0 --- 0 O
0 O cos —sin O --- 0 0
o b —sing
0 0 sinyy cosyyp O --- 0 O
0 0 0 o 0 --- 0 1

e Compute the matrix A®Y = C#3)A0) = c4)CGAC2M B

e Continue the process of elimination of the elements Agi), Agg), Ai%), .

in A to obtain the upper triangular matrix

RO = QO 40

*)

A(O)

n,n—1
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where Q) = [Cnr—1On—1n=2 2T
Then, set AV = ROQO . We note that the matrix

AL — [Q(O)]T B QO

is similar to the matrix B and therefore both matrices A and
B have the same eigenvalues. End of step 2.

In order to compute next matrix A® in the sequence, we replace
the matrix A® by the matrix A®) in part 2. Then, we repeat part
2 for AN to obtain the QR factorization of the matrix AM), that is

R = QW AM

Then, we set
A® = RO = [Q(l)]TBQ(l).

Thus, the matrix A is similar to the matrix B and both matrices
have the same eigenvalues.

(c) We continue replacement of the matrix A©® in part 2 by successive
matrices AD, A®) AG) A until certain m.

Under conditions stated in theorem 3.1 , the sequence AM, AR AG) A0
converges to an upper triangular matrix and its diagonal elements are
eigenvalues of the matrix B

Theorem 3.1 If the following assumptions are satisfied:

e The real matriz A is diagonalizable, that is, there exists a non singular
matriz T such that

A =T Diagonal(\, M, ..., Ay) T,

o the eigenvalues \p, k =1,2,...,n, have different absolute values

A1 > || > - > |\l

Then, the sequence of matrices A™, m = 0,1,..., converges to an upper
triangular matriz R, so that

lim A™ = R,

m—0o0

and the diagonal entries Ry s, s = 1,2,...,n of the matriz R are the eigenvalues
of the matrix A, that is
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In order to accelerate convergence of the sequence A™, m =0, 1, ..., one can
use the following algorithm with shift

QR Algorithm with shift. The algorithm with shift is a modification of
the QR algorithm.

Let a,,, m = 0,1,..., be a sequence of shift numbers. The shift numbers
are chosen to accelerate convergence. In the QR algorithm with shift, the

sequence of matrices
A A® A

is constructed according to the following recursive rule:
1. Set AO® =B,

2. For m = 0,1, ..., compute orthogonal matrix Q™ and upper triangular
matrix R, to find the decomposition

A _ g T = QUm Rm).

3. Compute the matrix

A = M) 4, T

If we have an estimate of the eigenvalues \;, £k =1,2,...,n we are able to find
good shift numbers.

One of a strategy to choose the shift numbers «,,, m = 1,2,..., is to put
am = AU to get \,, since A — X\, s=1,2,...,n, when m — oo.
For a broad range of matrices, the sequence A©®, AM A which

is produced by the QR algorithm with shift converges to an upper triangular
matrix R, that is
lim A™ = R,

m—0o0

Then, the diagonal entries of the matrix R are eigenvalues of the original ma-
trix A.

Example 3.6 Let us apply the QR algorithm to find the eigenvalues of the
Hessenberg matriz B that is found in the example 1.
Thus, we have n =4, and

0.0000  0.5126  0.4954 —0.7013
—5.8523  4.8248  0.7287 —1.3189
0.0000 —0.8535  2.5479 —0.5786
0.0000  0.0000 —0.4931  2.6273

B =

Following the algorithm, we set

A9 =p

Y



and, we compute the plane rotation matrices:
T
Since B[1,1] =0, we find ) = B and

cosy —siny 0 0 0 —1 0 O
o) _ singy cosyp 0 O |1 0 0O
- 0 010 |0 010}
0 0 01 0O 001
We compute
B [0(2,1)3]21 B
and
1 0 0 0 1 0 00
032 _ 0 cosyp —sinyy 0| | 0 05149 —0.8573 0
| 0 sinyy  cosyp 0| |0 08573 0.5149 0
0 0 01 0 0 01
We compute
B [CBACED B3, B
¥ = Arctan(— CECEIR], 0.2767
and
10 0 0 10 0 0
(83 _ 01 0 0O 100 0 0
|0 0 cosyp —sineyy | | 0 0 0.9620 —0.2732
0 0 siny  cosv 0 0 0.2732  0.9620
The orthogonal matriz
0 —1 0 0
0.5149 0 —0.8573 0
0) — ((21)(1(32)(1(43) —
Q creTe 0.8247 0  0.4953 —0.2732
0.2342 0  0.1406  0.9620
The upper triangular matriz
5.8523 —4.8248 —0.7287  1.3189
© _ TR _ 0 09956 —1.9292  0.1349
R @B 0 0 1.8052 —1.5826 |’
0 0 0 22818
The matrix
4.8248  3.6378  4.1050  2.5367
AW Z ROOO) _ —0.9956  1.6538 —0.9924 —0.1415
- - 0 —1.5475  1.3264 —1.2685

0 0 —0.6233

2.1950

77
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In order to get the eigenvalues four decimal places accurate, we need to execute
about 30 iterations so that, the final approximate eigenvalues are diagonal
entries of the matrix

4.0000 0.3058 0.5249 5.1008
0 3.0000 0.0765 3.8528
0 0 2.0000 2.0646
0 0 0 1.0000

A(30) _ R(29)Q(29) _

Hence, the eigenvalues Ay = 1, Ay = 2, A3 = 3, and Ay = 4. These eigenvalues,
we can obtain using the following module in Mathematica

Program 3.4 Mathematica module that solves an eigenvalue problem by QR
method.

