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Introduction

The purpose of these notes is to provide a standard text where the student can find
statements and proofs of the relevant theorems. The notes cannot serve as a replacement
for further reading and study, even though we have tried to arrange the material in an easily
accessible and coherent manner.

The intention is to provide a basis for the justification of results and methods from the
Calculus, as well as serve as a source for new concepts and developments.

The course is mainly concerned with real-valued functions and their special properties —
continuity, differentiability, integrability are ever recurring themes throughout the course,
and may be regarded as its essence or meaning, in a very broad sense.
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Dr. Norton’s comments, especially, laid bare many, many flaws in the original text. The

ones that remain are the responsibility of the authors. They will find their way out in the
course of time. Hopefully, they will not interfere with the understanding of the content.
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To the Student

The first contact with formal rigour is, usually, not an easy one. Often, after a feeling
of having mastered a section, you will return to it and realize that there is so much more to
understand — well, that is part of learning and understanding, and it is only to be expected.
Effort and perseverance cannot be overemphasized.
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Chapter 1

Real Numbers

1.1 The Real Numbers as a Field

We are already familiar with basic properties of numbers that involve multiplication, addi-
tion, and other operations. We are going to express this knowledge in the form of axioms
and then examine some consequences of the axioms.

First, we state the algebraic axioms for addition and multiplication.

Consider a set of objects F where there are two operations, called addition and multi-
plication, defined for any pair of objects in F . If a and b are two objects in F , then denote
the image of (a, b) under the operations of addition and multiplication by a + b and a • b,
respectively.

The set F , with the two operations of addition and multiplication, is called a field, if
the following axioms A1–A11 are satisfied.

Algebraic axioms of addition:

A1 Closure property:

For any two objects a, b ∈ F there is one and only one object a + b ∈ F , called the
sum of a and b.

A2 Commutative law:

For any two objects a, b ∈ F , a + b = b + a.

A3 Associative law:

For any three objects a, b, c ∈ F ,

(a + b) + c = a + (b + c).

A4 Existence of a zero:

There is an object 0 ∈ F , called zero, such that, for all a in F ,

a + 0 = a.

1



2 Chapter 1 — Real Numbers

A5 Existence of an additive inverse:

For each object a in F there is an object x ∈ F , such that

a + x = 0.

The number x is called the additive inverse of a and denoted by − a.

Algebraic axioms of multiplication:

A6 Closure property:

For any two objects a, b ∈ F , there is one and only one object a • b ∈ F , called the
product of a and b.

A7 Commutative law:

For any two objects a, b ∈ F , a • b = b • a.

A8 Associative law:

For any three objects a, b, c ∈ F , (a • b) • c = a • (b • c).

A9 Existence of a unit:

There is an object 1 in F , different from 0, such that for every object a ∈ F , a • 1 = a.

A10 Existence of a multiplicative inverse:

For each object a in F different from 0 there is an object x ∈ F such that

a • x = 1.

This number x is called the inverse of a and is denoted by a−1.

Distributive law:

A11 Distributive law of multiplication with respect to addition:
For any three objects a, b, c ∈ F ,

a • (b + c) = (a • b) + (a • c).

Example 1.1 Checking the field axioms.

Let F1 = {x, y} be a set of two distinct objects and let the addition and multiplication
operations be defined by the following tables:

+ x y

x x y
y y x

• x y

x x x
y x y
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so that

x + x = x
x + y = y
y + x = y
y + y = x

x • x = x
x • y = x
y • x = x
y • y = y

Show that the set F1 together with the operations + and • defined above is a field.
Solution. Axioms A1, A2, A6, and A7 are obvious for F1. The verification of the

axioms A3, A8, and A11 are straightforward, case-by-case checks, which we now carry out.
Note that the addition and multiplication tables provide a 0, namely x, and a 1, namely y,
satisfying A4 and A9.

Since there are only two objects in F1, for each axiom, we need to check 8 equations
obtained by setting a, b, c equal to x or y:

a = x, b = x, c = x
a = x, b = x, c = y
a = x, b = y, c = x
a = x, b = y, c = y
a = y, b = x, c = x
a = y, b = x, c = y
a = y, b = y, c = x
a = y, b = y, c = y

(a + b) + c a + (b + c)

(x + x) + x = x x + (x + x) = x
(x + x) + y = x + y x + (x + y) = x + y
(x + y) + x = y + x = y x + (y + x) = x + y = y
(x + y) + y = y + y = x x + (y + y) = x + x = x
(y + x) + x = y + x y + (x + x) = y + x
(y + x) + y = y + y y + (x + y) = y + y
(y + y) + x = x + x = x y + (y + x) = y + y = x
(y + y) + y = x + y = y y + (y + y) = y + x = y
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(a • b) • c a • (b • c)

(x • x) • x = x • x x • (x • x) = x • x
(x • x) • y = x • y = x x • (x • y) = x • x = x
(x • y) • x = x • x x • (y • x) = x • x
(x • y) • y = x • y x • (y • y) = x • y
(y • x) • x = x • x = x y • (x • x) = y • x = x
(y • x) • y = x • y = x y • (x • y) = y • x = x
(y • y) • x = y • x y • (y • x) = y • x
(y • y) • y = y • y y • (y • y) = y • y

Comment: All fields with two elements are of this type. Usually, the elements are written
0, 1 and the field is denoted by Z2.

1.2 Consequences of the Axioms

P1 The uniqueness of zero.
Suppose that 0 and 0′ are two elements of F such that, for every a ∈ F ,

(i) a + 0 = a,

(ii) a + 0′ = a.

Let a = 0′. Then 0′ + 0 = 0′, by (i).
Let a = 0. Then 0 + 0′ = 0, by (ii).
By A2, 0′ + 0 = 0 + 0′, which implies 0′ = 0.

P2 The uniqueness of the additive inverse −a of a.
Given a, suppose there are two numbers x1 and x2 such that a+x1 = 0 and a+x2 = 0.

Adding x2 to both sides of the first equation and adding x1 to both sides of the second
equation gives

(a + x1) + x2 = x2

and
(a + x2) + x1 = x1.

Hence, by the commutative and associative laws, we get

a + (x1 + x2) = x2

and
a + (x1 + x2) = x1,

which implies that x1 = x2. This unique element will be denoted by −a. Thus
a + (−a) = 0.
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P3 For any two numbers a and b there exists a unique number x such that

a + x = b.

This number is given by x = b + (−a).

To prove P3 we shall show that

(i) x satisfies the equation a + x = b;

(ii) if x′ also satisfies the equation, then x′ = x.

Proof of (i). If x = b + (−a), then by A2—A4,

a + x = a + [b + (−a)] = a + [(−a) + b] = [a + (−a)] + b = 0 + b = b + 0 = b.

Proof of (ii). Suppose that x′ satisfies the equation a + x′ = b. We shall show that
x = x′.
Adding (−a) to both sides of the equation a + x′ = b, we get

(a + x′) + (−a) = b + (−a) = x.

The left hand side is

(a+x′)+(−a) = a+[x′+(−a)] = a+[(−a)+x′] = [a+(−a)]+x′ = 0+x′ = x′.

Thus we conclude
x′ = b + (−a) = x.

P4 For a 6= 0 and any number b, there is a unique number x such that

ax = b.

This number will be denoted by a−1b , or
b

a
.

Proof. We first verify that x = a−1b satisfies the equation ax = b :

ax = a(a−1 · b) = (a · a−1)b = 1 · b = b.

Secondly, if x′ satisfies ax′ = b, then a−1(ax′) = a−1b, so that 1 · x′ = a−1b. Hence
x′ = a−1b = x.

P5 For all numbers a, −(−a) = a. If a 6= 0, then (a−1)−1 = a.

Proof. By P3, −b is that unique number such that b + (−b) = 0. Now (−a) + a = 0.
Thus, taking b = −a, we have −(−a) = a.

The proof of the other statement proceeds analogously.

P6 For all numbers a, we have a · 0 = 0.

Proof. We have a · 0 = a · (0 + 0) = a · 0 + a · 0. Thus b = b + b, where b = a · 0.
Adding −b to both sides, we get

(b + b) + (−b) = b + (−b).

Hence b + (b + (−b)) = 0 or b + 0 = 0, so that b = 0, as required.
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1.3 The Real Numbers as an Ordered Field

It is known that the real numbers may be ordered in such a way that:

O1. x ≤ x (Reflexivity)

O2. x ≤ y and y ≤ x =⇒ x = y (Antisymmetry)

O3. x ≤ y and y ≤ z =⇒ x ≤ z (Transitivity)

O4. For every x and y, one and only one of the following holds:
x = y or x < y or y < x. (Trichotomy)

As usual, x ≤ y denotes “x is smaller than y or equal to y”, and x < y stands for “x is
smaller than y”.

The order and the operations of addition and multiplication are related as follows:

OA. If x ≥ y, then x + z ≥ y + z, for all z.

OM. If x ≥ y and z ≥ 0, then x · z ≥ y · z.

Definition 1.1 A field in which the above holds is called an ordered field.

Theorem 1.1 In an ordered field, 1 > 0.

Proof. By trichotomy, either 1 > 0 or 1 = 0 or 1 < 0, and only one of these relations
holds. We know that 1 6= 0, so we may assume that 1 < 0. Adding −1 to both sides, we
get, by OA: 0 < −1. Then 0 < (−1) · (−1), by OM. Hence 0 < 1, which contradicts 1 < 0.
Hence 0 < 1, as required.

Example 1.2 Ordered Fields.

(a) The set of rational numbers forms an ordered field.
(b) It is not possible to define an order relation in Z2 in such a way that Z2 becomes

an ordered field. If it were possible, then 1 > 0. Note that 1 = −1, so that −1 > 0. Hence,
by OA, 1 + (−1) > 0. Thus 0 > 0, contradicting the trichotomy property.

(c) It is not possible to define an order relation on the set of complex numbers in such
a way that it becomes an ordered field. The justification will be left as an exercise.
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1.4 Order Completeness of the Reals

The representation of real numbers as points on a directed line illustrates an important
feature of sets of real numbers —“those that are bounded above must have a smallest
upper bound”. The precise definitions follow.

Definition 1.2 .

(i) Let A ⊆ RI . A is bounded above by M , equivalently, M is an upper bound of A if
a ≤ M for all a in A.

(ii) M is said to be the least upper bound of A if M is an upper bound for A, and, if P
is any other upper bound of A, then M ≤ P.

The definitions of lower bound and greatest lower bound are left as an exercise.

Definition 1.3 An ordered set is said to be complete if every non-empty subset A
which is bounded above has a least upper bound.

We can now formulate the fundamental Completeness Property of RI .

Axiom of Completeness. RI is a complete ordered field.

Let us examine some consequences of this axiom.

Theorem 1.2 Archimedean Property For any real number a there is an integer
n such that a < n.

Proof. Suppose this were false. Then there would exist a real number a such that
n ≤ a for all integers n. Thus, the set of integers would be bounded above. As such, it
would have a least upper bound m (not necessarily an integer).

Thus n + 1 ≤ m for all integers n. Hence n ≤ m− 1, for all n. Hence m− 1 would also
be an upper bound for the set of integers. Hence m ≤ m − 1 (since m is the least upper
bound). This last inequality implies m + 1 ≤ m, hence, adding −m to both sides, 1 ≤ 0,
which is impossible. This contradiction proves the theorem.

Corollary 1.1 Given x > 0, there is an integer n such that x > 1/n > 0.
(Select n so that n > 1/x, noting that x 6= 0.)

Theorem 1.3 Every nonempty subset B which is bounded below has a greatest lower
bound m.

Proof. The set A = −B = {−b | b ∈ B} is bounded below. Hence A has a least upper
bound `. It is easily verified that m = −` is the greatest lower bound of B.



8 Chapter 1 — Real Numbers

Theorem 1.4 Denseness Property of the Rational Numbers
Let x < y be any real numbers. There are integers p, q such that

x <
p

q
< y.

Proof.
Case 1 0 < x < y.

By the Archimedean property, there exists q such that q > 1/(y − x), which implies that
qy − qx > 1 or

qy > 1 + qx. (1.1)

Let z = qx. Consider the subset Sz of all natural numbers that are greater than z:

Sz = {m ∈ NI | m > z}.

By the Archimedean property, Sz is not empty. Denote by p the least element of Sz. Then
we have the following inequality

p− 1 ≤ z = qx < p,

which, combined with (1.1), gives

qx < p < qy or x <
p

q
< y.

Case 2 x = 0.
The case x = 0 is covered by the previous corollary.

Case 3 The case x < 0 ≤ y follows from −y ≤ 0 < −x, and x < y < 0 follows from
the case 0 < (−y) < (−x), discussed above.

Finally, not all real numbers are rational numbers.

Example 1.3

Let A = {x ∈ RI | x2 < 2 or x < 0}. Then A is bounded above, by 2, for instance.
Let m be the least upper bound of A. Since 5/4 ∈ A, we have 1 < m. Thus m > 0.

We show that m2 = 2. If m2 < 2, it is easy to verify that

0 <
2−m2

2(2m + 1)
and

(

m +
2−m2

2(2m + 1)

)2

< 2,

which is impossible, by definition of m.
If m2 > 2, then one can verify that

0 <
m2 − 2

4m
and

(

m− m2 − 2

4m

)2

> 2,

which again contradicts the definition of m. Thus m2 = 2.
A familiar argument shows that there is no rational number whose square is 2.
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1.5 Exercises

1.1 Consider the system with four elements 0, 1, 2, 3 and the rules of addition and multi-
plication as given in the following tables:

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

• 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 x y
3 0 3 u z

where x, y, u, z ∈ {0, 1, 2, 3} and x, y, and z are all different.

Is it possible to choose the values of x, y, u, z in such a way that the system is a field?

1.2 Find the least upper bound (supremum) and the greatest lower bound (infimum) of
the following sets:

(i) All numbers of the form 2−n + 3−m + 5−p, where n, m, p ≥ 1, are integers.

(ii) The set of all numbers x such that

x2 + x− 1 < 0.

1.3 Let A and B be sets which are bounded above. Denote by A+B the set of all numbers
of the form a + b, where a ∈ A and b ∈ b. Show that

sup(A + B) = supA + supB.

If A, B consist of positive numbers and A · B denotes all products of the form a · b,
where a ∈ A, b ∈ B, show that

sup(A · B) = (supA) · (supB).

1.4 If S ⊆ T and T is bounded above, show that S is bounded above and

supS ≤ supT.

1.5 Let A be a non-empty subset of RI . Show that x is supA if and only if x has the
following properties:

(i) a ≤ x, for all a ∈ A;

(ii) for any ε > 0, there exists a in A, such that

x− ε < a ≤ x.

1.6 Formulate an analogous characterization for inf A.
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1.7 Let −A = {−a | a ∈ A}. Show that, for A 6= ∅,

sup(−A) = − inf A,

inf(−A) = − supA.

1.8 What is sup ∅, inf ∅, where ∅ ⊂ RI is the empty set?

1.9 |x| is defined as follows:

|x| =
{

x, if x > 0
−x, if x ≤ 0

Prove that the following hold for all x, y in RI .

(i) |x| ≥ 0;

(ii) |x| = 0 ⇐⇒ x = 0;

(iii) |x|2 = x2;

(iv) |x| =
√

x2;

(v) |x + y| ≤ |x|+ |y| (Triangle Inequality);

(vi) |x + y| = |x|+ |y| ⇐⇒ xy ≥ 0.

1.10 Show that if |x| ≤ ε, for all positive numbers ε, then x = 0.

1.11 In an ordered field, show that x2 ≥ 0 for every x.

1.12 Prove by Mathematical Induction, or otherwise, Bernoulli’s inequality:

(1 + x)n > 1 + nx,

provided x > −1, x 6= 0, n is an integer number greater than 1.

1.13 Let x1, x2, . . . , xn be positive numbers. Prove the following Arithmetic-Geometric
Means Inequalities. When does equality take place?

(i)
x1 + x2

2
≥ √x1 · x2,

(ii)
x1 + x2 + x3

3
≥ 3
√

x1 · x2 · x3,

(iii)
x1 + x2 + · · ·+ xn

n
≥ n
√

x1 · x2 · · · xn.



Chapter 2

Sequences of Real Numbers

2.1 Introduction to Sequences

Definition 2.1 A sequence of real numbers is a real-valued function f whose domain
is the set of natural numbers N , i.e.

f : NI 7→ RI .

The function f which defines a sequence is a rule that assigns to each natural number n a
unique real value, normally denoted by an:

f(n) = an, n = 1, 2, . . .

The number an is called the n-th term of the sequence and the corresponding sequence is
denoted by the symbol {an}:

{an} = {a1, a2, a3, a4, . . .}.

We will find it convenient to use the notations {bn}, {cn}, {dn}, {xn}, {yn}, etc., in addition
to {an}, to denote sequences, especially when we deal with two or more sequences at a time.

Example 2.1 Defining sequences.

(a) The function f(n) =
n

n + 1
, n ∈ NI , defines a sequence with n-th term an =

n

n + 1
, so

that

a1 =
1

1 + 1
=

1

2
, a2 =

2

2 + 1
=

2

3
, a3 =

3

3 + 1
=

3

4
,

and so on. We have

{an} = {1

2
,

2

3
,

3

4
,

4

5
, . . . ,

n

n + 1
, . . .}.

(b) The function f(n) =
(−1)n

n2
, n ∈ NI , defines the sequence

{ bn } = {−1,
1

4
, −1

9
,

1

16
, − 1

25
,

1

36
, . . .

(−1)n

n2
, . . . }.

11
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(c) The function

f(n) = cn = (−1)n n2

n + 2
, n ∈ NI ,

defines the sequence

{cn} = {−1

3
,

4

4
, −9

5
,

16

6
, −25

7
, . . . , (−1)n n2

n + 2
, . . .}

(d) Consider a sequence with n-th term

dn = sin
πn

4
, n = 1, 2, . . . .

This sequence is defined by a periodic function

f(n) = sin
πn

4
, n = 1, 2, . . .

with period ω = 8, so that

f(n + 8) = f(n) i.e. dn+8 = dn, n = 1, 2, . . . .

The first 8 terms of the sequence are shown in the following table:

n 1 2 3 4 5 6 7 8

πn
4

π
4

π
2

3π
4 π 5π

4
3π
2

7π
4 2π

dn = sin(πn
4 )

√
2

2 1
√

2
2 0 −

√
2

2 −1 −
√

2
2 0

Refer to Figure 2.1 which shows a graph for each of the four sequences considered above.
Although, only the first 20 terms are shown for each sequence, we clearly see some differences
in the behaviour of the sequences {an}, {bn}, {cn}, and {dn}, as n changes.

For example, an =
n

n + 1
is an increasing function of n, bounded by the numbers 0

and 1:

0 < an < 1,

and, as n gets larger, an gets closer to the number a = 1.
The terms of {bn} are positive for even values of n and negative for odd values of n. As

n gets larger, bn approaches the number 0.

Now, it is not hard to see that, as n increases,

cn = (−1)n n2

n + 1

does not get close to any number. Figure 2.2(a) shows more terms of {cn}, and we can
clearly see the trend: the absolute value |cn| of cn increases without bound, as n increases.
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Finally,

dn = sin
πn

4

is a periodic, bounded function of n:

−1 ≤ dn ≤ 1, dn+8 = dn, n = 1, 2, . . .

Refer to Figure 2.2(b), which shows the first 50 terms of the sequence, to have a clearer
picture of the behaviour of the sequence.

(a) an =
n

n + 1
(b) bn =

(−1)n

n2

(c) cn = (−1)n n2

n + 2
(d) dn = sin

πn

4

Figure 2.1: First terms of the sequences considered in Example 2.1.
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(a) cn = (−1)n n2

n + 2
(b) dn = sin

πn

4

Figure 2.2: Examples of non-convergent sequences.

2.2 Definition of Convergence

Definition 2.2 (Limit of a sequence)
A sequence {an} is said to converge to the limit a if and only if for every ε > 0 there

exists a natural number N such that

|an − a| < ε for n > N.

If {an} converges to a then we write limn→∞ an = a.

Since

|an − a| < ε ⇐⇒ −ε < an − a < ε ⇐⇒ a− ε < an < a + ε,

the definition requires that, given ε > 0, there is a number N (dependent on ε) such that
all terms an of the sequence, for n > N , fall within the ε-neighbourhood of the limit a, that
is within the interval (a− ε, a + ε).

Using the quantifiers ∀ and ∃, the above definition can be written as follows.

lim
n→∞

an = a ⇐⇒ ∀ε > 0 ∃ N ∈ NI (n > N =⇒ |an − a| < ε). (2.1)

Intuitively, lim
n→∞

an = a if, as n increases, an gets arbitrarily close to a.

In light of the above, when we refer back to Figure 2.1, we can observe that the sequence
{an} converges to the limit a = 1 and {bn} converges to b = 0. The sequences {cn} and
{dn} seem not to converge to any number.
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Definition 2.3 If the limit lim
n→∞

an in (2.1) exists, we say that the sequence {an} con-

verges or is convergent. Otherwise, we say that the sequence diverges or is divergent.

Theorem 2.1 If lim
n→∞

an exists, then it is unique.

Proof. By definition 2.1 we have

lim
n→∞an = a ⇐⇒ ∀ε1 > 0 ∃ N1 ∈ NI (n > N1 =⇒ |an − a| < ε1)

and

lim
n→∞

an = a′ ⇐⇒ ∀ε2 > 0 ∃ N2 ∈ NI (n > N2 =⇒ |an − a′| < ε2).

Let ε be any positive number and let ε1 = ε2 =
ε

2
. If n > max(N1, N2) then |an−a| < ε

2

and |an − a′| < ε
2 . Consequently,

|a− a′| = |(an − a′)− (an − a)| ≤ |an − a′|+ |an − a| < ε

2
+

ε

2
= ε,

which implies that a = a′, since ε > 0 is arbitrary.

Example 2.2 Showing that lim
n→∞

an = a directly from the definition.

(a) We shall show that

lim
n→∞

n

n + 1
= 1.

Let ε be any positive number. We have

|an − a| = | n

n + 1
− 1| = | − 1

n + 1
| = 1

n + 1
< ε,

provided n + 1 > 1
ε or n > 1

ε − 1. Thus, if we choose N being the greatest integer number
that is less than or equal to 1

ε :

N = [
1

ε
],

then the condition
| n

n + 1
− 1| < ε

is satisfied for all n > N .
(b) We shall show that

lim
n→∞

(−1)n

n2
= 0.

Let ε > 0 be given. We have

|bn − b| = |(−1)n

n2
− 0| = 1

n2
< ε provided n > N =

[

1√
ε

]

.
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It is clear that the value of N in (2.1) depends (normally) on ε, which is the case in our
example:

N =

[

1

ε
− 1

]

for the sequence {an} = { n

n + 1
}

N =

[

1√
ε

]

for the sequence {bn} = {(−1)n

n2
}.

Let us select some values of ε and see what are the corresponding values of N :

ε 0.1 0.05 0.02

N = [1ε − 1] 9 19 49

N = [
√

1
ε ] 3 4 7

In Figure 2.3, the sequences {an} and {bn} are shown again, now with the number of
terms increased to 50. In Figure 2.3(b), grid lines corresponding to the interval (b−ε, b+ε)
are included, for ε = 0.02.

(a) an =
n

n + 1 (b) bn =
(−1)n

n2

Figure 2.3: Illustrating convergence of the sequences {an} and {bn} of Example 2.1.

Example 2.3 Showing that lim
n→∞

an = a directly from the definition — Pointing out

that the smallest value of N in definition 2.1 is not necessarily needed.

(a) lim
n→∞

n + 1

2n + 3
=

1

2
.

Let ε > 0 be given. We have

|an − a| =
∣

∣

∣

∣

n + 1

2n + 3
− 1

2

∣

∣

∣

∣

=
1

2(2n + 3)
<

1

n
.
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Now

n > N =

[

1

ε

]

=⇒ 1

n
< ε.

Hence, choosing N = [ 1ε ], and assuming that n > N , we have

|an − a| < 1

n
< ε,

so that the inequality |an − a| < ε holds for n > N = [ 1ε ].

Note that we do not need to find the smallest possible value of N with the property
that the inequality |an− a| < ε is satisfied for all n > N ; any value of N with this property
is sufficient.

In fact, in this example it is not difficult to find the smallest possible value of N by
solving the inequality

1

2(2n + 3)
< ε,

but, in general, this may be difficult.

(b) lim
n→∞

2n3 + 1

3n3 + n + 4
=

2

3
.

Let ε > 0 be given. We are to find a natural number N such that

|an − a| =
∣

∣

∣

∣

∣

2n3 + 1

3n3 + n + 4
− 2

3

∣

∣

∣

∣

∣

< ε for n > N. (2.2)

We have

|an − a| =
∣

∣

∣

∣

∣

6n3 + 3− 6n3 − 2n− 8

3(3n3 + n + 4)

∣

∣

∣

∣

∣

=
|2n + 5|

3(3n3 + n + 4)
<

3n

3n3 + n + 4
<

3n

3n3
=

1

n2

Now,

n > N =

[

1√
ε

]

=⇒ 1

n2
< ε.

Hence, (2.2) holds with N =

[

1√
ε

]

.

(c) lim
n→∞

n + 3

n2 − 5
= 0.

Let ε > 0 be given. We have

|an − a| =
∣

∣

∣

∣

n + 3

n2 − 5
− 0

∣

∣

∣

∣

=

∣

∣

∣

∣

n + 3

n2 − 5

∣

∣

∣

∣

=
n + 3

n2 − 5
for n > 2,

since n2 − 5 > 0 for n > 2. Now,

n + 3

n2 − 5
<

n + n

n2 − 5
=

2n

n2 − 5
<

2n

n2 − n2/2
=

4

n
for n > 4,

and
4

n
< ε for n >

4

ε
.
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Thus

|an − a| < 4

n
< ε for n > N = max{2, 4,

[

4

ε

]

} = max{4,
[

4

ε

]

}.

(a) lim
n→∞

rn = 0, |r| < 1 (b) lim
n→∞

rn = ∞, |r| > 1

Figure 2.4: Illustrating convergence of rn to 0 for |r| < 1 and divergence of rn to ∞ for
|r| > 1.

Example 2.4 Showing that lim
n→∞

rn = 0, if |r| < 1.

If r = 0 then an = 0, n = 1, 2, . . . and clearly lim
n→∞

an = 0. Suppose that r 6= 0. We are to

find N such that
|an − a| = |rn − 0| = |r|n < ε for n > N. (2.3)

Take N =
log ε

log |r| . Since |r| < 1, log |r| is negative and we have

n > N = log ε
log |r| =⇒ n log |r| < log ε

=⇒ log |r|n < log ε.

Since log x is an increasing function,

log |r|n < log ε =⇒ |r|n < ε.

Refer to Figure 2.4(a) which illustrates the convergence of rn to 0, as n →∞, for r = 2/3
and r = 3/4.

Definition 2.4 (Infinite limit of a sequence)
(a) The sequence {an} has limit +∞ if for every positive number M there is a natural

number N such that an > M for all n > N .
(b) The sequence {an} has limit −∞ if for every positive number M there is a natural

number N such that an < −M for all n > N .
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If an has limit +∞ then we write

lim
n→∞

an = +∞.

If an has limit −∞ then we write

lim
n→∞

an = −∞.

Using the quantifiers ∀ and ∃, the above definition becomes:
(a)

lim
n→∞

an = +∞ ⇐⇒ ∀M ∃ N ∈ NI (n > N =⇒ an > M). (2.4)

(b)
lim

n→∞
an = −∞ ⇐⇒ ∀M ∃ N ∈ NI (n > N =⇒ an < M). (2.5)

Intuitively, lim
n→∞

an = +∞ means that an increases without bound, as n increases,

whereas lim
n→∞an = −∞ means that an decreases without bound, as n increases.

Thus, if lim
n→∞

an = +∞ then with any positive value of M , no matter how large it is,

we can find an N such that all terms an, for n > N, are greater than M . Similarly, if
lim

n→∞an = −∞, then for any M > 0 there exists N such that all terms an, for n > N , are

less than −M .

Example 2.5 Infinite limits of sequences.

(a)

lim
n→∞

n2

n + 1
= +∞.

Let M be any positive number. Following definition (2.4), we are to find N such that
an > M for all n > N . We have

an =
n2

n + 1
>

n2

2n
=

n

2
> M, provided n > 2M,

so we can take N = [2M ].
(b)

lim
n→∞

rn = +∞, if r > 1.

Let M > 0 be given. Choose N = [ log M
log r ]. Then

n > N =⇒ n >

[

log M

log r

]

=⇒ n log r > log M

=⇒ log rn > log M =⇒ rn > M,

since log x is an increasing function.
Figure 2.4(b) illustrates the infinite limit of the sequence {rn}, as → ∞, for selected

values of r > 1, namely r = 1.2 and r = 1.3.
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(c)

lim
n→∞

−n3

n + 1
= −∞.

Let M > 0 be given. We are to find N such that an < −M for all n > N . We have

an = − n2

n + 1
< −n3

2n
= −n2

2
< −M provided that n >

√
2M

so we can take N =
[√

2M
]

.

2.3 Bounded Sequences

Theorem 2.2 If lim
n→∞

an exists then the sequence {an} is bounded.

Proof. Let lim
n→∞an = a. Then

∀ε > 0 ∃ N ∈ NI (n > N =⇒ a− ε < an < a + ε).

Let ε = 1. There exists N such that

a− 1 < an < a + 1, for n > N.

Therefore, it is clear that the sequence {an} is bounded:

m ≤ an ≤ M, n = 1, 2, . . . ,

where
m = min(a1, a2, . . . , aN , a− 1)

and
M = max(a1, a2, . . . , aN , a + 1).

2.4 The Algebra of Limits

It is clearly not always straightforward to use the definition of convergence to prove that a
sequence {an} converges to a known limit a. Moreover, if the limit a is not known, then
the definition of convergence may not help in determining a.

Now we are going to introduce some useful results that enable us to evaluate limits of
quite complicated sequences without appealing to the definition of convergence.

The following theorem can be used to evaluate the limits of sequences that arise by
applying the arithmetic operations of addition, multiplication, and division on convergent
sequences with known limits.

Theorem 2.3 Suppose that {an} and {bn} are convergent sequences and let c be a real
number. Then the sequences

{can}, {an + bn}, {anbn}

are convergent and the following rules apply.
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(i) Scalar product rule:
lim

n→∞
c an = c lim

n→∞
an,

(ii) Sum rule:
lim

n→∞
(an + bn) = lim

n→∞
an + lim

n→∞
bn,

(iii) Product rule:
lim

n→∞
anbn = lim

n→∞
an · lim

n→∞
bn.

(iv) Quotient rule:

If bn 6= 0, for n = 1, 2, . . ., so that the sequence {an

bn
} is defined, and if lim

n→∞
bn 6= 0,

then the sequence {an

bn
} converges and lim

n→∞
an

bn
=

lim
n→∞

an

lim
n→∞

bn
.

Proof. Let lim
n→∞

an = a and let lim
n→∞

bn = b. By Definition 2.2 we have

lim
n→∞an = a ⇐⇒ ∀ε1 > 0 ∃ N1 ∈ NI (n > N1 =⇒ |an − a| < ε1) (2.6)

and

lim
n→∞

bn = b ⇐⇒ ∀ε2 > 0 ∃ N2 ∈ NI (n > N2 =⇒ |bn − b| < ε2). (2.7)

(i) Let ε > 0 be given and let ε1 =
ε

|c|+ 1
. From (2.6) it follows that there exists N1 such

that
|an − a| < ε1 for n > N1.

Hence
|can − ca| = |c||an − a| < |c|ε1 = |c| ε

|c| + 1
≤ ε for n > N1

which implies that lim
n→∞

can = ca = c lim
n→∞

an.

(ii) Let ε > 0 be given and let ε1 = ε2 =
ε

2
. We have

|(an + bn)− (a + b)| = |(an − a) + (bn − b)| ≤ |an − a|+ |bn − b| < ε

2
+

ε

2
= ε

for n > N = max(N1, N2), which proves that

lim
n→∞

(an + bn) = a + b = lim
n→∞

an + lim
n→∞

bn.

(iii) Let ε > 0 be given. We are to find N such that

|anbn − ab| < ε for n > N. (2.8)

We have

|anbn − ab| = |(anbn − abn) + (abn − ab)| ≤ |(anbn − abn)|+ |(abn − ab)|

= |an − a||bn|+ |bn − b||a|.
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By theorem 2.2 we conclude that the convergent sequence {bn} is bounded and con-
sequently the sequence {|bn|} is bounded too:

∃M > 0 |bn| ≤ M for n = 1, 2, . . . .

If we choose ε1 =
ε

2M
in (2.6), then we have

|an − a||bn| < ε1M =
ε

2M
M =

ε

2
for n > N1. (2.9)

Now, by (2.7), with any ε > 0, |bn − b| < ε2 for n > N2. Let

ε2 =
ε

2

1

1 + |a| .

Then

|bn − b||a| < ε2|a| =
ε

2

1

1 + |a| |a| =
ε

2

|a|
1 + |a| ≤

ε

2
. (2.10)

Finally, using (2.9) and(2.10) establishes the required result (2.8):

|anbn − ab| ≤ |an − a||bn|+ |bn − b||a| < ε

2
+

ε

2
= ε for n > N = max(N1, N2).

(iv) Let ε be given. We are to show that there exists N such that

| 1

bn
− 1

b
| = |bn − b|

|bbn|
< ε for n > N. (2.11)

By (2.7), using ε2 =
b2

2
ε, we conclude that there exists N2 such that

|bn − b| < b2

2
ε for n > N2. (2.12)

Since lim
n→∞

bn = b, by (i) we conclude that lim
n→∞

bbn = b lim
n→∞

bn = b2. Therefore

∀ε3 > 0 ∃N3 (n > N3 =⇒ |bbn − b2| < ε3).

Let ε3 = b2/2 and let n > N3. Then

|bbn − b2| < ε3 ⇐⇒ b2 − ε3 < bbn < b2 + ε3

=⇒ b · bn > b2 − ε3 = b2 − b2/2 = b2/2.

Hence,

|bbn| >
b2

2
for n > N3. (2.13)

Using (2.12) and (2.13) we obtain

| 1

bn
− 1

b
| = |bn − b|

|bbn|
<

b2ε/2

b2/2
= ε for n > N = max(N2, N3).

Thus, by the product rule,

lim
n→∞

an

bn
= lim

n→∞an
1

bn
= lim

n→∞an lim
n→∞

1

bn
= a

1

b
=

a

b
.
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2.5 The Squeeze Theorem for Sequences

When examining the convergence of a given sequence {an}, quite often it is possible to find
two sequences, say {xn} and {yn}, such that

xn ≤ an ≤ yn, for n > M ∈ NI ,

so that, eventually, all terms of {an} are “squeezed” between the corresponding terms of
{xn} and {yn}. If {xn} and {yn} converge to the same limit l, then the sequence {an} must
converge to the limit l.

Theorem 2.4 Squeeze theorem
Suppose that

xn ≤ an ≤ yn, for n > M ∈ NI (2.14)

and
lim

n→∞xn = lim
n→∞ yn = l. (2.15)

Then
lim

n→∞
an = l.

Proof. Let ε > 0 be given. We have to find a natural number N such that, for any
n > N ,

|an − l| < ε. (2.16)

By assumption (2.15), we have

∃N1 ∈ NI (n > N1 =⇒ l − ε < xn < l + ε). (2.17)

∃N2 ∈ NI (n > N2 =⇒ l − ε < yn < l + ε). (2.18)

Let N = max(N1, N2,M). Then, if n > N , all the inequalities (2.17), (2.18), and (2.14) are
true simultaneously. Thus, given any ε > 0, we have found a value of N such that

l − ε < xn ≤ an ≤ yn < l + ε,

which implies (2.16).

Example 2.6 Prove that lim
n→∞

rn = 0 if |r| < 1.

Solution. If r = 0 then {rn} = {0}, hence lim
n→∞

rn = 0. Let r 6= 0. Then

0 < |r| < 1 =⇒ 1

|r| > 1 =⇒ 1

|r| = 1 + d where d > 0.

Hence, by Bernoulli’s inequality,

1

|r|n = (1 + d)n > 1 + nd, for any n ≥ 2,

which implies that

0 < |r|n <
1

1 + nd
, for n > 1.
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Since lim
n→∞

1

1 + nd
= 0, by the squeeze theorem, we conclude that

lim
n→∞

rn = 0.

Example 2.7 Prove that lim
n→∞

|r|n = +∞ if |r| > 1.

Solution. If |r| > 1, then there exists a positive number d such that |r| = 1 + d.
Thus, by the Bernoulli inequality,

|r|n = (1 + d)n > 1 + nd for n ≥ 2.

Now, let M be any positive number. Then

1 + nd > M provided that n >
M − 1

d
.

Therefore, for any M > 0 there exists a natural number N = max

(

2,
M − 1

d

)

with the

property that
|r|n > 1 + nd > M for n > N.

This means that
lim

n→∞
|r|n = +∞.

Figure 2.4(b) shows us the first twenty terms of the sequence {rn} for (a) r = 1/4, r = 1/2,
and (b) r = 3/2, r = 4/3.

Example 2.8 Prove that lim
n→∞

xn

n!
= 0, when x is any number.

Solution. Let N be the smallest natural number such that N > |x|, so that α = |x|/N < 1.
Then, for n ≥ N , we have

∣

∣

∣

∣

xn

n!

∣

∣

∣

∣

=
|x|n

(N − 1)!N(N + 1)(N + 2) · · · n ≤ |x|N−1

(N − 1)!

( |x|
N

)n−N+1

=
|x|N−1

(N − 1)!

( |x|
N

)−N+1

αn.

Hence
|xn|
n!

≤ c · αn,

where c does not depend on n and 0 < α < 1. Since lim
n→∞

αn = 0 and

0 <
|xn|
n!

≤ cαn, for n ≥ N,

we have lim
n→∞

xn

n!
= 0.
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Example 2.9 Prove that lim
n→∞

n
√

a = 1, for a > 0.

Solution. We consider two cases.
Case 1. a ≥ 1.

If a ≥ 1 then n
√

a ≥ 1 and n
√

a = 1 + dn, where dn ≥ 0. Thus, by the Bernoulli inequality,

a = (1 + dn)n ≥ 1 + ndn for n ≥ 2.

Since

lim
n→∞

a− 1

n
= 0,

by the Squeeze Theorem, it follows that

lim
n→∞

dn = 0

and consequently
lim

n→∞
n
√

a = 1 + lim
n→∞

dn = 1.

Case 2. 0 < a < 1.

If 0 < a < 1, then a = 1/b, where b > 0, and

lim
n→∞

n
√

b = 1,

which implies

lim
n→∞

n
√

a =
1

lim
n→∞

n
√

b
= 1.

Example 2.10 Prove that lim
n→∞

n
√

n = 1.

Solution. We note that n
√

n > 1, when n > 1, so that we can write

n
√

n = 1 + dn, where dn > 0

and we have

n = (1 + dn)n = 1 +

(

n

1

)

dn +

(

n

2

)

d2
n + · · · +

(

n

n

)

dn
n >

(

n

2

)

d2
n.