rqla_,iter] :=Module([{rql,r1},
al=a;
rqllal_]:=Module[{b,n,v,r},
b=al; n=Length[al]; v=IdentityMatrix[n];
ckl[{b_,v_,k_}]:=Module[{pa,c,s,e,t,n},
n=Length[b]; e=IdentityMatrix[n];
pa=If[b[[k,k]]==0,Pi/2,ArcTan[-b[[k+1,k]]/b[[k,k]1]1];
c=Cos[pal; s=Sin[pal;
ellk,kll=c; ellk,k+1]1]1=-s; el[k+1,kl]=s; e[[k+1,k+1]]=c;
t=k+1;{e.b,e.v,t}
1;

r=FixedPoint[ckl,{al,v,1},n-1];

r[[1]] .Transpose[r[[2]]]

1;
r1=FixedPoint[rql,al,iter]

To find the eigenvalues of the Hessenberg matrix

a={{0.0,0.5126,0.4954,-0.7013},
{-5.8523,4.8248,0.7287,-1.3189},
{0.0,-0.8535,2.5479,-0.5786},
{0.0,0.0,-0.4931,2.6273}};

we enter the matrix a, the number of iterations iter=30 and execute the
commands
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iter=30;
MatrixForm[N[Chop[qr[a,iter],107-3],4]]

Then, we obtain the following output

4. 0.3058 0.5249 5.101
0 3 0.07649 3.853
0 0 2. 2.065
0 0 0 1.

3.6 Exercises

Question 3.1 Find all eigenvalues and all orthonormal eigenvectors of the

matrix
2 —1 0
A=| —1 2 -1
0 -1 2

Question 3.2 Find an orthonormal matriz V' that transforms the matrix
2 3
to a diagonal form.

Question 3.3 Find all eigenvalues and eigenvectors of the following n x n

matrix: i i
4 -1 0 o --- 0 0 0
-1 4 -1 0 --- 0 0 0
A 0 -1 4 —1 0 0 0
0 0 0 0 -1 4 -1
0 0 0 o --- 0 -1 4
L 4 (nxn)

Question 3.4 Solve the following eigenvalue problem:
Ar = Az

by Jacobi method with accuracy e = 0.05, where

A:

Nl il \V]
O = O
DN W
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Question 3.5 Find the dominant eigenvalue and corresponding eigenvector
of the matrix

2

I
o oo wm
oo wo
cooo
N OO W

1 1

Question 3.6 Use the Householder transformation to reduce the following
matriz to the Hessenberg form:

2 -1 0
A=10 2 -1
3 -1 2

Question 3.7 Use the QR method to find all ergenvalues and all orthonormal
eigenvectors of the matrix

2 —1 0
A=10 2 -1
3 —1 2
Question 3.8 (a) Let
bir bz bis

B = ¢ by by bos
0 b3y bss

be a Hessenberg’s matriz and let A, AW AR be the sequence of ma-
trices determined by QR factorization of the matriz B. Write the algo-
rithm to compute the term AY and A®

(b) Let the Hessenberg’s matriz

4 01
=<1 21
013

Compute the terms A©, AD and A of the QR sequence A, AW A



Chapter 4

Iterative Methods for Systems
of Linear Equations

4.1 Stationary One Step Linear Methods

In this section, we shall consider a class of one step linear stationary iterative
methods of the following form (cf. [8], [14],[19], [22]):

x(m—i—l) — Gx(m) + F’ m = 0’ 1, 2, ey (41)

where 2() is a starting vector, in general, arbitrarily chosen, G is an iterative
matrix, and F'is a given vector.

Definition 4.1 An iterative method of class (4.1) is said to be consistent with
the system of linear equations

Az = b, (4.2)
if and only if the exact solution ¥ of the system of equations (4.2) is a
stationary point of the iterative method i.e.,

9 =Gz + F, (4.3)
where the vectors o -
x1 by
X2 ba
L Tn i L bn J
and the matriz
a1 a2 Az - Ain-1 QAin
Q21 Q22 A23 -*+ (A2p—1 QA2n
A= | a3 as as -+ ap—1 asp
ap1 QAp2 Qp3 Upn—1  Qnn

81
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In order to determine a consistent iterative method, we should give relation-
ship between matricesA, G' and vectors b, F'. Later on, we shall establish such
relationship for Jacobi Iterative Method (JI), Gauss Seidel Iterative Method
(GS), Successive Overrelaxation Method (SOR) and Alternating Direction Im-

plicit Method (ADI).
Now, let us state the necessary and sufficient condition for convergence of a
stationary one step linear iterative method.

Definition 4.2 An iterative method of the class (4.1) consistent with the sys-
tem of linear equations (4.2) is convergent if and only if for every starting
vector £ the sequence

{z™Y,  m=01,...;

determined by the iterative method is convergent to the exact solution of the
system of linear equations (4.2), i.e.,

limz™ = 2@ and Az@ = p.

Let
em) — p(m) _ o.(d)

be the error of m — th iteration. Then, from (4.1) and (4.3), we have
et = gm0, (4.4)

Hence, we obtain the following sufficient and necessary condition of conver-
gence:
An iterative method of the class (4.1) is convergent, i.e.,

™ — 0 when m — oo

if and only if

p(G) <1, (4.5)
where p(G) = maxj<i;<y, | A; |, is the spectral radius of the iterative matrix G,
and )\, i=1,2,...,n, are eigenvalues of G.