Thus

n >

(

n

2

)

d2
n =

n(n− 1)

2
d2

n

which implies that

0 < dn <

√

2

n− 1
, for n = 2, 3, . . . ,

Hence lim
n→∞

dn = 0 and

lim
n→∞

n
√

n = lim
n→∞ (1 + dn) = 1.



26 Chapter 2 — Sequences of Real Numbers

2.6 Monotone Sequences

Definition 2.5 (Monotone sequence)

(i) The sequence {an} is called increasing, if an ≤ an+1 for all n ∈ NI .

(ii) The sequence {an} is called strictly increasing, if an < an+1 for all n ∈ NI .

(iii) The sequence {an} is called decreasing, if an ≥ an+1 for all n ∈ NI .

(iv) The sequence {an} is called strictly decreasing, if an > an+1 for all n ∈ NI .

A sequence that is either increasing or decreasing is called a monotone sequence.

Example 2.11 Monotone sequences.

(a) {2n} is strictly increasing.

(b) { 1

3n
} is strictly decreasing.

(c) {(−1)nn2} is not monotone.

Theorem 2.5 Convergence of monotone sequences

(i) If {an} is increasing and bounded above, then it converges to its least upper bound:

lim
n→∞an = supan.

(ii) If {an} is decreasing and bounded below, then it converges to its greatest lower bound:

lim
n→∞

an = inf an.

Proof.
(i) We assume that {an} is increasing and bounded above. Let supan = M . Then,

given any ε > 0,
an ≤ M for all n ∈ NI ,

an > M − ε for at least one value of n.

Let this value of n be No. Now, {an} is increasing, so that an ≤ an+1 for all n ∈ NI and
consequently an ≥ aN > M − ε for n > No.

Hence, we have

M − ε < an < M + ε or equivalently |an −M | < ε for n > No.

Hence lim
n→∞

an = M.

(ii) If {an} is decreasing and bounded below, then {bn} = {−an} is increasing and
bounded above. Hence, by (i), we conclude that {bn} converges and

lim
n→∞

bn = sup bn.

Now,
lim

n→∞
an = lim

n→∞
(−bn) = − lim

n→∞
bn = − sup bn = inf an.
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Example 2.12

Let di, i = 1, 2, . . ., be one of the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Consider the
sequence {an} defined as follows:

a1 = 0.d1

a2 = 0.d1d2

a3 = 0.d1d2d3

. . . . . . . . . . . . . . . . . . .
an = 0.d1d2d3 · · · dn

. . . . . . . . . . . . . . . . . . .

Since
an+1 − an = 0.000 · · · 0dn+1 ≥ 0,

the sequence is monotone increasing. Since an < 1, the sequence is bounded from above.
Hence {an} converges to a limit a (that is unique):

a = lim
n→∞

an.

This limit is the real number represented by the decimal expansion

a = 0.d1d2d3 · · · dn · · ·

(a) lim
n→∞

xn =
1 +

√
5

2
= l1 (b) lim

n→∞an =
√

2 = l2

Figure 2.5: Illustrating convergence of the sequences {xn} and {an} of Example 2.13
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Example 2.13 Examining convergence of sequences defined by a recurrence formula.

(a) Let {xn} be given by

x1 = 1, xn+1 =
√

1 + xn, n = 1, 2, . . .

The first ten terms of the sequence are shown in Figure 2.5(a). We shall show that

(i) 0 ≤ xn ≤ 2, for all n;

(ii) xn+1 ≥ xn, for all n;

(iii) lim
n→∞

xn =
1 +

√
5

2
.

(i) Clearly, x1 < 2. Assume that xk < 2. Prove that xk+1 < 2. We have

xk+1 =
√

1 + xk <
√

1 + 2 =
√

3 < 2.

Thus, by Mathematical Induction, xn < 2 for all n.
(ii) To prove that xn+1 > xn, proceed by induction, once again. Clearly x2 > x1.

Assume xk+1 > xk. Then

xk+2 =
√

1 + xk+1 >
√

1 + xk = xk+1.

Hence xn+1 > xn for all n ≥ 1.
(iii) By (i) and (ii), {xn} is a monotone increasing sequence which is bounded above.

As such it converges (to its least upper bound). Let the limit be l. Now

x2
n+1 = 1 + xn & lim

n→∞xn+1 = lim
n→∞xn = l =⇒ l2 = 1 + l.

Thus l2 − l − 1 = 0, so that l = (1 ±
√

5)/2. But xn > 0, n ≥ 1, hence l = lim
n→∞

xn ≥ 0.

Hence

l =
1 +

√
5

2
.

(b) Let {an} be given by

a1 = 1, an+1 =
a2

n + 2

2an
, n = 1, 2, . . .

We shall show that {an} converges and evaluate the limit.
Note that

a1 = 1, a2 =
3

2
= 1.5, a3 =

17

12
= 1.4166 . . . , a4 =

577

408
= 1.414215 . . . .

Refer to Figure 2.5(b) to see that {an} converges fairly quickly to
√

2 = 1.41421356 . . . To
prove that {an} is a convergent sequence, we prove that (i) {an} is decreasing for n ≥ 2;
(ii) {an} is bounded below.



2.7 The Number e 29

(i) First observe that an > 0, for n ≥ 1, can be proved easily by induction. Then

an+1 < an ⇐⇒ 1
2

(

an + 2
an

)

< an

⇐⇒ a2
n + 2 < 2a2

n

⇐⇒ 2 < a2
n.

Thus, we need to prove that a2
n > 2 for all n ≥ 2. Now a2

2 > 2. Assume a2
k > 2. We have

a2
k+1 =

1

4

(

ak +
2

ak

)2

=
1

4
a2

k + 1 +
1

a2
k

> 2 ⇐⇒ 1

4
a2

k +
1

a2
k

> 1

⇐⇒ a4
k + 4 > 4a2

k

⇐⇒ a4
k − 4a2

k + 4 > 0

⇐⇒ (a2
k − 2)2 > 0.

Since the last inequality is true, it follows that a2
n > 2 for n ≥ 2. Hence an+1 < an for n ≥ 2,

as required.

(ii) By (i), we have an ≥
√

2, n ≥ 2.

Therefore we conclude that {an} converges. Now we show that it must converge to
√

2.

Suppose lim
n→∞

an = l. Then we have

l = lim
n→∞

an+1 = lim
n→∞

1

2

(

an +
2

an

)

=
1

2



 lim
n→∞

an +
2

lim
n→∞

an



 =
1

2
(l +

2

l
).

Hence

l =
1

2

(

l +
2

l

)

=⇒ l2 = 2 =⇒ l = ±
√

2.

Since an ≥
√

2 for all n > 1, l cannot be negative. Hence

l = lim
n→∞

an =
√

2.

2.7 The Number e

One of the fundamental constants in Mathematical Analysis is the number

e = 2, 7182818284 . . . .

It can be defined as a limit of an increasing sequence, an avenue which we now explore. Let

an = (1 +
1

n
)n, n = 1, 2, . . .

We shall show that (i){an} is strictly increasing; (ii) {an} is bounded above. So that, by
virtue of theorem 2.5, {an} is convergent. Figure 2.6 illustrates the above concepts.
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(a) an = (1 +
1

n
)n, n = 1, 2, . . . , 10. (b) an = (1 +

1

n
)n, n = 11, 12, . . . , 100.

Figure 2.6: The first 100 terms of the sequence an = (1 +
1

n
)n that converges to the

number e.

(i) By the Bernoulli inequality,

(1− 1

n2
)n > 1− 1

n
for n > 1.

We have

(1− 1

n2
)n > 1− 1

n
=⇒ (1 +

1

n
)n(1− 1

n
)n > 1− 1

n

=⇒ (1 +
1

n
)n(1− 1

n
)n−1 > 1,

for all n ∈ NI . Therefore

(

1 +
1

n

)n

>

(

1

1− 1
n

)n−1

=

(

n

n− 1

)n−1

and we get

an = (1 +
1

n
)n > (

n

n− 1
)n−1 = an−1, for all n ∈ NI .

(ii) By the binomial expansion, for n > 2,

an = (1 +
1

n
)n =

n
∑

k=0

(

n

k

)

1n−k(
1

n
)k = 1 + 1 +

n
∑

k=2

(

n

k

)

(
1

n
)k = 2 +

n
∑

k=2

αk.
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The k-th term of the sum
∑

αk can be written as

αk =

(

n

k

)

(
1

n
)k =

n(n− 1)(n− 2) · · · (n− k + 2)(n− k + 1)

k!
(
1

n
)k

=
n

n

n− 1

n

n− 2

n
· · · n− k + 2

n

n− k + 1

n

1

k!

=
1

k!
(1− 1

n
)(1− 2

n
) · · · (1− k − 1

n
),

so that

αk <
1

k!
=

1

1× 2× 3× · · · × k
<

1

1× 2× 2× · · · × 2
=

1

2k−1
,

for k = 2, 3, . . . , n. Therefore

an = 1 + 1 +
n
∑

k=2

αk < 1 + 1 +
1

2
+

1

22
+ · · · + 1

2n−1

= 1 +
1− (1

2)n

1− 1
2

= 1 + 2(1 − (
1

2
)n) < 3,

for all n = 1, 2, . . . .

2.8 Subsequences

Definition 2.6 A sequence {bk} is called a subsequence of the sequence {an} if there
is a strictly increasing sequence of natural numbers {nk},

n1 < n2 < · · · < nk < · · ·

such that

bk = ank
, k = 1, 2, . . .

Example 2.14 Subsequences and their limits.

(a) Let an =

(

1− 1

n

)

sin
nπ

2
.

Consider the subsequences {a2k}, {a4k−1}, and {a4k+1}, k = 1, 2, . . . of the sequence {an}:

a2k =

(

1− 1

2k

)

sin
2kπ

2
=

(

1− 1

2k

)

· 0 = 0, k = 1, 2, . . .

a4k−1 =

(

1− 1

4k − 1

)

sin
(4k − 1)π

2
=

(

1− 1

4k − 1

)

· (−1) =
1

4k − 1
− 1, k = 1, 2, . . .

a4k+1 = 1− 1

4k + 1
, k = 1, 2, . . .
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Note that, as k →∞, a2k → 0; a4k−1 → −1; a4k+1 → 1. Refer to Figure 2.7(a) to see
clearly the three subsequences of {an}.

(b) Consider again the sequence {dn} of Example 2.1:

dn = sin
πn

4
.

Consider the following subsequences of {dn}:

d4k = sin
4k

4
π = sinπ = 0, k = 1, 2, . . .

d8k−1 = sin
8k − 1

4
π = − sin π

4 = −
√

2
2 , k = 1, 2, . . .

d8k−2 = sin
8k − 2

4
π = − sin π

2 = −1, k = 1, 2, . . .

d8k−3 = sin
8k − 3

4
= − sin 3π

4 = −
√

2
2 , k = 1, 2, . . .

d8k+1 = sin
8k + 1

4
= sin π

4 =
√

2
2 , k = 1, 2, . . .

d8k+2 = sin
8k + 2

4
= sin π

2 = 1, k = 1, 2, . . .

d8k+3 = sin
8k + 3

4
= sin 3π

4 =
√

2
2 , k = 1, 2, . . .

(See Figure 2.7(b).)

(a) an = (1− 1

n
) sin

nπ

2
(b) dn = sin

nπ

4
, l1 = −

√
2

2
, l2 =

√
2

2

Figure 2.7: Subsequences.
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Theorem 2.6 lim
n→∞

an = A if and only if every subsequence of {an} converges to A.

Proof.
=⇒ Assume that lim

n→∞
an = A. Let {ank

} be a subsequence of {an}. To show that

lim
n→∞

ank
= A, let ε > 0 be given. We know that there is N such that

n > N =⇒ |an −A| < ε.

Now, n1 < n2 < · · ·, so there is K such that N < nK , by the Archimedean property. Hence,

k > K =⇒ nk > nK =⇒ nk > N =⇒ |ank
−A| < ε,

as required.
⇐= It is enough to observe that every sequence is a subsequence of itself.

(a) ao = a1 = 1, an+1 = an + an−1. (b) rn =
an

an−1
.

Figure 2.8: Fibonacci sequence {an} and the sequence {rn} of ratios of the consecutive
terms of {an}.

Example 2.15 Show that the Fibonacci sequence {an} defined by

ao = a1 = 1, an+1 = an + an−1, n = 1, 2, . . . ,

diverges.

Solution. We shall show that {an} is unbounded above and hence diverges (see Figure
2.8(a)).

Note that

ao = 1, a1 = 1, a2 = 2, a3 = 3, a4 = 5, a5 = 8, a6 = 13, a7 = 21, cdots.

It is natural to expect that an ≥ n for all n. This is certainly true for n = 1, 2. Assume
that ar ≥ r for all r ≤ k, where k ≥ 2. We shall show that ak+1 ≥ k + 1, so that the result
follows by Mathematical Induction. Since k ≥ 2, we have

ak+1 = ak + ak−1 =⇒ ak+1 ≥ k + (k − 1) ≥ 2 + (k − 1) = k + 1.
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Example 2.16

Let {an} be the Fibonacci sequence and consider the sequence {rn} of ratios of the
consecutive terms of {an}:

rn =
an

an−1
, n = 1, 2, . . .

Show that the sequence {rn} converges and find its limit.

Solution. To prove that {rn} converges, we shall consider separately the two subse-
quences {r2k} and {r2k−1} of {rn} and show that they converge to the same limit:

lim
k→∞

r2k = lim
k→∞

r2k−1.

We list the first few terms of {rn}:

1, 2,
3

2
,

5

3
,

8

5
,

13

8
,

21

13
. . .

and claim that

1 ≤ rn ≤ 2, n = 1, 2, . . . (2.19)

We note that

rk+1 =
ak+1

ak
=

ak + ak−1

ak
= 1 +

ak−1

ak
= 1 +

1

rk
.

Hence, assuming that 1 ≤ rk ≤ 2, we conclude that

1 < 1 +
1

2
≤ 1 +

1

rk
= rk+1 ≤ 1 +

1

1
= 2,

and the claim (2.19) is proved by Mathematical Induction.

If n > 3, then

rn = 1 +
1

rn−1
= 1 +

1

1 + 1
rn−2

= 1 +
rn−2

1 + rn−2
. (2.20)

Thus

rn+2 − rn =
rn − rn−2

(1 + rn)(1 + rn−2)
,

which implies that rn+2 − rn and rn − rn−2 have both the same sign. Now

r3 − r1 =
3

2
− 1 > 0 =⇒ r2k+1 − r2k−1 > 0, k = 1, 2, 3, . . .

r4 − r2 =
5

3
− 2 < 0 =⇒ r2k+2 − r2k < 0, k = 1, 2, . . .

Hence {r2k−1} is a monotone increasing sequence, bounded by 2 from above, and as such
converges. Similarly we conclude that {r2k} converges as a monotone decreasing sequence
that is bounded from below (by the number 1).

Let

l1 = lim
k→∞

r2k−1, l2 = lim
k→∞

r2k.
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By (2.20), we have

l1 = 1 +
l1

1 + l1
and l2 = 1 +

l2
1 + l2

,

so that both l1 and l2 satisfy the equation

l2 − l − 1 = 0.

There are two solutions to the above equation: (1 ±
√

5)/2. By (2.19), l1 > 0 and l2 > 0.
Hence

l1 = l2 = lim
n→∞

rn =
1 +

√
5

2
.

(See Figure 2.8(b)).

2.9 Bolzano-Weierstrass Theorem

One of the fundamental properties of bounded sequences of real numbers is expressed by
the following theorem.

Theorem 2.7 Bolzano-Weierstrass theorem

Every bounded sequence has a convergent subsequence.

Lemma 2.1 Every sequence in RI has a monotone subsequence.

Proof. Given a sequence {an} of real numbers, we must constuct a subsequence {ank
}

which is either increasing or decreasing.

Consider the set

SN = {aN+1, aN+2, . . .}
that, given N (N = 1, 2, . . .), contains all terms {an} of the sequence {an} for n > N .

Now, we distinguish two cases.

(i) Every set SN , N = 1, 2, . . ., has a largest element.

(ii) At least one of the sets S1, S2, . . . has no largest element.

In case (i), we can construct a decreasing subsequence {ank
} of {an} as follows:

an1
= max

n>1
an = max S1,

an2
= max

n>n1

an = max Sn1
,

an3
= max

n>n2

an = max Sn2
,

· · · · · · · · · · · · · · · · · · · · ·
ank

= max
n>nk

an = maxSnk

· · · · · · · · · · · · · · · · · · · · ·



36 Chapter 2 — Sequences of Real Numbers

Obviously,
n1 < n2 < n3 < · · ·

and
S1 ⊃ Sn1

⊃ Sn2
⊃ · · · ,

which implies that
maxS1 ≥ max Sn1

≥ max Sn2
≥ · · ·

and the subsequence so constructed is decreasing:

an1
≥ an2

≥ an3
≥ · · · .

If we deal with case (ii), then there exists a natural number M such that the set SM

does not have a largest element. Hence, for any am with m > M there exists an an, such
that n > m and an > am. Then we can construct an increasing subsequence {ank

} = {ck}
as follows.

Let c1 = aM+1 and let c2 be the first term of {an} following c1 such that c2 > c1. Now,
let c3 be the first term of {an} following c2 for which c3 > c2, and so on. Hence

c1 < c2 < c3 < · · · .

We now prove the Bolzano-Weierstrass Theorem.
Proof (of Bolzano-Weierstrass Theorem)

By the above lemma we conclude that the sequence {an} has a monotone subsequence
{ank

}. Since {an} is bounded, so is its subsequence {ank
}. Thus {ank

}, k = 1, 2, . . . is a

monotone sequence that is bounded and consequently {ank
} converges, as k →∞.

2.10 Limit Superior and Limit Inferior

Definition 2.7 A real number x is called a cluster point of the sequence {an} if there
exists a subsequence of {an} that converges to x.

Let C denote the set of all cluster points of a given sequence {an}. By the Bolzano-
Weierstrass theorem, each bounded sequence has at least one convergent subsequence, and
consequently at least one cluster point.

If {an} is a convergent sequence with lim
n→∞ an = a, then C consists of one point only,

the limit of {an}:
C = {a}.

The set of all cluster points of a given sequence can be RI . The reader is asked to find
an example of such a sequence.

Theorem 2.8 Let {an} be bounded and let C denote the set of all cluster points of
{an}. Then C has a supremum and an infimum.
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Lemma 2.2 Suppose that lim
n→∞

an = a.

(i) If an ≥ m, n = 1, 2, . . ., then a ≥ m.

(ii) If an ≤ M, n = 1, 2, . . ., then a ≤ M .

Proof.

(i) We assume that lim
n→∞

an = a and an ≥ m, n = 1, 2, . . . Therefore

∀ε > 0 ∃N (n > N =⇒ a− ε < an < a + ε).

Since an ≥ m, n = 1, 2, . . ., we have m ≤ an < a+ε for n > N . This implies that m < a+ε
and the inequality holds with any value of ε > 0. Thus we conclude that

lim
n→∞

an = a ≥ m.

(ii) We have

an ≤ M =⇒ −an ≥ −M

and (i) is applicable. Thus lim
n→∞

(−an) = −a ≥ −M which implies a ≤ M .

Definition 2.8 Let {an} be a bounded sequence. Denote by C the set of cluster points
of {an}. Then C is a nonempty bounded set. We define:

(i) lim sup
n→∞

an = lim an to be supC;

(ii) lim inf
n→∞

an = lim an to be inf C.

When {an} is unbounded above we define lim sup
n→∞

an = lim an = +∞.

When {an} is unbounded below we define lim inf
n→∞

an = lim an = −∞.

Example 2.17

Let an = (−1)n, n = 1, 2, . . . Then C = {−1, 1} and lim sup
n→∞

an = 1, lim inf
n→∞

an = −1.

Theorem 2.9 Existence of limits
Let {an} be a bounded sequence. {an} converges if and only if

lim sup
n→∞

an = lim inf
n→∞

an.

Proof. The proof is left as an exercise.
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2.11 Cauchy Sequences

If lim
n→∞

an = a, the definition of convergence implies that the terms an of the sequence

{an} get arbitrarily close to the limit a as n gets larger. In this situation the terms of the
sequence must be getting closer to each other.

The above idea allows us to formulate a condition for convergence that does not explicitly
involve the limit a of the sequence.

Definition 2.9 A sequence {an} is a Cauchy sequence if, for every ε > 0 there
exists a natural number N such that

|am − an| < ε for m,n > N. (2.21)

Theorem 2.10 Every convergent sequence is a Cauchy sequence.

Proof. Let lim
n→∞an = a. Then

∀ε1 > 0 ∃N (n, m > N =⇒ |an − a| < ε1 & |am − a| < ε1). (2.22)

We are to show that the Cauchy condition (2.21) is satisfied.
Let ε > 0 be given and let ε1 in (2.22) be ε1 = ε/2. We have

|am − an| = |(am − a)− (an − a)| ≤ |am − a|+ |an − a| < ε

2
+

ε

2
= ε,

provided n > N and m > N . But this shows that (2.21) holds.

Example 2.18 Verifying that a sequence is a Cauchy sequence.

(a) We shall show that {an} =

{

n

n + 1

}

is a Cauchy sequence.

Let n > m. We have

|am − an| = | m

m + 1
− n

n + 1
| = | m− n

(m + 1)(n + 1)
| = |n−m

n + 1

1

m + 1
| ≤ 1

m + 1
≤ 1

m
.

Therefore

∀ε > 0 ∃N = [
1

ε
] (m,n > N =⇒ |am − an| ≤

1

m
< ε).

(b) We shall show that the sequence {bn} defined by the recursive formula

b1 = α, b2 = β, bn+2 =
1

2
(bn+1 + bn), n = 1, 2, . . .

is a Cauchy sequence.

We have

|bn+2 − bn+1| = |1
2
(bn+1 + bn)− bn+1| =

1

2
|(bn+1 − bn)|

=
1

22
|bn − bn−1| =

1

23
|bn−1 − bn−2| = · · · = 1

2n
|α− β|.
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Hence, if n > m,

|bn − bm| = |(bn − bn−1) + (bn−1 − bn−2) + · · ·+ (bm+1 − bm)|

≤ |bn − bn−1|+ |bn−1 − bn−2|+ · · · + |bm+1 − bm|

≤
(

1

2n−2
+

1

2n−3
+ · · ·+ 1

2m−1

)

|β − α|

≤ |β − α|
2m−1

(

1 +
1

2
+

1

22
+

1

23
+ · · ·+ 1

2n−m−1

)

=
|β − α|
2m−1

1− (1
2 )n−m

1− 1
2

=
|β − α|
2m−2

(

1− (1/2)n−m)

≤ |β − α|
2m−2

.

Let ε > 0 be given. There exists N such that
|β − α|
2N−2

< ε. Then, for any n > N and

m > N ,

|bn − bm| ≤
|β − α|
2N−2

< ε.

Thus {bn} is a Cauchy sequence.

Now we shall prove that the condition

∀ε > 0 ∃N ∈ NI (m,n > N =⇒ |am − an| < ε). (2.23)

which defines a Cauchy sequence is a sufficient condition for convergence of the sequence
{an}.

Theorem 2.11 Cauchy condition of convergence

A sequence {an} is convergent if {an} is a Cauchy sequence.

Proof. We assume that the condition (2.23) is satisfied and prove that the sequence
{an} converges. Since (2.23) holds for any ε > 0, we can use ε = 1 to conclude that there
exists N such that |am − an| < 1 for all n > N and m > N . In particular,

|am − aN+1| < 1 for all m > N,

which implies that
aN+1 − 1 < am < aN+1 + 1, m > N.

Therefore the set
S = {am | m > N},

that contains all but a finite number of terms of {an}, is a bounded. This implies that the
sequence {an} is bounded.
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Clearly,
M ′ ≤ an ≤ M, for all n ∈ NI ,

where
M ′ = min(a1, a2, . . . , aN , aN+1 − 1)

and
M = max(a1, a2, . . . , aN , aN+1 + 1).

By the Bolzano-Weierstrass Theorem, {an} contains a convergent subsequence {ank
}. Let

lim
n→∞

ank
= a.

Then
∀ε1 > 0 ∃N1 (nk > N1 =⇒ |ank

− a| < ε1).

It is assumed that {an} is a Cauchy sequence, so that

∀ε2 > 0 ∃N2 (m,n > N2 =⇒ |am − an| < ε2).

Let N = max(N1, N2). Let ε1 = ε2 = ε/2. Then, for n > N and nk > N , we have

|an − a| = |(an − ank
) + (ank

− a)| ≤ |an − ank
|+ |ank

− a| < ε

2
+

ε

2
= ε,

which implies that {an} converges and its limit is a.

2.12 Infinite Series

Definition 2.10 Let {ak}, k = 0, 1, 2, . . . , be a given sequence of real numbers. Con-
sider the sequence {Sn} defined as the sum of the first n + 1 terms of {ak}:

Sn = ao + a1 + a2 + · · ·+ an =
n
∑

k=0

ak. (2.24)

If {Sn} converges to the limit S,
lim

n→∞
Sn = S,

then we define
∞
∑

k=0

ak to be S:

S =
∞
∑

k=0

ak, (2.25)

and call S the sum of the infinite series (2.25). The series is then said to be convergent;
otherwise it is said to be divergent. The sum Sn defined by (2.24) is called the n-th partial
sum of the infinite series (2.25).

Note: In section 2.1 we defined a sequence as a function with domain NI = {1, 2, . . .}.
Now, dealing with infinite series, we find it convenient to begin a sequence {ak} or {an} with
ao rather than a1. Thus {ak} stands either for {ak} = {ao, a1, . . . , ak, . . .} or {a1, a2, . . . , ak, . . .},
depending on the context. Similarly, we use {Sn} to denote either {So, S1, . . . , Sn, . . .} or
{S1, S2, . . . , Sn, . . .}.
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The following theorem gives us a necessary condition for convergence of the infinite

series
∞
∑

k=0

ak.

Theorem 2.12 If
∞
∑

k=0

ak is convergent then lim
n→∞an = 0.

Proof. Suppose that
∞
∑

n=0

an = S, so that lim
n→∞

Sn = S and lim
n→∞

Sn−1 = S. Since

Sn − Sn−1 = an, we have

lim
n→∞

an = lim
n→∞

(Sn − Sn−1) = lim
n→∞

Sn − lim
n→∞

Sn−1 = S − S = 0.

We can see, therefore, that
lim

n→∞
an = 0 (2.26)

is a necessary condition for convergence of the infinite series
∞
∑

n=0

an.

Example 2.19
Show that the infinite series

∞
∑

n=0

rn,

where |r| ≥ 1, is divergent.

Solution. Recall that lim
n→∞

rn = ∞, when |r| > 1 and lim
n→∞

rn = 1, when |r| = 1.

Hence
lim

n→∞an = lim
n→∞ rn 6= 0

and the necessary condition for convergence is not satisfied. Consequently,
∑

rn is divergent,
when |r| ≥ 1.

Example 2.20 Find the sum of the infinite series
∞
∑

n=0

rn, |r| < 1.

Solution. We have

Sn = 1+ r + r2 + · · ·+ rn

rSn = r + r2 + · · ·+ rn + rn+1,

and Sn − rSn = 1− rn+1 which gives

Sn =
1− rn+1

1− r
.

Since |r| < 1,

lim
n→∞

Sn = lim
n→∞

1− rn+1

1− r
=

1− r lim
n→∞

rn

1− r
=

1

1− r
.
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(a) r = .5, r = .25 (b) r = −.5, r = −.25

Figure 2.9: Partial sums Sn of the series
∞
∑

n=0

rn for different values of r.

Hence we have obtained the required result:

∞
∑

n=0

rn =
1

1− r
, |r| < 1. (2.27)

Refer to Figure 2.9 to see the behaviour of the sequence Sn for selected values of r.

2.13 Absolute Convergence of Infinite Series

Consider an infinite series
∞
∑

k=0

|ak|. The sequence of its partial sums

Sn = |ao|+ |a1|+ |a2|+ · · ·+ |an| (2.28)

is clearly increasing. If {Sn} converges, then {Sn} must be bounded. Conversely, if {Sn}
is bounded, then, being monotone increasing, {Sn} converges. Therefore the following
theorem holds.

Theorem 2.13 The infinite series
∞
∑

n=0

|an| converges if and only if its sequence of par-

tial sums (2.28) is bounded.



2.13 Absolute Convergence of Infinite Series 43

Series
∞
∑

n=1

an for which
∞
∑

n=1

|an| is convergent are very important in the theory of series.

Definition 2.11 A series
∞
∑

n=1

an such that
∞
∑

n=1

|an| is convergent is called

absolutely convergent.

Theorem 2.14 Absolutely convergent series are convergent.

Proof. Let

Sn =
n
∑

k=1

ak, Tn =
n
∑

k=1

|ak|.

We know that {Tn} is a Cauchy sequence. Now, if m > n, we have

|Tn − Tm| = |an+1|+ · · · + |am|

|Sn − Sm| = |an+1 + · · · + am| ≤ |an+1|+ · · · + |am|.

Thus, for all n, m, we have
|Sn − Sm| ≤ |Tn − Tm|.

Hence {Sn} is a Cauchy sequence, so that lim
n→∞

Sn exists.

The theorem we give next is a simple test for convergence of infinite series, if some
convergent series are available for comparison.

Theorem 2.15 The Comparison Test

Suppose that
0 ≤ ak ≤ bk, k = 0, 1, 2, . . .

Then, if
∞
∑

k=0

bk converges, so does
∞
∑

k=0

ak.

Proof. Let Sn and Tn denote the n-th partial sums of
∞
∑

k=0

ak and
∞
∑

k=0

bk, respectively:

Sn = ao + a1 + a2 + · · ·+ an,

Tn = bo + b1 + b2 + · · ·+ bn.

Then
0 ≤ Sn ≤ Tn, n = 1, 2, . . . (2.29)

By hypothesis,
∞
∑

n=0

bn converges, so {Tn} is bounded and (2.29) implies that {Sn} is

also bounded. Hence, {Sn} is nondecreasing and bounded and, by Theorem 2.13, {Sn}
converges. This completes the proof.
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Example 2.21 Show that the series
∞
∑

n=1

(−1)n+1

n(n + 1)
converges.

Solution. We have
∣

∣

∣

∣

∣

(−1)n+1

n(n + 1)

∣

∣

∣

∣

∣

=
1

n(n + 1)
.

Also
∞
∑

n=1

1

n(n + 1)
converges, since

1

n(n + 1)
=

1

n
− 1

n + 1
,

so that

Sn =

(

1− 1

2

)

+

(

1

2
− 1

3

)

+ · · ·+
(

1

n
− 1

n + 1

)

= 1− 1

n + 1
→ 1, as n →∞.

Thus, the given series converges.

2.14 Exercises

2.1 Use the Cauchy definition of the limit of a sequence to show the following.

(i) lim
n→∞

2n− 3

3n + 1
=

2

3
(ii) lim

n→∞
2n2 + 1

n2 + 3n
= 2 (iii) lim

n→∞
1 + 2 + · · ·+ n

n2
=

1

2

2.2 Show that
(i) lim

n→∞
n
√

5 = 1 (ii) lim
n→∞

n
√

n2 = 1.

2.3 Show that

(i) lim
n→∞

√
n + 1−√n = 0

(ii) lim
n→∞

n
√

5n + 7n = 7

(iii) lim
n→∞

√

αn + βn = max(α, β), where α ≥ 0, β ≥ 0.

2.4 If {an} → a as n →∞ then prove that |an| → |a| as n →∞.

2.5 Let an > 0, n = 1, 2, . . .. Prove that an → 0 if and only if 1
an
→∞.

2.6 (a) Suppose {an} increases and is unbounded above. Prove that {an} → +∞ as
n →∞.

(b) Suppose {an} decreases and is unbounded below. Prove that {an} → −∞ as
n →∞.
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2.7 Let xn be given by

x1 =
√

2, xn+1 =
√

2 +
√

xn, n ≥ 1.

Show that {xn} converges and determine its limit.

2.8 Suppose that 0 < α < 1 and that {an} is a sequence which satisfies the condition

|an+1 − an| ≤ αn, n = 1, 2, . . .

Prove that {an} is a Cauchy sequence and hence converges.

2.9 Let α > 0. Let x1 >
√

α and define {xn} by

xn+1 =
1

2

(

xn +
α

xn

)

, n ≥ 2.

(a) Show that 0 < xn+1 < xn for n ≥ 2.

(b) Deduce that lim
n→∞

an exists and equals
√

α.

(c) Put εn = xn −
√

α. Show that

εn+1 =
ε2
n

2xn
<

ε2
n

2
√

α
, so that εn+1 < β

(

ε1

β

)2n

, n = 1, 2, . . .

(d) If α = 3 and x1 = 2, show that ε1/β < 1/10, hence ε5 < 4 · 10−16, ε6 < 4 · 10−32.

What is the significance of these last two inequalities?

How many iterates are required to calculate
√

3 to 5 decimal places? Give
√

3 correct
to 5 decimal places.

2.10 For each of the following sequences determine lim inf an and lim supan.

(i) an = 2− 1

n
(ii) an =

1 + (−1)n

3
(iii) an = 2 + (−1)n n

2n + 1

(iv) an = (−1)n +
1

n
(v) an = (−1)n n2

n + 1
(vi) an = 3 +

(−1)n

n

2.11 Let an = (−1)n
(

1 +
1

n

)

, n = 1, 2, . . . . Determine

lim sup
n→∞

an and lim inf
n→∞

an.

Show that these are not the same as the numbers

sup
n≥1

an and inf
n≥1

an.

2.12 Show that {an} converges if and only if lim inf an = lim sup an.
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2.13 Prove the following lemma.

Lemma 2.3 Suppose that lim
n→∞

xn = α > 0 and lim
n→∞

sup yn = β. Then

lim
n→∞

sup (xnyn) = αβ.

2.14 Show that lim
n→∞

an = a if and only if every subsequence {ank
} of {an} has a subse-

quence which converges to a.



Chapter 3

Real-Valued Functions I

3.1 Bounded Functions

Definition 3.1 A function f defined on a set I ⊂ RI is called bounded if there is a
real number M such that

|f(x)| ≤ M for every x ∈ I.

Example 3.1 Show that the function

f(x) = 2x2 + 3

is unbounded on RI but is bounded on each bounded interval I ⊂ RI .

Solution.
Suppose that f(x) is bounded on RI . Then there exists a real number M > 0 such that

|f(x)| = |2x2 + 3| < M for every x ∈ RI .

Now, let x = M + 1. Then

|f(x)| = |f(M + 1)| = |2(M + 1)2 + 3| > 2(M + 1)2 > (M + 1)2 > M + 1 > M.

Hence, there exists x ∈ RI , namely x = M + 1, for which |f(x)| > M . This contradicts our
assumption that the function f(x) is bounded by the number M .

If we restrict the domain of the function f(x) to a bounded interval I, say I = [a, b],
then clearly f(x) is bounded on I:

∀x ∈ I |f(x)| = |2x2 + 3| ≤ max(2a2 + 3, 2b2 + 3).

Theorem 3.1 If f and g are each bounded on I ⊂ RI and k is a real number then the
functions

f + g, kf, and f · g
are each bounded on I.

47
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Proof. The functions f and g are assumed to be bounded, so that there exist real
numbers M1 and M2 such that

|f(x)| ≤ M1 and |g(x)| ≤ M2 for every x ∈ I.

Therefore, for every x ∈ I, we have

(i) |(f + g)(x)| = |f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ M1 + M2,

(ii) |(kf)(x)| = |kf(x)| = |k||f(x)| ≤ |k|M1,

(iii) |(f · g)(x)| = |f(x)g(x)| = |f(x)||g(x)| ≤ M1 ·M2.

3.2 Supremum and Infimum of a Bounded Function

If f is bounded above on the set S, then by the completeness property of RI , we conclude
that f has a least upper bound. This least upper bound is called the supremum of f on
S and is denoted by

sup
x∈S

f(x), also sup{f(x) | x ∈ S}.

Similarly, a function f that is bounded below has a greatest lower bound, which is called
the infimum of f on S and is denoted by

inf
x∈S

f(x), also inf{f(x) | x ∈ S}.

Thus, M = sup
x∈S

f(x) if and only if

(i) M is an upper bound of f on S,

(ii) M is the smallest lower bound of f on S.

Similarly, m = inf
x∈S

f(x) if and only if

(i) m is a lower bound of f on S,

(ii) m is the greatest lower bound of f on S.

Formally, we have the following definition.

Definition 3.2

M = sup
x∈S

f(x) ⇐⇒ (i) ∀x ∈ S f(x) ≤ M,

(ii) ∀ε > 0 ∃x1 ∈ S f(x1) > M − ε.

m = inf
x∈S

f(x) ⇐⇒ (i) ∀x ∈ S f(x) ≥ m,

(ii) ∀ε > 0 ∃x1 ∈ S f(x1) < m + ε.
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Example 3.2 Find infimum and supremum of the function f(x) =
1

x2
on the set S = [1, 2].

Solution. Evidently,

1 ≤ x ≤ 2 =⇒ 1

4
≤ 1

x2
≤ 1.

Thus, any number y1 ≤ 1
4 is a lower bound of f on the set S and any number y2 ≥ 1 is an

upper bound of f on S. Hence

inf
x∈S

f(x) = inf
1≤x≤2

(

1

x2

)

=
1

4
,

sup
x∈S

f(x) = sup
1≤x≤2

(

1

x2

)

= 1.

3.3 Minimum and Maximum of a Bounded Function

As we have seen above, any bounded function f on a given set S has an infimum and
supremum. If m = infx∈S f(x) belongs to the range of f , that is if there exists x1 ∈ S such
that m = f(x1), then m is the minimum value of f on S. In this case we say that f attains
its minimum at the point x = x1 and write

m = f(x1) = min
x∈S

f(x).

Analogously, if there exists x2 ∈ S such that M = supx∈S f(x) = f(x2), then we say that f
attains is maximum at the point x = x2 and write

M = f(x2) = max
x∈S

f(x).

If f(x1) = minx∈S f(x) and f(x2) = maxx∈S f(x), then, for all x ∈ S, we have

f(x1) ≤ f(x) ≤ f(x2).

We realize that a bounded function on S has exactly one maximum value on S, but there
could be several different points at which f(x) attains its maximum. A similar comment
applies to infima.

Example 3.3 Relating the concepts of inf f(x) and sup f(x) to the concepts of min f(x)
and max f(x). — A bounded function does not necessarily attain a minimum or maximum.

(a) Consider the function f(x) =
1

x2
on a finite closed interval [a, b] that does not contain

the point x = 0. Refer to Figure 3.1(a). Clearly,

inf
[a,b]

f(x) = min
[a,b]

f(x) = f(b),

sup
[a,b]

f(x) = max
[a,b]

f(x) = f(a).
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(b) Consider the function

f(x) =
x

1 + x2
, −∞ < x < ∞

and refer to Figure 3.1(b).
The function maps the domain S = (−∞,∞) onto the interval [− 1

2 , 1
2 ]. Thus

m = inf
x∈S

f(x) = min
x∈S

f(x) = f(−1) = −1

2

and

M = sup
x∈S

f(x) = max
x∈S

f(x) = f(1) =
1

2
.