Rates of convergence. In order to estimate the rate of convergence of an
iterative method, we may use the Average Rate of Convergence R,,(G) or the
Asymptotic Rate of Convergence Roo(G).(cf. [19],]22]). The rates R,,(G) and
R+ (G) are defined as follows:
From formula (4.4)

I e <l Gl €

So that, the norm || G™ | determines the rate of approaching =™ to z(®
when m — oo. Usually, we finish an iterative process if the error €™ is a
small fraction of the initial error €, i.e.,

e <) €2
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The above inequality holds if

logp
m > — .
—log || G™ ||

Hence, the Average Rate of Convergence is:
R(@) = ——log || G™ |
m = ——1o )
m g
and the Asymptotic Rate of Convergence is:
R (G) = lim R,,(G) = —logp(G).
Now, we note that to reduce the initial error p times

log — logp
Roo(G)  logp(G)

iterations are needed.
Below, we shall give some of well known stationary one-step iterative methods.

4.2 Jacobi Iterative Method

Let A be a non-singular matrix. and let the diagonal entries a; # 0, for
1=1,2,...n. Clearly, the matrix A can be written in the following form:

A=L+D+U,

where the lower-triangular matrix

0 0 0o --- 0 0

a1 0 0 0 0
L=]|a1 ax 0 --- 0 0
ap1 Ap2 QAp3 **° Qpp—1 0

the upper-triangular matrix

0 a2 a3 -+ @in—1 Qin
0 0 az --- agm—1 aon

U=10 0 0 - asp—1 azn
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and the diagonal matrix

a1 0 0 -+ 0 0
0 a92 0 -+ 0 0
D = 0 0 asg - - 0 0
0O 0 0 - 0 ap

Now, let us write the linear system of equations (4.2) in the following equivalent
form:
Dx =—(L+U)x+0,

or
r=—-DYL+U)x+ Db

Then, Jacobi iterative method is:
2D = DL+ U)2™ + Db, m=0,1,...; (4.6)
or
$(m+1) — —GJl'(m)‘l'FJa m:()’l,,

where () is the starting vector, G; = D™'(L+U) is Jacobi’s iterative matrix,
and F} is the following vector F; = Db,
In terms of coordinates, Jacobi iterative method takes the following form:

" = — 3 g™+

1
G j=1,j#i i
fore=1,2,...,n; and m=0,1,...;

In order to stop Jacobi iterations, we can use the condition

|2l ™ < e, (4.7)

where € is a given accuracy and m is the least integer for which condition (4.7)
holds.

Example 4.1 Let us solve the following system of equations

101’1 — To — rs — Ty = 34
—xr + 101’2 — rs — Ty = 23
—Tr1 — To + 101’3 — Ty = 12
—TrT — To — T3 + 101’4 = 1

by Jacobi iterative method using condition (4.7) to stop the iterations when
e = 0.0005.
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Solution. Let 2(% = (0,0,0,0) be the starting vector. Following Jacobi iter-
ations, we find
The first iteration.:

2\ = =34+ O 420 42 =34
:Egl) =23+ ( )+ :Ego) + a:flo)] =23
o) = 1124 20 1 2 4 o0 = 1.2
e = L1420 4+ 20 4 29 = 0.1
The second iteration.:
2 = Li3a o) 4ol 42V = L34 423 +1.240.1] = 3.76
o) = L2342V + ) + 2V = £[23 434 +1.240.1] = 2.77
2 = L2 42 4ol 42 = L12434 423401 = 1.78
o = L4 42 42l = L1434 423+1.2) = 0.79
The third iteration:
2V = L34+ 2P 2P + 2P = L34 42,77+ 1.78 + 0.79] = 3.934

o) = L2342 + 2P + 2] = £[23 +3.76 + 1.78 + 0.79] = 2.933

29 = L1242 4 2@ + 2P = 1124 3.76 + 2.77 + 0.79] = 1.932
o = L1+ 2P 2 + o) = L[143.76 +2.77 + 1.78] = 0.931

The fourth iteration.:

oV = L34+ 2 + 2 + 2] = (34 4+ 2.933 4 1.932 4 0.931] = 3.9796
e = L1234 ¥ 2P 1+ oY) = L1123 + 3.934 + 1.932 + 0.931] = 2.9797
o) = L1242 + o) 4 2Y) = L[12 4 3.3.934 + 2.933 4 0.931] = 1.9798
o) = L1+ ot 2+ 2] = L1+ 3.934 + 2.933 + 1.932] = 0.9799

We can obtain more accurate approximate solution using the following module

Program 4.1 Mathematica module that solves a linear system of equations
by Jacobi iterative method
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jacobiltation[a_,x0_]:=Module[{b,d,dl,i,k,1,n,x,u},
n=Length[First[a]]l-1;

b=Map [#[[n+1]]&,a];
1=Table[0,{i,1,n},{k,1,n}]; u=1;d=1;
Do[1[[i,k]]=alli,k]],{i,2,n},{k,1,i-1}];
Do[ul[i,k]]=alli,k]],{i,1,n-1},{k,i+1,n}];
Dol[d[[i,i]]=alli,i]],{i,1,n}];
dl=Inversel[d];

x=x0;

Do[x=d1l. (-(1+u) .x+b) ,{iter}];

X

Entering input data iter=8; and

a={{10.,-1.,-1.,-1.,34.}%,{-1.,10,-1.,-1.,23.3},
{-1.,-1.,10,-1.,12.},{-1.,-1.,-1.,10.,1.}3};
x0={0,0,0,0%};

we invoke the module
jacobilteration[a,x0];
Then, we obtain the approximate solution
{3.9999852376, 2.9999852377, 1.9999852378, 0.9999852379}

This solution satisfies the condition (4.7) for m = 7, so that

|2 — 27 1< 0.0003 < ¢, i=1,234

2

4.3 Gauss Seidel Iterative Method

Gauss Seidel iterative method is a simple modification of Jacobi iterative
method. Namely, we may use already evaluated x§m+1), fory=1,2,...,1—1
to determine x§m+1), for j=14,i+1,...,n.
Then, we have

Dzt = — LMt g™ 1 h om=0,1,...;
and the Gauss Seidel iterative method takes the following form:

:L‘(m+1) :Gsx(m) ‘I’FS) m:0717’ (48)
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where the iterative matrix Gg = —(D+L)~'U and the vector Fg = (D+L)'b.
In the terms of coordinates Gauss Seidel iterations are:

. 1 i—1 m m
d = S a3 agel™ <),
a” j=1 j=i+1

forie=1,2,....,.n; m=0,1,...;

Let us now state the sufficient condition for convergence of Jacobi and Gauss
Seidel methods.