Hence, f attains its minimum m = − 1
2 at the point x = −1 and its maximum M = 1

2 at
the point x = 1.

(c) Consider the function

f(x) = arctan x, −∞ < x < ∞

and refer to Figure 3.1(c). Clearly,

inf f(x) = −π

2
, sup f(x) =

π

2
,

but neither −π/2 nor π/2 is ever attained.

(a)
f(x) =

1

x2

infx∈[a,b] = f(b)

supx∈[a,b] = f(a)

(b)

f(x) =
x

1 + x2

infx∈(−∞,∞) = −1
2

supx∈(−∞,∞) = 1
2

(c)

f(x) = arctan x
infx∈(−∞,∞) = −π

2
supx∈(−∞,∞) = π

2

Figure 3.1: Illustrating maxima, minima, sup, and inf.
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3.4 Definition of a Monotone Function

Definition 3.3 Let f be a function defined on a set A ⊆ RI : f : A 7→ RI .

(a) f is said to be increasing on A if

(x1, x2 ∈ A & x1 ≤ x2) =⇒ f(x1) ≤ f(x2).

(b) f is said to be strictly increasing on A if

(x1, x2 ∈ A & x1 < x2) =⇒ f(x1) < f(x2).

(c) f is said to be decreasing on A if

(x1, x2 ∈ A & x1 ≤ x2) =⇒ f(x1) ≥ f(x2).

(d) f is said to be strictly decreasing on A if

(x1, x2 ∈ A & x1 < x2) =⇒ f(x1) > f(x2).

(e) If f is either increasing or decreasing on A, then f is said to be monotone on A.

(f) If f is either strictly increasing or strictly decreasing on A, then f is said be strictly
monotone on A.

3.5 The Limit of a Function

It is important to investigate the behaviour of a function f(x) for values of x close to, but
not equal to, xo, where xo is a given point at which f is not necessarily defined. We shall
require some preliminary definitions before formulating the concept of limit for functions.

Definition 3.4 .

(i) The open interval

(xo − δ, xo + δ) = {x| xo − δ < x < xo + δ} = {x| |x− xo| < δ}
is called a δ - neighbourhood of the point xo.

(ii) The set
(xo − δ, xo) ∪ (xo, xo + δ) = {x| 0 < |x− xo| < δ}

is called a deleted δ - neighbourhood of the point xo.

Consider a function f(x) defined on an interval I ⊆ RI , except possibly for some point
xo ∈ I. We say that f(x) tends or converges to the limit l, as x tends to xo (f(x) has a
limit l at xo) and write

lim
x→xo

f(x) = l

or
f(x) −→ l as x −→ xo,

if for any ε > 0 we can find a δ > 0 such that |f(x) − l| < ε for all values of x in the
δ-neighbourhood of the point xo.
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3.5.1 Cauchy Definition of Limit of a Function

Definition 3.5

lim
x→xo

f(x) = l ⇐⇒ ∀ε > 0 ∃δ > 0 (0 < |x− xo| < δ =⇒ |f(x)− l| < ε).

Intuitively, the function f(x) converges to the limit l, as x → xo, if we can make f(x) as

close as we like to l by choosing x sufficiently close to, but not necessarily equal to, xo.
In order to prove that f(x) has limit l as x → xo, we are required to find, for any given

value of ε > 0, a deleted δ neighbourhood of the point xo on which |f(x)− l| < ε.

Example 3.4 Applying the Cauchy definition to show that lim
x→xo

f(x) = l.

(a) lim
x→3

x2 − 9

3(x− 3)
= 2.

Let ε be given. We want to find a δ > 0 such that

0 < |x− 3| < δ =⇒ |f(x)− l| < ε, (3.1)

where l = 2 and

f(x) =
x2 − 9

3(x− 3)
.

Now

|f(x)− l| = | x2 − 9

3(x − 3)
− 2| = |x + 3

3
− 2| = 1

3
|x− 3|

and |f(x)− l| will be less than ε if |x− 3| < 3ε. Hence, by choosing δ = 3ε we ensure that
(3.1) holds. This proves that lim

x→3
f(x) = 2.

(b) lim
x→−4

(2x2 + 3x− 4) = 16.

Let ε be given. We want to find a δ > 0 such that

0 < |x− (−4)| = |x + 4| < δ =⇒ |f(x)− l| < ε, (3.2)

where l = 16 and f(x) = 2x2 + 3x− 4. We have

|f(x)− l| = |(2x2 + 3x− 4)− 16| = |2x2 + 3x− 20| = |x + 4||2x − 5|.

Thus
|x + 4| < δ =⇒ |f(x)− l| < |2x− 5|δ.
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Now, the condition |x + 4| < δ imposes some restrictions on the value of |2x− 5|. Note
that, once a suitable δ has been found, any positive number c < δ would also be appropriate.
We can thus assume that δ ≤ 1. Then

|x + 4| < δ =⇒ |x + 4| < 1

=⇒ −1 < x + 4 < 1

=⇒ −5 < x < −3

=⇒ −15 < 2x− 5 < −11

=⇒ −15 < 2x− 5 < 15

⇐⇒ |2x− 5| < 15,

and we have

|f(x)− l| < |2x− 5| δ < 15 δ < ε provided that δ ≤ 1 and δ ≤ ε

15
.

Choose
δ = min(1,

ε

15
),

so that

δ =







ε

15
if ε < 15

1 if ε ≥ 15

Then
|f(x)− l| < 15δ ≤ ε,

since ε < 15 =⇒ 15δ = ε and ε ≥ 15 =⇒ 15δ = 15 ≤ ε.

Therefore, we have shown that, given any ε > 0, there exists δ, namely:

δ = min(1,
ε

15
),

such that (3.2) is satisfied.

Note that the assumption δ ≤ 1, we made above, is arbitrary. In fact we can assume
that δ ≤ c, where c is any positive number. Consequently, there are many other possibilities
for δ. One of these is

δ = min(
1

2
,

ε

14
),

since for δ ≤ 1
2 , we have

|x + 4| < 1

2
=⇒ −1

2
< x + 4 <

1

2

=⇒ −9

2
< x < −7

2
=⇒ −14 < 2x− 5 < −12

=⇒ −14 < 2x− 5 < 14

⇐⇒ |2x− 5| < 14.
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Therefore, given any ε > 0,

δ = min(
1

2
,

ε

14
),

also satisfies (3.2), since

|x + 4| < δ =⇒ |f(x)− l| = |x + 4||2x − 5| < 14δ ≤ ε.

3.5.2 Sequential (Heine) Definition of Limit of a Function

Definition 3.6 A function f(x) defined on an interval I ⊆ RI , except possibly for
some point xo ∈ I, has a limit l at xo if and only if for every sequence {xn} of points of I
such that xn 6= xo, n = 1, 2, . . ., and lim

n→∞
xn = xo, it is true that

lim
n→∞

f(xn) = l,

that is,

∀{xn} ⊂ I (xn 6= xo, n = 1, 2, . . . , & lim
n→∞

xn = xo) =⇒ lim
n→∞

f(xn) = l.

Theorem 3.2 The definitions of limit of Cauchy and Heine are equivalent.

Proof.
Assume that the function f(x) satisfies the conditions of Definition 3.5, so that

∀ε > 0 ∃δ > 0 (0 < |x− xo| < δ =⇒ |f(x)− f(xo)| < ε) . (3.3)

Let ε > 0 be given and consider a sequence {xn}, (xn 6= xo, n = 1, 2, . . .) of points of I
that converges to xo, so that

∀ε1 > 0 ∃N1 ∈ NI (n > N1 =⇒ 0 < |xn − xo| < ε1).

Since the above statement holds for every ε1 > 0, it does so for ε1 = δ. Hence there is N1

such that
0 < |xn − xo| < δ for n > N1

and, by (3.3), we conclude that

|f(xn)− l| < ε for n > N1.

Therefore, for every ε > 0, there exists N = N1, such that

n > N =⇒ |f(xn)− l| < ε,

which means that the sequence {f(xn)} converges to the limit l.
Conversely, assume that the function f(x) satisfies the conditions of Definition 3.6, so

that for each sequence {xn} (xn 6= xo, n = 1, 2, . . .) of points of I that converges to xo, as
n →∞, the corresponding sequence {f(xn)} converges to l , as n →∞:

∀{xn} ∈ I (xn 6= xo, n = 1, 2, . . . & lim
n→∞

xn = xo) =⇒ lim
n→∞

f(xn) = l. (3.4)
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Now we suppose that it is not true that (3.3) holds. Hence, there is ε = εo such that for
each value of δ > 0 we can find x, x 6= xo, satisfying

0 < |x− xo| < δ and |f(x)− l| ≥ εo.

In particular, let δ =
1

n
, n ∈ NI . Then we can find an xn, (n = 1, 2, . . .) satisfying both

inequalities:

0 < |xn − xo| <
1

n
and |f(xn)− l| ≥ εo.

The sequence {xn} so constructed converges to xo. Therefore, there exists a sequence,
{xn}, of points of I such that xn 6= xo, n = 1, 2, . . . , with lim

n→∞
xn = xo, and there exists

an ε = εo > 0 such that |f(xn)− l| ≥ ε for all n ∈ NI which implies that lim
n→∞ f(xn) 6= l.

This contradicts our assumption (3.4).

Example 3.5 Prove that lim
x→0

f(x) = lim
x→0

f(x3).

Solution.
Let lim

x→0
f(x) = L. Then

∀ε > 0 ∃δ > 0 ∀x ∈ I (0 < |x| < δ =⇒ |f(x)− L| < ε) .

Now, if 0 < |x| < min(1, δ) then

(

0 < |x3| < δ
)

=⇒ |f(x3)− L| < ε,

and we conclude that lim
x→0

f(x3) = L.

On the other hand, assume that lim
x→0

f(x3) = K. Then

∀ε > 0 ∃δ > 0 ∀x ∈ I
(

0 < |x| < δ =⇒ |f(x3)−K| < ε
)

.

If 0 < |x| < δ3 then 0 < | 3
√

x| < δ, so

|f [( 3
√

x)3]−K| < ε, hence |f(x)−K| < ε.

Hence, lim
x→0

f(x) = K.

Example 3.6 An example of a function where lim
x→0

f(x2) exists, but lim
x→0

f(x) does not.

Solution.
Let

f(x) =

{

−2 for x < 0
2 for x ≥ 0

Then f(x2) = 2, for −∞ < x < ∞ and lim
x→0

f(x2) = 2 but lim
x→0

f(x) does not exist.
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3.6 Limits from the Left and Limits from the Right

Suppose that f(x) is defined on an interval (a, xo) or (xo, b), but not necessarily defined
in a neighbourhood of the point xo. Then the concept of limit of f(x), as x → xo, defined
earlier is not applicable. We can consider, however, one-sided limits as defined below. If,
for example, f is defined on an open interval (a, b), then we would be interested in the
behaviour of f(x), as x approaches b from the left or as x approaches a from the right.

Definition 3.7 .
(i) We say that lim

x→a+
f(x) = A if

∀ε > 0 ∃δ > 0 ∀x (a < x < a + δ =⇒ |f(x)−A| < ε).

(ii) We say that lim
x→b−

f(x) = B if

∀ε > 0 ∃δ > 0 ∀x (b− δ < x < b =⇒ |f(x)−B| < ε).

Theorem 3.3 Let f(x) be defined on an interval I except possibly at a ∈ I. lim
x→a

f(x)

exists if and only if
lim

x→a+
f(x) = lim

x→a−
f(x).

Proof.
Suppose that lim

x→a
f(x) exists and lim

x→a
f(x) = K. Then

∀ε > 0 ∃δ > 0 ∀x ∈ I (a− δ < x < a + δ =⇒ |f(x)−K| < ε).

This implies that ∀ε > 0 ∃δ > 0 ∀x ∈ I

a < x < a + δ =⇒ |f(x)−K| < ε and a− δ < x < a =⇒ |f(x)−K| < ε,

which means that lim
x→a+

f(x) and lim
x→a−

f(x) exist and lim
x→a+

f(x) = lim
x→a−

f(x) = K.

On the other hand, assume that

lim
x→a+

f(x) = lim
x→a−

f(x) = L.

Then
∀ε1 > 0 ∃δ1 > 0 ∀x ∈ I (a < x < a + δ1 =⇒ |f(x)− L| < ε1)

and
∀ε2 > 0 ∃δ2 > 0 ∀x ∈ I (a− δ2 < x < a =⇒ |f(x)− L| < ε2).

Let ε = ε1 = ε2 > 0 be given and let δ = min(δ1, δ2). If 0 < |x − a| < δ, then either
a− δ2 ≤ a− δ < x < a or else a < x < a+δ ≤ a+δ1. In both cases, we have |f(x)−L| < ε.
Thus lim

x→a
f(x) = L.



3.6 Limits from the Left and Limits from the Right 57

Theorem 3.4 Let f be a function defined on the interval I = [a, b] ⊂ RI and let c be
an interior point of I, a < c < b.

(a) If f is increasing on I, then

(i) lim
x→c−

f(x) = sup
a≤x<c

f(x),

(ii) lim
x→c+

f(x) = inf
c<x≤b

f(x).

(b) If f is decreasing on I, then

(i) lim
x→c−

f(x) = inf
a≤x<c

f(x),

(ii) lim
x→c+

f(x) = sup
c<x≤b

f(x).

Proof. We shall give a detailed proof for the statement (i) of case (a). The proofs of
the remaining statements are similar.

Since f is increasing on I, we have

(x ∈ I & x < c) =⇒ f(x) ≤ f(c).

Let L be the supremum of the set

S = {f(x) | x ∈ I, x < c},

which is clearly bounded above by f(c).
Given ε > 0, there exists yε ∈ I, yε < c, such that L − ε < f(yε) ≤ L, since L is the

smallest upper bound of S.
Let δ = c− yε and consider any y in the interval (yε, c). Since f is increasing, we have

0 < c− y < δ =⇒ yε < y < c =⇒ L− ε < f(yε) ≤ f(y) ≤ L.

Therefore
0 < c− y < δ =⇒ |f(y)− L| < ε.

Since ε > 0 is arbitrary, we conclude that lim
x→c−

f(x) = L, as required.
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3.7 Properties of Limits of Functions

Theorem 3.5 Let f(x) and g(x) be defined on an interval I except possibly at a ∈ I.
Suppose that lim

x→a
f(x) = L and lim

x→a
g(x) = K. Then:

(i) lim
x→a

(αf(x)) = αL;

(ii) lim
x→a

(f(x) + g(x)) = L + K;

(iii) lim
x→a

f(x)g(x) = LK;

(iv) lim
x→a

1

g(x)
=

1

K
, provided that K 6= 0;

(v) lim
x→a

f(x)

g(x)
=

L

K
, provided that K 6= 0.

Proof. By assumption, lim
x→a

f(x) = L and lim
x→a

g(x) = K, so that

∀ε1 > 0 ∃δ1 > 0 ∀x (0 < |x− a| < δ1 =⇒ |f(x)− L| < ε1), (3.5)

and

∀ε2 > 0 ∃δ2 > 0 ∀x (0 < |x− a| < δ2 =⇒ |g(x)−K| < ε2). (3.6)

(i) We have

|αf(x)− αL| = |α||f(x) − L|, x ∈ I.

Assume α 6= 0. Let ε > 0 be chosen. By (3.5), given any ε1 = ε
|α| , there exists δ1 > 0 such

that

0 < |x− a| < δ1 =⇒ |f(x)− L| < ε1.

Thus

0 < |x− a| < δ1 =⇒ |αf(x)− αL| = |α||f(x)− L| < |α|ε1 = |α|| ε

|α| = ε.

This completes the proof of (i), when α 6= 0. When α = 0, there is nothing to prove.

(ii) Let ε > 0 be given. Let ε1 = ε2 = ε
2 and let δ = min(δ1, δ2). Then, for x satisfying

the inequality 0 < |x− a| < δ, both (3.5) and (3.6) hold and we get

|f(x)+ g(x)− (L+K)| = |(f(x)−L)+ (g(x)−K)| ≤ |f(x)−L|+ |g(x)−K| < ε1 + ε2 = ε.

Hence, we have proved that

∀ε > 0 ∃δ = min(δ1, δ2) > 0 ∀x (0 < |x− a| < δ =⇒ |f(x) + g(x)− (L + K)| < ε),

which means that lim
x→a

(f(x) + g(x)) = L + K.
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(iii) We have

|f(x)g(x)− LK| = |f(x)g(x) − Lg(x) + Lg(x)− LK|

≤ |f(x)g(x) − Lg(x)| + |Lg(x) − LK|

= |g(x)||f(x) − L|+ |L||g(x) −K|.

Now, let ε2 = 1 in (3.6). Then there exists δ2 = δ20 such that

0 < |x− a| < δ20 =⇒ |g(x) −K| < 1

=⇒ |g(x)| = |g(x) −K + K| ≤ |g(x)−K|+ |K| < 1 + |K|.

Let ε > 0 be given and let

ε1 =
ε

2(1 + |K|) and ε2 =
ε

2(1 + |L|) .

Then there exist δ1 = δ11 > 0 and δ2 = δ21 > 0 such that

|f(x)g(x)− LK| ≤ |g(x)||f(x) − L|+ |L||g(x) −K|

< (1 + |K|)ε1 + |L|ε2

= (1 + |K|) ε

2(1 + |K|) + L
ε

2(1 + |L|)

=
ε

2
+

ε

2

L

|L|+ 1
≤ ε

2
+

ε

2
= ε

for all x satisfying the inequality

0 < |x− a| < δ, where δ = min(δ20, δ11, δ21).

This completes the proof of (iii).
(iv) We have

∣

∣

∣

∣

1

g(x)
− 1

K

∣

∣

∣

∣

=
|g(x) −K|
|K||g(x)| .

Let ε2 = 1
2 |K|. By (3.6), there exists δ2 = δ20 such that

0 < |x− a| < δ20 =⇒ |g(x)| = |K − (K − g(x))| ≥ |K| − |K − g(x)| > |K| − |K|
2

=
|K|
2

.

Let ε > 0 be given and let ε2 = ε
2 |K|2. By (3.6), there exists δ2 = δ21 > 0 such that

0 < |x− a| < δ21 =⇒ |g(x) −K| < ε2.

Therefore, choosing δ = min(δ20, δ21), we have

0 < |x− a| < δ =⇒
∣

∣

∣

∣

1

g(x)
− 1

K

∣

∣

∣

∣

=
|g(x)−K|
|K||g(x)| ≤

2

|K|2
ε

2
|K|2 = ε.



60 Chapter 3 — Real-Valued Functions I

This means that lim
x→a

1

g(x)
=

1

K
.

(v) Using (iii), we conclude that

lim
x→a

f(x)

g(x)
= lim

x→a
f(x) lim

x→a

1

g(x)
=

L

K
.

Theorem 3.6 Squeeze Theorem for the limit of a function
Let the functions f(x), g(x), and h(x) be defined on an interval I except possibly at a ∈ I.
Suppose that the following inequality holds for all x 6= a, x ∈ I.

h(x) ≤ f(x) ≤ g(x). (3.7)

If lim
x→a

h(x) = lim
x→a

g(x) = L then lim
x→a

f(x) = L.

Proof. By assumption, lim
x→a

h(x) = L and lim
x→a

g(x) = L, so that

∀ε1 > 0 ∃δ1 > 0 ∀x (0 < |x− a| < δ1 =⇒ |h(x)− L| < ε1), (3.8)

and
∀ε2 > 0 ∃δ2 > 0 ∀x (0 < |x− a| < δ2 =⇒ |g(x)− L| < ε2). (3.9)

Let ε > 0 be given. We are to show that there exists a δ > 0 such that for all x ∈ I,

0 < |x− a| < δ =⇒ |f(x)− L| < ε.

Let ε1 = ε2 = ε in (3.8) and (3.9) above and let δ10 and δ20 be the corresponding values of
δ1 and δ2, respectively. Then, using (3.7), (3.8), and (3.9), we conclude that

∃δ = min(δ10, δ20) ∀x (0 < |x− a| < δ =⇒ L− ε < h(x) ≤ f(x) ≤ g(x) < L + ε).

Hence L− ε < f(x) < L + ε or, equivalently, |f(x)− L| < ε provided that 0 < |x− a| < δ.
Therefore lim

x→a
f(x) = L.

Example 3.7 Show that lim
x→0

sinx

x
= 1.

Solution. Let 0 < x < π/2. From the diagram,
we have

OB = OP = 1,
arc BP = x,
AP = sinx,
BC = tanx.

Clearly, AP < arc BP < BC and sinx < x < tanx.

Dividing each side of the above inequality by sinx gives

1 <
x

sinx
<

1

cos x
,

which implies that, for 0 < x < π/2,

cos x <
sinx

x
< 1.
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Figure 3.2: The function f(x) =
sinx

x
considered in Example 3.7.

Since cos x is a continuous function, lim
x→0

cos x = cos 0 = 1 and, by the Squeeze Theorem,

we obtain

lim
x→0+

sinx

x
= 1.

To complete the solution, we note that the left-hand limit is also 1:

lim
x→0−

sinx

x
= lim

x→0+

sin(−x)

−x
= lim

x→0+

sinx

x
= 1.

3.8 Continuity at a Point

In section 3.5 when we discussed the limit of a function f(x) at a given point xo, we were
only interested in the behaviour of f(x) as x tends to xo, not in what happens when x
equals xo. If lim

x→xo

f(x) exists, it is quite possible that f(x) is not defined at the point xo

or, it is quite possible that lim
x→xo

f(x) 6= f(xo). Refer to Figure 3.3 which illustrates the

following situations:

(a) f(x) does not have a limit as x −→ xo;

(b) lim
x→xo

f(x) = −∞;

(c) lim
x→xo

f(x) = +∞;

(d) lim
x→xo

f(x) exists and is finite but f(x) is not defined at the point xo;

(e) lim
x→xo

f(x) = L 6= f(xo);

(f) lim
x→xo

f(x) = L = f(xo).
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(a) f(x) =
|x− xo|
x− xo

, x 6= xo (b)
f(x) = log |x− xo|,
x 6= xo

(c)
f(x) =

1

(x− xo)2
,

x 6= xo

(d)
f(x) =

x2 − x2
o

x− xo
, x 6= 0

lim
x→xo

f(x) = 2xo

(e) f(x) =

{

3, x > xo

2, x ≤ xo
(f)

f(x) =







sin(x− xo)

x− xo
, x 6= xo

1, x = xo

lim
x→xo

f(x) = 1.

Figure 3.3: Non-continuous functions (a) — (e) versus a continuous function (f).
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Definition 3.8 The function f(x) defined on an interval I is continuous at xo, if
lim

x→xo

f(x) = f(xo).

Intuitively, a function f is continuous at the point x = xo, if the graph of f does not have
a “break” or a “jump” at the point xo.

We observe that the function (f) in Figure 3.3 is continuous at the specified point xo,
but none of the functions (a) – (e) is continuous at xo. Using the Cauchy and Heine
definitions of the limit of a function, definition 3.8 can be written as follows.

Definition 3.9 Let f(x) be defined on an interval I and let xo ∈ I.

(i) (Cauchy definition of continuity at a point.)

f(x) is continuous at the point x = xo, if

∀ε > 0 ∃δ > 0 ∀x ∈ I (|x− xo| < δ =⇒ |f(x)− f(xo)| < ε).

(ii) (Heine definition of continuity at a point.)

f(x) is continuous at the point x = xo, if

∀{xn} ∈ I
(

lim
n→∞

xn = xo =⇒ lim
n→∞

f(xn) = f(xo)
)

.

Example 3.8 Use the Heine definition of continuity to show that f(x) = x2 is contin-
uous at xo.

Solution. Let {xn} be a sequence converging to xo. Let ε > 0 be given. We require
N such that

n > N =⇒ |x2
n − x2

o| < ε.

Let N1 be such that n > N1 =⇒ |xn − xo| < 1. Then |xn| < |xo| + 1. Hence
|xn + xo| < 2|xo|+ 1.

Let N2 be such that n > N2 =⇒ |xn − xo| <
ε

2|xo|+ 1
.

For n > max(N1, N2), we have

|x2
n − x2

o| = |xn − xo| · |xn + xo| <
ε

2|xo|+ 1
· (2|xo|+ 1) = ε.

Refer to Figure 3.3(e). The function f(x) shown there is not continuous, since it does
not have a limit when x −→ xo. The function is defined at the point xo and the one-sided
limits exist:

lim
x→xo−

f(x) = 2 and lim
x→xo+

f(x) = 3.

Since lim
x→xo−

f(x) = 2 = f(xo), we say that f(x) is continuous on the left of the point x = xo.

It is not continuous on the right of xo since lim
x→xo+

f(x) = 3 6= f(xo) = 2.
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The definition of one-sided limits leads to the definition of one-sided continuity.

Definition 3.10 Suppose that the function f(x) is defined on an interval I and let
xo ∈ I.

(i) If lim
x→xo−

f(x) = f(xo), we say that f is continuous on the left at the point x = xo.

Thus, f(x) is continuous on the left at x = xo, if

∀ε > 0 ∃δ > 0 ∀x ∈ I (xo − δ < x ≤ xo =⇒ |f(x)− f(xo)| < ε) ,

or
∀{xn}

(

xn ≤ xo & lim
n→∞

xn = xo =⇒ lim
n→∞

f(xn) = f(xo)
)

.

(ii) If lim
x→xo+

f(x) = f(xo), we say that f is continuous on the right at the point x = xo.

Thus, f(x) is continuous on the right at x = xo, if

∀ε > 0 ∃δ > 0 ∀x ∈ I (xo ≤ x < xo + δ =⇒ |f(x)− f(xo)| < ε) ,

or
∀{xn}

(

xn ≥ xo & lim
n→∞

xn = xo =⇒ lim
n→∞

xn = f(xo)
)

.

Note that the function f(x) in Figure 3.3 (e) is left continuous.

Example 3.9 Examining one-sided continuity.

Refer to Figure 3.4 which shows two functions f(x) and g(x) that are not continuous
at the point x = 0. To examine one-sided continuity of the functions, we evaluate the
one-sided limits. We have

f(x) =







a1/x, x 6= 0

0, x = 0,

lim
x→0+

f(x) = lim
x→0+

a1/x = lim
y→+∞

ay = +∞,

lim
x→0−

f(x) = lim
x→0−

a1/x = lim
y→−∞

ay = 0.

Thus
lim

x→0−
f(x) = 0 = f(0)

and we conclude that f(x) is left-continuous at the point x = 0. Clearly, f(x) is not
right-continuous.

Now, we have

g(x) =







arctan(1/x), x 6= 0

π/2, x = 0,

lim
x→0+

g(x) = lim
x→0+

arctan(1/x) = lim
y→+∞

arctan y =
π

2
,

lim
x→0−

g(x) = lim
x→0−

arctan(1/x) = lim
y→−∞

arctan y = −π

2
.
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Thus
lim

x→0+
g(x) =

π

2
= g(0)

and we conclude that f(x) is right-continuous at the point x = 0. Clearly, f(x) is not
left-continuous.
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(a) f(x) =







a1/x, x 6= 0

0, x = 0, (a > 0)
(b) g(x) =







arctan(1/x), x 6= 0

π/2, x = 0,

Figure 3.4: Illustrating one-sided continuity of a function.

Theorem 3.7 A function f is continuous at x = xo if and only if f is both left-continuous
and right-continuous at xo.

3.9 Algebra of Continuous Functions

Theorem 3.8 Assume that the functions f(x) and g(x) defined on an interval I are
continuous at a given point a ∈ I. Then the following rules hold.

(i) Sum Rule: The function f + g is continuous at x = a.

(ii) Product Rule: The function f · g is continuous at x = a.

(iii) Quotient rule: If g(a) 6= 0 then the function
f

g
is continuous at x = a.

The proofs of the above rules follow immediately from the definition of continuity at a point
and the corresponding rules for limits of functions (see theorem 3.5).

Theorem 3.9 Squeeze Rule for continuous functions.
Let the functions f(x), g(x), and h(x) be defined on an interval I and let a ∈ I. Assume

that

h(x) ≤ f(x) ≤ g(x)

for all x in some neighbourhood of the point x = a and that

h(a) = f(a) = g(a).

If h(x) and g(x) are continuous at x = a then the function f(x) is continuous at the point a.
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Theorem 3.10 Composite Rule
Let f and g be continuous at a and f(a) respectively, such that the composite function

g ◦ f is defined. Then g ◦ f is continuous at x = a.

Proof. Let f(a) = d. Since g is continuous at d,

∀ε > 0 ∃δ1 > 0 ∀y (|y − d| < δ1 =⇒ |g(y) − g(d)| < ε). (3.10)

Since f is continuous at a,

∀ε2 > 0 ∃δ2 > 0 ∀x (|x− a| < δ2 =⇒ |f(x)− f(a)| < ε2). (3.11)

Since δ1 > 0, we can use ε2 = δ1 in (3.11) to get

|x− a| < δ2 =⇒ |f(x)− f(a)| < δ1.

Now, y = f(x), d = f(a), so that (3.10) gives

|x− a| < δ2 =⇒ |f(x)− f(a)| < δ1 =⇒ |g(f(x))− g(f(a))| < ε.

Hence

∀ε > 0 ∃δ = δ2 > 0 ∀x (|x− a| < δ2 =⇒ |(g ◦ f)(x)− (g ◦ f)(a)| < ε)

which means that the function g ◦ f is continuous at the point x = a.

3.10 Continuity on a Set

Definition 3.11 A function f defined on an open interval I = (a, b) is said to be
continuous on (a, b) if it is continuous at each point x = xo ∈ (a, b).

Extending the above definition to the case when I is a closed interval, I = [a, b], it is natural
to require f be right-continuous at x = a and left-continuous at x = b, in addition to the
requirements of that definition.

Definition 3.12 A function f defined on a given closed interval I = [a, b] is said to be
continuous on the interval [a, b] if

(i) f is continuous at each point x = xo ∈ (a, b);

(ii) f is right-continuous at the point x = a;

(iii) f is left-continuous at the point x = b.

Continuity may, in fact, be defined on arbitrary subsets of RI but we shall not need the
concept in this course:

f is continuous on a set A if it is continuous at all points a of A:

∀a ∈ A ∀ε > 0 ∃δ > 0 ∀x ∈ A (|x− a| < δ =⇒ |f(x)− f(a)| < ε).
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3.11 Types of Discontinuity

Example 3.10 Consider the function f(x) = x sin

(

1

x

)

, x 6= 0.

(i) Prove that f(x) is continuous at any point x 6= 0.

(ii) Is it possible to find a constant c such that the function

g(x) =







c if x = 0

x sin

(

1

x

)

x 6= 0

is continuous at every point x, −∞ < x < ∞ ?

Solution.
(i) Let

f1 = x, f2 = 1, f3 =
f2(x)

f1(x)
=

1

x
, x 6= 0, f4(x) = sin(f3(x)) = sin(

1

x
), x 6= 0.

Then, using theorems 3.8 and 3.10, we conclude that the functions f3(x) and f4(x) are
continuous at every point x 6= 0. Therefore the function f(x) is continuous for x 6= 0.

(ii) By the Squeeze Theorem, lim
x→0

x sin(
1

x
) = 0. If c = 0, therefore, the function

g(x) =

{

0 if x = 0
x sin( 1

x) x 6= 0

is continuous at every point x, −∞ < x < ∞.

A function that is not continuous at a given point xo is said to have a discontinuity at
that point. If f(x) is not defined at xo, but the limit of f(x) at xo exists, we say that the
function f(x) has a removable discontinuity at the point xo. Defining f(xo) = lim

x→xo

f(x)

“removes” the discontinuity at xo, as was the case in Example 3.10.
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(a) f(x) =
1

x2

(

4 +
1

x2

)−1

, x 6= 0; (b) f(x) =
x

|x| , x 6= 0;

(c) f(x) = sin
1

x
, x 6= 0; (d) f(x) =

1

x
, x 6= 0.

Figure 3.5: Illustrating different kinds of discontinuities of a function.

Example 3.11 Different kinds of discontinuities of functions.

Refer to Figure 3.4 and observe different kinds of discontinuities.

(a) removable discontinuity.

f(x) =
1

x2
(4 +

1

x2
)−1, x 6= 0.

We can see that f(x) is not continuous at the point x = 0 for f(x) is not defined at
x = 0. f(x) has a limit at x = 0, namely lim

x→0
f(x) = 1, so that we can “extend” the

definition of f(x) to make the new function f1(x) continuous at x = 0:

f1(x) =







1 if x = 0
1

x2
(4 +

1

x2
)−1 x 6= 0.
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(b) jump discontinuity.

f(x) =
x

|x| , x 6= 0.

We note that f(x) does not have a limit at x = 0 for

lim
x→0+

f(x) = +1 and lim
x→0−

f(x) = −1.

(c) oscillating discontinuity.

f(x) = sin(
1

x
), x 6= 0.

The oscillations are bounded.

(d) infinite discontinuity.

f(x) =
1

x
, x 6= 0.

3.12 Exercises

3.1 Using the definition of supremum/infimum prove the following:

(a) sup
−∞<x<∞

(x− [x]) = 1 (b) inf
−∞<x<∞

(x− [x]) = 0

(c) sup
−∞<x<∞

x

4 + x2
=

1

4
(d) inf

−∞<x<∞
x

4 + x2
= 0.

3.2 Find sup f(x) and inf f(x), where they exist, for each of the following functions on
the indicated domain:

(a) f(x) = 3 + 2x− x2, 0 < x < 4 (b) f(x) = 3
x , −2 < x < −1

(c) f(x) =











0 for x = 0

3

x
for 0 < |x| ≤ 1

(d) f(x) =











0 for x = 0

x sin
1

x
for 0 < x < 2π

(e) f(x) = 2− |x− 1|, −2 < x < 2 (f) f(x) = 2x− [x], 0 < x < 10

(g) f(x) = 2 + e−x2

, −∞ < x < ∞ (h) f(x) = 1 + e−|x|, −∞ < x < ∞

(i) f(x) =
x

x− 2
, x ∈ (−∞, 2) ∪ (2,∞) (j) f(x) =

1− x2

1 + x2
, −∞ < x < ∞

(k) f(x) = e−x, −∞ < x < ∞ (l) f(x) = exp(− 1

x
), x ∈ (−∞, 2) ∪ (2,∞).

3.3 Find the extreme values for each function of the previous exercise.

3.4 Prove that if f and g are both bounded on an interval a ≤ x ≤ b, then

inf f + inf g ≤ inf(f + g) ≤ sup(f + g) ≤ sup f + sup g.
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3.5 Find functions f and g neither of which is bounded but such that the product f · g is
bounded on I.

3.6 Suppose that f is bounded on I and g is unbounded on I. Prove that the sum f + g
in unbounded on I.

3.7 Suppose that lim
x→xo

f(x) = l. Prove the following:

(i) If f(x) > 0 in a neighbourhood of xo then l ≥ 0;

(ii) If f(x) < 0 in a neighbourhood of xo then l ≤ 0.

3.8 If g(x) ≤ f(x) and lim
x→xo

g(x) = b, lim
x→xo

f(x) = a, show that b ≤ a.

3.9 Show that the function

f(x) =

{

x if x is rational

1− x if x is irrational

has a limit only at the point x = 1/2.

3.10 Use the Cauchy definition of limit to prove the following:

(a) lim
x→2

(x2 − 1) = 3 (b) lim
x→3

(x2 − 8x + 7) = −8

(c) lim
x→0

x sin
2

x
= 0 (d) lim

x→∞
x

1 + 2x
=

1

2

(e) lim
x→∞

2x2 − 1

3x2 + 1
=

2

3
(f) lim

x→2

x2 − 4

x− 2
= 4.

3.11 Use the Heine definition of limit to prove the following:

(a) lim
x→1

(x2 − 1) = 0 (b) lim
x→0

x sin
1

x
= 0.

3.12 Find the limits:

(a) lim
x→2

2x2 − 3

x− 1
(b) lim

x→0

x3 − 1

x− 1

(c) lim
x→0

sin(2x)

x
(d) lim

x→0

1− cos x

x

(e) lim
x→0

tanx

x
(f) lim

x→3−
(x− [x]).

3.13 Find the following limits, if they exist.

(a) lim
x→+∞

sinx (b) lim
x→+∞

cosx (c) lim
x→+∞

sinx2
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3.14 Complete the following definitions.

lim
x→a

f(x) = l ⇐⇒ ∀ε > 0 ∃δ > 0 (|x− a| < δ =⇒ |f(x)− l| < ε).

lim
x→a+

f(x) = l ⇐⇒ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lim
x→a−

f(x) = l ⇐⇒ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lim
x→a

f(x) = +∞ ⇐⇒ ∀M ∃δ > 0 (|x− a| < δ =⇒ f(x) > M).

lim
x→a

f(x) = −∞ ⇐⇒ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lim
x→a+

f(x) = +∞ ⇐⇒ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lim
x→a+

f(x) = −∞ ⇐⇒ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lim
x→a−

f(x) = +∞ ⇐⇒ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lim
x→a−

f(x) = −∞ ⇐⇒ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lim
x→∞

f(x) = l ⇐⇒ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lim
x→∞

f(x) = +∞ ⇐⇒ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lim
x→∞ f(x) = −∞ ⇐⇒ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lim
x→−∞

f(x) = l ⇐⇒ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lim
x→−∞

f(x) = +∞ ⇐⇒ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lim
x→−∞

f(x) = −∞ ⇐⇒ ∀M ∃D (x < D =⇒ f(x) < M).

3.15 Use the ε− δ definition of continuity to prove that each of the following functions is
continuous at the specified point x = xo:

(a) f(x) = x2, xo = 2 (b) f(x) = cos x, where xo is a real number

(c) f(x) = (x− 1)2, xo = 3 (d) f(x) =
√

(2 + x), xo = 2

(e) f(x) =















x2 − 3

x− 3
if x 6= 3

6 if x = 3,
xo = 2, xo = 3.
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3.16 Prove the following theorem.

Theorem 3.11 Let f(x) be defined on a given interval I.

(i) If f is continuous at xo ∈ I and f(xo) > 0 then

∃δ > 0 ∀x ∈ I (xo − δ < x < xo + δ =⇒ f(x) > 0).

(ii) If f is continuous at xo ∈ I and f(xo) < 0 then

∃δ > 0 ∀x ∈ I (xo − δ < x < xo + δ =⇒ f(x) < 0).

(iii) If f is right-continuous at xo ∈ I and f(xo) > 0 then

∃δ > 0 ∀x ∈ I (xo ≤ x < xo + δ =⇒ f(x) > 0).

(iv) If f is right-continuous at xo ∈ I and f(xo) < 0 then

∃δ > 0 ∀x ∈ I (xo ≤ x < xo + δ =⇒ f(x) < 0).

(v) If f is left-continuous at xo ∈ I and f(xo) > 0 then

∃δ > 0 ∀x ∈ I (xo − δ < x ≤ xo =⇒ f(x) > 0).