The following theorem holds:

Theorem 4.1 (c¢f. [17]). If the matriz A is positive definite then Jacobi and
Gauss Seidel iterative methods are convergent.

Proof. By the assumption, A is a symmetric matrix. Therefore
A=U+D+U"
and hence the iterative matrix of Gauss Seidel method is:
Gs=—(D+U)'UT.

Let —\ be an eigenvalue of the matrix Gg corresponding to the eigenvector v.
Then, the following equality holds:

(D+U)"'UT = M,

or

U = \(D + U)w.

In general, the iterative matrix Gg can have complex eigenvalues, so that
v*UTv = 2" (D + U)o, (4.9)

where v* is conjugate to v.
Adding the term v*(D + U)v to both sides of (4.9), we obtain

v*Av = (1 + Ao (D + U)w. (4.10)

Since A is a symmetric matrix, therefore

(v*Av) = v* Av.
Hence, by (4.9)

1+ N (D+U) v =1+ N (D+ U =
(1+ A)[v*Dv +v*Uv] = (4.11)
(14 N)[v*Dv + M*(D + U)Tv).
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Grouping like terms in (4.11), we arrive at the equality
(1= | A )" (D + U)'v = (14 \)v*Do. (4.12)
Multiplying (4.12) by 1 4+ A, we obtain
(1= | X P)v*Av =| 1+ X | v*Do. (4.13)

By the assumption, A is a positive definite matrix, therefore D is also a positive
definite matrix. Moreover, A = 1 cannot be an eigenvalue of Gg = —(D +
U)~tUT since A is a non-singular matrix and v # 0 (4.10). Therefore, we have

1= | A ]>0,
and hence all eigenvalues of Gg satisfy the inequality
| A< 1.

This means that the spectral radius p(Gg) < 1. By the necessary and sufficient
condition of convergence, the Gauss Seidel method is convergent.

In order to prove that Jacobi method is also convergent, when A is a positive
definite matrix, we may use the following relations between p(G) and p(Gy).

From the above relations, it follows that Jacobi iterative method is convergent
if and only if Gauss Seidel method is convergent. One can show that Gauss
Seidel method is asymptotically twice faster than Jacobi method, i.e.,

R (Gs) = 2R (Gy).

and the number of iterations needed to reduce u times the initial error €(® by
Gauss Seidel iterations is:

. logn
T 2R (Gy)

We can improve the accuracy of the final result of Jacobi iterative and Gauss
Seidel iterative methods using the following formula:

(m—+2) (m)\2
¥ (m+2) (; — Tiy1)
T; = T; - . 4.14
$£m+2) N 21’?“—1) + zgm) ( )
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Example 4.2 Let us solve the following system of linear equations

101’1 — Tro — rs — Ty = 34
—xr1 + 101’2 — rs — Ty = 23
—Tr1 — To + 101’3 — Ty = 12 (415)
—xrr — To — T3 + 101’4 = 1

by Gauss Seidel iterative method using condition (4.7) to stop the iterations
when € = 0.01.

Solution. Let (% = (0,0, 0,0) be the starting vector. Following Gauss Seidel
iterations, we find
The first iteration.:

AV = 13442 + 20 1 20 = 3.4
e = L34 oM 42l 4 2 = L1234 344040+ 0] =264
2 = L1242V 42 + 20 = 124344264 +0+0] = 1.804
o) = 01+ et el el = L1+ 3.4 4 2,64 + 1.804 + 0] = 0.8844

The second iteration:

o = L34+ 2 + 28 + (V) = L[34+ 2.64 4 1.804 + 0.8844] = 3.9328
o8 = L1234 2P ol 4+ 2] = L]23 + 3.9328 + 1.804 + 0.8844] = 2.9621
o) = L1124 2P + 2P + 2V) = L[12 + 3.9328 + 2.9621 + 0.8844] = 1.9779
e = L4 ot 4 2 + 2] = L1+ 3.9328 4 2.9621 + 1.979] = 0.9873

The third iteration:

o) = L34 + o) + 2 + 2] = L34 + 2.9621 + 1.9779 + 0.9873] = 3.9927
2 = L3 4+ 2 4 2 + 2P = L1234 3.9927 + 1.9779 + 0.9873] = 2.9958
o) = L1124 2P 4+ 2 + 2] = L[12 + 3.9927 + 2.9958 + 0.9873] = 1.9976

o) = L+ 2 + ) + 2P = L1+ 3.9927 + 2.9958 + 1.9976] = 0.9986
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The fourth iteration:
oV = L34+ 28 + 2 + 2] = £[34 4 2.9958 + 1.9976 + 0.9986] = 3.9992
o8 = L1234 2tV + 2 + Y] = L[23 + 3.9992 + 1.9976 + 0.9986] = 2.9995
e = 112 4 oV + 28 + 2] = L[12 + 3.9992 + 2.9995 + 0.9986] = 1.9997
etV = L+ 2 + 2 + 2] = L1+ 3.9992 + 2.9995 + 1.9997] = 0.9998
Evidently, condition (4.7) is satisfied for m = 3, so that
| 2® — 2 |<0.008 <6, i=1234.

We can solve a system of linear equations by Gauss Seidel method of iterations
using the following Mathematica module:

Program 4.2 Mathematica module that solves a linear system of equations
by Gauss Seidel iterative method

gaussSeidel[a_,x0_] :=Module[{b,d,d1,i,k,1,n,x,u},
n=Length[a[[1]]]-1;

b=Map [#[[n+1]]&,a];
1=Table[0,{i,1,n},{k,1,n}]; u=1;d=1;
Do[1[[i,k]]l=alli,k]1]1,{i,2,n},{k,1,i-1}];
Do[ul[i,k]]=alli,k]],{i,1,n-1},{k,i+1,n}];
Do[d[[i,i]]=alli,i]],{i,1,n}];
dl=Inverse[d+1];

x=x0;

Do[x=dl. (-u.x+b),{4}];

X

1;

In order to repeat the solution of the above example, using the module seidel,
we enter input data matrix and the starting vector

a={{10.,-1.,-1.,-1.,34.}%,{-1.,10,-1.,-1.,23.},
{-1.,-1.,10,-1.,12.},{-1.,-1.,-1.,10.,1.}};
x0={0,0,0,0%};

Then, we execute the instruction

N[gaussSeidel[a,x0],4]
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to obtain the approximate solution 3.999, 3., 2., 0.9998.

Let us note that, we have got the same numerical solution of the system of
equations (4.15) by Gauss Seidel iterative method for four iterations, and by
Jacobi iterative method for 8 iterations. Still, we can improve the results using
formula (4.14). Namely, we obtain the four digit accurate solution using only
three iterations: the second, the third and the fourth, i.e.,

(4) (3)]2

l’(*) _ l’(4) _ [1’1 — X — 30992 — [3.9992 - 3.9927]2 _
! S O WO 3.9992 — 2 % 3.9927 + 3.9328
4 3
S e e (29995 —2.9958)°
2 R OO 2.9995 — 2 % 2.9958 + 2.9621
4 3
L0 _ ) 8 — a2 Loggy . (1:9997 — 1.9976)°
3 R GO O 1.9997 — 2 % 1.9976 + 1.9779
Sy e PP (0.9998 —0.9986)°
4 Y D S Ol 0.9998 — 2 % 0.9986 + 0.9873
4.4 Successive Overrelaxation Method (SOR)
Let us rewrite the system of equations (4.2) in the following form:
v=(-D'L—~DU)x+ Db (4.16)
Then, the successive overrelaxation iterations take the following form:
2+ = [— D7 L+ — D71U™) + D7) + (1 — w)a™, (4.17)
m=0,1,...; '
where w is a parameter, z(¥) is a starting vector.
In terms of coordinates, SOR iterations are:
i—1
2 = —w[> ﬂig oy > ﬂ:vg ) — —]+ (- wyz™,  (4.18)
j=1 Qi j=i+1 Qi Qi
1=1,2,...; m=0,1,...;

Clearly, SOR method is one step linear stationary method, since from (4.17),
we get
) = Q™ + F,, m=0,1,...; (4.19)

where the iterative matrix
Gw=(E+wD L) '[(1—-w)E —wD U]

and the vector
F,=wD'b

= 4.0000

= 3.0000

= 2.0000

= 1.0000
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Let us note that for w = 1, SOR iterations (4.19) are the same as Gauss Seidel
iterations (4.8). The rate of convergence of SOR method depends on the value
of the parameter w. Naturally, the fastest convergence of SOR iterations will
be for optimal value of w = w,y, for which the spectral radius p(G,,) attains
its minimum. The optimal value of the parameter w can be determined by the
following formula (cf. [22]):

2
1+/1-p2(Gy)

(4.20)

Wopt =

where p(G) is the spectral the matrix G.
The conditions of convergence of SOR method are given in the following the-
orem:

Theorem 4.2 Let A be a symmetric matrix with the positive diagonal entries
a; > 0, 1 =1,2,...; Then, SOR method converges if and only if A is a
positive definite matriz and 0 < w < 2.

Thus, SOR method as well as Jacobi and Gauss Seidel methods are convergent
for positive definite matrices. Among them SOR method has the greatest rate

of convergence, i.e.,
ROO (Gwopt) = 2 \/ ROO (GJ)7

where R..(G) is the asymptotic rate of convergence of Jacobi method. How-
ever, in order to use SOR method with the optimal parameter w,,;, we have to
know the radius of convergence p(G;) of Jacobi method. In some interesting
cases (for example when approximating elliptic equations), p(G;) is known
and then, we may apply SOR method successfully.

Example 4.3 Let us solve the following system of linear equations

101’1 — To — rs — Ty = 34
—xr + 101’2 — rs — Ty = 23
—Tr1 — To + 101’3 — Ty = 12
—xrr — To — T3 + 101’4 = 1

by SOR method using condition (4.7) to stop the iterations when € = 0.05.

Solution. One can find that the spectral radius p(G;) = 0.3, where Jacobi
iterative matrix

100 0 10 -1 -1 —1

B i, |01 O0O0| 1|-110 -1 —=1|_

Gr=E-D A= 0010 01 -1 -1 10 -1
0001 -1 -1 -1 10
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1
10

[ Y )
=
—_ O =
O =

Therefore, by formula (4.20) the optimal parameter

2
Wopt = ——— = 1.023573302.

14++v1-0.3?