(vi) If f is left-continuous at xo ∈ I and f(xo) < 0 then

∃δ > 0 ∀x ∈ I (xo − δ < x ≤ xo =⇒ f(x) < 0).

3.17 For each of the following functions find all points x of discontinuity.

(a) f(x) =
x2

x3 − 1
(b) f(x) =

1

sinx

(c) f(x) =

{

x, x is rational

1− x, x is irrational
(d) f(x) =

{

log |x|, x 6= 0

0, x = 0.
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Chapter 4

Real-Valued Functions II

4.1 Properties of Continuous Functions

4.1.1 Boundedness of Continuous Functions on Closed Intervals

Theorem 4.1 If f is continuous on the closed interval I = [a, b] then f is bounded on
[a, b].

Proof. Without loss of generality, we may assume that the function f(x) is not
bounded above on the closed interval [a, b]. This means that for every real number we may
choose as a bound, there exists at least one point x in [a, b] such that f(x) exceeds this
bound. In particular, for every natural number n there exists a point xn in [a, b] such that

|f(xn)| > n, n = 1, 2, . . . (4.1)

The sequence {xn} so constructed is bounded (a ≤ xn ≤ b, n = 1, 2, . . .), so that it
has a convergent subsequence {xnk

}. Let limk→∞ xnk
= xo. Since all the terms of the

sequence {xnk
} are in [a, b], a closed interval, we conclude that xo ∈ [a, b] (Lemma 2.2). By

assumption, f(x) is continuous at the point x = xo, which implies that

lim
k→∞

f(xnk
) = f(xo).

But this is a contradiction to the claim (4.1) which implies that

lim
k→∞

f(xnk
) = ∞.

4.1.2 Extreme Value Theorem

Theorem 4.2 Extreme Value Theorem
If f is continuous on [a, b] then there exist points x1, x2 ∈ [a, b] such that

f(x1) ≤ f(x) ≤ f(x2) for all x ∈ [a, b];

that is,
f(x1) = min

x∈[a,b]
f(x), f(x2) = max

x∈[a,b]
f(x).

75
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Proof.
Let A be the set of values of the function f(x) when a ≤ x ≤ b:

A = f([a, b]) = {f(x)| a ≤ x ≤ b}.
By theorem 4.1, f is bounded on [a, b], so that the set A is bounded both above and below.
Let

m = inf A and M = supA.

We shall show (by contradiction) that m and M are both values of the function f , that is,
there are values x1 and x2, x1, x2 ∈ [a, b], such that f(x1) = m and f(x2) = M .

Firstly, suppose that there is no value of x in the interval [a, b], for which f(x) = M , so
that M − f(x) > 0 for all x ∈ [a, b]. Let

g(x) =
1

M − f(x)
, x ∈ [a, b].

Since f(x) is continuous on [a, b], by Theorem 3.8, g(x) is continuous on [a, b], too. Hence,
by theorem 4.1, g(x) is bounded on [a, b], so that there exists a number K such that
0 < |g(x)| ≤ K for every x ∈ [a, b].

Now, since M − f(x) > 0 for all x ∈ [a, b],

g(x) ≤ K =⇒ 1

M − f(x)
≤ K =⇒ 1

K
≤ M − f(x) =⇒ f(x) ≤ M − 1

K
,

for x ∈ [a, b]. This contradicts the fact that M = supx∈[a,b] f(x), the least upper bound for
f on the interval [a, b]. Thus, f(x) attains its supremum.

Finally, to prove that y = f(x) attains its infimum m, observe that the supremum of
−f(x) is the infimum of f(x), x ∈ [a, b].

4.1.3 Continuity and Order

Lemma 4.1 Suppose that g(x) is continuous at x = xo.

(a) If g(xo) > 0 then there exist δ > 0 and c > 0 such that g(x) > c for all x satisfying
|x− xo| < δ.

(b) If g(xo) < 0 then there exist δ > 0 and c > 0 such that g(x) < −c for all x satisfying
|x− xo| < δ.

Proof. Since g(x) is a continuous function at the point x = xo,

∀ε > 0 ∃δ > 0 (|x− xo| < δ =⇒ −ε < g(x)− g(xo) < ε).

(a) Since g(xo) > 0 we can take ε = 1
2g(xo). Thus, there is some δ > 0 such that

|x− xo| < δ =⇒ −1

2
g(xo) < g(x) − g(xo) <

1

2
g(xo).

This implies that g(x) > c for all x satisfying |x− xo| < δ, where c = 1
2g(xo).

(b) This follows from (a), by considering −g.



4.1 Continuity and Order 77

4.1.4 Intermediate Value Theorem

Theorem 4.3 Let f be continuous on an interval I and let [a, b] ⊂ I. For every real
number λ between f(a) and f(b) there exists a number c, a < c < b, such that

f(c) = λ.

Proof. There are two possible cases:

(a) f(a) < λ < f(b), (b) f(b) < λ < f(a).

We will give a detailed proof for the first case. The corresponding proof for case (b) is
similar. It also follows from (a) by considering the function g = −f.

Consider the following function

g(x) = f(x)− λ, x ∈ [a, b].

We can see that:
(i) f(x) = λ ⇐⇒ g(x) = 0,

(ii) g(a) = f(a)− λ < 0,

(iii) g(b) = f(b)− λ > 0.

Define A to be the set of points of [a, b] such that the function g is negative on the subinterval
[a, x]:

A = {x | a ≤ x ≤ b & g is negative on [a, x]}.
The set A is non-empty, since g(a) < 0 which implies that a ∈ A. The set A is bounded
above by the number b. Hence, by the axiom of completeness, A possesses a least upper
bound. Let

c = supA.

Since g(x) is continuous on [a, b],

g(a) < 0 =⇒ ∃δ1 > 0 g(x) < 0 for a ≤ x < a + δ1,

g(b) > 0 =⇒ ∃δ2 > 0 g(x) > 0 for b− δ2 < x ≤ b.

Therefore a + δ1 ≤ c, b− δ2 ≥ c, and we have

a < a + δ1 ≤ c ≤ b− δ2 < b =⇒ a < c < b.

We now show that g(c) is neither negative nor positive, that is the possibilities

1. g(c) < 0, 2. g(c) > 0,

are both impossible.
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Case 1. Suppose g(c) < 0. Then, since f is continuous, g(x) < 0 for x such that
c − δ3 < x < c + δ3 for some δ3 > 0. In particular, g(x) < 0 for each x in the
interval c < x < c + δ3. Let x be the midpoint of the interval (c, c + δ3). Then
g(x) = g(c + 1

2δ3) < 0. But this contradicts the fact that c = supA, the least upper
bound of the interval [a, x] at which g is negative.

Case 2. Suppose now that g(c) > 0. Then g(x) > 0 for x in c − δ4 < x < c + δ4 for
some δ4 > 0. In particular, g(x) > 0 for c − δ4 < x < c and g(c − 1

2δ4) > 0, again
contradicting the fact that c = supA.

Therefore the only conclusion that can be drawn is that g(c) = 0, which implies that
f(c) = λ, as required.

An interval I in RI is a set characterized by the property that if x, y are in I and
x < z < y, then z is also in I. Consideration of cases [a, b), (a, b), (−∞, a], etc., will easily
convince the reader of the correctness of the characterization.

We shall now show that the continuous image of an interval is an interval.

Theorem 4.4 Let f be defined on an interval I and continuous. Then the image

f [I] = {f(x) | x ∈ I}

is also an interval.

Proof. Let J = f [I]. To show that J is an interval, consider u < w < v, where
u, v ∈ J and show that w ∈ J. Since u, v ∈ J , there are points x, y in I such that
f(x) = u, f(y) = v. Thus x 6= y. We may assume, without loss of generality that y < x.
By the Intermediate Value Theorem, there exists z, y < z < x, such that f(z) = w. Thus
w ∈ J , as required.

Example 4.1 Illustrating the concept of the image of an interval.

Let f(x) = x2, −1 < x < 1. Then:

f [ (−1, 1) ] = [0, 1)

f [ (−1

2
, 1) ] = [0, 1)

f [ (−1

2
,
1

4
] ] = [0,

1

4
)

f [ [−1

2
,
1

4
) ] = [0,

1

4
]
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4.1.5 The Fixed Point Theorem of Banach

Theorem 4.5 Fixed Point Theorem

Suppose that f is a continuous function defined on a closed interval I = [a, b] that maps I
into I and has the property

|f(x)− f(y)| ≤ α|x− y| (4.2)

for all x, y ∈ I with 0 < α < 1.

(i) Then the function f(x) has exactly one fixed point, that is, there is exactly one point
xo ∈ I such that f(xo) = xo.

(ii) If x1 is any point of I and xn+1 = f(xn), n = 1, 2, . . ., then

lim
n→∞

xn = xo.

Proof.

(i) To establish the uniqueness of the fixed point xo, suppose that there is another
point x′ such that f(x′) = x′. Using (4.2), we find that

|xo − x′| = |f(xo)− f(x′)| ≤ α|xo − x′|.

Since 0 < α < 1, it is clear that |xo − x′| = 0 which implies that x′ = xo.

(ii) Let x1 be any point of I and let xn+1 = f(xn), n = 1, 2, . . . . Then

|x2 − x3| = |f(x1)− f(x2)| ≤ α|x1 − x2|,

|x3 − x4| = |f(x2)− f(x3)| ≤ α|x2 − x3| ≤ α2|x1 − x2|.

In general, we have

|xn − xn+1| ≤ αn−1|x1 − x2|.

Let m ≥ n be any natural numbers. Then, using the triangle inequality, we find that

|xn − xm| = |(xn − xn+1) + (xn+1 − xn+2) + · · ·+ (xm−1 − xm)|

≤ |xn − xn+1|+ |xn+1 − xn+2|+ · · ·+ |xm−1 − xm|

≤ |x1 − x2|(αn−1 + αn−2 + · · ·+ αm−2)

= (1 + α + · · ·+ αm−n−1)αn−1|x1 − x2|

= |x1 − x2|αn−1 · 1− αm−n

1− α

<
|x1 − x2|

1− α
· αn−1.
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Since |xn − xm| ≤ |x1−x2|
1−α αn−1 and lim

n→∞
|x1 − x2|

1− α
αn−1 = 0, we conclude that for every

ε > 0, there exists a natural number N such that

|xn − xm| < ε for n,m > N.

This means that {xn} is a Cauchy sequence, so that it converges. Let

lim
n→∞

xn = xo.

and consider now the sequence {f(xn)}. Since f is continuous, lim
n→∞

f(xn) = f(xo). Now,

f(xn) = xn+1 =⇒ f(xo) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = lim
n→∞

xn = xo.

Therefore we have established that f(xo) = xo and the proof is completed.

4.2 Uniform Continuity

Uniform continuity is a global property of a function on a set, whereas continuity is a local
property. We recall that a function f with domain D is continuous at a point xo ∈ D if for
each ε > 0 there exists a number δ > 0 such that for all x ∈ D,

|x− xo| < δ =⇒ |f(x)− f(xo)| < ε. (4.3)

We note that the value of δ in (4.3) depends on the choice of ε and in addition may
depend on xo.

Now, if (4.3) is satisfied for every xo in a given subset I of the domain D of f , then
f is continuous on the set I. Each xo gives us a value of δ associated with it. When it is
possible to obtain one number δ > 0 which will satisfy (4.3) for all points xo ∈ I, then we
say that f(x) is uniformly continuous on I.

To contrast the difference between continuity on a set I and uniform continuity on I,
we shall, firstly rewrite (4.3) as:

∀ε > 0 ∀x1 ∈ I ∃δ > 0 ∀x2 ∈ I (|x1 − x2| < δ =⇒ |f(x1)− f(x2)| < ε).
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Uniform Continuity expresses the fact that δ depends only on ε and does not depend
on x1, x2 in D.

Definition 4.1 The function f with domain D is uniformly continuous on the set
I, I ⊂ D, if

∀ε > 0 ∃δ > 0 ∀x1, x2 ∈ I (|x1 − x2| < δ =⇒ |f(x1)− f(x2)| < ε) . (4.4)

Example 4.2 Show that the function

f(x) = sinx

is uniformly continuous on the set of all real numbers RI = (−∞,∞).

Solution. Let ε > 0 be given and let x1, x2 be any pair of real numbers. We have

|f(x1)− f(x2)| = | sin x1 − sinx2|

= 2

∣

∣

∣

∣

sin
x1 − x2

2
cos

x1 + x2

2

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

x1 − x2

2

∣

∣

∣

∣

· 1

= |x1 − x2|.

If δ = ε, therefore,

|x1 − x2| < δ = ε =⇒ |f(x1)− f(x2)| ≤ |x1 − x2| < ε.

Example 4.3 Show that the function f(x) =
1

x
is not uniformly continuous on the

open interval I = (0, 1).

Solution. Let x1 =
1

n
and x2 =

1

2n
, where n is a natural number. Then

|x1 − x2| =
1

2n

and

|f(x1)− f(x2)| = | 1

x1
− 1

x2
| = |n− 2n| = n ≥ 1.
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We can see, therefore, that there exists ε > 0 such that for every δ > 0 there are two
points x1 and x2 for which

|x1 − x2| < δ but |f(x1)− f(x2)| > ε.

Namely, let ε = 1. Then, given δ > 0, choose any n > 1
2δ . If x1 = 1

n and x2 = 1
2n then we

have

|x1 − x2| =
1

2n
but |f(x1)− f(x2)| = n ≥ 1 = ε.

Thus the negation of (4.4) holds which proves that f(x) =
1

x
is not uniformly continuous

on the interval I = (0, 1).

Note, that f(x) =
1

x
is continuous on every point xo ∈ I = (0, 1), so that f(x) is

continuous on I.

Example 4.4 Show that the function f(x) = sin
1

x
is not uniformly continuous on the

interval I = (0,
2

π
].

Solution. Let

x1 =
2

(2n + 1)π
, x2 =

1

nπ
,

where n is a natural number. Then

f(x1) = sin(2n + 1)
π

2
= ±1, f(x2) = sinnπ = 0, |f(x1)− f(x2)| = 1,

but |x1 − x2| =
1

n(2n + 1)π
, when n increases, can be made sufficiently small.

With ε = 1 there is no δ that is suitable for all x in (0,
2

π
]. Hence the negation of

(4.4) holds, which implies that the function f(x) = sin 1
x is not uniformly continuous on the

interval I =
(

0, 2
π

]

.

It can be shown, however, that f(x) = sin 1
x is uniformly continuous on any closed

interval that does not contain 0.

Example 4.5 Show that f(x) = sin 1
x is uniformly continuous on the interval I = [c,∞),

where c > 0.

Solution. If x1, x2 ∈ [c,∞) and |x1−x2| < δ = c2ε, then, since | sin a−sin b| ≤ |b−a|,

|f(x1)− f(x2)| ≤
1

x1

1

x2
|x1 − x2| <

1

c

1

c
c2ε = ε.
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We note that the concept of uniform continuity is stronger than the concept of continuity
in the sense that every uniformly continuous function on a given set I is automatically
continuous on I. We have seen in examples 4.3 and 4.4 some continuous functions that are
not uniformly continuous.

Now we will prove that if I is a closed interval then every continuous function on I is
also uniformly continuous on I.

Theorem 4.6 If f is a continuous function on a closed interval I = [a, b], then f is
also uniformly continuous on I.

Proof. ( by contradiction)
Suppose that f is continuous on I = [a, b] but not uniformly continuous on I. Then the
negation of (4.4) is true, which implies that there exists an εo > 0 such that for every δ > 0
there are x, y ∈ I that satisfy

|x− y| < δ and |f(x)− f(y)| ≥ εo.

Let δ = 1/n, where n is a positive integer. For this particular value of δ, we can find two
numbers xn, yn ∈ I that satisfy

|xn − yn| <
1

n
and |f(xn)− f(yn)| ≥ εo.

We can, therefore, construct two sequences {xn} and {yn} with terms in I such that

|xn − yn| <
1

n
and |f(xn)− f(yn)| ≥ εo for n = 1, 2, . . . . (4.5)

We note that both sequences {xn} and {yn} are bounded, as

xn, yn ∈ I = [a, b] for n = 1, 2, . . . .

Thus, by the Bolzano-Weierstrass theorem, the sequence {xn} contains a subsequence {xnk
}

which converges to c ∈ I. Now n1 < n2 < · · · determines a subsequence {ynk
} of {yn}.

Since
|ynk

− c| ≤ |ynk
− xnk

|+ |xnk
− c|,

it is clear that {ynk
} also converges to c. Now, f is continuous at the point c, so that

lim
k→∞

f(xnk
) = lim

k→∞
f(ynk

) = f(c).

But this is not possible since (4.5) implies that |f(xnk
)− f(ynk

)| ≥ εo for all k.
The above contradiction implies that the assumption we made is false. Hence f(x) is

uniformly continuous on I.
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4.3 Continuity of Inverse Functions

Continuous functions defined on intervals (a, b) which have inverses are rather special —
they must be either strictly increasing throughout the interval (a, b), or strictly decreasing
throughout the interval. This is the result we shall now prove.

Theorem 4.7 Let f be a continuous function defined on I = (a, b) and suppose f has
an inverse. Then f is a monotone function on I.

Proof. Suppose f is not monotone decreasing. Then there are points c, d in I such
that c < d and f(c) < f(d).

We shall prove that, if x is such that c < x < d, then f(c) < f(x) < f(d). Suppose not.
Then there is x ∈ (c, d) for which f(x) < f(c) or f(x) > f(d). In the first case, we have
f(x) < f(c) < f(d), so there must be y ∈ (x, d) such that f(y) = f(c), by the Intermediate
Value Theorem. This would contradict the fact that f is one to one, since y 6= c. Similarly,
it cannot happen that f(x) > f(d). Hence

c < x < d =⇒ f(c) < f(x) < f(d). (4.6)

Suppose u < c. We shall show that f(u) < f(c). Suppose not, then f(u) > f(c). If
f(d) < f(u), then f(c) < f(d) < f(u), so there is v in (u, c) such that f(v) = f(d), a
contradiction. Thus f(u) < f(d). But then f(c) < f(u) < f(d), so there is w in (c, d) such
that f(u) = f(w), again a contradiction. Hence

u < c =⇒ f(u) < f(c). (4.7)

Analogously, one has
d < t =⇒ f(d) < f(t). (4.8)

It follows from (4.6), (4.7), and (4.8) that f is monotone increasing on (a, b).

In fact, the inverse function of a continuous function defined on an interval I will itself
be continuous.

Theorem 4.8 Let f be a continuous function defined on an interval I, with an inverse
function f−1 defined on J , the image of I under f . Then f−1 is a continuous function on
J .

Proof. By above, we may assume that f is monotone increasing on I. Suppose f−1

is not continuous at yo ∈ J. Then there is ε > 0 and {yn} ⊂ J such that lim
n→∞

yn = yo and

∣

∣

∣f−1(yn)− f−1(yo)
∣

∣

∣ ≥ ε.

Without loss of generality we may assume that {yn} is monotone, say monotone decreas-
ing to yo, since every convergent sequence in RI is bounded, and, hence, has a monotone
subsequence. But then {xn}, where xn = f−1(yn), will be a monotone decreasing se-
quence in I bounded below by xo. Hence it will converge to u, say, where u ≥ xo. Hence
lim

n→∞
f(xn) = f(u), by continuity of f at x = u.
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But f(xn) = yn and lim
n→∞

yn = yo. Hence f(u) = yo. Since f(xo) = yo, we conclude that

u = xo. But then {xn} is a sequence which converges to xo, contradicting

|xn − xo| =
∣

∣

∣f−1(yn)− f−1(yo)
∣

∣

∣ ≥ ε.

We have shown that f−1 is continuous at all y in J , as required.

4.4 Functions of Two Variables

Definition 4.2 Let D be a subset of RI 2 and let F be a real-valued function defined
on D, so that to each point (x, y) ∈ D there is assigned a unique real number denoted by
F (x, y).

The set D is called the domain of F . The set V of all possible values of the function
F ,

V = {F (x, y) : (x, y) ∈ D},
is called the range of F .
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F (x, y) =
√

4− x2 − y2

Figure 4.1: Three-dimensional graph of the function F (x, y).

Example 4.6 Find the domain and range of the function

F (x, y) =
√

4− x2 − y2.

Solution. The domain of definition of F is determined by the inequality 4−x2−y2 ≥ 0.
Hence the domain of F is the set of all points on the circle x2+y2 = 4 and all points interior
to that circle:

D = {(x, y) : x2 + y2 ≤ 4}.

The set of possible values of F is the interval [0, 2],

V = [0, 2],

since 0 ≤ 4 − x2 − y2 ≤ 4 =⇒ 0 ≤ F (x, y) ≤ 2. In Figure 4.1, a two-dimensional
representation of the three-dimensional graph of the function F is given.
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4.4.1 Limits of Functions of Two Variables

We define the distance between two points z1 = (x1, y1) and z2 = (x2, y2) of RI 2 as

|z1 − z2| = |(x1, y1)− (x2, y2)| =
√

(x1 − x2)2 + (y1 − y2)2.

Let (xo, yo) ∈ RI 2 and let δ > 0 be given. The inequality

|(x, y)− (xo, yo)| < δ

determines an open disk, namely the set

{(x, y) : (x− xo)
2 + (y − yo)

2 < δ2}

of all points interior to the circle with radius δ centred at the point (xo, yo), which is called
a δ-neighbourhood of the point (xo, yo).

The inequality
0 < |(x, y) − (xo, yo)| < δ

represents a δ-neighbourhood of (xo, yo) with the centre (xo, yo) deleted, which is called a
deleted δ-neighbourhood of the point (xo, yo).

Suppose that the function F (x, y) is defined in a neighbourhood of a given point (xo, yo),
but not necessarily at (xo, yo). We say that F (x, y) has a limit L as (x, y) approaches (xo, yo),
written lim

(x,y)→(xo,yo)
F (x, y), if the difference between L and the values of the function F are

arbitrarily small for all points (x, y) sufficiently close to (xo, yo).

Definition 4.3 (Limit of a function of two variables)
A function F defined in a deleted neighbourhood of the point (xo, yo) is said to have the
limit L if for every ε > 0 there is a δ > 0 such that |F (x, y) − L| < ε for all points (x, y)
in the deleted δ-neighbourhood of the point (xo, yo):

∀ε > 0 ∃δ > 0 (0 < |(x, y) − (xo, yo)| < δ =⇒ |F (x, y)− L| < ε) .

When the limit is L, we shall write lim
(x,y)→(xo,yo)

F (x, y) = L.

Example 4.7 Let F (x, y) = (x + y) sin(x + y), D = RI 2. Show that

lim
(x,y)→(0,0)

F (x, y) = 0

.

Solution. Let ε > 0 be given. We are to find a δ > 0 such that

|(x, y)− (0, 0)| =
√

x2 + y2 < δ =⇒ |F (x, y) − 0| < ε.

We have
|F (x, y)| = |(x + y) sin(x + y)| ≤ |x + y| ≤ |x|+ |y|.

Now,
√

x2 + y2 < δ implies that |x| < δ and |y| < δ. It is clear that if we choose δ = ε
2 ,

then
√

x2 + y2 < δ =⇒ |F (x, y)| ≤ |x|+ |y| < 2δ = ε.
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4.4.2 Continuity of a Function of Two Variables

Definition 4.4 A function F (x, y) defined at every point (x, y) in a neighbourhood of
a given point (xo, yo) is said to be continuous at (xo, yo), if lim

(x,y)→(xo,yo)
F (x, y) exists and

lim
(x,y)→(xo,yo)

F (x, y) = F (xo, yo).

We note that if F (x, y) is continuous at (xo, yo), this requires that F (x, y) → F (xo, yo)
as (x, y) → (xo, yo) by any path in a neighbourhood of the point (xo, yo).

Consider now F (x, y) as a function of the variable x with the value of y fixed, y = yo. If
F (x, y) is continuous at the point (xo, yo), then clearly F (x, yo), as a function of one variable
x is continuous at the point x = xo. This only requires that F (x, yo) → F (xo, yo) as x → xo,
or (x, y) → (xo, yo) along the horizontal line y = yo. Similarly, F (xo, y) is continuous with
respect to y at the point y = yo.

Hence, continuity in (x, y) implies continuity in each variable separately, but the converse
is not true, as shown in the Exercises.

4.4.3 The Implicit Function Theorem

The theorem says that the equation F (x, y) = 0 defines uniquely a function y = f(x) in
a neighbourhood of the point (xo, yo), provided that F (x, y) satisfies some conditions, in
particular F (xo, yo) = 0.
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Theorem 4.9 The Implicit Function Theorem I
Let F be a function of two variables x and y, where x ∈ I, y ∈ J , I and J are intervals

in RI . Suppose that, for (x, y) ∈ D = I × J :

1. F (x, y) is continuous;

2. F (xo, yo) = 0 for some point (xo, yo), where xo ∈ I, yo ∈ J ;

3. F (x, y) is monotonic as a function of y ∈ J for each fixed value of x ∈ I.

Then there are positive numbers h and k that define the rectangle

R = {(x, y) : |x− xo| < h, |y − yo| < k}

such that the equation
F (x, y) = 0

defines y as a continuous function of x, y = f(x), for x ∈ Io = {x : |x− xo| < h} ⊂ I, with
range contained in the interval Jo = {y : |y − yo| < k} ⊂ J . Moreover

f(xo) = yo.

Refer to Figure 4.2. The theorem says that for each x in Io = {x : |x− xo| < h} there is a
unique number y in Jo = {y : |y − yo| < k} which satisfies the equation F (x, y) = 0. The
totality of points (x, y) ⊂ R for which F (x, y) = 0 determines a function f whose domain
is the interval Io and whose range is contained in Jo. The function f defined in this way is
a continuous function of x on its domain Io and assumes the value yo at the point xo.

(a) F (x, y) = 0 =⇒ f(xo) = yo (b) ∃(x∗, y∗) ∈ Io × Jo, F (x∗, y∗) = 0

-

6

x

y

r

xo − h
r

xo

r

xo + h

ryo − k

ryo

ryo + k

s y = f(x)

-

6

x

y

r

xo − h
r

xo

r

x∗
r

xo + h

r F (x∗, yo − k) < 0

r F (x∗, y∗) = 0

r F (x∗, yo + k) > 0

ryo − k

ryo

ry∗

ryo + k

Figure 4.2: Illustrating the Implicit Function Theorem I.
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Proof. We shall give a detailed proof for the case where F (x, y) is an increasing function
of y for each fixed value of x, (x, y) ∈ D, the domain of F . The proof for the other case is
left to the student as an exercise.

The proof consists of several steps:

1. We show that there is k > 0 such that

F (xo, yo − k) < 0 and F (xo, yo + k) > 0.

2. We show that there is h > 0 such that

F (x, yo − k) < 0 and F (x, yo + k) > 0 for |x− xo| < h.

3. We show that, for each value of x in the interval Io = (xo−h, xo +h) there is a unique
number y = y∗ ∈ Jo = (yo − k, yo + k) such that F (x, y∗) = 0.

4. We show that the function y = f(x) determined in step 3 satisfies the condition
f(xo) = yo.

5. We show that the function f is continuous at the point x = xo.

6. We complete the proof by showing that the function f is continuous at x1, where x1

is any point of the interval Io.

Step 1. Let x = xo. Then F (xo, y) can be considered as a function of y, y ∈ J. By
hypothesis 2, F (xo, yo) = 0. By hypothesis 3, F (xo, y) is increasing. Hence, if y ∈ J , then

y < yo =⇒ F (xo, y) < 0, (4.9)

y > yo =⇒ F (xo, y) > 0. (4.10)

There is a positive value k such that the square

S = {(x, y) : |x− xo| ≤ k, |y − yo| ≤ k}

is contained in the domain D of the function F (x, y). Thus, the inequalities (4.9) and (4.10)
imply that

F (xo, yo − k) < 0 and F (xo, yo + k) > 0.

Step 2. The function F (x, yo − k) is continuous as a function of x, so that the
inequality F (xo, yo − k) < 0 implies that F (x, yo − k) < 0 in a neighbourhood of the point
xo. Similarly we conclude that F (x, yo + k) > 0 in a neighbourhood of xo. Therefore, there
is a (sufficiently small) number h, 0 < h ≤ k, such that

F (x, yo − k) < 0 for |x− xo| < h (4.11)

and
F (x, yo + k) > 0 for |x− xo| < h (4.12)
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Step 3. Let x = x∗ be any value of x in the interval Io = (xo − h, xo + h). We
have: F (x∗, yo − k) < 0, F (x∗, yo + k) > 0. By hypothesis 1, the function F (x∗, y) is
a continuous function of y. By the Intermediate Value Theorem, therefore, there is y∗,
yo − k < y∗ < yo + k, such that F (x∗, y∗) = 0. See the diagram in Figure 4.2(b).

By hypothesis 3, if y ∈ Jo = (yo − k, yo + k), then

y < y∗ =⇒ F (x∗, y) < 0,

y > y∗ =⇒ F (x∗, y) > 0.

This implies that y = y∗ is the only value of y in the interval Jo for which F (x∗, y∗) = 0.
We have shown that for every x = x∗ in the interval Io = (xo − h, xo + h) there is

a unique value y = y∗ in the interval Jo such that F (x∗, y∗) = 0. Hence, the equation
F (x, y) = 0 defines a function in the rectangle R = Io × Jo. Let y = f(x) be the function
under consideration.

Step 4. In particular, when x∗ = xo, we obtain

y∗ = f(x∗) = yo,

using hypothesis 2 and the uniqueness of y∗ for any fixed value of x ∈ Io.

Step 5. Let ε > 0 be given. Suppose that ε < k. Replace the square S in steps 1—3
of the proof by the square

Sε = {(x, y) : |x− xo| ≤ ε, |y − yo| ≤ ε}.
We arrive at the conclusion that there is a value h′, h′ < h, such that y = f(x) is a function
on I ′ = {x : |x− xo| < h′} whose range is contained in

J ′ = {y : |y − yo| < ε} = {y : |f(x)− f(xo)| < ε}.
Therefore,

∀0 < ε < k ∃h′ > 0 (|x− xo| < h′ =⇒ |f(x)− f(xo)| < ε). (4.13)

We have proved that (4.13) holds for any ε < k. Hence (4.13) is automatically true for
every ε ≥ k and we conclude that f is continuous at the point xo.

Step 6. To show that f is continuous on the interval Io, we need to show that f is
continuous at x = x1, where x1 is any point of Io.

Let x1 ∈ Io be given. Let y1 = f(x1). Then the function y = f(x) satisfies the condition

F (x1, y1) = 0

so that we can repeat steps 1 — 5 of the proof replacing (xo, yo) by (x1, y1) to arrive at the
following conclusion:

There are positive numbers h1 and k1 such that the equation F (x, y) = 0 defines a function
y = f(x) for x ∈ I1 = {x : |x− x1| < h1} ⊂ Io with range contained in J1 = {y : |y − y1| <
k1} ⊂ Jo. Moreover, the function y = f1(x) is continuous at the point x = x1.

Since the function y = f1(x) is the only function defined on I1 that satisfies F (x, y) = 0,
we have f(x) = f1(x) for x ∈ I1. Hence f(x) is continuous at the point x = x1.



92 Chapter 4 — Real-Valued Functions II

4.5 Exercises

4.1 Use the ε − δ definition of uniform continuity to prove that each of the following
functions is uniformly continuous on the specified interval.

(a) f(x) = x3 + 1, x ∈ (1, 2) (b) f(x) =
√

1 + x, x ∈ (−1, 2)

(c) f(x) = sin(3x), x ∈ (−∞,∞) (d) f(x) = 1
x , x ∈ (1,∞)

(e) f(x) =
√

x, x ∈ (0,∞).

4.2 Show that each of the following functions is not uniformly continuous on the specified
interval.

(a) f(x) = x2, x ∈ (−∞,∞)

(b) f(x) =
1

x2
, x ∈ (0, 2).

4.3 Use the definition of limit of a function of two variables to prove that

lim
(x,y)→(1,2)

(3x + 2y) = 7.

4.4 Let F (x, y) = x2 + y2 − 1.

(a) Determine y as a continuous function of x, given that:

(i) y = − 1√
2

when x = 1√
2
,

(ii) F (x, y) = 0.

(b) Is it possible to determine y as a continuous function of x when the following
hold?

(i) xo = 1 gives yo = 0,

(ii) F (x, y) = 0.

4.5 Discuss when it is possible to determine y as a continuous function of x, 0 < x < 1,
when x, y satisfy:

f(x, y) = x + y + sinxy ≡ 0.

4.6 Let F (x, y) =
xy

1 + x2y2
.

(a) Determine the domain of F .

(b) Is F (x, y) a continuous function? Justify your answer.
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4.7 Consider the following function

F (x, y) =







xy

x2 + y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

(a) Show that for every xo, f2(y) = F (xo, y) is continuous.

(b) Show that for every yo, f1(x) = F (x, yo) is continuous.

(c) Show that H = F (x, y) is not continuous at (0, 0).

(d) Show that H = F (x, y) is a bounded function of x and y.
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Chapter 5

Differentiation

5.1 Definition of Derivative

Geometrically, “f(x) is differentiable at xo” means that a tangent line can be drawn to
the curve y = f(x) at x = xo. The slope of the tangent line is f ′(xo). This geometric
interpretation is shown in Figure 5.1, where α denotes the angle between the tangent line
to the curve y = f(x) at xo and the positively directed x-axis. We note that

f(xo + h)− f(xo)

h

is the gradient of the line through the points (xo, f(xo)) and (xo +h, f(xo + h)). As h → 0,
the secant line approaches the position of the tangent line to the curve y = f(x) at xo.
Refer to Figure 5.1 again to see that

lim
h→0

f(xo + h)− f(xo)

h
= tan α.

Definition 5.1 Let f be a function defined on a given interval I ⊂ RI and let xo be
an interior point of I so that f(x) is defined in a neighbourhood of the point xo. If the limit

lim
h→0

f(xo + h)− f(xo)

h
(5.1)

exists, then the function f(x) is said to be differentiable at the point x = xo. The value
of this limit is called the derivative of f(x) at the point x = xo.

If the limit (5.1) does not exist, then it is said that the function f(x) is not differentiable
at x = xo or f(x) does not possess a derivative at x = xo.

95
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Notations: The derivative of y = f(x) is denoted in a variety of ways. The most
commonly used notations for the derivative of y = f(x) at x = xo are

(i) f ′(xo), (ii)
dy

dx

∣

∣

∣

∣

x=xo

, (iii)
df

dx

∣

∣

∣

∣

x=xo

, (iv) Df |x=xo
.

When y is a function of t, y = f(t), the derivative of y at t = to is also denoted by ẏ(to).
For a function f(x) which is differentiable at the point x = xo we therefore have

f ′(xo) = lim
h→0

f(xo + h)− f(xo)

h
= lim

x→xo

f(x)− f(xo)

x− xo
.

Figure 5.1: Illustrating the concept of the derivative f ′(xo) of the function y = f(x) at
the point xo.

From the definition, the derivative can be regarded as expressing a relationship between
the increment in y = f(x) corresponding to an increment h in x when x = xo. It is formally
stated in the following theorem.

Theorem 5.1 Let f be defined on an interval I and let xo be an interior point of I. f
is differentiable at xo if and only if there exists a constant A such that, for all h sufficiently
small,

f(xo + h) = f(xo) + A h + h ε(h),

where lim
h→0

ε(h) = 0.
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Proof.
=⇒ Assume f ′(xo) exists. Then

lim
h→0

f(xo + h)− f(xo)

h
= f ′(xo), so that

f(xo + h)− f(xo)

h
= f ′(xo) + ε(h),

where lim
h→0

ε(h) = 0. Hence f(xo + h) = f(xo) + Ah + h ε(h), where A = f ′(xo).

⇐= If f(xo + h) = f(xo) + Ah + h ε(h) and lim
h→0

ε(h) = 0, then

f(xo + h)− f(xo)

h
= A + ε(h).

Hence f ′(xo) = A. The argument shows that A, if it exists, is unique and is equal to f ′(xo).

Example 5.1 Show that the function f(x) = 2x2 + 3 is differentiable at the point
xo = 1 and find the derivative f ′(1).

Solution. If xo = 1, then

f(xo + h)− f(xo)

h
=

2(1 + h)2 + 3− (2 + 3)

h
= 4 + 2h.

Since lim
h→0

(4 + 2h) exists, we conclude that f(x) is differentiable at xo = 1 and we have

f ′(xo) = f ′(1) = lim
h→0

f(xo + h)− f(xo)

h
= lim

h→0
(4 + 2h) = 4.

Thus f ′(1) = 4.

Example 5.2 Show that the function f(x) = 2x2 + 3 is differentiable at any point
xo.

Solution. We have

f(xo + h)− f(xo) = 2(xo + h)2 + 3− (2x2
o + 3)

= 2(x2
o + 2hxo + h2)− 2x2

o

= 4hxo + 2h2.

Thus, with any real value of xo, the limit defined by (5.1) exists and is equal to

lim
h→0

4hxo + 2h2

h
= lim

h→0
(4xo + 2h) = 4xo.

This implies that the function f(x) = 2x2 + 3 is differentiable at xo and

f ′(xo) = 4xo.

In particular, we obtain, as a special case, the result of the previous example:

f ′(1) = 4.
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(a) f(x) = 2x2 + 3 (b) g(x) = |x| (c) k(x) = x|x|

(d) f ′(x) = 4x (e) g′(x) =

{

+1, x > 0
−1, x < 0

(f) k′(x) = 2|x|

Figure 5.2: Illustrating the concept: “The derivative of a function is itself a function .”

Example 5.3 Show that the function g(x) = |x| is differentiable at any point x =
xo 6= 0 and it is not differentiable at the point x = xo = 0.

Solution. If xo = 0 then

g(xo + h)− g(xo) = g(h) − g(0) = |h| − |0| = |h|

and
g(xo + h)− g(xo)

h
=
|h|
h

=

{

1 if h > 0
−1 if h < 0.

It is clear that the limit lim
h→0

g(xo + h)− g(xo)

h
does not exist, since the limit from the left

is

lim
h→0−

g(xo + h)− g(xo)

h
= −1
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and the limit from the right is

lim
h→0+

g(xo + h)− g(xo)

h
= 1.

Therefore, the function g(x) = |x| does not possess a derivative at x = 0. Let xo be any
number different from 0. We have

g(xo + h)− g(xo)

h
=
|xo + h| − |xo|

h
.

If |h| is sufficiently small,
xo > 0 =⇒ xo + h > 0

and
xo < 0 =⇒ xo + h < 0.

Thus, if xo > 0 then

g′(xo) = lim
h→0

xo + h− xo

h
= 1

and if xo < 0 then

g′(xo) = lim
h→0

−(xo + h)− (−xo)

h
= −1.

Hence g(x) = |x| is differentiable at any point xo 6= 0.

Example 5.4 Show that the function k(x) = x|x| is differentiable at any point x ∈ RI .

Solution. For a given xo, if |h| is sufficiently small, then

xo > 0 =⇒ xo + h > 0 and xo < 0 =⇒ xo + h < 0.