Let (% = (0,0,0,0) be the starting vector. Following SOR iterations, we find
The first SOR iteration:

o) = W34 ) 4ol 2l + (1 - )l =

0.1023573302(34 4 0 4 0 4 0) + 0 = 3.4801

2! = 23+l 42l + o)+ (1 - w)a” =
0.1023573302(23 + 3.4801 + 0+ 0) + 0 = 2.7104
:Bgl) 10 [12 - x(l) + x(l) + :.17(0)] +(1- w)zgo) =
0.10235702(12 + 3.4801 + 2.7104 + 0) + 0 = 1.8619
o0 = Y10l b0l a4 (1 - w)af? =
0.1023573302(1 + 3.4801 + 2.7104 + 1.8698) = 0.9259

The second SOR iteration:

2 = 10 [34 +as) 2 4 2! )] +(1—w)l) =
0.1023573302(34 + 2.7104 + 1.8619 + 0.9266) — 0.023573302 * 3.4801 = 3.9610
xgz) 10 [23 - x(z) + x(l) + :.17(1)] +(1- w)zgl) =
0.1023573302(23 + 3.9610 + 1.8619 + 0.9266) — 0.023573302 * 2.7104 = 2.9812

o = (124 o 10 o) 4 (1 - w)af) =

0.10235702(12 + 3.9610 + 2.9812 + 0.9266) — 0.023573302 * 1.8619 = 1.9898

o = D a4 o)+ (- w)add) =

0.1023573302(1 + 3.9610 + 2.9812 4 1.9898) — 0.023573302 * 0.9266 = 0.9948
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The third SOR iteration:
3 _ W
RERET
0.1023573302(34 + 2.9812 + 1.9898 + 0.9948) — 0.023573302 * 3.9610 = 3.9974

(34 + xgz) + xéz) + a?f)] +(1— w)xgz) =

(3 _ W
207
0.1023573302(23 + 3.9974 + 1.9898 + 0.9948) — 0.023573302  2.9812 = 2.9986

(23 + x§3) + xéz) + xf)] +(1- w)argz) =

w

0.10235702(12 + 3.9974 + 2.9986 + 0.9948) — 0.023573302 * 1.9898 = 1.9993
w

z513) _ E[l + zgs) + zgs) + xés)] +(1— w)xf) _

0.1023573302(1 + 3.9974 + 2.9986 + 1.9993) — 0.023573302 * 0.9948 = 0.9996

The condition (4.7) is satisfied for m = 2, so that
12 — 2% 1< 0.0364 < €

i=1,2,3,4.

Comparing the results of the three methods, we observe that SOR method
produces the most accurate results at each iteration.

We can solve the above example using the following Mathematica module

Program 4.3 Mathematica module that solves a system of linear equations
by Gauus-Seidel iterative method

sorf[a_,x0_]:=
Module[{b,d,d1,i,k,1l,n,w,fw,gw,id,u,x},
n=Length[a[[1]]]-1;

b=Map [#[[n+1]]&,a];
w=2/(1+Sqrt[1-0.3"2]);
1=Table[0,{i,1,n},{k,1,n}]; u=1;d=1;
Do[1[[i,k]]=alli,k]],{i,2,n},{k,1,i-1}];
Do[ul[i,k]]=alli,k]],{i,1,n-1},{k,i+1,n}];
Do[d[[i,i]]l=alli,i]1],{i,1,n}];
d1=Inverse[d]; id=IdentityMatrix[n];
d2=Inverse[id+w*xdl.1];

gw=d2. ((1-w)*id-w*dl.u) ;

fw=wxd2.d1.Db;

x=x0;
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Do [x=gw.x+fw,{3}];
x

1;

Entering data matrix a and starting vector x

a={{10.,-1.,-1.,-1.,34.},{-1.,10,-1.,-1.,23.},
{-1.,-1.,10,-1.,12.},{-1.,-1.,-1.,10.,1.}};
x0= {O 0,0 ,O},

we obtain the approximate solution 3.9974, 2.9986, 1.9993, 0.99964, by exe-
cution of the command N[sor[a,x0],5].

4.5 Alternating Direction Implicit Method (ADI)

The ADI iterative method in its first version was published by D.W. Peaceman
and H.H. Rachford in 1955. Here, we shall present a stationary variant of ADI
method, (cf. [22]).

1 Let us assume that A is a positive definite matrix. We split A in three
components as follows:

A=L+D+U,

where D is diagonal matrix.

By ADI method, the sequence {z(™}, m = 0,1,...; of successive iterations
is determmed in two steps. Namely, for a given vector 2™ the next two terms
2(m+3) and 2™+ are computed by the following recursive formulas:

(L1 + BE)z™D = b — (U — BE)z™,
1 (4.21)
(Up + BE)z™ ) = b — (L, — BE)z™ ), m=0,1, ...

where Ly = L + %D, Uy=U+ %D, and [ is a parameter.
Eliminating z(™*2) from equations (4.21), we obtain

) = G(A, )™ + F(A,B), m=0,1,..;
where the iterative matrix of ADI method
G(A,B) = (Ur + BE) (L1 — BE)(Ly + BE)™ (U1 — BE),
and the vector

F(A,B)= (U, + BE) b — (U + BE) (L, — BE) (L, + BE)'b.

!See a broad description of ADI method in [19], [22]
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Thus, ADI method is also one step stationary method, and it is convergent if
the spectral radius p(G(A, 7)) < 1.
On the other hand, the spectral radius

A — B
p(G(4,5)) = max [T 71"

where \; is the eigenvalue of the matrix L, and

=Py
e + 3

is the eigenvalue of the iterative matrix G(A4, 3).
By the assumption, A is a positive definite matrix. Therefore, L; and U; are
also a positive definite matrices and all their eigenvalues are positive, so that

O<a<M<b k=12 ..n

Then, the spectral radius
p(G(A,8)) <1

for every 8 > 0. Therefore ADI method is convergent for every 5 > 0.

In order to reach the greatest rate of convergence, we can choose an optimal
value of the parameter (3 to obtain the smallest value of p(G(A, 3)). Thus, we
shall find such f3,,; for which

. -3
PA; Bopr) = min max [ 3

.

One can find that

A— 03 B—a b—p3 ] if a<p<Vab,
e L e if Vab<p<u,

Hence, the optimal value of parameter 3., = v ab.

Example 4.4 Let us solve the following system of linear equations:

101’1 — To — rs — Ty = 34
—xr1 + 101’2 — rs — Ty = 23
—Tr1 — To + 101’3 — Ty = 12
—rT — To — T3 + 101’4 = 1

by ADI method using condition (4.7) to stop the iterations when ¢ = 0.005.
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Solution. Let us note that the matrix

10 -1 -1 -1

-1 10 -1 -1
A= _1 1 10 -1
~1 -1 -1 10
can be written as follows:
A=L+D+U,
where
4 —1 0 0 2 0 00
-1 4 -1 0 0200
L=1 91 421" P=loo20]
0 0 -1 4 000 2
4 0 -1 -1
0 4 0 —1
U=1_1 0 4 o0
-1 -1 0 4

Evidently, the matrices L, D and U satisfy conditions (a) and (b) and the
assumptions of theorem 1. Therefore, ADI method (4.21) is convergent. In
the example, we shall use the optimal value of the parameters when

ﬁopt = ﬁopt = \/%

Namely, one can find that the matrices

5 -1 0 0]

1 1 5 -1 0
Li==L+3D=1 4 1 5 _i
0 0 -1 5|

T 5 0 1 1]

1 0 5 0 -1

1 -1 0 5

have the same eigenvalues
v1 = A1 = 3.381966, 1o = Ay = 4.381966,

vs = A3 = 5.618033, vy = Ay = 6.618033.

Hence a = 3.381966, b = 6.6180340 and B,,; = vab = 4.7309579.
Let (¥ = (0,0,0,0) be the starting vector. Following ADI iterations (4.21),
we arrive at the following results:
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ADI Iterations

2™ | 2 To T3 T4
z© [10.0000 | 0.0000 | 0.0000 | 0.0000
(5 | 3.7934 | 2.9137 | 1.5596 | 0.2630
M | 3.9858 | 2.9325 | 1.9261 | 0.9667
z(19) | '3.9891 | 2.9972 | 1.9995 | 0.9924
z® |3.9999 | 2.9989 | 1.9990 | 1.0000

The error : max[xl(-z) - xl@] = 0.0011

Let us note that ADI method produces the most accurate results at each
iteration as compared with the other methods (Jacobi, GS, SOR). However,
ADI method converges well when optimal parameters are used. Then, two
linear systems of equations have to be solved at each iteration. This makes
ADI method less effective. Although, in some cases when the matrices L; and
U, have simple structure (for instance, L; and U; are tri-diagonal matrices),
ADI method can produce a satisfactory solution using relatively small number
of arithmetic operations. In order to reduce the initial error p times

- los(p)
log(p(G'a))

arithmetic operations are needed.

4.6 Conjugate Gradient Method (CG)
The conjugate gradient method is applicable to a linear system of n equations
Az = b, (4.22)

with a positive definite matrix A.

This method produces a solution of the system (4.22) in at most n iterations,
provided that computations are done in exact arithmetic. An implementation
of the method on a computer may affect infinite iterative process.

The method is based on a set v | v | . 0™ of A-orthogonal vectors in the
sense of the following inner product

n n

(40D, D) = 3° 3 golo@),
k=1s=1
where the vector v = (vgi), vgi), ...,v%) is in the real space R". So that

Loi=y

(Av® W) = { o
0, ©#J.
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Let us note that if v® [ 0v® | v are A-orthogonal vectors then the exact
solution z(4 = (xi‘”, :Egd), ..., xD) can be presented as follows:
2@ =z 4 > oo™ (4.23)
k=1

where 2() is a starting vector arbitrarily chosen, and the coefficients

r) =b— Az,

Az — 2D y®) ) (1)
qp = AT ) V) W)
(Ao ™), v®) (Ao ™), v®)

) n?
Indeed, we have

(A(l’(l) + Z Oék'U(k)), v(s)) =
k=1
AzM 4o, = (by,v®),

for s=1,2,....n.
Hence, we obtain

AW+ 3" apo®) = b,
k=1

Because the system of equations (4.22) has a unique solution, therefore (4.23)
holds.

The main problem in the CG method is to find an A-orthogonal set of n
vectors. In order to obtain an A-orthogonal set of n vectors in the real space
R", we can use Gram-Schmidt like procedure. Namely, let us choose a linearly

independent set of n vectors ™, u® ... u(™ and let put
o =) | ) — 4 3N g ) (4.24)
k=1

where the coefficients

(Auli+D), )

ﬁi+1k:m, k:1,2,,2, i:1,2,...,n.

There are many ways to choose linearly independent vectors v, v, ... 4.
One way is to set ' '
uD=r9 =12 n,

where the residual vector

r@ =p— AzD, =12, ..n,



100

with
I’(H—l) :1‘(Z)+QZU(Z), 1= 1,2,...,77/_17

and with starting vector z(!) .
For the above choice of vectors u™, u®, ... 4™ the CG algorithm is:

Choose a vector (1,

then evaluate :

v =) = p— Az,
Fori=1,2,....n,
(0@, @)
(Av® p@)’ (4.25)
a’:(i'l'l) — a’;(l) _I_ Oéi'l}(i),

oy =

P+ = 10— o, Ap®,

. (A, )
P A0,y @)
'U(i'l'l) = /r’(i'l'l) _I_ ﬁlv(l)

Implementing the above algorithm in exact arithmetic, we obtain the solution
@ = (1) Ag we have mentioned, the CG iterative process can be infinite
if round-off errors are involved in the calculations. To stop CG iterations, in
such a case, we can use the following conditions:

1. (a)

[ 7 [P= (4, r ) 0,

Y

(b) determine the maximum number of iterations m.
For well conditioned matrices the maximum number of iterations is
m = 2n.