We have

k(xo+h)−k(xo) = (xo+h)|xo+h|−xo|xo| =











(xo + h)2 − x2
o = 2hxo + h2, if xo > 0

−(xo + h)2 + x2
o = −2hxo − h2, if xo < 0

h|h|, if xo = 0.

Hence,

lim
h→0

k(xo + h)− k(xo)

h
=











2xo, if xo > 0
−2xo, if xo < 0
0, if xo = 0.

We conclude, therefore, that the function k(x) = x|x| is differentiable at any point x = xo

and
k′(xo) = 2|xo|.
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The derivative of the function f is itself a function; its domain is the subset of the
domain of f that consists of all points xo at which f is differentiable.

By Example 5.2 we conclude that the derivative of the function f(x) = 2x2 + 3, is the
function f ′(x) = 4x. In this case the domain of f equals the domain of f ′.

In Example 5.3 we conclude that the derivative of the function g(x) = |x|, is the function

g′(x) =

{

1, if x > 0
−1, if x < 0.

In this case the domain of g is Dg = (−∞,∞) and the domain of g′ is

Dg′ = Dg − {0} = (−∞, 0) ∪ (0,∞).

Figure 5.2 shows us graphs of the functions f(x), g(x), and k(x), and their derivatives.

Example 5.5 Let f be a constant function, f(x) = c. Find the derivative f ′.

Solution. Let xo be any real number. We have

f ′(xo) = lim
h→0

f(xo + h)− f(xo)

h
= lim

h→0

c− c

h
= 0.

Hence
f ′(x) = (c)′ = 0.

Example 5.6 Let f be the identity function, f(x) = x. Find the derivative f ′.

Solution. Let xo be any real number. We have

f ′(xo) = lim
h→0

f(xo + h)− f(xo)

h
= lim

h→0

xo + h− xo

h
= 1.

Hence,
f ′(x) = (x)′ = 1.

5.2 One-sided Derivatives

If a function f is defined on a closed interval [a, b], the one-sided derivatives of f at a and b
are defined by replacing the limit in (5.1) by the corresponding one-sided limit. In general,
the right-hand derivative of f can be considered at any point xo of the domain of f such
that f is defined for xo ≤ x < xo + h for some positive h.

Analogously, the left-hand sided derivative of f can be considered at any point xo of
the domain of f such that f is defined for xo − h < x ≤ xo for some positive h.
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Definition 5.2 If f(x) is defined for xo ≤ x < xo + h, for some positive h, then the
right-hand sided derivative of f at the point x = xo is

f ′+(xo) = lim
h→0+

f(xo + h)− f(xo)

h
,

provided that the limit exists.

If f(x) is defined for xo − h < x ≤ xo for some positive h, then the left-hand sided
derivative of f at the point x = xo is

f ′−(xo) = lim
h→0−

f(xo + h)− f(xo)

h
,

provided that the limit exists.

Directly from the definition of the derivative of f at xo it follows that f ′(xo) exists if
and only if f ′+(xo) and f ′−(xo) both exist and are equal.

Example 5.7 Find the derivative of the function f(x) =
√

x− 2, when x > 2 and
investigate whether or not the right-hand sided derivative of the function at the point x = 2
exists.

Solution. For any xo > 2, we have

lim
h→0

f(xo + h)− f(xo)

h
= lim

h→0

√
xo − 2 + h−√xo − 2

h

= lim
h→0

(
√

xo − 2 + h−√xo − 2)(
√

xo − 2 + h +
√

xo − 2)

h(
√

xo − 2 + h +
√

xo − 2)

= lim
h→0

1√
xo − 2 + h +

√
xo − 2

=
1

2
√

xo − 2
.

Hence

f ′(x) =
1

2
√

x− 2
, x > 2.

If f(x) =
√

x− 2 and xo = 2, we have

f(xo + h)− f(xo)

h
=

f(2 + h)− f(2)

h
=

√
h−

√
0

h
=

1√
h

, provided h > 0.

Thus

lim
h→0+

f(2 + h)− f(2)

h
= lim

h→0

1√
h

= +∞.

and we conclude that the right-hand sided derivative of f(x) =
√

x− 2 at the point x = 2
does not exist.
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(a) f(x) =
√

x− 2 (b) f ′(x) =
1

2
√

x− 2

Figure 5.3: A function and its derivative.

5.3 Differentiability and Continuity

Now we will prove that any differentiable function is continuous and give some examples of
functions that are continuous but yet not differentiable.

Theorem 5.2 If f is differentiable at xo then f is continuous at xo.

Proof. We have
f(xo + h) = f(xo) + Ah + εh,

where ε = ε(h) → 0 as h → 0. Hence

lim
h→0

f(xo + h) = f(xo).

Example 5.8 Functions that are continuous but not differentiable at the point x = xo.

(a) We shall show that the continuous function

f(x) =











x, x ≥ 2

x2

2
, x < 2

is not differentiable at the point x = xo = 2.
The one-sided derivatives of f at the point x = xo = 2 are:

f ′+(2) = lim
h→0+

f(2 + h)− f(2)

h
= lim

h→0+

2 + h− 2

h
= 1,

f ′−(2) = lim
h→0−

f(2 + h)− f(2)

h
= lim

h→0−

1
2(2 + h)2 − 2

h
= 2.
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Since the right-hand sided and left-hand-sided derivatives of f are not equal, f does not
possess a derivative at the point x = xo = 2.

(b) We shall show that the function

f(x) =







x sin
1

x
, x 6= 0

0, x = 0

is continuous on the interval I = (−∞,∞) but not differentiable at the point x = xo = 0.
By Example 3.10, f is a continuous function on the interval I = (−∞,∞).
Now, at the point x = 0 we have

f(x + h)− f(x)

h
=

f(h)− f(0)

h
=

h sin 1
h

h
= sin

1

h
.

Since lim
h→0

sin
1

h
does not exist, so the function f is not differentiable at the point x = xo = 0.

Refer to Figure 5.4(b) to see the behaviour of the function f(x) = x sin 1
x when x → 0.

It is natural to accept that the tangent line to the curve y = f(x) cannot de drawn. Now,
in Figure 5.5, we are given another function that behaves in a similar way when x → 0.
We will show, however, that the function shown in Figure 5.5 possesses a derivative at the
point x = xo = 0.

(a) f(x) =

{

x, x ≥ 2
x2/2, x < 2

(b) f(x) =

{

x sin 1/x, x 6= 0
0, x = 0

Figure 5.4: Functions that are continuous but not differentiable.
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f(x) =

{

x2 sin 1/x, if x 6= 0
0, if x = 0

Figure 5.5: A function that is continuous and differentiable at x = 0.

Example 5.9 Show that the function

f(x) =

{

x2 sin 1
x , x 6= 0

0, x = 0

is differentiable at the point x = 0.

Solution We have

∣

∣

∣

∣

f(h)− f(0)

h

∣

∣

∣

∣

=

∣

∣

∣

∣

h sin
1

h

∣

∣

∣

∣

≤ |h| → 0, as h → 0.

Hence

f ′(0) = lim
h→0

f(h)− f(0)

h
= lim

h→0
h sin

1

h
= 0.

The tangent line to the graph of the curve y = f(x), therefore, is the horizontal axis y = 0.

5.4 Differentiation of Elementary Functions

In this section we shall determine the derivatives of the following functions:

f(x) = xn, n ∈ NI , f(x) = ex, f(x) = sinx, f(x) = cos x.
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1. Let f(x) = xn, where n is a natural number. If x is any real number then, by the
binomial expansion, we have

(x + h)n = xn +

(

n

1

)

xn−1h +

(

n

2

)

xn−2h2 + · · ·+
(

n

n

)

hn,

so that
(x + h)n − xn

h
= nxn−1 +

(

n

2

)

xn−2h + · · ·+
(

n

n

)

hn−1.

When h → 0, all terms on the right-hand side of the above expression, except the term
nxn−1, converge to 0 and consequently

lim
h→0

f(x + h)− f(x)

h
= lim

h→0

(x + h)n − xn

h
= nxn−1.

Thus, if f(x) = xn, where n is a positive integer, then f(x) is differentiable at any point
x and

f ′(x) = (xn)′ = n xn−1.

2. Let f(x) = ex and let x be any real number. Then

ex+h − ex

h
= ex eh − 1

h
.

It is shown in Example 6.8 (h) that

lim
h→0

eh − 1

h
= 1.

Therefore

lim
h→0

f(x + h)− f(x)

h
= lim

h→0

ex+h − ex

h
= ex lim

h→0

eh − 1

h
= ex.

Thus,
f ′(x) = (ex)′ = ex.

3. Let f(x) = sinx. We have

sin(x + h)− sinx

h
= 2

sin(h/2) cos(x + h/2)

h
=

sin h
2

h
2

cos(x +
h

2
).

When h → 0, then h
2 → 0 and, by Example 3.7,

lim
h→0

sin h
2

h

2

= 1.

Making use of the fact that cos x is continuous, we obtain

lim
h→0

f(x + h)− f(x)

h
= lim

h→0

sin h
2

h
2

lim
h→0

cos(x +
h

2
) = 1 · cos x = cos x.
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Alternatively,

sin(x + h)− sinx

h
=

sinx cos h + sinh cos x− sinx

h

=
sinh

h
cos x− sinx

1− cos h

h

=
sinh

h
cos x− sinx

2 sin2 h/2

h

=
sinh

h
cos x− h

2
sinx

(

sinh/2

h/2

)2

−→ cos x, as h −→ 0.

Hence

f ′(x) = (sinx)′ = cos x.

4. Let f(x) = cos x. We have

lim
h→0

f(x + h)− f(x)

h
= lim

h→0

cos(x + h)− cosx

h

= lim
h→0

2

h
sin

2x + h

2
sin(−h

2
)

= − lim
h→0

sin
2x + h

2
lim
h→0

sin h
2

h
2

= − sinx.

Note that lim
h→0

sin
2x + h

2
= sinx, for sinx is continuous over the interval (−∞,∞). Therefore,

f ′(x) = (cos x)′ = − sinx.

5.5 The Algebra of Derivatives

Theorem 5.3 The rules for differentiation.
Suppose that the functions f and g defined on a given interval I are differentiable at some

point xo ∈ I. Then:

(a) Addition Rule: The function f + g is differentiable at xo, and

(f + g)′(xo) = f ′(xo) + g′(xo);

(b) Product Rule: The function f · g is differentiable at xo, and

(f · g)′(xo) = f(xo)g
′(xo) + f ′(xo)g(xo);

(c) Scalar Product Rule: The function h(x) = cf(x), where c is a constant, is differ-
entiable at xo, and

h′(xo) = (c f)′(xo) = c f ′(xo);
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(d) Reciprocal Rule: If g(xo) 6= 0, then
1

g
is differentiable at xo, and

(

1

g

)′
(xo) = − g′(xo)

[g(xo)]2
;

(e) Quotient Rule: If g(xo) 6= 0, then
f

g
is differentiable at xo, and

(

f

g

)′
(xo) =

f ′(xo)g(xo)− f(xo)g
′(xo)

[g(xo)]2
.

Proof. By assumption, f ′(xo) = A and g′(xo) = B exist, so that, by Theorem 5.1, we
have

f(xo + h) = f(xo) + A h + h ε1(h),
g(xo + h) = g(xo) + B h + h ε2(h),

where lim
h→0

ε1(h) = 0, lim
h→0

ε2(h) = 0.

(a)
We have

(f + g)(xo + h) = (f + g)(xo) + (A + B)h + h(ε1(h) + ε2(h)).

Hence (f +g)′(xo) exists and equals A+B, since ε3 = ε1(h)+ε2(h) tends to zero as h tends
to zero.

(b) We have

f · g(xo + h) = (f(xo) + Ah + hε1(h))(g(xo) + Bh + hε2(h))

= f(xo)g(xo) + (Ag(xo) + Bf(xo))h + hε3(h),

where ε3(h) = Aε2(h) + Bε1(h) + hε1(h)ε2(h).
Hence (f · g)′(xo) = Ag(xo) + Bf(xo), since lim

h→0
ε3(h) = 0.

(c) Let g(x) = c, so that

h(x) = c f(x) = f(x)g(x), −∞ < x < ∞.

Then,

g′(xo) = 0,

and an application of Product Rule (b) gives

h′(xo) = f(xo)g
′(xo) + f ′(xo)g(xo) = 0 · f(xo) + cf ′(xo) = c f ′(xo).
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(d) First, we show that the function 1/g is well defined for x = xo + h, when h is
sufficiently small. We argue as follows. Since g is differentiable at xo, by Theorem 5.2, g is
continuous at xo. By Lemma 4.1, therefore, there exists δ > 0 such that g(xo + h) 6= 0 for
|xo + h− xo| = |h| < δ. Hence the expression

(

1

g

)

(xo + h)−
(

1

g

)

(xo)

h

is defined for sufficiently small h. We have

(

1

g

)

(xo + h)−
(

1

g

)

(xo) = −g(xo + h)− g(xo)

g(xo + h)g(xo)

= − Ah + hε1(h)

(g(xo) + Ah + hε1(h))g(xo)

= − A

(g(xo))2
h + hε(h),

where

ε(h) =
Ah + hε1(h)− ε1(h)g(xo)

g(xo)(g(xo) + Ah + hε1(h))
→ 0, as h → 0.

Hence
(

1

g

)′
(xo) = − g′(xo)

g(xo)2
.

(e) Applying Product Rule (b) and Reciprocal Rule (d), we get

(

f

g

)′
(xo) =

(

f · 1

g

)′
(xo)

= f ′(xo) ·
(

1

g

)

(xo) + f(xo) ·
(

1

g

)′
(xo)

=
f ′(xo)

g(xo)
− f(xo)

g′(xo)

[g(xo)]2

=
f ′(xo)g(xo)− f(xo)g

′(xo)

[g(xo)]2
.

Application of Theorem 5.3 allows us to differentiate easily some functions for which it
would be difficult to obtain the limit

lim
h→0

f(xo + h)− f(xo)

h
.
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Example 5.10 Using rules for differentiation .

(a) If f(x) = 2x3 + 7x2 + 5, then

f ′(x) = 2(x3)′ + 7(x2)′ + (5)′ = 2(3x2) + 7(2x) + 0 = 6x2 + 14x.

(b) If g(x) = x−n, n ∈ NI , then

g′(x) = (x−n)′ =
(

1

xn

)′
= −(xn)′

x2n
= −nxn−1

x2n
= −nx−n−1.

(c) If h(x) =
x2 − 1

x2 + 1
, then

h′(x)=
(x2 − 1)′(x2 + 1)− (x2 − 1)(x2 + 1)′

(x2 + 1)2
=

2x(x2 + 1)− (x2 − 1) · 2x
(x2 + 1)2

=
4x

(x2 + 1)2
.

(d) If u(x) = tanx, then provided that cos x 6= 0, i.e. x 6= π
2 + kπ, k = ±1,±2, . . .,

u′(x) =

(

sinx

cos x

)′
=

(sinx)′ cos x− sinx(cos x)′

cos2 x
=

cos2 x + sin2 x

cos2 x
=

1

cos2 x
.

(e) If v(x) = cot x, then provided that sinx 6= 0 or x 6= kπ, k = ±1,±2, . . .,

v′(x) =
(cos x)′ sinx− cos x(sinx)′

sin2 x
=
− sin2 x− cos2 x

sin2 x
= − 1

sin2 x
.

5.6 Differentiation of Composite Functions

Theorem 5.4 The Chain Rule
Consider a function g with domain I ⊂ RI and range J and a function f defined on the

interval J . If g is differentiable at the point xo ∈ I and f is differentiable at the point
yo = g(xo) ∈ J , then the composite function f ◦ g is differentiable at the point xo and

(f ◦ g)′(xo) = f ′(yo)g
′(xo).

Proof. Let A = f ′(yo) and let B = g′(xo). By Theorem 5.1 we have

f(yo + k) = f(yo) + Ak + ε1k, g(xo + h) = g(xo) + Bh + ε2h,

where
lim
k→0

ε1 = lim
k→0

ε1(k) = 0, lim
h→0

ε2 = lim
h→0

ε2(h) = 0.

Now
(f ◦ g)(xo + h) = f(g(xo + h)) = f [g(xo) + (B + ε2)h] = f(yo + k),

where k = h(B + ε2).
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We have

f(yo + k) = f(yo) + k(A + ε1) = f(yo) + (A + ε1)(B + ε2)h = f(yo) + ABh + ε3h.

Therefore
(f ◦ g)(xo + h) = f(g(xo)) + ABh + ε3h,

where ε3 = Aε2 + Bε1 + ε1ε2 → 0, as h → 0. Hence, applying Theorem 5.1 again, we
conclude that (f ◦ g)′(xo) = AB, as required.

Example 5.11 Find derivative of the function H(x) = e1−x3

.

Solution. H can be considered as a composite function f ◦ g, where

f(y) = ey, −∞ < y < ∞,

y = g(x) = 1− x3, −∞ < x < ∞.

We have
f ′(y) = ey,

g′(x) = −3x2.

Hence

H ′(x) = (f ◦ g)′(x) = f ′(y)g′(x) = ey · (−3x2) = −3x2e1−x3

, −∞ < x < ∞.

(a) H(x) = e1−x3

(b) H ′(x) = −3x2e1−x3

Figure 5.6: Derivative of a composite function.

Example 5.12 Determine derivative of the function H(x) = sin(cos x) at a given point
x = xo.

Solution. Let yo = g(xo) = cos xo. Then we have

H ′(xo) = (f ◦ g)′(xo) = f ′(yo)g
′(xo) = cos yo · (− sinxo) = − sinxo · cos(cos xo).
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(a) H(x) = sin(cos x) (b) H ′(x) = − sinx cos(cos x)

Figure 5.7: Derivative of a composite function.

5.7 Differentiation of Inverse Functions

Theorem 5.5 Suppose that the function y = f(x) with domain I ⊂ RI and range
J ⊂ RI , is strictly monotone and let x = g(y) be the inverse function to f .

If f is differentiable at a given point xo ∈ I and f ′(xo) 6= 0, then g is differentiable at
the point yo = f(xo) and

g′(yo) =
1

f ′(xo)
=

1

f ′(g(yo))
.

Proof. Let yo = f(xo). Then g(yo) = xo. Given k 6= 0, let

h = g(yo + k)− g(yo). (5.2)

We have

f(xo + h) = f(xo + g(yo + k)− g(yo)) = f(g(yo + k)) = yo + k.

Since f ′(xo) exists, we can write

f(xo + h) = f(xo) + Ah + hε1(h), where A = f ′(xo) 6= 0, ε1(h) → 0 as h → 0.

Hence

yo + k = f(xo) + Ah + hε1(h),

which implies that

k = Ah + hε1(h),

or

h =
k

A + ε1(h)
.
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Therefore, using (5.2), we get

g(yo + k) = g(yo) + h = g(yo) +
1

A
k + kε(k), (5.3)

where

ε(k) =
h− k/A

k
=

1

A + ε1(h)
− 1

a
=

1

A + ε1(h)

ε1(h)

A
→ 0, as k → 0.

Clearly, (5.3) implies that g is differentiable at the point yo and

g′(yo) =
1

A
,

which completes the proof.

(a) f(x) = ex (b) g(y) = log y (c) g′(y) =
1

y

Figure 5.8: The exponential function f(x) = ex, its inverse g(y), and the derivative of the
inverse.
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(i) f(x) = xn, n even; (ii) f(x) = xn, n odd;

(iii) g(y) = n
√

y, n even; (iv) g(y) = n
√

y, n odd;

(v) g′(y) =
1

n
y1/n−1, n even; (vi) g′(y) =

1

n
y1/n−1, n odd.

Figure 5.9: The power function f(x) = xn, its inverse g(y), and the derivative of the inverse.
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(i) f(x) = sinx; (ii) f(x) = tanx;

(iii) g(y) = arcsin y; (iv) g(y) = arctan y;

(v) g′(y) =
1

√

1− y2
; (vi) g′(y) =

1

1 + y2
.

Figure 5.10: Trigonometric functions: sine and tangent; their inverses and the derivatives
of the inverse functions.
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Example 5.13 Finding derivatives of inverse functions.

(a) Consider the function y = f(x) = ex. f is one-to-one on the interval I = (−∞,∞)
and maps I onto J = (0,∞). We have

f ′(x) = (ex)′ = ex, x ∈ I,

and we can see that f ′(x) 6= 0, x ∈ I. The inverse function g(y) = loge y = log y, therefore,
is differentiable on J and we obtain

g′(y) = (log y)′ =
1

f ′(x)
=

1

ex
=

1

y
.

Figure 5.8 shows us the function f(x) = ex, for −2 < x < 2, its inverse g(y) = log y, and
the derivative g′(x).

(b) Let f(x) = xn, where n is even. Let I = [0,∞]. Clearly f is one-to-one on the
interval I and maps it onto J = [0,∞). The inverse function is g(y) = y1/n = n

√
y, y ∈ J .

We have f ′(x) = nxn−1 6= 0 for all x ∈ I, x 6= 0. Hence g(y) is differentiable over the interval
(0,∞) and its derivative is

g′(y) = (y1/n)′ =
1

f ′(x)
=

1

nxn−1
=

1

ny(n−1)/n
=

1

n
y

1

n
−1, y > 0.

Figure 5.9(i), (iii), and (v) shows us graphs of the function f(x) = xn, when n is even, along
with the inverse function g(y) = n

√
y and the derivative g′(y).

(c) Let f(x) = xn, where n is odd, n 6= 1. Then f(x) is one-to-one on the whole real
line, I = (−∞,∞). We can see that f ′(x) = nxn−1 6= 0 for all x ∈ (−∞,∞), except x = 0.
Now f maps I onto J = (−∞,∞), and the inverse function g(y) = y1/n = n

√
y, y ∈ J , is

differentiable for y ∈ J, y 6= 0. We have

g′(y) = (y1/n)′ =
1

n
y

1

n
−1, y 6= 0,

provided n is odd. We note that g′(0) does not exist. See Figure 5.9(ii), (iv), and (vi).

Now refer to Figure 5.10 which gives us graphs of the trigonometric functions sinx and
tanx, along with their inverses and the derivatives of the inverse functions.

(d) Consider the function y = f(x) = sinx on the interval I = (− π
2 , π

2 ). f is strictly
increasing on I and maps I onto J = [−1, 1]. The inverse function is

f−1(y) = g(y) = arcsin y, y ∈ J.

We have f ′(x) = cos x 6= 0 for x ∈ I = (−π
2 , π

2 ). Hence the inverse function g is differen-
tiable at any point y ∈ (−1, 1) and

g′(y) =
1

f ′(x)
=

1

cos x
=

1
√

1− sin2 x
=

1
√

1− y2
, −1 < y < 1.
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(e) If y = f(x) = cos x, x ∈ I = [0, π], then f−1(y) = g(y) = arccos y, y ∈ J =
[−1, 1]. Since f ′(x) = (cos x)′ = − sinx 6= 0 for 0 < x < π, we get

g′(y) = (arccos y)′ =
1

f ′(x)
= − 1

sinx
= − 1

√

1− y2
, −1 < y < 1.

(f) Similarly we differentiate the inverse function of f(x) = tan x on the interval
I = (−π

2 , π
2 ).

g′(y) = (arctan y)′ =
1

f ′(x)
=

1

sec2 x
=

1

1 + tan2 x
=

1

1 + y2
.

(g) Similarly we obtain

(arccot y)′ = − 1

1 + y2
, −∞ < x < ∞.

5.8 Derivatives of Higher Order

If the derivative f ′ of a given differentiable function f is itself differentiable, it is said that
f is twice differentiable and the derivative of f ′ is called the second derivative of f and is
denoted by f ′′. The domain of f ′′ is the set I, I ⊂ RI , where the derivative of the function
f ′ exists. If the derivative of the second derivative of f exists, it is said that f is three times
differentiable and the derivative of f ′′ is called the third derivative of f and is denoted by
f ′′′ or f (3).

The process of differentiation may continue to yield the 4th, 5th, . . ., nth derivatives of
f , normally denoted by f (4), f (5), . . . , f (n).

Other notations for the nth derivative (n = 2, 3, . . .) of the function y = f(x) are

dn

dxn
f(x),

dnf(x)

dxn
, y(n),

dny

dxn
.

The various functions f (n), n ≥ 2, are called higher-order derivatives of f . By convention,
we shall write f (0) and f (1) to denote f and f ′, respectively.

Example 5.14 Find all higher-order derivatives of the function

f(x) = 3x4 + 2x− 1.

Solution. For any value of x we have

f (1)(x) = (3x4 + 2x− 1)′ = 12x3 + 2,

f (2)(x) = (12x3 + 2)′ = 36x2,

f (3) = (36x2)′ = 72x,

f (4) = (72x)′ = 72,

f (n) = 0, n ≥ 5.
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Example 5.15 Find the first and second derivatives of the function

f(x) =

{

x2 sin 1
x , x 6= 0

0, x = 0.

Solution. By Example 5.9, f ′(0) = 0.
If x 6= 0 then

f ′(x) = (x2 sin
1

x
)′ = 2x sin

1

x
+ x2(sin

1

x
)′ = 2x sin

1

x
+ x2 cos

1

x
(− 1

x2
)

= 2x sin
1

x
− cos

1

x
.

Hence

f ′(x) =







2x sin
1

x
− cos

1

x
, x 6= 0

0, x = 0.

If x 6= 0 then

f ′′(x) =

(

2x sin
1

x
− cos

1

x

)′

= 2 sin
1

x
+ 2x cos

1

x

(

− 1

x2

)

+ sinx

(

− 1

x2

)

= 2 sin
1

x
− 2

x
cos

1

x
− 1

x2
sin

1

x
.

Now,

f ′′(0) = lim
h→0

f ′(h)− f ′(0)
h

,

provided that the limit exist. We have

f ′(h)− f ′(0)
h

= 2 sin
1

h
− 1

h
cos

1

h
.

Since
∣

∣

∣

∣

f ′(h)− f ′(0)
h

∣

∣

∣

∣

=

∣

∣

∣

∣

1

h
cos

1

h
− 2 sin

1

h

∣

∣

∣

∣

≥ 1

|h|

∣

∣

∣

∣

cos
1

h

∣

∣

∣

∣

− 2

∣

∣

∣

∣

sin
1

h

∣

∣

∣

∣

≥ 1

|h| − 2,

for all sufficiently small h, hence f ′′(0) does not exist.

In fact, the range of values of f ′(h)−f ′(0)
h , as h approaches 0 is (−∞,∞).
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(a) f(x) (b) f ′(x) (c) f ′′(x)

Figure 5.11: The function f(x) of Example 5.15 and its first and second derivatives.

Example 5.16

If f(x) = sinx, then we have

f (1)(x) = cosx = sin(x + π/2),

f (2)(x) = − sin(x) = sin(x + 2π/2),

f (3)(x) = − cosx = sin(x + 3π/2) .

Therefore
f (n)(x) = sin(x + nπ/2), n = 0, 1, 2, . . .

Example 5.17

If f(x) = cos x, then we have

f (1)(x) = − sinx = cos(x + π/2),

f (2)(x) = − cos(x) = cos(x + 2π/2),

f (3)(x) = sinx = cos(x + 3π/2) . . . .

Therefore
f (n)(x) = cos(x + nπ/2), n = 0, 1, 2, . . .
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Example 5.18

Let f(x) = log(1 + x). We have

f (1)(x) = (1 + x)−1,

f (2)(x) = −1 · (1 + x)−2,

f (3)(x) = 1 · 2 · (1 + x)−3,

f (4)(x) = −1 · 2 · 3 · (1 + x)−4,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Therefore
f (n)(x) = (−1)n−1(n− 1)!(1 + x)−n, n = 1, 2, . . .

Example 5.19

Let f(x) = (1 + x)α, where α is any real number. Then

f (1)(x) = α(1 + x)α−1

f (2)(x) = α(α − 1)(1 + x)α−2

f (3)(x) = α(α − 1)(α− 2)(1 + x)α−3

f (4)(x) = α(α − 1)(α− 2)(α − 3)(1 + x)α−4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f (n)(x) = α(α− 1) · · · (α− n + 1)(1 + x)α−n.

5.9 Leibniz’s Formula

Now we shall prove a useful formula for the n-th derivative of the product f · g of two
functions that are n times differentiable.

Theorem 5.6 Leibniz’s Formula If f (n)(a) and g(n)(a) exist, then the product f · g
is n times differentiable and

(f · g)(n)(a) =
n
∑

k=0

(

n

k

)

f (k)(a) · g(n−k)(a). (5.4)

Proof. (By mathematical induction)
Step 1: If n = 1 then (5.4) reduces to the product rule of differentiation:

(f · g)′(a) = f(a)g′(a) + f ′(a)g(a)

that has already been proved (see page 106).
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Step 2: We need to prove the implication

T (n) =⇒ T (n + 1),

where T (n) stands for (5.4), so that

T (n + 1) ≡ (f · g)(n+1)(a) =
n+1
∑

k=0

(

n + 1

k

)

f (k)(a)g(n+1−k)(a).

Making use of the assumption that (5.4) is true and using the product rule of differen-
tiation, we obtain

(f · g)(n+1)(a) =

(

n
∑

k=0

(

n

k

)

f (k)(a) g(n−k)(a)

)′

=
n
∑

k=0

(

n

k

)

(

f (k)(a) g(n−k)(a)
)′

=
n
∑

k=0

(

n

k

)

(

f (k)(a) g(n+1−k)(a) + f (k+1)(a) g(n−k)(a)
)

To simplify notations, we will use f (i) and g(i) instead of f (i)(a) and g(i)(a), i = 1, 2, . . . , n + 1,
respectively. Hence,

(f · g)(n+1)(a) =

(

n

0

)

f g(n+1) +

(

n

0

)

f ′ g(n)

+

(

n

1

)

f ′ g(n) +

(

n

1

)

f ′′ g(n−1)

+

(

n

2

)

f ′′ g(n−1) +

(

n

2

)

f (3) g(n−2)

+ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

+

(

n

n− 1

)

f (n−1) g′′ +

(

n

n− 1

)

f (n) g′

+

(

n

n

)

f (n) g′ +

(

n

n

)

f (n+1) g.

Recall the following identities

(

n

0

)

=

(

n + 1

0

)

= 1

(

n

n

)

=

(

n + 1

n + 1

)

= 1

(

n

k

)

+

(

n

k + 1

)

=

(

n + 1

k + 1

)

, k = 0, 1, 2, . . . , n− 1,



5.10 Extreme Values 121

to conclude that

(f · g)(n+1)(a) =

(

n + 1

0

)

f (0)g(n+1) +

(

n + 1

1

)

f (1)g(n) + · · ·+
(

n + 1

n + 1

)

f (n+1)g(0)

=
n+1
∑

k=0

(

n + 1

k

)

f (k)(a)g(n+1−k)(a).

Example 5.20 Using Leibniz’s formula.

Find the 4-th derivative of the function

H(x) = x3ex.

Solution.
Let f(x) = x3 and g(x) = ex, so that H(x) = f(x) · g(x). We have

f (0)(x) = x3,

f (1)(x) = 3x2,

f (2)(x) = 6x,

f (3)(x) = 6,

f (4)(x) = 0,

g(k)(x) = ex, k = 0, 1, 2, 3, 4.

Hence

H(4)(x) = (f · g)(4) (x)

= f (0)(x)g(4)(x) + 4f (1)(x)g(3)(x) + 6f (2)(x)g(2)(x)

+ 4f (3)(x)g(1)(x) + f (4)(x)g(0)(x)

= ex
(

x3 + 12x2 + 36x + 24
)

.

Therefore H(4)(x) =
(

x3ex
)(4)

= ex
(

x3 + 12x2 + 36x + 24
)

.

5.10 Extreme Values

In Section 3.3, we defined the minimum and maximum of a function f on a given set S. If
f attains its minimum on S at the point x1, then

∀x ∈ S f(x1) ≤ f(x); (5.5)

if f attains its maximum on S at the point x2, then

∀x ∈ S f(x2) ≥ f(x). (5.6)

If the inequality (5.5) is satisfied for all x in a neighbourhood of a given point xo (that is
contained in S), then we say that f has a local minimum at the point xo. If the inequality
(5.6) is satisfied for all x in a neighbourhood of the point xo (that is contained in S), then
we say that f has a local maximum at xo.
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Definition 5.3 Let f be a function defined on a set S. A point xo ∈ S is a local
minimum/maximum point for the function f on S if there is some δ > 0 such that xo

is a minimum/maximum point for f on the set S ∩ (xo − δ, xo + δ).
The value f(xo) is then called a local maximum/local minimum or, simply, an

extreme value of the function f .

Theorem 5.7 Local Extremum Theorem If f has an extreme value at the point
xo and f ′(xo) exists, then

f ′(xo) = 0.

Proof. Suppose that f has a local maximum at xo so that there exists δ > 0 such
that if 0 < h < δ then

f(xo + h)− f(xo) ≥ 0,

f(xo − h)− f(xo) ≥ 0.

Dividing the above inequalities by h and by k = −h, respectively, gives

f(xo + h)− f(xo)

h
≥ 0 and

f(xo + k)− f(xo)

k
≤ 0,

for 0 < h < δ and −δ < k < 0. Since f ′(xo) exists, the one-sided derivatives of f at xo exist
and are equal, we arrive at the conclusion

f ′(xo) = f ′+(xo) = lim
h→0+

f(xo + h)− f(xo)

h
≥ 0

f ′(xo) = f ′−(xo) = lim
k→0−

f(xo + k)− f(xo)

k
≤ 0.

Hence, f ′(xo) = 0.
Analogously, if f(x) has a local minimum at xo, the same conclusion holds.

5.11 Rolle’s Theorem

Theorem 5.8 Rolle’s Theorem Suppose that f is continuous on the closed interval
[a, b] and differentiable on the open interval (a, b). If f(a) = f(b) then there exists an xo,
a < xo < b, such that f ′(xo) = 0.

Proof. Since f is continuous on a closed interval, by the boundedness theorem, it
attains a minimum value and a maximum value on this interval. Let

m = min
x∈[a,b]

f(x) = f(x1), M = max
x∈[a,b]

f(x) = f(x2).

We can assume that m 6= M , since if this is not the case then f is a constant function,
f(x) = c, a ≤ x ≤ b, which implies that f ′(x) = 0, a ≤ x ≤ b, and then the theorem is
obviously true.

Since f(x1) = m 6= M = f(x2) and f(a) = f(b), it follows that at least one of the points
x1 or x2 is not the end-point of the interval [a, b].
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If x1 ∈ (a, b), then by the hypothesis, f ′(x1) exists, and by the local extremum theorem
we conclude that f ′(x1) = 0.

If x2 ∈ (a, b), then by the hypothesis, f ′(x2) exists, and by the local extremum theorem
we conclude that f ′(x2) = 0.

Theorem 5.9 The Cauchy Mean Value Theorem
If f and g are continuous on [a, b] and differentiable on (a, b), then there is c in (a, b) such
that

[f(b)− f(a)] g′(c) = [g(b) − g(a)] f ′(c). (5.7)

Proof. Consider H(x) = Ag(x) + Bf(x), where A = f(b)− f(a), B = g(a) − g(b).
It is easily verified that H(a) = H(b). Hence H ′(c) = 0 for some c in (a, b). Thus

Af ′(c) + Bg′(c) = 0,

as required.

Theorem 5.10 The Mean Value Theorem
If f is continuous on [a, b] and differentiable on (a, b), then there is c in (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. Put g(x) = x in the statement of Cauchy’s Mean Value Theorem.

5.12 Exercises

5.1 Directly from the definition, show that

d

dx
(cy) = c · dy

dx
.

5.2 Let y = ax, a > 0. Use the chain rule to find
dy

dx
.

Hint:
ax = ex log a.

5.3 Let y = xx, x > 0. Find
dy

dx
.
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5.4 Let u = arctan x. Show that

(1 + x2)
d2u

dx2
+ 2x

du

dx
= 0.

Differentiate n-times using Leibniz’s theorem and hence determine the values of u(n)(0), n ≥ 1.

5.5 If un denotes the nth derivative of
Lx + M

x2 − 2Bx + C
, show that

x2 − 2Bx + C

(n + 1)(n + 2)
un+2 +

2(x−B)

n + 1
un+1 + un = 0.

Hint: First derive the equation for n = 0, then use Leibniz’s theorem.

5.6 If y = (arcsin x)2, and yn denotes the nth derivative of y, show that

(1− x2)yn+2 − 2x(n + 1)yn+1 − n(n + 1)yn = 0, n ≥ 1.

Hence determine yn(0), n ≥ 1.

5.7 Show that

n(1− x−1/n) < log x < n(x1/n − 1), for x > 1, n ≥ 1.

Hence show that
(

1 +
y

n

)n

< ey <

(

1− y

n

)−n

.

5.8 Show that
log x = lim

n→+∞
n
(

x1/n − 1
)

, x > 0.

5.9 If a < b and 0 < α < 1, show that

aαb1−α < αa + (1− α)b,

as follows:

1. Write the expression as

b1−α − a1−α < (1− α)(b− a)a−α,

and use the Mean Value Theorem.

2. Alternatively, notice that y = log x is concave and, hence, derive the inequality.

5.10 Use the results of the previous question to derive the following inequality (Hölder’s
inequality):

For p, q > 1 such that
1

p
+

1

q
= 1 and a1, a2, . . . , an; b1, b2, . . . , bn > 0,

n
∑

m=1

ambm ≤
(

n
∑

m=1

ap
m

)1/p

·
(

n
∑

m=1

bq
m

)1/q

.
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5.11 From the results of the previous question, derive the following inequality (Minkowski’s
inequality):

If p > 1 and ai, bi > 0, i = 1, 2, . . . , n, show that

[

n
∑

m=1

(am + bm)p
]1/p

≤
(

n
∑

m=1

ap
m

)1/p

+

(

n
∑

m=1

bp
m

)1/p

.

5.12 (a) Using 5.9, show that if p, q > 0 are such that p + q = 1, then, for any positive
a1, a2 :

pa1 + qa2 < ap
1a

q
2,

unless a1 = a2, in which case pa1 + qa2 = ap
1a

q
2.

(b) By induction, show that if a1, a2, . . . , an > 0 and p1+p2+· · · pn = 1, pi > 0 for i = 1, 2, . . . , n,
then, unless all ai are equal,

ap1

1 ap2

2 · · · apn

n < p1a1 + p2a2 + · · · pnan.

(c) From (a) and (b) prove the geometric-arithmetic means inequality for positive
numbers ai:

n
√

a1a2 · · · an ≤
a1 + a2 + · · ·+ an

n
,

where equality takes place if and only if all ai, i = 1, 2, . . . , n, are equal.
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Chapter 6

Applications of the Mean Value
Theorem

6.1 Taylor’s Theorem

Theorem 6.1 Taylor’s Theorem I Suppose that f is (n + 1)-times continuously
differentiable in an open interval (a, b) and let xo be any point of (a, b). Let Pn, xo

(x) be the
Taylor polynomial of degree n for the function f about the point xo:

Pn, xo
(x) = f(xo) +

f ′(xo)

1
(x−xo) +

f ′′(xo)

2!
(x− xo)

2 + · · ·+ f (n)(xo)

n!
(x− xo)

n, x ∈ (a, b),

and denote by Rn(x) the remainder

Rn(x) = f(x)− Pn, xo
(x).

Then, for each x ∈ (xo, b), there exists some ξ, xo < ξ < x, that

Rn(x) =
f (n+1)(ξ)

(n + 1)!
(x− xo)

n+1. (6.1)

Proof. We prove this theorem by applying Rolle’s theorem to an auxiliary function.
Let x be an arbitrary point of (a, b). Consider the function

Φ(t) = f(x)− Pn, t(x), xo ≤ t ≤ x,

and note that
Φ(xo) = f(x)− Pn, xo

(x) = Rn(x). (6.2)

Clearly, Φ(t) is differentiable in the interval (xo, x) and

Φ′(t) = −f ′(t)−
n
∑

k=1

d

dt

[

(x− t)k

k!
f (k)(t)

]

= −f ′(t)−
n
∑

k=1

[

−(x− t)k−1

(k − 1)!
f (k)(t) +

(x− t)k

k!
f (k+1)(t)

]

.

127
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Thus, in calculating Φ′(t), we obtain 2n + 1 terms, and they all cancel out but one, to give

Φ′(t) = −(x− t)n

n!
f (n+1)(t). (6.3)

Now we define the function

Ψ(t) = Φ(t)−
(

x− t

x− xo

)n+1

Φ(xo), xo ≤ t ≤ x,

and assert that Ψ satisfies the hypotheses of Rolle’s theorem on the interval [xo, x].
Clearly, Ψ is continuous on [xo, x], differentiable on (xo, x) and

Ψ(xo) = Φ(xo)−
(

x− xo

x− xo

)n+1

Φ(xo) = 0,

Ψ(x) = Φ(x) = f(x)− Pn, x(x) = f(x)− f(x) = 0.

By Rolle’s theorem, Ψ′(ξ) = 0 for some point ξ, xo < ξ < x.
Now,

Ψ′(t) = Φ′(t) +
(n + 1)(x− t)n

(x− xo)n+1
Φ(xo), xo < t < x.

By substituting in the values for Φ′(t) and Φ(xo) given by (6.2) and (6.3) and replacing t
by ξ, we obtain

0 = Ψ′(ξ) = −(x− ξ)n

n!
f (n+1)(ξ) +

(n + 1)(x − ξ)n

(x− xo)n+1
Rn(x)

which gives the desired result (6.1).
The approximation of functions by polynomials is a very useful technique in the analysis

of real functions.
If f is n times continuously differentiable at a specified point x = xo, then f can be

approximated by the n-th Taylor polynomial Pn, xo
(x) and the measure of the approximation

is given by the remainder
Rn(x) = f(x)− Pn,xo

(x)

that can be expressed in the form specified by (6.1).

Example 6.1 Find the Taylor polynomial for the function f(x) = (1 + x)n, where n is
an integer, about the point xo = 0.

Solution. We have

f (0)(x) = (1 + x)n,

f (1)(x) = n(1 + x)n−1,

f (2)(x) + n(n− 1)(1 + x)n−2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f (n)(x) = n(n− 1) · · · (n− (n− 1)) = n!

f (m)(x) = 0, for m ≥ n + 1.
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Hence, at the point x = 0,

f (0)(0) = 1

f (1)(0) = n

f (2)(0) = n(n− 1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f (n)(0) = n!

f (m)(0) = 0, for m ≥ n + 1.

The Taylor polynomial for f(x) = (1 + x)n with xo = 0 is

Pn,0(x) = 1 + nx +
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + · · ·+ n(n− 1) · · · 1

n!
xn,

and the remainder is
Rn(x) ≡ 0.

Hence, by Taylor’s theorem, we obtain

(1 + x)n = 1 + nx +
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + · · ·+ xn,

the familiar binomial formula.

Example 6.2 Find the Taylor polynomial for f(x) = ex about xo = 0.

Solution. We have f (n)(x) = ex for all n ≥ 0, so that f (n)(0) = 1, n = 1, 2, . . . .
Therefore the Taylor polynomial is

Pn, 0(x) = 1 +
x

1!
+

x2

2!
+

x3

3!
+ · · ·+ xn

n!
.

The remainder is

Rn(x) =
xn+1

(n + 1)!
eξ , 0 < ξ < x.

By Taylor’s theorem, therefore,

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ · · ·+ xn

n!
+

xn+1

(n + 1)!
eξ,

for some ξ between 0 and x.

We note that

∣

∣

∣

∣

∣

xn+1

(n + 1)!
eξ

∣

∣

∣

∣

∣

≤ |x|n+1

(n + 1)!
· e|x| so that, for fixed x, the remainder Rn(x) tends

to zero as n increases. Figure 6.1 shows how the polynomials Pn,0 approximate the function
f(x) = ex on the intervals (−2, 2), (−3, 3), and (−4, 4), when n = 1, 2, 3, 4, 5, 6.

In particular, if x = 1, we get

e = 1 +
1

1!
+

1

2!
+ · · ·+ 1

n!
+

eθ

(n + 1)!
,

where 0 < θ < 1.
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(a) Pn,0(x), n = 1, 2, 3; x ∈ (−2, 2) (b) Pn,0(x), n = 4, 5, 6; x ∈ (−2, 2)

(c) Pn,0(x), n = 4, 5, 6; x ∈ (−3, 3) (d) Pn,0(x), n = 4, 5, 6; x ∈ (−4, 4)

Figure 6.1: Taylor polynomials Pn,0(x) for the function f(x) = ex.

Example 6.3 Find the Taylor polynomial of degree 2k+1 for the function f(x) = sinx
with xo = 0.

Solution. If f(x) = sinx then f (n)(x) = sin(x + nπ/2), n = 1, 2, . . .. Hence

f (2k)(0) = sinkπ = 0, and f (2k+1)(0) = sin(kπ + π/2) = (−1)k, k = 1, 2, . . .

The Taylor polynomial is

P2k+1, 0(x) =
x

1!
− x3

3!
+

x5

5!
− x7

7!
+ . . . + (−1)k x2k+1

(2k + 1)!
.
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An application of Taylor’s theorem gives

sinx =
x

1!
− x3

3!
+

x5

5!
+

x7

7!
+ . . . (−1)k−1 x2k+1

(2k + 1)!
+ R2k+1,

where

R2k+1 =
f (2k+2)(ξ)

(2k + 2)!
x2k+2 = (−1)k+1 sin ξ

(2k + 2)!
x2k+2, 0 < ξ < x,

since

f (2k+2)(ξ) = sin[ξ + (2k + 2)π/2] = sin[ξ + (k + 1)π] = (−1)k+1 sin ξ.

Figure 6.2 shows Taylor polynomials Pn,0(x) for the function f(x) = sinx on the interval

(−2π, 2π) for selected values of n.

(a) Pn,0(x), n = 1, 3, 5; x ∈ (−2π, 2π) (b) Pn,0(x), n = 7, 9, 11; x ∈ (−2π, 2π)

Figure 6.2: Taylor polynomials Pn,0(x) for the function f(x) = sinx.

Example 6.4 Find the Taylor polynomial of degree 2k for the function f(x) = cos x
with xo = 0.

Solution. If f(x) = cos x then f (n)(x) = cos(x + nπ/2), n = 1, 2, . . . Hence

f (2k)(0) = cos kπ = (−1)k, and f (2k+1)(0) = cos(kπ + π/2) = 0, k = 1, 2, . . .

The Taylor polynomial is

P2k, 0(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ . . . + (−1)k x2k

(2k)!
.

Hence we have

cos x = 1− x2

2!
+

x4

4!
− x6

6!
. . . (−1)k x2k

(2k)!
+ R2k,
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where

R2k =
f (2k+1)(ξ)

(2k + 1)!
x2k+1 = (−1)k+1 cos ξ

(2k + 1)!
x2k+1, 0 < ξ < x,

since
f (2k+1)(ξ) = cos[ξ + (2k + 1)π/2] = cos(ξ + kπ + π/2) = (−1)k+1 cos ξ.

Figure 6.3 shows Taylor polynomials Pn,0(x) for the function f(x) = cos x on the interval

(−2π, 2π) for selected values of n.

(a) Pn,0(x), n = 2, 4, 6; x ∈ (−2π, 2π) (b) Pn,0(x), n = 8, 10, 12; x ∈ (−2π, 2π)

Figure 6.3: Taylor polynomials Pn,0(x) for the function f(x) = cos x.

Example 6.5

Find the Taylor polynomial of degree n for:

(a) f(x) = log x with xo = 1, (b) g(x) = log(1 + x) with xo = 0.

Solution.

(a) We have
f(x) = log x,

f (1)(x) = x−1,

f (2)(x) = −x−2,

f (3)(x) = 2x−3

f (4)(x) = −1 · 2 · 3x−4

f (5)(x) = 1 · 2 · 3 · 4x−5

. . . . . . . . . . . . . . . . . . . . . .
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Thus, we have
f (k)(x) = (−1)k−1(k − 1)!x−k,

f (k)(1) = (−1)k−1(k − 1)!, k = 1, 2, . . .

Hence

a0 = f(1) = log 1 = 0, ak =
f (k)(1)

k!
= (−1)k−1 1

k
, k = 1, 2, . . .

Hence the Taylor polynomial for f(x) = log x with xo = 1 is

Pn, 1(x) = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − 1

4
(x− 1)4 + · · · (−1)n−1

n
(x− 1)n.

(b) To find the Taylor polynomial of degree n for the function g(x) = log(1+x) with xo = 0
we note that

g(x) = f(1 + x)

. Hence
g(k)(x) = f (k)(1 + x), g(k)(0) = f (k)(0), k = 1, 2, . . .

and the Taylor polynomial for g(x) = log(1 + x) with xo = 0 is

Pn, 0(x) = x− x2

2
+

x3

3
− x4

4
+ · · · (−1)n+1

n
xn.

Figure 6.4 shows Taylor polynomials Pn,0(x) for the function f(x) = log(1 + x) on the

interval (−1, 1) for selected values of n.

(a) Pn,0(x), n = 1, 2, 3; x ∈ (−1, 1) (b) Pn,0(x), n = 4, 5, 6; x ∈ (−1, 1)

Figure 6.4: Taylor polynomials Pn,0(x) for the function f(x) = log(1 + x)
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6.2 Indeterminate Forms

In this section we consider several limits which take the form:

0

0
,
∞
∞ , 0 · ∞, ∞−∞, 1∞, 0∞, ∞0.

To each of these symbols there corresponds an expression that involves two functions, say
f(x) and g(x), and the limit, as x → xo, or as x →∞, of the expression considered.

Suppose that the functions f and g are defined in a (deleted) neighbourhood of a given
point xo and suppose that

lim
x→xo

f(x) = lim
x→xo

g(x) = 0.

Then the limit

lim
x→xo

f(x)

g(x)

is said to be of the
0

0
form. We have already considered some limits of this form,

for example lim
x→0

sinx

x
.

The symbol
0

0
is called an indeterminate symbol. This is because if

p

q
= c 6= 0, then c

is uniquely determined by p = q · c. When p = q = 0, any value of c satisfies p = q · c.
Now we define the first two indeterminate symbols.

Definition 6.1 The expression

f(x)

g(x)
(6.4)

is of
0

0
form at the point xo, if

lim
x→xo

f(x) = lim
x→xo

g(x) = 0;

it is of
0

0
form, as x →∞, if

lim
x→∞

f(x) = lim
x→∞

g(x) = 0.

The expression (6.4) is of
∞
∞ form at the point xo, if

lim
x→xo

f(x) = lim
x→xo

g(x) = ∞;

it is of
∞
∞ form, as x →∞, if

lim
x→∞ f(x) = lim

x→∞ g(x) = ∞.
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Refer to Figure 6.5 to see several examples of undeterminate expressions
f(x)

g(x)
at the

point x = 0. Although all the expressions are of
0

0
form, the limits lim

x→0

f(x)

g(x)
are different.

Example 6.8 deals with the evaluation of these limits.

A collection of theorems, called L’Hôpital rules, is useful in the evaluation of
0

0
and

∞
∞

forms at a given point x = xo and as x →∞.

We shall prove L’Hôpital rules for limits of the
0

0
form at a given point x = xo and show

how to manipulate other indeterminate forms through examples.

6.3 L’Hôpital’s Rules

Theorem 6.2 L’Hôpital Rule I Suppose that

lim
x→xo

f(x) = 0 and lim
x→xo

g(x) = 0,

and suppose that lim
x→xo

f ′(x)

g′(x)
exists. Then lim

x→xo

f(x)

g(x)
also exists and

lim
x→xo

f(x)

g(x)
= lim

x→xo

f ′(x)

g′(x)
. (6.5)

Proof. The hypothesis that lim
x→xo

f ′(x)

g′(x)
exists implies that there is a (deleted) neigh-

bourhood of xo,

Nxo,δ = {x : 0 < |x− xo| < δ}

such that

(i) f and g are continuous and differentiable on Nx,δ ,

(ii) g′(x) 6= 0 for x ∈ Nx,δ.

Thus f and g are continuous on (xo − δ, xo + δ) except, perhaps, for x = xo, where f
and g are not even assumed to be defined.

Step 1. We replace the functions f and g by F and G, respectively, where

F (x) =

{

f(x), x 6= xo

0, x = xo,

G(x) =

{

g(x), x 6= xo

0, x = xo.

The new functions F and G are continuous at the point xo and consequently are continuous
on the interval (xo − δ, xo + δ). Also,

G′(x) 6= 0 for x ∈ (xo − δ, xo + δ), x 6= xo. (6.6)
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Step 2. Let x be any point with xo < x < xo + δ and consider the interval (xo, x).
The functions F and G are continuous and differentiable on [xo, x]. We apply the Mean
Value Theorem to G to conclude that there exists x1 in (xo, x) such that

G′(x1) =
G(x) −G(xo)

x− xo
=

G(x)

x− xo
.

We see that
G(x) 6= 0,

for if G(x) = 0 there would be G′(x1) = 0, where x1 ∈ (xo − δ, xo + δ), contradicting (6.6).
Step 3. Now we apply the Cauchy Mean Value Theorem to F and G on the interval

[xo, x] to conclude that there is a number ξ in (xo, x) such that

[F (x) − F (xo)]G
′(ξ) = [G(x) −G(xo)]F

′(ξ)

or
F (x)G′(ξ) = G(x)F ′(ξ)

which gives
F (x)

G(x)
=

F ′(ξ)
G′(ξ)

. (6.7)

The number ξ obviously depends on x. Since ξ ∈ (xo, x), we see that ξ → xo+ as x → xo+.

Since lim
x→xo

F ′(x)

G′(x)
exists, the one-sided limits of

F ′(x)

G′(x)
, as x → xo, exist and are equal. By

(6.7) we obtain

lim
x→xo+

F (x)

G(x)
= lim

x→xo+

F ′(ξ)
G′(ξ)

= lim
ξ→xo+

F ′(ξ)
G′(ξ)

.

Hence

lim
x→xo+

F (x)

G(x)
= lim

x→xo

F ′(x)

G′(x)
. (6.8)

Step 4. Let x be any number with xo − δ < xo and consider the interval [x, xo].
Repeat the arguments of Step 2 and Step 3 to arrive at the conclusion that

lim
x→xo−

F (x)

G(x)
= lim

x→xo

F ′(x)

G′(x)
. (6.9)

Step 5. Combining (6.8) and (6.9), we conclude that lim
x→xo

F (x)

G(x)
exists and

lim
x→xo

F (x)

G(x)
= lim

x→xo

F ′(x)

G′(x)

which is equivalent to the required statement (6.5).
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Example 6.6 Evaluate A = lim
x→0

ex − e−x

log(e− x) + (x− 1)
.

Solution.
f(x) = ex − e−x, g(x) = log(e− x) + (x− 1),

f ′(x) = ex + e−x, g′(x) = 1− 1

e− x
,

g′(0) 6= 0.

Hence

A = lim
x→0

f ′(x)

g′(x)
= lim

x→0

ex + e−x

1− 1
e−x

=
2e

e− 1
.

Example 6.7 Evaluate A = lim
x→1

√
2x− x4 − 3

√
x

1− 4
√

x3
.

Solution.
f(x) =

√
2x− x4 − 3

√
x, g(x) = 1− 4

√
x3,

f ′(x) =
1− 2x3

√
2x− x4

− 1

3
3
√

x2
, g′(x) = − 3

4 4
√

x
.

Since f ′(1) = −4
3 , g′(1) = −3

4 6= 0, we obtain

A = lim
x→1

f ′(x)

g′(x)
=
−4/3

−3/4
=

16

9
.

Example 6.8 Using L’Hôpital’s Rule to evaluate limits of the
0

0
form at a given point

x = xo. Note: Figure 6.5 shows us graphs of the first six functions
f(x)

g(x)
considered in this

example.

(a) lim
x→0

sinx

x
= lim

x→0

cos x

1
= 1.

(b) lim
x→0

sin 5x

x
= lim

x→0
5 cos x = 5.

(c) lim
x→0

cos2 x− 1

x2
= − lim

x→0

2 sinx cos x

2x
= − lim

x→0

sin 2x

2x
= −1.

(d) lim
x→0

x

tan x
= lim

x→0

1

1/ cos2 x
= lim

x→0
cos2 x = 1.

(e) lim
x→0

1− cos x

sin2 x
= lim

x→0

sinx

2 sin x cos x
= lim

x→0

1

2 cos x
=

1

2
.

(f) lim
x→0

1− cos x2

sin2 x
= lim

x→0

2x sin x2

2 sinx cos x
= lim

x→0

2x

sin 2x
· lim

x→0
sinx2 = 1 · 0 = 0.

(g) lim
x→0

2x − 3x

sinx
= lim

x→0

2x log 2− 3x log 3

cosx
= log 2− log 4 = log

2

3
.

(h) lim
h→0

eh − 1

h
= lim

h→0

eh

1
= 1; (i) lim

x→1

x3 − 1

x2 − 1
= lim

x→1

3x2

2x
=

3

2
.
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Example 6.9 Evaluate

A = lim
x→0

sinx− x cos x

x sinx
.

Solution. Let f(x) = sinx − x cos x, g(x) = x sinx. We see that f(0) = g(0) = 0,
so that the limit is of 0

0 form. We have

f ′(x) = cos x− cos x + x sinx = x sinx,

g′(x) = sinx + x cos x.

Since f ′(0) = g′(0) = 0, the limit lim
x→0

f ′(x)

g′(x)
is also of the 0

0 form. We evaluate

f ′′(x) = sinx + x cos x

g′′(x) = cos x + cos x− x sinx = 2 cos x− x sinx,

and find out that lim
x→0

f ′′(x)

g′′(x)
exists. Namely,

lim
x→0

f ′′(x)

g′′(x)
= lim

x→0

sinx + x cos x

2 cos x− x sinx
=

0

2
= 0.

Thus, lim
x→0

f ′(x)

g′(x)
exists which implies that lim

x→0

f(x)

g(x)
exists. We obtain

A = lim
x→0

f(x)

g(x)
= lim

x→0

f ′(x)

g′(x)
= lim

x→0

f ′′(x)

g′′(x)
= 0.

Example 6.10 Repeated application of L’Hôpital Rule to limits of the
0

0
form at a given

point x = xo.

(a) lim
x→0

1− cos x

x2
= lim

x→0

sinx

2x
= lim

x→0

cosx

2
=

1

2
.

(b) lim
x→1

x3 − x2 − x + 1

x3 − 2x2 + x
= lim

x→1

3x2 − 2x− 1

3x2 − 4x + 1
= lim

x→1

6x− 2

6x− 4
= 2.

(c) lim
x→0

1− cos2 x

x2
= lim

x→0

2 sin x cos x

2x
= lim

x→0

sin 2x

2x
= − lim

x→0

2 cos 2x

2
= 1.

In Example 6.10, we needed to apply the L’Hôpital Rule twice for each of the limits.
We must remember to verify the hypotheses of the rule each time we apply it. Consider
the following use of the L’Hôpital Rule:

lim
x→1

x3 + x− 2

x2 − 3x + 2
= lim

x→1

3x2 + 1

2x− 3
= lim

x→1

6x

2
= 3.

Note that 3x2 + 1 → 4 and 2x− 3 → −1 when x → 1, so that lim
x→1

3x2 + 1

2x− 3
is not of the

0

0
form and the L’Hôpital Rule is not applicable to this limit. In fact, we have

lim
x→1

x3 + x− 2

x2 − 3x + 2
= lim

x→1

3x2 + 1

2x− 3
=

4

−1
= −4.
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(a)
f(x)

g(x)
=

sinx

x
(b)

f(x)

g(x)
=

sin 5x

x

(c)
f(x)

g(x)
=

cos2 x− 1

x2
(d)

f(x)

g(x)
=

x

tanx

(e)
f(x)

g(x)
=

1− cos x

sin2 x
(f)

f(x)

g(x)
=

1− cos x2

sin2 x

Figure 6.5: Functions
f(x)

g(x)
that are of

0

0
form at the point x = 0.
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Example 6.11 Show that we cannot use l’Hôpital’s Rule to evaluate

lim
x→0

x2 sin 1
x

sinx

which is of 0
0 form at x = 0.

Solution. Let f(x) = x2 sin
1

x
and g(x) = sinx. Then f ′(x) = 2x sin

1

x
− cos

1

x
and

g′(x) = cos x. Now

lim
x→0

f ′(x)

g′(x)
= lim

x→0

2x sin 1
x − cos 1

x

cos x
,

which does not exist as lim
x→0

cos
1

x
does not exist.

However,

lim
x→0

x

sinx
= 1, lim

x→0
x sin

1

x
= 0.

Hence

lim
x→0

x2 sin 1
x

sinx
= lim

x→0

x

sinx
· lim

x→0
x sin

1

x
= 1 · 0 = 0.

By repeated application of the L’Hôpital Rule I we obtain the following generalization of
the rule.

Theorem 6.3 Generalization of L’Hôpital Rule for limits of the 0
0 form Let f

and g be n-times continuously differentiable on the interval [a, b] and suppose that

f (r)(xo) = g(r)(xo) = 0 for r = 0, 1, 2, . . . , n− 1,

where xo ∈ (a, b). If g(n)(xo) 6= 0 and lim
x→xo

f (n)(xo)

g(n)(xo)
exists, then lim

x→xo

f(x)

g(x)
exists and

lim
x→xo

f(x)

g(x)
= lim

x→xo

f (n)(x)

g(n)(x)
.

Example 6.12 Evaluate

A = lim
x→0

ex − e−x − 2x

x− sinx
.

Solution. We have

f(x) = ex − e−x − 2x, g(x) = x− sinx, f(0) = 0, g(0) = 0,

f ′(x) = ex + e−x − 2, g′(x) = 1− cos x, f ′(0) = 0, g′(0) = 0,

f ′′(x) = ex − e−x, g′′(x) = sinx, f ′′(0) = 0, g′′(0) = 0,

f (3)(x) = ex + e−x, g(3)(x) = cos x, f (3)(0) = 2, g(3)(0) = 1.



6.3 L’Hôpital’s Rules 141

Hence

A = lim
x→0

f (3)(x)

g(3)(x)
= lim

x→0

ex + e−x

cosx
=

2

1
= 2.

Theorem 6.4 L’Hôpital Rule II Assume that f and g are differentiable (and hence
continuous) on a given interval [b,+∞), that is for sufficiently large x. Assume further that
lim

x→∞
f(x) = ∞, lim

x→∞
g(x) = ∞, and g′(x) 6= 0 for all x > b.

If lim
x→∞

f ′(x)

g′(x)
= l, then lim

x→∞
f(x)

g(x)
= exists and

lim
x→∞

f(x)

g(x)
= lim

x→∞
f ′(x)

g′(x)
= l.

Proof. We assume that lim
x→∞

f ′(x)

g′(x)
= l, so that

∀ε > 0 ∃a
(

x > a =⇒
∣

∣

∣

∣

f ′(x)

g′(x)
− l

∣

∣

∣

∣

< ε

)

(6.10)

Given ε1 > 0 we show that

∣

∣

∣

∣

f(x)

g(x)
− l

∣

∣

∣

∣

< ε1 for sufficiently large values of x.

Let ε1 be given. We can assume that g(x) > g(a) for every x > a. Otherwise we get
contradiction with the assumption that g ′(x) 6= 0. Explicitly, suppose that g(x1) ≤ g(a)
for some x1 ∈ (a,∞). Since lim

x→∞ g(x) = ∞, there is x2 > x1 such that g(x2) ≥ g(a). By

the Intermediate Value Theorem, we have g(c) = g(a) for some c, x1 ≤ c ≤ x2. By Rolle’s
Theorem, there is d between a and c, such that g ′(d) = 0.

Now, with any x > a we consider the interval [a, x] and apply the Cauchy Mean Value
Theorem to the functions f and g on this interval to get

f(x)− f(a)

g(x)− g(a)
=

f ′(xo)

g′(xo)
, for some xo ∈ (a, x).

Thus, using (6.10) with ε = ε1

2 , we conclude that for all x > a,

∣

∣

∣

∣

f(x)− f(a)

g(x)− g(a)
− l

∣

∣

∣

∣

<
ε1

2
. (6.11)

Since lim
x→∞ f(x) = ∞, lim

x→∞ g(x) = ∞, we can choose x > a so large that f(x) > f(a)

and g(x) > 0. We can assume, therefore, that for sufficiently large x,

g(x) > g(a), f(x) > f(a), g(x) > 0. (6.12)

We can write
∣

∣

∣

∣

f(x)

g(x)
− l

∣

∣

∣

∣

≤
∣

∣

∣

∣

f(x)

g(x)
− f(x)− f(a)

g(x)− g(a)

∣

∣

∣

∣

+

∣

∣

∣

∣

f(x)− f(a)

g(x)− g(a)
− l

∣

∣

∣

∣

. (6.13)

Now,
∣

∣

∣

∣

f(x)

g(x)
− f(x)− f(a)

g(x) − g(a)

∣

∣

∣

∣

=

∣

∣

∣

∣

f(x)− f(a)

g(x)− g(a)

∣

∣

∣

∣

·
∣

∣

∣

∣

f(x)

f(x)− f(a)

g(x) − g(a)

g(x)
− 1

∣

∣

∣

∣

. (6.14)
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By (6.11), we have

l − ε1

2
<

f(x)− f(a)

g(x)− g(a)
< l +

ε1

2
=⇒

∣

∣

∣

∣

f(x)− f(a)

g(x)− g(a)

∣

∣

∣

∣

< |l|+ ε1

2
.

Since lim
x→∞

f(x) = ∞ and lim
x→∞

g(x) = ∞, we have

lim
x→∞

f(x)

f(x)− f(a)

g(x) − g(a)

g(x)
= 1,

which implies that, if x is sufficiently large, then

∣

∣

∣

∣

f(x)

f(x)− f(a)

g(x)− g(a)

g(x)
− 1

∣

∣

∣

∣

< ε2,

where ε2 =
ε1

2(|l|+ ε1/2)
. Hence (6.14) implies that

∣

∣

∣

∣

f(x)

g(x)
− f(x)− f(a)

g(x)− g(a)

∣

∣

∣

∣

<

(

|l|+ ε1

2

)

· ε1

2(|l|+ ε1/2)
=

ε1

2
.

Consequently, using (6.11) and (6.13) we get

∣

∣

∣

∣

f(x)

g(x)
− l

∣

∣

∣

∣

≤ ε1

2
+

ε1

2
= ε1

for all sufficiently large values of x. This completes the proof.

(a)
f(x)

g(x)
=

x

ex
(b)

f(x)

g(x)
=

tan x

tan 3x

Figure 6.6: Functions
f(x)

g(x)
that are of

∞
∞ form, (a) as x →∞, (b) as x → π

2
.
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Example 6.13 Find lim
x→∞

x

ex
.

Solution. Let f(x) = x, g(x) = ex, so that f ′(x) = 1, g′(x) = ex. Then

lim
x→∞

f(x) = lim
x→∞

g(x) = ∞, lim
x→∞

f ′(x)

g′(x)
= lim

x→∞
1

ex
= 0.

Since lim
x→∞

f ′(x)

g′(x)
exists, the limit lim

x→∞
f(x)

g(x)
also exists and we have

lim
x→∞

x

ex
= lim

x→∞
1

ex
= 0.

Figure 6.6(a) shows us a graph of the function
f(x)

g(x)
=

x

ex
over the interval (0, 10).

(a)
f(x)

g(x)
=

log x

xα
, α = 0.5; (b)

f(x)

g(x)
=

log x

xα
, α = 1.1; (c)

f(x)

g(x)
=

log x

xα
, α = 1.5;

Figure 6.7: Illustrating the concept of lim
x→∞

log x

xα
= 0 for selected values of α, α >

0; x0=e1/α.

Example 6.14 Using L’Hôpital’s Rule to evaluate limits of the
∞
∞ form.

(a) lim
x→π

2

tan x

tan 3x
= lim

x→π

2

1/ cos2 x

3/ cos2 3x
=

1

3

(

lim
x→π

2

cos 3x

cos x

)2

=
1

3

(

lim
x→π

2

3 sin 3x

sinx

)2

=
1

3
· 9 = 3.

(b) lim
x→∞

log x

xα
= lim

x→∞
1/x

αxα−1
= lim

x→∞
1

αxα
= 0, for α > 0.
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6.4 Further Indeterminate Forms

We shall illustrate the methods through specific examples. The general pattern should be
clear.

Example 6.15 Limits of the ∞−∞ form.

(a) Evaluate A = lim
x→∞

[x−
√

x2 + x].

We have

x−
√

x2 + x = x

(

1−
√

1 +
1

x

)

=
1−

√

1 +
1

x
1

x

,

which is the
0

0
form. Hence

A = lim
x→∞

1−
√

1 +
1

x
1

x

= lim
x→∞

−1

2

(

1 +
1

x

)−1/2

·
(

− 1

x2

)

− 1

x2

= lim
x→∞

[

−1

2

(

1 +
1

x

)−1/2
]

= −1

2
.

(b) Evaluate A = lim
x→1

(

1

log x
− 1

x− 1

)

.

A = lim
x→1

(

1

log x
− 1

x− 1

)

= lim
x→1

x− 1− log x

(x− 1) log x
= lim

x→1

1− 1/x

log x + 1− 1/x

= lim
x→1

1/x2

1/x + 1/x2
=

1

2
.

Example 6.16 Limits of the 0 · ∞ form.

(a) lim
x→0+

(x log x) = lim
x→0+

log x

1/x
= lim

x→0+

1/x

−1/x2
= lim

x→0+
−x = 0.

(b) lim
x→0

x cot x = lim
x→0

cot

1/x
= lim

x→0

−1/ sin2 x

−1/x2
=

(

lim
x→0

x

sinx

)2

= 12 = 1.

(c) lim
x→0+

xα log x = lim
x→0+

log x

x−α
= lim

x→0+

1/x

−αx−α−1
= − 1

α
lim

x→0+
xα = 0, α > 0.

Example 6.17 Limit of the 00 form.

Evaluate A = lim
x→0+

(sin x)x.

We note that log(sinx)x = x log(sinx) =
log(sinx)

1/x
is of the ∞

∞ form. Let f(x) = log(sinx)

and g(x) = 1/x. Then

f ′(x)

g′(x)
=

cos x/ sinx

−1/x2
= −x cos x · x

sinx
→ 0, as x → 0 + .
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Hence

A = lim
x→0+

(sinx)x = exp

(

lim
x→0+

log(sinx)x
)

= exp(0) = 1.

Example 6.18 Limit of the ∞0 form.

lim
x→0

(

1

x2

)tan x

= lim
x→0

exp(− tan x log x2) = e0 = 1,

for

lim
x→0

(tan x log x2) = lim
x→0

2 log x

cot x
= lim

x→0

2/x

−1/ sin2 x
= lim

x→0

−2 sin2 x

x
= 0.

Example 6.19 Limits of the 1∞ form.

(a) Evaluate A = lim
x→0

(1− 2x)3/x.

We have

(1− 2x)3/x = exp

(

3 · log(1− 2x)

x

)

,

lim
x→0

log(1− 2x)

x
= lim

x→0

− 2
1−2x

1
= −2.

Hence

A = exp

(

lim
x→0

log(1− 2x)

x

)

= e3·(−2) = e−6.

(b) Evaluate A = lim
x→1

x
1

1−x .

We have

x
1

1−x = exp

(

log x

1− x

)

,

lim
x→1

log x

1− x
= lim

x→1

1/x

−1
= −1.

Hence

A = exp

(

lim
x→1

log x

1− x

)

= e−1 =
1

e
.
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(a) x log(1 +
1

x
) → 1, as x →∞ (b) (1 +

1

x
)x → e, as x →∞

Figure 6.8: Illustrating convergence of the functions x log(1 + 1
x) and f(x) = (1 + 1

x)x, as
x →∞.

Example 6.20 Evaluate A = lim
x→∞

(1 +
1

x
)x.

Solution. We have

(1 +
1

x
)x = elog(1+ 1

x
)x

= ex log(1+ 1

x
).

Now evaluate B = lim
x→∞

x log(1 +
1

x
) = lim

x→∞
log(1 + 1

x)
1
x

:

(

log(1 + 1
x)
)′

=
(

1 + 1
x

)−1 (

− 1
x2

)

(

1
x

)′
= − 1

x2 .

Hence

B = lim
x→∞

x log(1 +
1

x
) = lim

x→∞
log(1 + 1

x)
1
x

= lim
x→∞

(

1 +
1

x

)−1

= 1.

Finally, we use the continuity of ex to conclude that

lim
x→∞

(1 +
1

x
)x = lim

x→∞
ex log(1+ 1

x
) = eB = e1 = e.

Refer to Figure 6.8 which illustrates the convergence of the functions x log(1 + 1
x) and

(1 + 1
x)x to 1 and e, respectively, as x →∞.
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6.5 Monotone Functions

Theorem 6.5 Suppose that f is differentiable (and hence continuous) in a given inter-
val (a, b) and f ′(x) = 0 for all x ∈ (a, b). Then f is a constant function on (a, b):

f(x) = C, x ∈ (a, b),

for some value of C.

Proof. Let x1, x2 ba any two points in (a, b). By the Mean Value Theorem, there is
c between x1 and x2 such that

f(x1)− f(x2) = (x1 − x2) f ′(c).

By assumption, f ′(c) = 0. Hence f(x1) = f(x2) for any x1, x2 ∈ (a, b), which implies that
f is a constant function on (a, b).

If the derivatives of two functions f and g are equal, then applying the above Theorem
to f − g we conclude that f − g = C, for some constant C.

Corollary 6.1 If f and g are differentiable in (a, b) and

f ′(x) = g′(x), x ∈ (a, b),

then there is a constant C such that

f(x) = g(x) + C, x ∈ (a, b).

Example 6.21 Showing that the identity f(x) ≡ g(x) holds on a given interval.

We shall prove the following identity:

arctan x = arcsin
x√

1 + x2
. (6.15)

Let
f(x) = arctan x, g(x) = arcsin

x√
1 + x2

.

We have

f ′(x) =
1

1 + x2
,

g′(x) =
1

√

1− x2

1 + x2

·

√
1 + x2 − x2

√
1 + x2

1 + x2
=

1

1 + x2
.
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Since f ′(x) = g′(x) for −∞ < x < ∞, by Corollary 6.1, there is a constant C such that
the identity

arctan x = arcsin
x√

1 + x2
+ C

holds for x in any finite interval (a, b) and therefore for every x in (−∞,∞). To evaluate
C, let x = 0. Then f(0) = arctan 0 = 0 and g(0) = arcsin 0 = 0 imply that C = 0. Hence
the identity (6.15) is proved.

Theorem 6.6 Suppose that f is differentiable on [a, b] and continuous on [a, b].
(a) If f ′(x) > 0 for all x in (a, b), then f is strictly increasing on [a, b].
(b) If f ′(x) < 0 for all x in (a, b), then f is strictly decreasing on [a, b].

Proof. Let x1, x2 ∈ [a, b] and let x1 < x2. By the Mean Value Theorem we can write

f(x1)− f(x2) = f ′(ξ)(x1 − x2), for some ξ ∈ (x1, x2).

(a) By the hypothesis, f ′(ξ) > 0. Thus

x1 < x2 =⇒ f(x1)− f(x2) = f ′(ξ)(x1 − x2) < 0 =⇒ f(x1) < f(x2).

(b) By the hypothesis, f ′(ξ) < 0. Thus

x1 < x2 =⇒ f(x1)− f(x2) = f ′(ξ)(x1 − x2) > 0 =⇒ f(x1) > f(x2).

Example 6.22 Showing that the inequality f(x) ≥ g(x) holds in a given interval.

We shall apply Theorem 6.6 to prove the following inequalities:
(a) (1 + x)a ≥ 1 + ax, x > 0, a ≥ 1.

(b) sinx < x, x > 0.

(c) sinx ≥ x− x3

6
, x ≥ 0.

Solution.

(a) Let f(x) = (1 + x)a − (1 + ax). Then f ′(x) = a(1 + x)a−1 − a = a[(1 + x)a−1 − 1] > 0
for x > 0, a ≥ 1.

Hence f(x) is increasing on [0, ∞), which implies that

f(x) > f(0) = 0 for x > 0.

(b) Let f(x) = x− sinx. Then f ′(x) = 1− cos x ≥ 0, for all x.

Hence f(x) is increasing on (−∞, ∞), and

f(x) ≥ f(0) = 0 for x > 0.

(c) Let f(x) = sinx−x+
x3

6
. Then f ′(x) = cos x−1+

x2

2
and f ′′(x) = − sinx+x, x ≥ 0.

Since f ′′(x) ≥ 0, for x ≥ 0, we conclude that f ′(x) is increasing on [0, ∞) which
implies that

f ′(0) ≥ f ′(0) = 0, for x ≥ 0.

Hence we conclude that f(x) is increasing on [0, ∞] and consequently

f(x) > f(0) = 0, for x > 0.
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6.6 Convex and Concave Functions

A function f with domain D is convex on a given interval I (contained in D), if the line
segment joining any two points P= (x1, f(x1)) and Q= (x2, f(x2)) on the curve y = f(x),
x1, x2 ∈ I, lies above the graph of the function f . If this line segment lies below the graph
of f , then the function f is said to be concave.

Figure 6.9: Illustrating the concept of a convex function.

Refer to Figure 6.9 and note that the equation of the line through the two points
P= (x1, f(x1)) and Q= (x2, f(x2)) is

y =
f(x2)− f(x1)

x2 − x1
(x− x1) + f(x1) = g(x).

Thus, f is convex if f(x) ≤ g(x) for x1 < x < x2 and f is concave on I if f(x) ≥ g(x)
for x1 < x < x2, where x1, x2 are any points in I. Now,

f(x) ≤ g(x) ⇐⇒ f(x) ≤ f(x2)− f(x1)

x2 − x1
(x− x1) + f(x1)

⇐⇒ f(x2)− f(x1)

x2 − x1
≥ f(x)− f(x1)

x− x1
. (6.16)

The inequality (6.16) can be written equivalently using a parameter t, 0 ≤ t ≤ 1. Note that
if x1 < x2, then as t ranges from 0 to 1, the point x = (1− t)x1 + tx2 traverses the interval
(x1, x2) and the point (x, y), where y = (1 − t)f(x1) + tf(x2), traverses the line segment
joining the points P and Q.