The CG method when it is applied to a matrix with n? entries requires O(n?)
arithmetic operations. So that, the method is equivalent to Gauss elimi-
nation in terms of the number of operations. However, the CG method is
very efficient when it is applied to sparse matrix. Below, we give the module
conjugateGradient that solves a system of linear equations with a positive
definite matrix.

Program 4.4 Mathematica module that solves a system of linear equations
by SOR method
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Options[conjugateGradient]=

{xOvalue -> zeroVector,
rOvalue -> bVector,
maxIter -> twon,

tollerance-> 10°-8};

conjugateGradient[a_, b_, opts___]:=Module[
{n, r, v, al, be, oneiter, norm, x0, ro0,
iters, eps},

n=Length[b];

twon =2 n;

zeroVector = Table[0, {n}];
bVector = b;

x0= xOvalue/.{opts}/.Options[conjugateGradient];
rO= rOvalue/.{opts}/.Options[conjugateGradient];
iters= maxIter/.{opts}/.Options[conjugateGradient];
eps= tollerance/.{opts}/.Options[conjugateGradient];

r[0]=v[0]=r0;

x[0]=x0;
alli_]:=allil=r([i].r[il/(r[i].a.v[i]);
rli_]:=r[il=r[i-1]-al[i-1] a.v[i-1];
beli_]:=bel[il=-r[i+1].a.v[i]l/(v[i].a.v[i]);
v[ii_]:=v[il= r[i] + beli-1] v[i-1];
x[i_]:=x[il=x[i-1]+al[i-1] v[i-1];

oneiter[{k_, residuals_, solution_}]:=
{k+1, rlk+1],x[k+11};

norm[w_] :=Apply[Plus,w"2];
N[FixedPoint [oneiter,{0, b, x0}, iters,
SameTest->((norm[#2[[2]]]<eps)&)]]

Example 4.5 Let us solve the same system of linear equations as in example

1.
101‘1 — Tro — rs — Ty = 34
—xr1 + 101‘2 — rs — Ty = 23
—T1 — To + 101‘3 — Ty = 12

—xrT — To — T3 + 101‘4 = 1
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by C'G method using the condition either 1 or 2 to stop the iterations.
Solving this example with Mathematica module, we enter data

n=4;
a={{10,-1,-1,-1},{-1,10,-1,-1},
{-1,-1,10,-1},{-1,-1,-1,10}};
b={34,23,12,1};

and invoke the module conjugateGradient [a,b] to obtain the output {{2.,{0,0,0,0},{4.,3.,2.,1
where the number of iterations k£ = 2, the residual vector r = (0,0, 0,0), and

the solution = = (4.,3.,2.,1.)

Also, we find the solution z following the algorithm step by step Let

10 -1 -1 -1
-1 10 -1 -1
-1 -1 10 -1
-1 -1 -1 10

Then, we find
The first CG iteration

(0D, (1)

a1 =
4.0854
2.7636
1.4419 |’
0.1202

—2.5279
1.0112
4.5502 |’
8.0893

GO B C) NP C

(Ar®) p0)

/%::(Avugyu»

= 0.05112,
—0.7897
2.1870
5.1637 |
8.1404

V@ = @ 4 g0 =
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The second CG iteration:

(v®, r@)
Qg = W = 010808,
4.0000
TE =TT A U=y 0000 |
1.0000
0.0000
rl =TT —mAvT= 000 |
0.0000
C(Ar®, @)
2 = 0@ 00 = 0.0000,
0.0000
v =TT B = 000
0.0000

Since (® = 0, by the second iteration, we get the exact solution:

4

2@ —

— N W

4.7 Exercises

Question 4.1 Solve the following system of linear equations:

101’1 — X9 — T3 = 35
—-T1 + 101’2 — T3 = 24 (426)
—rT — ) + 101’3 = 13

by

1. (a) Jacobi method,
(b) Gauss Seidel method,
(¢) SOR method,
(d) ADI method,

using € = 0.05 to stop the iterations.
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Question 4.2 Investigate the convergence of Jacobi and Gauss Seidel iterative
methods for the following system of linear equations:

21’1 — X2 — XT3 = 3
—x1 + 21’2 — XT3 = 0
—r1T — X9 + 21’3 = -3

Question 4.3 Solve the system of equations

31’1 — X2 — XT3 = -1
-1 + 319 — 23 = 2
—r1T — X9 + 31’3 = 6

by C'G method.

Question 4.4 (a) State the necessary and sufficient conditions for conver-
gence of the stationary linear one step iterative methods. Show that the
iterative method

™) =Ge™ 4+ F o om=0,1,2, ...

satisfies the mecessary and sufficient condition when

31
1
G_E{l 3}

(b) State a sufficient condition for convergence of the Jacobi and Gauss Seidel
iterative methods. Show the the Jacobi and Gauss Seidel iterative methods
are convergent when they are applied to the system of equations

51’1 — 21’2 — T3 = 10
—21’1 + 101’2 — X3 = 13 (427)
—r1r - ) + bz = 0

(c) Solve the system of equations (4.27) by Jacobi and Gauss Seidel iterative
methods using starting vector ) = {2.5,1.5,1} with the accuracy e =
0.01

Question 4.5 (a) State the algorithm of the Conjugate Gradient Method for
solving a linear system of equations Ax = b where A = {a;;}, i,j =
1,2,...,n. is a symmetric non-singular matrix
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(b) Solve the system of equations

61’1 — 31’2 — X3 = 7
—31’1 + 81’2 — X3 = 0 (428)
—X1 — X9 + 61’3 =9

by the Conjugate Gradient Method.
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