Hence (6.16) is equivalent to

f [(1− t) x1 + t x2] ≤ (1− t) f(x1) + t f(x2), (6.17)

or
f [s x1 + t x2] ≤ s f(x1) + t f(x2), (6.18)

whenever s + t = 1, 0 ≤ s ≤ 1, 0 ≤ t ≤ 1.
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Definition 6.2 A function f with domain D is convex on a given interval I ∈ D, if
for any x1, x2, x ∈ I such that x1 < x < x2 the following condition holds:

f(x2)− f(x1)

x2 − x1
≥ f(x)− f(x1)

x− x1
.

The function f is concave on I, if

f(x2)− f(x1)

x2 − x1
≤ f(x)− f(x1)

x− x1

for any x1, x2, x ∈ I such that x1 < x < x2.

We note that the above definition does not require a convex/concave function to be
differentiable at all. If f is differentiable, it is convex on the interval I, if and only if its
derivative f ′ is increasing on I. If f is twice differentiable on I, therefore f is convex on I
if and only if f ′′(x) ≥ 0 for all x ∈ I.

Theorem 6.7 Suppose that a function f with domain D is differentiable on I = [a, b] ⊂ D.
(a) The function f is convex on I if and only if f ′ is increasing on I.

(b) The function f is concave on I if and only if f ′ is decreasing on I.

Proof. We note that the condition (6.16) can be rewritten equivalently as

(x2 − x)f(x1) + (x1 − x2)f(x) + (x− x1)f(x2) ≥ 0,

or
f(x)− f(x1)

x− x1
≤ f(x)− f(x2)

x− x2
, (6.19)

where x1 < x < x2, x1, x2 ∈ I.
=⇒ We assume that f is convex on I, so that (6.19) holds for any choice of x1 < x < x2

in I. Since f is differentiable on I, f ′(x1) and f ′(x2) exist. Using (6.19), we have

f ′(x1) = lim
x→x1

f(x)− f(x1)

x− x1
≤ f(x1)− f(x2)

x1 − x2

and

f ′(x2) = lim
x→x2

f(x)− f(x2)

x− x2
≥ f(x2)− f(x1)

x2 − x1
.

Thus

f ′(x1) ≤
f(x1)− f(x2)

x1 − x2
≤ f ′(x2).

Hence, if x1, x2 ∈ I and x1 < x2, then f ′(x1) ≤ f ′(x2) so f ′ is increasing on I.
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⇐= We assume that f ′ is increasing on I. Let x1, x2, x ∈ I and x1 < x < x2. Applying
the Mean Value Theorem to f on [x1, x] gives

f(x)− f(x1)

x− x1
= f ′(ξ1) for some ξ1, x1 < ξ1 < x.

Applying the Mean Value Theorem to f on [x, x2] gives

f(x2)− f(x)

x2 − x
= f ′(ξ2) for some ξ2, x < ξ2 < x2.

Now, f ′ is increasing on I, so that

ξ1 < ξ2 =⇒ f ′(ξ1) ≤ f ′(ξ2) =⇒ f(x)− f(x1)

x− x1
≤ f(x)− f(x2)

x− x2
.

Hence the proof of Part (a) of the theorem is complete.
To prove Part (b), we observe that if g(x) = −f(x) is convex with increasing derivative

g′(x) = −f ′(x), then −g(x) = f(x) is concave with decreasing derivative. Thus application
of the above proof to the function g(x) = −f(x) proves Part (b) of the theorem.

Suppose now that f is twice differentiable on I. Then f ′ is increasing on I if and only
if f ′′(x) ≥ 0, x ∈ I, and f ′ is decreasing on I, if and only iff ′′(x) ≤ 0, x ∈ I. Hence we
obtain the following theorem.

Theorem 6.8 Let I be an open interval and suppose that f : I 7→ RI has a second
derivative.

(a) The function f is convex on I if and only if f ′′(x) ≥ 0, for all x in I.
(b) The function f is concave on I if and only if f ′′(x) ≤ 0, for all x in I.

6.7 Partial Derivatives

Consider a real-valued function F (x, y) defined in a neighbourhood of the point (xo, yo).
The partial derivative of F (x, y) with respect to x at the point (xo, yo) is denoted by one
of the symbols

∂F

∂x
(xo, yo),

∂F (xo, yo)

∂x
, Fx(xo, yo)

and calculated simply by differentiating F (x, y) with respect to x, treating y as a constant.
Similarly, the partial derivative of F (x, y) with respect to y at the point (xo, yo), denoted

by one of the symbols,

∂F

∂y
(xo, yo),

∂F (xo, yo)

∂y
, Fy(xo, yo)

is calculated by differentiating F (x, y) with respect to y, treating x as a constant.



152 Chapter 6 — Applications of the Mean Value Theorem

Definition 6.3 Let F (x, y) be a real-valued function defined in a neighbourhood of the
point (xo, yo). The partial derivative of F (x, y) with respect to x at the point (xo, yo) is

Fx(xo, yo) = lim
h→0

F (xo + h, yo)− F (xo, yo)

h
,

provided that the above limit exists.
The partial derivative of F (x, y) with respect to y at the point (xo, yo) is

Fy(xo, yo) = lim
k→0

F (xo, yo + k)− F (xo, yo)

k
,

provided that the above limit exists.

We can see that the above definition corresponds to the definition of an ordinary derivative
for the function f(x) = F (x, yo). Hence, all the rules of differentiation of a function of one
variable we have developed are valid for partial derivatives.

Example 6.23 Finding partial derivatives.

(a) If F (x, y) = x2 − y + 3y2, (x, y) ∈ RI 2, then the partial derivatives of F (x, y) exist at
any point (x, y) of RI 2:

Fx(x, y) = 2x, Fy(x, y) = 6y − 1.

(b) If F (x, y) =
xy

y − 1
, y 6= 1, then the partial derivatives of F exist at any point (x, y) of

the domain D of F , where D = {(x, y) : −∞ < x < ∞, y 6= 1}. We have

∂F

∂x
=

y

y − 1
,

∂F

∂y
=

x(y − 1)− xy

(y − 1)2
= − x

(y − 1)2
.

(c) If F (x, y) = arctan
y

x
, x 6= 0, then we have

∂F

∂x
=

−y/x2

1 +
( y

x

)2 = − y

x2 + y2
,

∂F

∂y
=

1/x

1 +
( y

x

)2 =
x

x2 + y2
,

at any point (x, y) of the domain D = {(x, y) : x 6= 0, −∞ < y < ∞} of the function
F .

(d) Let F (x, y) =











2xy

x2 + y2
, (x, y) 6= (0, 0)

0, (x, y) = (0, 0).
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If (x, y) 6= (0, 0), then

Fx(x, y) =
∂

∂x

(

2xy

x2 + y2

)

= 2
y(x2 + y2)− 2x2y

(x2 + y2)2
=

2y(y2 − x2)

(x2 + y2)2
.

To find Fx(0, 0) we use the definition:

Fx(0, 0) = lim
h→0

F (h, 0) − F (0, 0)

h
= lim

h→0

0

h
= 0.

Hence

Fx(x, y) =















2y(y2 − x2)

(x2 + y2)2
, (x, y) 6= (0, 0)

0, (x, y) = (0, 0).

6.8 The Implicit Function Theorem Revisited

Theorem 6.9 The Implicit Function Theorem II
Let F be a function of two variables x and y, where x ∈ I, y ∈ J , I, J are open

intervals. Suppose that for x ∈ I, y ∈ J ,
1. F (x, y) is continuous;
2. The partial derivatives Fx and Fy exist and are continuous;
3. For some point (xo, yo), xo ∈ I, yo ∈ J, we have F (xo, yo) = 0 and F ′

y(xo, yo) 6= 0.

Then there are positive numbers h and k that determine the rectangle

R = {(x, y) : |x− xo| < h, |y − yo| < k}
such that the equation

F (x, y) = 0

defines y as a function of x,

y = f(x), x ∈ Io = {x : |x− xo| < h} ⊆ I,

whose range is contained in

Jo = {y : |y − yo| < k} ⊆ J.

The function f is determined uniquely on I and has the following properties:

(a) f(xo) = yo,

(b) f is continuous on Io,

(c) f is differentiable on Io,

(d) f ′ is continuous on Io and can be expressed as

f ′(x) = −Fx(x, y)

Fy(x, y)
.
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Lemma 6.1 Suppose that the function G(x, y) possesses the partial derivatives Gx =
Gx(x, y) and Gy = Gy(x, y) at the point (xo, yo) and in a neighbourhood of (xo, yo). If Gx

and Gy are continuous as functions of two variables x and y, then the difference

∆G(xo, yo) = G(xo + ∆x, yo + ∆y)−G(xo, yo)

can be expressed as

∆G(xo, yo) = Gx(xo, yo) ∆x + Gy(xo, yo) ∆y + α(∆x,∆y) ∆x + β(∆x, ∆y) ∆y, (6.20)

where α → 0 and β → 0 as both ∆x → 0 and ∆y → 0.

Proof. Clearly, we have

∆G(xo, yo) = [G(xo + ∆x, yo + ∆y)−G(xo, yo + ∆y)] + [G(xo, yo + ∆y)−G(xo, yo)].

By the Mean Value Theorem, there exists c1 between xo and xo +∆x, c1 = xo +θ1∆x, 0 <
θ1 < 1, such that

G(xo + ∆x, yo + ∆y)−G(xo, yo + ∆y) = Gx(xo + θ1∆x, yo + ∆y)∆x.

Similarly, there exists c2 = yo + θ2∆y, 0 < θ2 < 1, such that

G(xo, yo + ∆y)−G(xo, yo) = Gy(xo, yo + θ2∆y)∆y.

When ∆x → 0 and ∆y → 0 then xo + θ1∆x → xo and yo + θ2∆y → yo. Since Gx and
Gy are continuous, there exist α = α(∆x,∆y) and β = β(∆x,∆y), such that

Gx(xo + θ1∆x, yo + ∆y) ∆x = Gx(xo, yo) + α(∆x,∆y), (6.21)

Gy(xo, yo + θ2∆y) ∆y = Gy(xo, yo) + β(∆x,∆y), (6.22)

where α(∆x,∆y) → 0 and β(∆x,∆y) → 0, when ∆x → 0 and ∆y → 0.
Hence, we obtain

∆G(xo, yo) = Gx(xo, yo)∆x + Gy(xo, yo)∆y + α∆x + β∆y.

Proof of the Implicit Function Theorem II. By the hypothesis 3, Fy(xo, yo) 6= 0.
We assume that Fy(xo, yo) > 0; otherwise we replace F by −F and repeat the argument.

Since Fy is continuous, there is a (sufficiently small) square

S = {(x, y) : |x− xo| ≤ k, |y − yo| ≤ k}

on which F is positive. For each fixed value x = x∗, |x∗ − xo| < k, we have Fy(x
∗, y) > 0,

which implies that F (x, y) is increasing as a function of y for fixed value of x, (x, y) ∈ D =
I × J , the domain of F . Therefore, the Implicit Value Theorem I is applicable.
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The existence of a unique function y = f(x) that is continuous on Io and satisfies the
property f(xo) = yo is then guaranteed by that theorem. We are only to prove the properties
(c) and (d) for the function f .

Let x ∈ Io. For a given point (x, y) on the curve y = f(x), consider another point
(x + ∆x, y + ∆y) on the same curve and define

∆F (x, y) = F (x + ∆x, y + ∆y)− F (x, y).

We have

y = f(x), y + ∆y = f(x + ∆x),

F (x, y) = 0, F (x + ∆x, y + ∆y) = 0,

so that, for (x, y) ∈ I × J ,

∆F (x, y) = 0

Applying Lemma 6.1, we obtain

0 = ∆F (x, y) = Fx(x, y)∆x + Fy(x, y)∆y + α∆x + β∆y,

where α → 0 as ∆x → 0 and β → 0 as ∆y → 0. This implies that

∆y

∆x
=

f(x + ∆x)− f(x, y)

∆x
= −Fx(x, y) + α

Fy(x, y) + β

and gives

f ′(x) = lim
∆x→0

∆y

∆x
= − lim

∆x→0
−Fx(x, y) + α

Fy(x, y) + β
.

Now, if ∆x → 0 then ∆y = f(x + ∆x) − f(x) → f(x) − f(x) = 0, since f is continuous.
Hence α → 0, β → 0, and

lim
∆x→0

Fx(x, y) + α

Fy(x, y) + β
= −Fx(x, y)

Fy(x, y)

which implies that f ′(x) exists and is given by

f ′(x) = −Fx(x, y)

Fy(x, y)
, x ∈ I.

6.9 Exercises

6.1 Evaluate, using L’Hôpital’s rules, the following limits:

(i) lim
x→0

tanx− x

x3
;

(ii) lim
x→+∞

xa

ex
;
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6.2 Show that, for 0 < x < π/2, the following functions are increasing functions:

(i)
x

sinx
(ii)

x2/2

1− cos x
(iii)

x3/6

x− sinx

6.3 From the previous question (i) deduce that

2

π
<

sinx

x
< 1, for 0 < x <

π

2
.

6.4 Show that

π <
sinπx

x(1− x)
≤ 4, for 0 < x < 1.

Sketch the graph of the function.

6.5 Sketch the graph of the function

f(x) = π cot πx− 1

x
− 1

x− 1
, 0 < x < 1.

6.6 Sketch the general form of the graph of y, given that

dy

dx
=

(6x2 + x− 1)(x − 1)2(x + 1)3

x2
.

6.7 (a) Use Cauchy’s Mean Value Theorem to show that there are numbers c, d, e, be-
tween x and a such that:

(i)
f(x)− f(a)

x− a
= f (1)(c),

(ii)
f(x)− [f(a) + (x− a)f (1)(a)]

(x− a)2
=

1

2
· f (2)(d),

(iii)

f(x)−
[

f(a) + (x− a)f (1)(a) +
(x− a)2

2
f (2)(a)

]

(x− a)3
=

1

3!
· f (3)(e).

(b) Use part (a) to construct an inductive proof of Taylor’s Theorem.

6.8 Determine if F (x, y) has continuous partial derivatives Fx, Fy, Fxy, Fyx, Fxx, Fyy,
where

F (x, y) =











2xy

x2 + y2
, when (x, y) 6= (0, 0)

0, when (x, y) = (0, 0).

Is F continuous at (0, 0)?

6.9 Show that x + y + sinxy = 0 defines y as a function of x in (−h, h), y in (−k, k), for
some h, k > 0.

Determine
dy

dx
.

Sketch the graph of y.



Chapter 7

Integration

7.1 Lower and Upper Sums

Definition 7.1 A partition P of the closed interval [a, b] is a finite collection of
points

{xo, x1, x2, . . . , xn}

that satisfy the condition

a = xo < x1 < x2 < · · · < xn = b.

Definition 7.2 Consider a function f that is bounded on an interval [a, b] and let

P = {xo, x1, x2, . . . , xn}

be a partition of [a, b]. Let

∆xi = xi − xi−1, mi = inf
xi−1≤x≤xi

f(x), Mi = sup
xi−1≤x≤xi

f(x).

The lower sum of f for P, denoted by L(P, f), is

L(P, f) =
n
∑

i=1

mi∆xi.

The upper sum of f for P, denoted by U(P, f), is

U(P, f) =
n
∑

i=1

Mi∆xi.

If f is a positive function, the lower and upper sums have a clear geometric interpreta-
tion. The lower sum L(P, f) is the area of the union of rectangles with base [xk−1, xk] and
height mk; the upper sum U(P, f) is the area of the union of rectangles with base [xk−1, xk]
and height Mk (see Figure 7.1).

157
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Example 7.1 Consider the partition

P = {xo, x1, x2, . . . , xn}, xi =
i

n
, i = 0, 1, . . . , n

of the interval I = [0, 1] and consider the function f(x) = x2 on the interval I. Find the
lower sum and the upper sum of the function f for the partition P.

Solution. For the partition P, we have

∆xi = xi − xi−1 = i
n − i−1

n = 1
n , i = 1, 2, . . . , n,

mi = infxi−1≤x≤xi
f(x) = f(xi−1) =

(

i−1
n

)2
, i = 1, 2, . . . , n,

Mi = supxi−1≤x≤xi
f(x) = f(xi) =

(

i
n

)2
, i = 1, 2, . . . , n.

The lower sum is

L(P, f) = m1∆x1 + m2∆x2 + · · ·mn∆xn

=
1

n
(m1 + m2 + · · · + mn)

=
1

n

(

0

n2
+

1

n2
+

22

n2
+ · · · + (n− 1)2

n2

)

=
1

n3

(

12 + 22 + · · ·+ (n− 1)2
)

=
1

n3

(n− 1)n(2n− 1)

6
.

The upper sum is

U(P, f) = M1∆x1 + M2∆x2 + · · ·Mn∆xn

=
1

n
(M1 + M2 + · · · + Mn)

=
1

n

(

1

n2
+

22

n2
+ · · · + n2

n2

)

=
1

n3

(

12 + 22 + · · ·+ n2
)

=
1

n3

n(n + 1)(2n + 1)

6
.

Definition 7.3 Let P = {xo, x1, . . . , xn} be a partition of the interval I. If Q =
{yo, y1, . . . , ym}, m ≥ n, is a partition of I such that each point xk, 1 ≤ k ≤ n, of the
partition P belongs to Q, that is if P ⊆ Q, then we say that the partition Q is a refinement
of the partition P.

Figure 7.1 shows the lower and upper sums for f(x) = x2 corresponding to three parti-
tions of the interval I = [0, 1]; the partition P = {0, 1

10 , 2
10 , . . . , 9

10 , 1} and two refinements
Q1 = {0, 1

20 , 2
20 , . . . , 19

20 , 1} and Q2 = {0, 1
40 , 2

40 , . . . , 39
40 , 1} of the partition P.
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(a) L(P, f) = 0.285000 (b) U(P, f) = 0.385000

(c) L(Q1, f) = 0.308750 (d) U(Q1, f) = 0.358750

(e) L(Q2, f) = 0.320937 (f) U(Q2, f) = 0.345979

Figure 7.1: The lower and upper sums for f(x) = x2 corresponding to the partition

P = {0, 1

10
,

1

20
, . . . , 1} and two refinements of P.
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Now we shall prove the following results which are clear on geometric grounds:

• the lower sum is less than or equal to the upper sum of the same partition;

• refining a partition increases lower sums and decreases upper sums.

We shall combine them to conclude that a lower sum is always less than or equal to an
upper sum even if they correspond to different partitions.

Lemma 7.1 Let f be a bounded function defined on a given interval I = [a, b] and let
P = {xo, x1, . . . , xn} be a partition of I. Denote by m and M the infimum and supremum
of f on I:

m = inf
x∈I

f(x), M = sup
x∈I

f(x).

The following hold:

(a) m(b− a) ≤ L(P, f) ≤ U(P, f) ≤ M(b− a).

(b) If Q is a refinement of the partition P, then

L(P, f) ≤ L(Q, f) and U(Q, f) ≤ U(P, f).

Proof. Let

mk = inf
x∈[xk−1,xk]

f(x), Mk = sup
x∈[xk−1,xk]

f(x), ∆k = xk − xk−1, k = 1, 2, . . . , n.

(a) We have

L(P, f) =
n
∑

k=1

mk∆k, U(P, f) =
n
∑

k=1

Mk∆k.

Since

m ≤ mk ≤ Mk ≤ M, k = 1, 2, . . . , n, and
n
∑

k=1

∆k = b− a,

we get

m(b− a) =
n
∑

k=1

m∆k ≤
n
∑

k=1

mk∆k ≤
n
∑

k=1

Mk∆k ≤
n
∑

k=1

M∆k = M(b− a),

and so

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤ M(b− a).

(b) If Q is a refinement of P, P ⊆ Q, then Q can be obtained from P by adjoining a
finite number of points to P.

Let P ′ be the partition obtained from P by adjoining one point z to P, where xk−1 <
z < xk, for some k:

P ′ = {xo, x1, . . . , xk−1, z, xk, . . . , xn}.
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Let
m′

k = inf
x∈[xk−1,z]

f(x), m′′
k = inf

x∈[z,xk]
f(x),

and let ∆′
k = z − xk−1 and ∆′′

k = xk − z. Then mk ≤ m′
k and mk ≤ m′′

k, and we have

mk∆k = mk∆
′
k + mk∆

′′
k ≤ m′

k∆
′
k + m′′

k∆
′′
k.

Hence

L(P ′, f) =
∑

j 6=k

mj∆j + m′
k∆

′
k + m′′

k∆
′′
k ≥

∑

j 6=k

mj∆j + mk∆k = L(P, f).

We can see, therefore, that adjoining one point to P increases the lower sum:

L(P ′, f) ≥ L(P, f).

Since the refinement Q of the partition P can be obtained by adjoining a finite number of
points to P, one at a time, repeating the above argument we conclude that

L(P, f) ≤ L(Q, f).

Now we shall examine how the upper sum changes when one point is adjoined to the
partition. Let

M ′
k = sup

x∈[xk−1,z]
f(x), M ′′

k = sup
x∈[z,xk]

f(x).

Then Mk ≥ M ′
k, Mk ≥ M ′′

k and

U(P ′, f) =
∑

j 6=k

Mj∆j + M ′
k∆

′
k + M ′′

k ∆′′
k ≤

n
∑

j=1

Mj∆j = U(P, f).

Hence the upper sum decreases when a point is adjoined to the partition:

U(P ′, f) ≤ U(P, f).

Now, adjoining a finite number of points to P we obtain Q, so repeating the above argument
we infer that

U(Q, f) ≤ U(P, f).

The proof is complete.

Lemma 7.2 Let f be a bounded function defined on a given interval I ⊂ RI and let P1

and P2 be any two partitions of I. Then

L(P1, f) ≤ U(P2, f).

Proof. Let Q = P1 ∪P2. Then P1 ⊆ Q and P2 ⊆ Q , so Q is a refinement of both P1

and P2. By Lemma 7.1(a) we have

L(Q, f) ≤ U(Q, f)

and, by Lemma 7.1(b), we have

L(P1, f) ≤ L(Q, f)

U(Q, f) ≤ U(P2, f)

Hence the required result follows:

L(P1, f) ≤ L(Q, f) ≤ U(Q, f) ≤ U(P2, f).
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7.2 Lower and Upper Integrals

Let f be a bounded function defined on the interval I. To each partition P of the interval
I there correspond its lower sum L(P, f) and its upper sum U(P, f). If we consider the
collection PP(I) of all possible partitions of the interval I, we obtain two sets of numbers:
the set of lower sums

SL = {l : l = L(P, f), P ∈ PP(I)}
and the set of upper sums

SU = {u : u = U(P, f), P ∈ PP(I)}.

Since f is bounded, by Lemma 7.1, each set SL and SU is bounded, and as such possesses
an infimum and supremum. The supremum of SL is called the lower integral of f on I and
the infimum of SU is called the upper integral of f on I. The function f is said to be
integrable over the interval I if the lower and upper integrals are equal.

Definition 7.4 Let f be a bounded function defined on the interval I. Let PP(I) be the
collection of all possible partitions of the interval I.

The lower integral of f on I, denoted by L(f), is

L(f) = sup
P∈PP(I)

{l : l = L(P, f)}.

The upper integral of f on I, denoted by U(f), is

U(f) = inf
P∈PP(I)

{u : u = U(P, f)}.

Example 7.2 Finding lower and upper integrals.

(a) Let f(x) = c be a constant function on the interval [a, b]. Clearly

U(P, f) = c(b− a), L(P, f) = c(b− a).

Hence
L(f) = U(f) = c(b− a).

(b) Let f be defined on the interval [0, 1] as follows

f(x) =

{

0 if x is rational
1 if x is irrational

Then
L(f) = 0, U(f) = 1 on [0, 1].
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Theorem 7.1 If f is a bounded function defined on the interval I ⊂ RI , then the lower
integral L(f) and upper integral U(f) of f on the interval I exist and satisfy the inequality

L(f) ≤ U(f). (7.1)

Proof. The existence of L(f) and U(f) follows directly from the hypothesis that f is
bounded.

To prove the inequality (7.1), we let P1 and P2 be any partitions of the interval I. Then
L(P1, f) ≤ U(P2, f). Since P1 is arbitrarily chosen from the collection of partitions PP(I),
we conclude that the number U(P2, f) is an upper bound of the set SL of the lower sums.
Now, L(f) is the supremum of SL, so

L(f) ≤ U(P2, f).

Because P2 is arbitrarily chosen, the above inequality implies that the number L(f) is
a lower bound for the set SU of upper sums. Consequently the infimum of this set, U(f),
must satisfy the inequality

L(f) ≤ U(f).

7.3 The Riemann Integral

Definition 7.5 Let f be a bounded function on the interval I = [a, b]. The function f
is said to be Riemann integrable on I if the lower integral L(f) and the upper integral
U(f) are equal.

If f is integrable on I then the Riemann integral of f on I is defined to be the common
value of L(f) and U(f) and is denoted by

∫ b

a
f(x)dx or

∫ b

a
f.

In addition, we define

∫ a

a
f(x)dx = 0 and

∫ a

b
f(x)dx = −

∫ b

a
f(x)dx.

Example 7.3 Using Definition 7.5.

(a) Let f(x) = c be a constant function on the interval [a, b]. Clearly

U(P, f) = c(b− a) = L(P, f) = c(b− a).

Hence f is integrable and

∫ b

a
cdx =

∫ b

a
f(x)dx = L(f) = U(f) = c(b− a).
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(b) Let f be defined on the interval [0, 1] as follows

f(x) =

{

0 if x is rational
1 if x is irrational

Then we have
0 = L(f) 6= U(f) = 1

and we conclude that f is not integrable on the interval [0, 1].

7.4 Existence of the Integral

The above definition of the Riemann integral does not provide an easy criterion to establish
whether or not

∫ b
a f(x)dx exists. The next theorem gives us a necessary and sufficient

condition for existence of the integral.

Theorem 7.2 Integrability Criterion
Let f be a bounded function defined on I = [a, b]. The function f is integrable on I if and

only if for every ε > 0 there exists a partition Pε of I such that

U(Pε, f)−L(Pε, f) < ε. (7.2)

Proof.
=⇒ We assume that f is integrable on I, so L(f) = U(f). Let ε > 0 be given. Let

PP be the collection of all possible partitions of I.
Since L(f) = sup

P∈PP(I)
{l : l = L(P, f)}, by definition of the supremum of a set, we have

∃P1 ∈ PP
(

L(f)− ε

2
< L(P1, f)

)

. (7.3)

Since U(f) = inf
P∈PP(I)

{u : u = U(P, f)}, by definition of the infimum of a set , we have

∃P2 ∈ PP
(

U(f) +
ε

2
> U(P2, f)

)

. (7.4)

Let Pε = P1 ∪ P2. Then Pε is a refinement of both P1 and P2. By Lemma 7.1 we have

L(Pε, f) ≥ L(P1, f),

U(Pε, f) ≤ U(P2, f),

which implies that
U(Pε, f)−L(Pε, f) ≤ U(P2, f)−L(P1, f).

Now, U(f) = L(f) by the hypothesis. Hence, using (7.3) and (7.4) we get

U(Pε, f)−L(Pε, f) ≤ U(f) +
ε

2
− L(f) +

ε

2
= ε.
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⇐= We assume that for every ε > 0 there exists a partition Pε of I such that (7.2)
holds. We note that for any partition P of I we have L(P, f) ≤ L(f) and U(f) ≤ U(P, f),
which implies that

U(f)− L(f) ≤ U(P, f) −L(P, f).

Let ε > 0 be given and let Pε be the corresponding partition of I for which (7.2) holds.
Thus

U(f)− L(f) ≤ U(Pε, f)−L(Pε, f) < ε.

Since ε is arbitrary, we conclude that U(f) ≤ L(f). Hence, by Theorem 7.1

U(f) = L(f).

Corollary 7.1 Let f be a bounded function defined on I = [a, b]. If there is a sequence
{Pn} of partitions of I such that

lim
n→∞

[U(Pn, f)−L(Pn, f)] = 0, (7.5)

then f is integrable on I and

lim
n→∞

L(Pn, f) =

∫ b

a
f(x)dx = lim

n→∞
U(Pn, f). (7.6)

Example 7.4 Show that g(x) = x2 is integrable on the interval [0, 1].

Solution. Using the results of Example 7.1 we get

lim
n→∞

L(Pn, f) = lim
n→∞

[

n(n− 1)(2n − 1)

6n3

]

=
2

6
=

1

3
,

lim
n→∞U(Pn, f) = lim

n→∞

[

n(n + 1)(2n + 1)

6n3

]

=
2

6
=

1

3
.

Hence, by Corollary (7.1), g(x) = x2 is integrable on the interval [0, 1] and

∫ 1

0
g(x)dx =

∫ 1

0
x2dx =

1

3
.

We now consider two important classes of Riemann integrable functions.

7.5 Integrability of Monotone Functions

Theorem 7.3 Any function f that is monotone on I = [a, b] is integrable on I.

Proof. Suppose that f is nondecreasing on I. Let Pn, n = 1, 2, . . . , be the partition
of I into n equal subintervals, so that

∆xk = xk − xk−1 =
b− a

n
, k = 1, 2, . . . , n.
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Now xk−1 < xk =⇒ f(xk−1) ≤ f(xk), and we have mk = f(x+
k−1), Mk = f(x−k ), k =

1, 2, . . . , n, where
f(x−) = sup

t<x
f(t), and f(x+) = inf

x<s
f(s).

Thus
n
∑

k=1

(Mk −mk) = f(x−1 )− f(x+
o ) + f(x−2 )− f(x+

1 ) + · · ·+ f(x−n )− f(x+
n−1)

≤ f(xn)− f(xo) = f(b)− f(a).

Therefore, we have

U(Pn, f)−L(Pn, f) =
n
∑

k=1

(Mk −mk)∆xk =
b− a

n

n
∑

k=1

(Mk −mk)

≤ b− a

n
(f(b)− f(a)) → 0, as n → 0.

Hence condition (7.5) is satisfied.
The above arguments can be repeated for the case when f is nonincreasing.

Example 7.5 Let

f(x) =

{

1 if 0 ≤ x ≤ 1
2 ,

0 if 1
2 < x ≤ 1.

Then f is Riemann integrable on [0, 1].

7.6 Integrability of Continuous Functions

Theorem 7.4 Any function f that is continuous on I = [a, b] is integrable on I.

Proof. We note that any function that is continuous on a closed interval is uniformly
continuous on the interval. Thus f is uniformly continuous on I. This means that

∀ε1 > 0 ∃δ > 0 ∀u1, u2 ∈ I (|u1 − u2| < δ =⇒ |f(u1)− f(u2)| < ε1). (7.7)

Let ε > 0 be given and set ε1 = ε/(b− a). Then (7.7) implies that there is a positive δ such
that

∀u1, u2 ∈ I

(

|u1 − u2| < δ =⇒ |f(u1)− f(u2)| <
ε

b− a

)

. (7.8)

Let d = (b−a)/δ. Choose P = {xo, x1, . . . , xn} be the partition of I into n equal subintervals,
where n > d. Then ∆k = xk − xk−1 = (b− a)/n < δ, k = 1, 2, . . . , n.

Now, if u1, u2 ∈ [xk−1, xk] then |u1 − u2| ≤ (b − a)/n < δ and, by (7.8), we have
|f(u1)− f(u2)| < ε/(b− a), which implies that Mk −mk < (b− a)/n < δ. Hence

U(P, f) −L(P, f) =
n
∑

k=1

(Mk −mk)∆xk <
ε

b− a

n
∑

k=1

∆xk =
ε

b− a
(b− a) = ε.

Therefore, given ε > 0, we have shown that there is a partition P of the interval I that
satisfies the hypothesis (7.2) of Theorem 7.2. Since ε is arbitrary, by Theorem 7.2, we
conclude that f is integrable on I.

Example 7.6 f(x) = sinx is Riemann integrable over any interval [a, b].
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7.7 Properties of the Integral

We now establish some basic properties of the Riemann integral, which, in a sense, justify
the choice of the word “integral”.

Theorem 7.5 If f(x) is integrable on [a, b], then the function kf(x) is integrable on
[a, b] for any constant k, and

∫ b

a
kf(x)dx = k

∫ b

a
f(x)dx. (7.9)

Proof.
Case 1: k > 0.
To prove that the function kf(x) is integrable on [a, b] requires finding a partition P of

[a, b] such that
U(kf,P)−L(kf,P) < ε

for any ε > 0.
Let ε be given. Since f is integrable on [a, b], there is a partition Pε of [a, b] such that

U(f,Pε)−L(f,Pε) <
ε

k
.

Now
U(kf,Pε)−L(kf,Pε) = k U(f,Pε)− k L(f,Pε)

= k (U(f,Pε)−L(f,Pε))

< k · ε
k = ε.

Thus the function kf(x) is integrable on [a, b]. It remains to show that (7.9) holds. We
have

kL(f,Pε) = L(kf,Pε) ≤
∫ b

a
kf(x)dx ≤ U(kf,Pε) = kU(f,Pε) (7.10)

and

L(f,Pε) ≤
∫ b

a
f(x)dx ≤ U(f,Pε)

Multiplying the above inequality by k (k > 0) gives

kL(f,Pε) ≤ k

∫ b

a
f ≤ kU(f,Pε) (7.11)

From (7.10) and (7.11) it follows that

∀ε > 0

∣

∣

∣

∣

∣

∫ b

a
kf(x)dx− k

∫ b

a
f(x)dx

∣

∣

∣

∣

∣

≤ ε. (7.12)

We conclude that (7.9) holds.
Case 2: k = 0.
For every x ∈ [a, b], kf(x) = 0, so that the function kf is integrable by Example 7.3.

It is clear that (7.9) holds.
Case 3: k < 0. This case is left to the student as an exercise.
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Theorem 7.6 Suppose that f and g are integrable on the interval I = [a, b]. Then the
function f + g is integrable on I and

∫ b

a
[f(x) + g(x)]dx =

∫ b

a
f(x)dx +

∫ b

a
g(x)dx. (7.13)

Proof. Let P be any partition of the interval I = [a, b]. Since

inf
x∈I

[f(x) + g(x)] ≥ inf
x∈I

f(x) + inf
x∈I

g(x),

sup
x∈I

[f(x) + g(x)] ≤ sup
x∈I

f(x) + sup
x∈I

g(x),

the lower and upper sums satisfy the inequalities:

L(P, f + g) ≥ L(P, f) + L(P, g),

U(P, f + g) ≤ U(P, f) + U(P, g).

Since the partition P is arbitrary, we have the following inequalities for the lower and upper
integrals of f + g, f , and g on the interval I:

L(f + g) ≥ L(f) + L(g),

U(f + g) ≤ U(f) + U(g).

Now for any bounded function, the lower integral is less than or equal to the upper integral,
so L(f + g) ≤ U(f + g). Thus we have

L(f) + L(g) ≤ L(f + g) ≤ U(f + g) ≤ U(f) + U(g).

But the functions f and g are integrable on I, so L(f) = U(f), L(g) = U(g), and L(f) +
L(g) = U(f) + U(g) implies that

L(f + g) = U(f + g).

Hence we conclude that the function f + g is integrable on the interval I = [a, b], and (7.13)
holds.

Theorem 7.7 If f is Riemann integrable on I = [a, b], and f(x) ≥ 0 for all x ∈ [a, b],
then

∫ b

a
f(x)dx ≥ 0.

Proof. Let P = {xo, x1, . . . , xn} be a partition of I arbitrarily selected from the
collection PP of all partitions of I. Then

mk = inf
x∈[xk−1,xk]

f(x) ≥ 0, k = 1, 2, . . . , n,
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and consequently

L(P, f) =
n
∑

k=1

mk(xk − xk−1) ≥ 0.

Since L(P, f) ≥ 0 for any partition P ∈ PP, we conclude that

L(f) = sup
P∈PP

L(P, f) ≥ 0.

Since f is integrable on I = [a, b], we have
∫ b

a
f(x)dx = L(f) ≥ 0.

Theorem 7.8 If f and g are integrable and bounded on I = [a, b], and if

f(x) ≤ g(x), x ∈ [a, b],

then
∫ b

a
f(x)dx ≤

∫ b

a
g(x)dx.

Proof. By theorem 7.5, the function −f is integrable, so is g − f = g + (−f), and
∫ b

a
[g(x) − f(x)]dx =

∫ b

a
g(x)dx −

∫ b

a
f(x)dx.

By the hypothesis, g(x)−f(x) ≥ 0. Applying Theorem 7.7 to the function g−f , we conclude
that
∫ b

a
[g(x) − f(x)]dx =

∫ b

a
g(x)dx−

∫ b

a
f(x)dx ≥ 0, or

∫ b

a
g(x)dx ≥

∫ b

a
f(x)dx.

Theorem 7.9 If f is integrable on I = [a, b] and

m ≤ f(x) ≤ M, x ∈ I,

then

m(b− a) ≤
∫ b

a
f(x)dx ≤ M(b− a).

Proof. By Example 7.3, the constant functions, g1(x) = m and g2(x) = M are
integrable on I and

∫ b

a
g1(x)dx =

∫ b

a
mdx = m(b− a),

∫ b

a
g2(x)dx =

∫ b

a
Mdx = M(b− a).

Hence, by Theorem 7.8,

m ≤ f(x) ≤ M, x ∈ I = [a, b] =⇒

m(b− a) =

∫ b

a
mdx ≤

∫ b

a
f(x)dx ≤

∫ b

a
Mdx = M(b− a),

and the proof is complete.
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Theorem 7.10 Let f be a bounded function on the interval I = [a, b] and let c be any
interior point of I that splits I up into I1 = [a, c] and I2 = [c, d].

The function f is integrable on I if and only if f is integrable on both I1 and I2. In this
case

∫ b

a
f(x)dx =

∫ c

a
f(x)dx +

∫ d

c
f(x)dx. (7.14)

The proof of this theorem makes use of the following lemma.

Lemma 7.3 Suppose that the assumptions of Theorem 7.10 hold. Let L(f), L1(f), and
L2(f) denote the lower integrals of f on the intervals I, I1, and I2, respectively. Similarly,
let U(f), U1(f), and U2(f) denote the upper integrals of f on I, I1, and I2, respectively.
Then we have

(i) L(f) = L1(f) + L2(f),

(ii) U(f) = U1(f) + U2(f).

Proof of Lemma.
We shall only prove the (ii) part of the lemma. The proof of (i) proceeds in a similar

way.
Let P be any partition of [a, b]. Then P1 = (P ∪ {c}) ∩ [a, c] is a partition of [a, c] and

P2 = (P ∪ {c})∩ [c, d] is a partition of [c, b]. From the definition of the upper sums, we have

U(P ∪ {c}, f) = U(P1, f) + U(P2, f).

Also, since P ∪ {c} is a refinement of P, U(P ∪ {c}, f) ≤ U(P, f). Hence

U(P, f) ≥ U(P1, f) + U(P2, f)

≥ U1(f) + U2(f).

Since this inequality holds for all partitions P of I, we conclude that

U(f) ≥ U1(f) + U2(f).

For the reverse inequality, let ε > 0 be given. By definition of the upper integral, there
is a partition P1 of [a, c] and a partition P2 of [c, b] for which

U1(f) ≤ U(P1, f) < U1(f) +
ε

2

U2(f) ≤ U(P2, f) < U2(f) +
ε

2
.

Then
U(P1 ∪ P2, f) = U(P1, f) + U(P2, f) ≤ U1(f) + U2(f) + ε.

But U(f) ≤ U(P1 ∪ P2, f), so that U(f) < U1(f) + U2(f) + ε. Since ε > 0 is arbitrary, we
have

U(f) ≤ U1(f) + U2(f).
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Proof of Theorem 7.10.
=⇒ We assume that f is integrable on I, so that L(f) = U(f) and, using the state-

ments (i) and (ii) of Lemma 7.3, we conclude that

L1(f) + L2(f) = L(f) = U(f) = U1(f) + U2(f). (7.15)

Now, by Theorem 7.1, L1(f) ≤ U1(f) and L2(f) ≤ U2(f). We claim that L1(f) = U1(f) and
L2(f) = U2(f), for if either L1(f) < U1(f) or L2(f) < U2(f), we would have a contradiction
to (7.15). Hence f is integrable on I1 and on I2 and (7.14) holds.

⇐= We assume that f is integrable on I1 and on I2, so that L1(f) = U1(f) and
L2(f) = U2(f). Now, by (i) and (ii) of Lemma 7.3, we get

U(f) = U1(f) + U2(f) = L1(f) + L2(f) = L(f),

so that L(f) = U(f), meaning that f is integrable on I and (7.14) holds.

7.8 Integrability of Composite Functions

Theorem 7.11 The Composite Theorem
Let I = [a, b] and J = [c, d] be intervals and let ϕ : J 7→ RI be continuous and assume

that f : I 7→ J is Riemann integrable. Then the composite function ϕ ◦ f : I 7→ RI is
Riemann integrable on I.

Proof. We shall show that for every ε > 0 there is a partition Pε of I such that

U(Pε, ϕ ◦ f)−L(Pε, ϕ ◦ f) < ε, (7.16)

so that, by Theorem 7.2, the function ϕ ◦ f is integrable on I.
We note that the function ϕ, being continuous on a closed interval is uniformly contin-

uous on this interval. Thus ϕ is uniformly continuous on J = [c, d] and we have

∀ε1 > 0 ∃δ > 0 (s, t ∈ J & |s− t| < δ =⇒ |ϕ(s)− ϕ(t)| < ε1) . (7.17)

Since f is integrable on I, for every ε2 > 0, there exists a partition P of the interval I, such
that

U(P, f)−L(P, f) < ε2.

We consider an arbitrary value of ε1 and the corresponding value of δ; and an arbitrary
value of ε2 and the corresponding partition P = {xo, x1, . . . , xn} of the interval I.

The partition P divides I into n subintervals [xk−1, xk], k = 1, 2, . . . , n. Let

mk = inf
x∈[xk−1,xk]

f(x), Mk = sup
x∈[xk−1,xk]

f(x).
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We shall consider separately those subintervals [xk−1, xk] for which Mk −mk < δ. Let
A denote the corresponding set of indices:

A = {k : Mk −mk < δ},

and let

B = {k : Mk −mk ≥ δ}.
If we denote by m̃k and M̃k the infimum and supremum of the function ϕ◦f on the interval
[xk−1, xk], then we can write

M̃k − m̃k = sup
x,y∈[xk−1,xk]

(ϕ ◦ f(x)− ϕ ◦ f(y)).

Now, if k ∈ A and x, y ∈ [xk−1, xk], then |f(x) − f(y)| < δ, which, by (7.17), implies
that |ϕ ◦ f(x) − ϕ ◦ f(y)| < ε1, so that M̃k − m̃k ≤ ε1 for k ∈ A. We conclude, therefore,
that

∑

k∈A

(M̃k − m̃k)(xk − xk−1) ≤ ε1(b− a). (7.18)

On the other hand, if k ∈ B, we have M̃k − m̃k ≤ 2K, where K = supt∈J |ϕ(t)|. Hence

∑

k∈B

(M̃k − m̃k)(xk − xk−1) ≤ 2K
∑

k∈B

(xk − xk−1).

If k ∈ B then Mk −mk ≥ δ =⇒ 1
δ (Mk −mk) ≥ 1 and we can write

∑

k∈B

(xk − xk−1) ≤ 1

δ

∑

k∈B

(Mk −mk)(xk − xk−1)

≤ 1

δ

n
∑

k=1

(Mk −mk)(xk − xk−1)

=
1

δ
(U(P, f)−L(P, f)) <

1

δ
ε2.

Hence
∑

k∈B

(M̃k − m̃k)(xk − xk−1) ≤
2K

δ
ε2. (7.19)

Combining (7.18) and (7.19) gives

U(P, ϕ ◦ f)−L(P, ϕ ◦ f) ≤ D = ε1(b− a) +
2K

δ
ε2. (7.20)

The above holds for any ε1 > 0 and any ε2 > 0, where δ corresponds to ε1 as specified in
(7.17). Without loss of generality, we select δ < ε1.

The objective of the proof is to show that (7.16) holds for any ε > 0.
Let ε > 0 be given. If we set

ε1 =
ε

b− a + 2K
, ε2 = δ2,
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and recall that δ < ε1, we get D of (7.20) equal to ε:

D = ε1(b− a) + 2Kδ < ε1(b− a) + 2Kε1 = ε1(b− a + 2K) = ε.

Hence we have shown that there exists a partition Pε = P of the interval I such that

U(P, ϕ ◦ f)−L(P, ϕ ◦ f) ≤ ε,

which means that the function ϕ ◦ f is integrable on the interval I.

7.9 Further Properties of the Integral

Theorem 7.12 If f is integrable on I = [a, b] then the function |f | is integrable on I,
and

∣

∣

∣

∣

∣

∫ b

a
f(x)dx

∣

∣

∣

∣

∣

≤
∫ b

a
|f(x)|dx.

Proof. Since f is integrable on I, f is bounded, so there exists K > 0 such that
|f(x)| ≤ K, x ∈ I.

Let J = [−K,K]. Define ϕ : J 7→ RI as ϕ(t) = |t|, and note that the composite function
ϕ ◦ f defined on I is ϕ ◦ f = |f |.

Since ϕ(t) = |t| is continuous on J , the Composite Theorem applies to conclude that

ϕ ◦ f = |f |

is integrable on I = [a, b].
To prove the inequality, note that f(x) ≤ |f(x)|, and −f(x) ≤ |f(x)|, so −|f(x)| ≤

f(x) ≤ |f(x)|. Hence, by Theorem (7.8), we have
∣

∣

∣

∣

∣

∫ b

a
f(x)dx

∣

∣

∣

∣

∣

≤
∫ b

a
|f(x)|dx.

Theorem 7.13 Let f be integrable on I = [a, b]. Then the function f n, for any natural
number n, is integrable on I.

Proof. Since f is integrable, f is bounded on I, so that |f(x)| ≤ K, x ∈ I, for some
K > 0. Let ϕ(t) = tn for t ∈ J = [−K,K]. Then ϕ ◦ f = fn and the Composite Theorem
applies.

Theorem 7.14 The Product theorem
If f and g are both integrable on I = [a, b], then so is the product f · g.
Proof. We have

fg =
1

2
[(f + g)2 − f2 − g2].
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Theorem 7.15 Suppose that f is integrable on I = [a, b] and f(x) ≥ δ, x ∈ I for some

δ > 0. Then the function
1

f
is integrable on I.

Proof. Since f is integrable on I, f is bounded on I. Thus we have

δ ≤ f(x) ≤ K, x ∈ I.

Let J = [δ,K] and define ϕ(t) on J as ϕ(t) =
1

t
. Clearly, ϕ is continuous on J and

ϕ ◦ f = 1
f is integrable on I by the Composite Theorem.

Theorem 7.16 Schwarz’s Inequality.
If f and g are integrable over the interval I = [a, b], then

(

∫ b

a
f(x) · g(x)dx

)2

≤
∫ b

a
[f(x)]2dx ·

∫ b

a
[g(x)]2dx. (7.21)

Proof. Let λ be a constant and consider the expression (f + λg)2 which is nonneg-
ative. We have

(f + λg)2 = f2 + 2λfg + λ2g2 ≥ 0,

for all real values of the constant λ.
Since both f and g are integrable then, we conclude that

λ2
∫ b

a
g2dx + 2λ

∫ b

a
fgdx +

∫ b

a
f2dx ≥ 0. (7.22)

Now the quadratic in λ, Aλ2 + Bλ + C, where A > 0, is nonnegative for all λ ∈ RI if and
only if ∆ = B2 − 4AC ≤ 0. Hence (7.22) holds if and only if

4

(

∫ b

a
f(x) · g(x)dx

)2

− 4

(

∫ b

a
g2(x)dx

)

·
(

∫ b

a
f2(x)dx

)

≤ 0,

which proves the Schwarz’s inequality (7.21).

7.10 The Fundamental Theorem of Integral Calculus

Theorem 7.17 Suppose that f is integrable over the interval I = [a, b] and let F be
defined on I by

F (x) =

∫ x

a
f(t)dt, x ∈ I. (7.23)

(a) F is a continuous function of x in I = [a, b].

(b) F is differentiable at any point c ∈ I at which f is continuous, and

F ′(c) = f(c).
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Proof.
(a) Since f is integrable on I, f is bounded on I, so that

|f(t)| ≤ M = sup
x∈I

|f(x)|, t ∈ I.

Let x1, x2 ∈ [a, b], x1 < x2. We have

|F (x1)− F (x2)| =

∣

∣

∣

∣

∫ x1

a
f(t)dt−

∫ x2

a
f(t)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ x2

x1

f(t)dt

∣

∣

∣

∣

≤
∫ x2

x1

|f(t)|dt ≤
∫ x2

x1

Mdt = |x1 − x2|M.

We can see, therefore, that

∀ε > 0 ∃δ =
ε

M
> 0 ((x1, x2 ∈ I, |x1 − x2| < δ) =⇒ |F (x1)− F (x2)| < ε) ,

which means that the function F (x) defined by (7.23) is continuous in the interval I = [a, b].
(b) Since f is continuous at the point c, we have

∀ε > 0 ∃δ > 0 (|t− c| < δ =⇒ |f(t)− f(c)| < ε) . (7.24)

We can write
F (c + h)− F (c)

h
− f(c) =

1

h

∫ c+h

c
[f(t)− f(c)]dt,

since

F (c + h)− F (c) =

∫ c+h

c
f(t)dt,

f(c) =
1

h

∫ c+h

c
f(c)dt.

Let ε > 0 be given and let δ(ε) be the corresponding value of δ in (7.24). If |h| < δ(ε)
then, on application of Theorems 7.12 and 7.9, we get

∣

∣

∣

∣

F (c + h)− F (c)

h
− f(c)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

h

∫ c+h

c
[f(t)− f(c)]dt

∣

∣

∣

∣

∣

≤ 1

|h|

∫ c+h

c
|f(t)−f(c)|dt ≤ 1

|h|ε|h| = ε.

Since ε is arbitrary, we conclude that

lim
h→0

(

F (c + h)− F (c)

h
− f(c)

)

= 0.

Hence

F ′(c) = lim
h→0

F (c + h)− F (c)

h

exists and equals to f(c) : F ′(c) = f(c).
Comments: The above theorem ensures that every continuous function possesses

an antiderivative. It also gives a method for evaluating

∫ x2

x1

f(t)dt, provided that an

antiderivative of f is known. If F is an antiderivative of f , then
∫ x2

x1

f(t)dt =

∫ x2

a
f(t)dt−

∫ x1

a
f(t)dt = F (t)

∣

∣

∣

∣

x2

x1

= F (x2)− F (x1).
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We recall that two antiderivatives of f differ by a constant, so that F may be chosen to be
any antiderivative of f . In particular, when f(x) = h′(x), we obtain

∫ b

a
h′(x)dx = h(b)− h(a). (7.25)

It is clear that the definition of the Riemann integral is closely related to the geometric
notion of area. The properties of the integral were developed independently of this and, in
fact, one may define the area A under y = f(x), a ≤ x ≤ b, to be

A =

∫ b

a
|f(x)|dx,

as shown in Figure 7.2 A simple example involving the calculation of the “area under a
curve” is given in Section 7.13 (see Example 7.9).

(a) y = f(x) (b) y = |f(x)|

Figure 7.2: The Area,

∫ b

a
f(x)dx, and

∫ b

a
|f(x)|dx.

7.11 Integration by Parts

Theorem 7.18 Integration by Parts Consider two functions f and g defined on a
closed interval I = [a, b]. If f and g have continuous derivatives on I then

∫ b

a
f ′(x)g(x)dx = f(x)g(x)

∣

∣

∣

∣

∣

b

a

−
∫ b

a
f(x)g′(x)dx. (7.26)
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Proof. Let h denote the product of the functions f and g:

h(x) = f(x)g(x), x ∈ I.

We note that the function h is differentiable and its derivative

h′(x) = f ′(x)g(x) + f(x)g′(x), x ∈ I,

is a continuous function on I = [a, b]. Hence

∫ b

a
(f ′(x)g(x) + f(x)g′(x))dx =

∫ b

a
h′(x)dx = h(b)− h(a)

= f(b)g(b) − f(a)g(a).

Hence

∫ b

a
(f ′(x)g(x) + f(x)g′(x))dx =

∫ b

a
f ′(x)g(x)dx +

∫ b

a
f(x)g′(x)dx = f(x)g(x)|ba ,

which implies (7.26).

Theorem 7.19 (The Mean Value Theorem for Integrals)
Let f and g be continuous functions on the closed interval [a, b] and suppose that g(x) ≥ 0

for x ∈ [a, b]. Then there is some value c in [a, b] such that

∫ b

a
f(x)g(x)dx = f(c)

∫ b

a
g(x)dx. (7.27)

Proof. Since f is continuous on a closed interval, f is bounded. Let

m = min
x∈[a,b]

f(x) and M = max
x∈[a,b]

f(x),

so that
m ≤ f(x) ≤ M, x ∈ [a, b].

Since g(x) ≥ 0, x ∈ [a, b], we have

mg(x) ≤ f(x)g(x) ≤ Mg(x), x ∈ [a, b].

Hence, by theorem 7.8,

m

∫ b

a
g(x)dx ≤

∫ b

a
f(x)g(x)dx ≤ M

∫ b

a
g(x)dx. (7.28)

If

∫ b

a
g(x)dx = 0, then (7.27) holds for every choice of c. So, we assume

∫ b

a
g(x)dx 6= 0.

Then (7.27) implies that

m ≤
∫ b
a f(x)g(x)dx
∫ b
a g(x)dx

≤ M. (7.29)
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Now, the function f as a continuous function on the interval [a, b], must assume every value
between m and M . In particular, there is a point c in the interval [a, b] such that

f(c) =

∫ b
a f(x)g(x)dx
∫ b
a g(x)dx

,

and (7.27) holds for this value of c.

Comments: The theorem is also valid when g(x) ≤ 0 for all x ∈ [a, b] and the

proof is similar. In this case,

∫ b

a
g(x)dx ≤ 0, and the inequality (7.29) still holds, when the

denominator is not zero.

Suppose that the function g is the constant function, f(x) ≡ 1 for all x ∈ [a, b]. Then
we obtain, as a special case, the following Corollary.

Corollary 7.2 If f is continuous on [a, b], then there is some value c in (a, b) such that

1

b− a

∫ b

a
f(x)dx = f(c).

Theorem 7.20 The second Mean Value Theorem for Integrals
Let f , f ′, and g be continuous on I = [a, b], with f ′ ≥ 0 in I. Then there exists a

number ξ, a < ξ < b, such that
∫ b

a
f(x)g(x)dx = f(a)

∫ ξ

a
g(x)dx + f(b)

∫ b

ξ
g(x)dx.

Proof. Let G(x) =

∫ x

a
g(t)dt. Integrating by parts, we get

∫ b

a
f(x)g(x)dx = f(x)G(x)

∣

∣

∣

∣

∣

b

a

−
∫ b

a
f ′(x)G(x)dx = f(b)G(b) −

∫ b

a
f ′(x)G(x)dx,

since G(a) = 0. By the Mean Value Theorem for integrals, we conclude that there is a ξ ∈ I,
such that

∫ b

a
f ′(x)G(x)dx = G(ξ)

∫ b

a
f ′(x)dx.

Hence
∫ b

a
f ′(x)G(x)dx = G(ξ)[f(b)− f(a)] = f(b)G(ξ)− f(a)G(ξ), a < ξ < b.

Therefore
∫ b

a
f(x)g(x)dx = f(b)G(b) − f(b)G(ξ) + f(a)G(ξ)

= f(b)

[

∫ b

a
g(t)dt −

∫ ξ

a
g(t)dt

]

+ f(a)

∫ ξ

a
g(t)dt

= f(a)

∫ ξ

a
g(x)dx + f(b)

∫ b

ξ
g(x)dx, a < ξ < b.



7.12 Taylor’s Theorem Revisited 179

7.12 Taylor’s Theorem Revisited

Theorem 7.21 Taylor’s Theorem with integral form of the Remainder.
Let f be (n + 1) times differentiable on the interval |x− xo| < h, h > 0. Then for all x

in this interval we have

f(x) =
n
∑

k=0

f (k)(xo)

k!
(x− xo)

k + Rn(x), (7.30)

where

Rn(x) =

∫ x

xo

f (n+1)(t)

n!
(x− t)ndt. (7.31)

Proof. (by Mathematical Induction)
Step 1. If n = 0 then (7.30) reduces to

f(x) = f(xo) + Ro(x),

where Ro(x), as defined by (7.31), is

Ro(x) =

∫ x

xo

f ′(t)dt.

Thus, using (7.25), we have
Ro(x) = f(x)− f(xo)

and it is clear that (7.30) is valid for n = 0.
Step 2. Assume that (7.30) and (7.31) are valid for a particular value of n.
Now integrate (7.31) by parts to obtain

Rn(x) =
1

n!

∫ x

xo

f (n+1)(t)(x− t)ndt

= −f (n+1)(t)
(x− t)n+1

n!(n + 1)

∣

∣

∣

∣

∣

x

xo

+
1

n!(n + 1)

∫ x

xo

f (n+2)(t)(x− t)n+1dt

=
1

(n + 1)!
f (n+1)(xo)(x− xo)

n+1 + Rn+1(x).

Inserting the above expression for Rn(x) into (7.30) gives

f(x) =
n+1
∑

k=0

f (k)(xo)

k!
(x− xo)

k + Rn+1(x),

and proves the theorem for the case n + 1. The proof is complete.

Example 7.7 Suppose that f is (n + 1)-times continuously differentiable on a given
interval [xo, x]. Apply the Mean Value Theorem (for integrals) to prove that

Rn(x) =
f (n+1)(ξ)(x− xo)

n+1

(n + 1)!
=

∫ x

xo

f (n+1)(t)

n!
(x− t)ndt, (7.32)

for some value of ξ in the interval (xo, x).
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Solution. Replace x by t in Theorem 7.19 and apply it to the interval [xo, x] to get

∫ x

xo

f(t)g(t)dt = f(ξ)

∫ x

xo

g(t)dt for some ξ ∈ (xo, x).

Replace f(x) by f (n+1)(t) and set g(t) = (x − t)n, t ∈ [xo, x], so g(t) ≥ 0 for t ∈ [xo, x].
We obtain

∫ x

xo

f (n+1)(t)(x− t)ndt = f (n+1)(ξ)

∫ x

xo

(x− t)ndt

= f (n+1)(ξ)
(x− xo)

n+1

n + 1
,

for some value of ξ in [xo, x].

Example 7.8

In Example 6.3, we found the Taylor polynomial of degree = 2k + 1 for the function
f(x) = sinx :

P2k+1, 0(x) = x− x3

3!
+

x5

5!
− · · ·+ (−1)k x2k+1

(2k + 1)!

Find the integral form of the remainder

R2k+1(x) = f(x)− P2k+1, 0(x).

Compute sin 2 with an error of less than 10−4.

Solution. The remainder is given by

R2k+1(x) =

∫ x

0

f (2k+2)(t)

(2k + 1)!
(x− t)2k+1dt.

Since |f (k)(x)| ≤ 1, k = 1, 2, . . . , we get

|R2k+1(x)| ≤ 1

(2k + 1)!

∣

∣

∣

∣

∫ x

0
(x− t)2k+1dt

∣

∣

∣

∣

,

and
∫ x

0
(x− t)2k+1dt = − (x− t)2k+2

2k + 2

∣

∣

∣

∣

∣

t=x

t=0

=
x2k+2

2k + 2
.

Thus we obtain the following estimate of the remainder R2k+1(x):

|R2k+1(x)| ≤ |x|2k+1

(2k + 2)!
.

Therefore,

sin 2 = P2k+1(2) + R2k+1(2),
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where

|R2k+1| ≤
22k+2

(2k + 2)!
.

Hence, P2k+1(2) approximates sin 2 with an error of less than 10−4 provided that

22k+2

(2k + 2)!
< 10−4. (7.33)

By a straightforward substitution of k = 1, 2, 3, 4, and 5 into the expression
22k+2

(2k + 2)!
we

can see that (7.33) holds for k ≥ 5.

Therefore, sin 2 can be computed as

sin 2 ≈ 2− 23

3!
+

25

5!
− 27

7!
+

29

9!
− 211

11!

with an error of less than 10−4.

7.13 Integration by Substitution

Theorem 7.22 First Substitution Theorem. Consider a function ϕ with domain
J = [α, β] and range I = ϕ(J) and consider a function f(x) defined on I:

ϕ : J = [α, β] 7→ I, f : I 7→ RI .

If f is continuous on I and ϕ has a continuous derivative on J , then

∫ β

α
f(ϕ(t))ϕ′(t)dt =

∫ b

a
f(u)du, (7.34)

where u = ϕ(t), a = ϕ(α) and b = ϕ(β).

Proof. Since f is continuous on I, we can define a function F on I by

F (u) =

∫ u

a
f(x)dx, u ∈ I.

We have

F (a) = 0, F (b) =

∫ b

a
f(x)dx (7.35)

and
F ′(u) = f(u), u ∈ I.

Let
H(t) = F (ϕ(t)), t ∈ J.

By the Chain Rule,
H ′(t) = f(ϕ(t))ϕ′(t), t ∈ J.
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Since H(α) = F (ϕ(α)) = F (a) = 0, we have
∫ β

α
f(ϕ(t))ϕ′(t)dt =

∫ β

α
H ′(t)dt = H(β)−H(α) = H(β).

On the other hand, using (7.35), we have

H(β) = F (ϕ(β)) = F (b) =

∫ b

a
f(x)dx.

The last two equations prove (7.34).

Example 7.9 Show that the area A of the ellipse defined by the equation

x2

a2
+

y2

b2
= 1 (7.36)

is A = πab.

Solution. The area enclosed by the ellipse (7.36) is, by symmetry, four times the area
in the first quadrant (see the diagram).

Thus,

A = 4

∫ a

0
ydx = 4

∫ a

0

b

a

√

a2 − x2dx.

Put x = a sin θ, to get

A =
4b

a

∫ π/2

0
(a · cos θ) · a cos θdθ

= 4ab

∫ π/2

0
cos2 θdθ

= 2ab

∫ π/2

0
(cos 2θ + 1)dθ

= 2ab ·




sin 2θ

2

∣

∣

∣

∣

π/2

0
+ θ

∣

∣

∣

∣

∣

π/2

0





= 2ab · π

2

= πab.

Note. When a = b, the ellipse (7.36) becomes a circle of radius a. The above formula
reduces to a familiar one: A = πa2.

7.14 Exercises

7.1 Use the definition of the integral to prove that
∫ b

a
xdx =

1

2
(b2 − a2).
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7.2 Let

f(x) =

{

x if x is rational
1− x if x is irrational.

Evaluate, for a given partition P, the upper and lower sums U(P, f), L(P, f). Hence
determine the upper and lower integrals U(f), L(f) and decide whether or not the
function is Riemann integrable.

7.3 Let

f(x) =







0, 0 ≤ x < 1
2

1, 1
2 ≤ x ≤ 1.

Find a formula for F (x) =

∫ x

0
f(t)dt.

Is it true that F ′(x) = f(x)?

Compare with Comments to Theorem 7.17.

7.4 Assume g, f are continuous functions on [a, b] with f having a continuous non-negative
derivative in the same interval.

(i) Show that there is c, a < c < b, for which
∫ b

a
f(x)g(x)dx = f(a)

∫ c

a
g(x)dx + f(b)

∫ b

c
g(x)dx.

Hint: Let G(x) =

∫ x

a
g(t)dt, so that G′ = g.

(ii) Show that there is d, a < d < b, for which
∫ b

a
f(x)g(x) = f(a)

∫ d

a
g(x)dx.

7.5 Show that

∣

∣

∣

∣

∣

∫ x′

x

sinx

x
dx

∣

∣

∣

∣

∣

≤ 2

x
whenever x′ > x > 0.

Hint: Use 7.4 (i) above.

7.6 If f ′′ exists on (a, b), show that for x and h with x, x + h, x− h in (a, b), there is c
between x + h and x− h such that

f(x + h) + f(x− h)− 2f(x) = h2f ′′(c).

7.7 Show that
∫ b

a
f(x)dx = (b− a)f

(

a + b

2

)

+
1

24
(b− a)3f ′′(c),

where a < c < b.
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Chapter 8

Improper Integrals and
Applications

8.1 Improper Integrals

The Definition of Riemann integral
∫ b
a f(x)dx is only meaningful when the integrand f(x)

is a bounded function defined on the closed interval [a, b].
In this section we shall extend the definition of the integral

∫ b
a f(x)dx to the situation

where the interval of integration is infinite and f(x) is not necessarily bounded over the
interval (a, b). We shall consider integrals

∫ b

−∞
f(x)dx,

∫ +∞

a
f(x)dx,

∫ +∞

−∞
f(x)dx,

when one or both limits of integration are infinite, as well as
∫ b
a f(x)dx, when f(x) has

infinite singularity at one or more points of the interval [a, b].

Example 8.1

(a) Consider the function f(x) =
1

1 + x2
and refer to Figure 8.1(a) that shows the area

A(λ) under the curve y =
1

1 + x2
over the interval [0, λ], where 0 < λ < 10. If λ → +∞,

then the limit lim
λ→+∞

A(λ) can be considered as the area under the curve y =
1

1 + x2
over

the interval [0,+∞). Hence we define

∫ +∞

0

1

1 + x2
dx

to stand for the limit lim
λ→+∞

A(λ), provided that this limit exists:

∫ +∞

0

1

1 + x2
dx = lim

λ→+∞
A(λ) = lim

λ→+∞

∫ λ

0

1

1 + x2
dx.

In Example 8.2(b) we shall show that A(λ) → π
2 , as λ → +∞.

185
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(b) Consider the function f(x) =
1√
x

, that is defined for all x 6= 0. Refer to Figure

8.1(b) to see the area B(ε) under the curve y = 1√
x

over the interval [ε, 1], where 0 < ε < 1.

It is reasonable to define
∫ 1

0

1√
x

dx

to stand for the limit lim
ε→0+

B(ε), provided that this limit exists. We shall show in Example

8.4(a) that B(ε) → 2, as ε → 0 + .

(a) A(λ) =

∫ λ

0

1

1 + x2
dx,

λ = 8, 9.

(b) B(ε) =

∫ 1

ε

1√
x

dx,

ε = .01, .05.

Figure 8.1: Illustrating convergence of A(λ) =

∫ λ

0
f(x)dx, as λ → ∞, and convergence of

B(ε) =

∫ 1

ε
f(x)dx, as ε → 0 + .

8.2 Improper Integrals of the First Kind

In this section we examine the effect of relaxing the condition that the interval of integration
is a closed, bounded interval [a, b] in the definition of Riemann integral. Thus, we replace
one or both of a and b in

∫ b
a f(x)dx by ±∞ and introduce the symbols

∫ b

−∞
f(x)dx,

∫ +∞

a
f(x)dx,

∫ +∞

−∞
f(x)dx,

(called infinite integrals of f(x)) to stand for the appropriate limits as defined below.

We define the infinite integral of f(x) over the interval [a,+∞] as the limit of
∫ λ
a f(x)dx,

when λ → +∞, provided that this limit exists.

We define the infinite integral of f(x) over the interval (−∞, b] as the limit of
∫ b
−λ f(x)dx,

when λ → +∞, provided that this limit exists.



8.2 Improper Integrals of the First Kind 187

Definition 8.1 Let f be bounded and integrable over the interval [a, λ] for every λ > a.
If

lim
λ→∞

∫ λ

a
f(x)dx (8.1)

exists, then we say that
∫∞
a f(x)dx converges and write

∫ ∞

a
f(x)dx = lim

λ→∞

∫ λ

a
f(x)dx.

If the limit (8.1) does not exist, we say that
∫∞
a f(x)dx diverges.

If the limit (8.1) is infinite, we say that
∫∞
a f(x)dx diverges to −∞/ +∞ and write

∫ ∞

a
f(x)dx = −∞, or

∫ ∞

a
f(x)dx = +∞,

respectively.

Definition 8.2 Let f be bounded and integrable over the interval [−λ, b] for every λ,
such that −λ < b. If

lim
λ→∞

∫ b

−λ
f(x)dx (8.2)

exists, then we say that
∫ b
−∞ f(x)dx converges and write

∫ b

−∞
f(x)dx = lim

λ→∞

∫ b

−λ
f(x)dx.

If the limit (8.2) does not exist, we say that
∫ b
−∞ f(x)dx diverges.

If the limit (8.2) is infinite, we say that
∫ b
−∞ f(x)dx diverges to −∞/ +∞ and write

∫ b

−∞
f(x)dx = −∞, or

∫ b

−∞
f(x)dx = +∞,

respectively.

A similar approach is used for integrals over the entire line. The improper integral
∫∞
−∞ f(x)dx

is defined as the limit of
∫ λ
µ f(x)dx, when µ → −∞ and λ → +∞, independently of each

other, provided that this limit exists. Equivalently,
∫∞
−∞ f(x)dx can be expressed as the sum

∫ b
−∞ f(x)dx +

∫+∞
b f(x)dx, where b is any real number. Since b can be arbitrarily chosen,

in practice we choose b so that the two integrals
∫ b
−∞ f(x)dx and

∫+∞
b f(x)dx can be easily

examined.

Definition 8.3 Let f(x) be bounded over the whole line, −∞ < x < ∞. We say that
∫+∞
−∞ f(x)dx converges if

∫ +∞

−∞
f(x)dx = lim

µ,λ→+∞

∫ λ

−µ
f(x)dx.

Otherwise, we say that
∫+∞
−∞ f(x)dx diverges.
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Definition 8.4 The integral of a function f(x) defined and bounded on an interval
that is not bounded, such as

∫ +∞

−∞
f(x)dx,

∫ b

−∞
f(x)dx, or

∫ +∞

b
f(x)dx,

is called an improper integral of the first kind.

(a)

∫ ∞

1

1

x2
dx (b)

∫ ∞

0

1

1 + x2
dx

(c)

∫ 0

−∞
exdx (d)

∫ +∞

−∞

1

1 + x2
dx

Figure 8.2: Illustrating convergence of improper integrals of the first kind.

Example 8.2 Examining convergence of improper integrals of the first kind.

(a) Consider the infinite integral

∫ ∞

1

1

x2
dx. We have

I(λ) =

∫ λ

1

1

x2
dx =

(

−1

x

)

∣

∣

∣

∣

∣

λ

1

= 1− 1

λ
,
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and lim
λ→∞

I(λ) = lim
λ→∞

(

1− 1

λ

)

= 1. Therefore, the infinite integral

∫ ∞

1

1

x2
converges to

the limit 1:
∫ ∞

1

1

x2
dx = 1.

(b) Consider

∫ ∞

0

1

1 + x2
dx. We have

I(λ) =
∫ λ
0

1
1+x2 dx = arctan x

∣

∣

∣

λ

0
= arctan λ,

lim
λ→∞

I(λ) = lim
λ→∞

arctan λ =
π

2
.

Therefore, the infinite integral

∫ ∞

0

1

1 + x2
dx converges to

π

2
:

∫ ∞

0

1

1 + x2
dx =

π

2
.

(c)

∫ 0

−∞
exdx = 1, since

I(λ) =

∫ 0

−λ
exdx = ex

∣

∣

∣

∣

0

−λ

= 1− e−λ = 1− 1

eλ
→ 1, as λ →∞.

(d) Consider

∫ ∞

1

1√
x

dx.

We have

I(λ) =

∫ λ

1

1√
x

dx = 2
√

x

∣

∣

∣

∣

∣

λ

1

= 2(
√

λ− 1) → +∞, as λ → +∞.

Thus

∫ ∞

1

1√
x

dx diverges to +∞ and we write

∫ ∞

1

1√
x

dx = +∞.

(e) Consider

∫ 0

−∞
sinxdx. Since

I(λ) =

∫ 0

−λ
sinxdx = − cos x

∣

∣

∣

∣

0

−λ

= −1 + cos λ,

I(λ) has no limit as λ →∞ (I(λ) oscillates between −1 and 1), we conclude that

∫ 0

−∞
sinxdx

diverges.

(f) The integral

∫ ∞

0
sinxdx diverges, since

I(λ) =

∫ λ

0
sinxdx = − cos x

∣

∣

∣

∣

∣

λ

0

= 1− cosλ,

has no limit as λ →∞.
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(g) The integral

∫ 0

−∞

1

1 + x2
dx converges to

π

2
, since

I(λ) =

∫ 0

−λ

1

1 + x2
dx = arctan x

∣

∣

∣

∣

0

−λ

= − arctan(−λ) = arctanλ → π

2
, as λ → +∞.

(h) Consider

∫ ∞

−∞

1

1 + x2
dx. We have

∫ λ

−µ

1

1 + x2
dx = arctan λ + arctan µ,

∫ ∞

−∞

1

1 + x2
dx = lim

λ,µ→+∞
(arctan λ + arctan λ) =

π

2
+

π

2
= π.

(i) The integral

∫ ∞

−∞
sinxdx diverges, since

∫ ∞

−∞
sinxdx = lim

µ, λ→+∞

∫ λ

−µ
sinxdx = lim

µ, λ→+∞
(cos µ− cos λ),

which does not exist.

Definition 8.5 Let f be bounded over the entire line and integrable over the interval
(−λ, λ), for any λ > 0. The limit

lim
λ→∞

∫ λ

−λ
f(x)dx,

if it exists, is called the Cauchy principal value of the integral

∫ ∞

−∞
f(x)dx, and is

written

P

∫ ∞

−∞
f(x)dx = lim

λ→∞

∫ λ

−λ
f(x)dx.

Note that the existence of the Cauchy principal value

lim
λ→∞

∫ λ

−λ
f(x)dx

does not imply that

∫ ∞

−∞
f(x)dx converges. The convergence of

∫ ∞

−∞
f(x)dx requires exis-

tence of the limit of

∫ λ

−µ
f(x)dx, when µ →∞ and λ →∞, independently on each other.

Example 8.3 Find Cauchy principal value of the integral

∫ ∞

−∞
sinxdx.

Solution We have

∫ λ

−λ
sinxdx = − cos x

∣

∣

∣

∣

∣

λ

−λ

= − cos λ + cos λ = 0,
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so that

lim
λ→∞

∫ λ

−λ
sinxdx = 0

and

P

∫ ∞

−∞
sinxdx = 0.

Note, that we have already observed (see the previous example (i)) that

∫ ∞

−∞
sinxdx

does not exist.

8.3 Improper Integrals of the Second Kind

In this section we consider integrals over a finite interval [a, b], when the integrand f(x) has
infinite singularity at some point or points in [a, b]. Recall that f has an infinite singularity
at the point x = xo, if f is not defined at the point xo and when one-sided limits, as x
approaches xo, are infinite.

Definition 8.6 Assume that f is integrable on every interval of the form [a, b− ε],
where 0 < ε < b− a, but f has an infinite singularity at the point x = b, that is lim

x→b−
f(x)

is infinite.
Then the integral

∫ b
a f(x) is called an improper integral and is defined as

∫ b

a
f(x)dx = lim

ε→0+

∫ b−ε

a
f(x)dx,

provided that this limit exists.

Definition 8.7 Assume that f is integrable on every interval of the form [a + ε, b],
where 0 < ε < b− a, but f has an infinite singularity at the point x = a, that is lim

x→a+
f(x)

is infinite.
Then the integral

∫ b
a f(x) is called an improper integral and is defined as

∫ b

a
f(x)dx = lim

ε→0+

∫ b

a+ε
f(x)dx,

provided that this limit exists.

If the appropriate limit in Definitions 8.6 and 8.7 exists, we say that the improper

integral

∫ b

a
f(x)dx converges. Otherwise, we say that

∫ b

a
f(x)dx diverges.

Definition 8.8 Suppose that f has an infinite singularity at a point x = xo, where

a < xo < b. We say that the improper integral

∫ b

a
f(x)dx converges if and only if both

improper integrals

∫ xo

a
f(x)dx and

∫ b

xo

f(x)dx converge. Otherwise we say that the improper

integral

∫ b

a
f(x)dx diverges.
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If

∫ b

a
f(x)dx converges, then, we define:

∫ b

a
f(x)dx =

∫ xo

a
f(x)dx +

∫ b

xo

f(x)dx.

The integrals considered in Definitions 8.6, 8.7, and 8.8 are called improper integrals of
the second kind.

Definition 8.9 The integral

∫ b

a
f(x)dx over the finite interval [a, b] is said to be an

improper integral of the second kind if the integrand f(x) has an infinite singularity
at finitely many points of the interval [a, b].

The case when f(x) has more than one singularity point in [a, b] is illustrated in the
next example (f).

Example 8.4 Examining convergence of improper integrals of the second kind.

(a) Consider

∫ 1

0

1√
x

dx. The integrand f(x) =
1√
x

is not bounded on the interval

(0, 1] and lim
x→0−

f(x) = +∞. The function f(x), however, is integrable over every interval

[ε, 1], for 0 < ε < 1. We have

∫ 1

ε

1√
x

dx = 2
√

x

∣

∣

∣

∣

1

ε

= 2(1 −√ε) → 2, as ε → 0 + .

Therefore, the improper integral

∫ 1

0

1√
x

dx converges to the limit 2:

∫ 1

0

1√
x

dx = lim
ε→0+

∫ 1

ε

1√
x

dx = 2.

(b) Consider

∫ 1

0

1

x
dx. Similarly to (a), the integrand f(x) =

1

x
is not bounded on the

interval (0, 1] and lim
x→0−

f(x) = +∞. Moreover, the function f(x) is integrable over every

interval [ε, 1], for 0 < ε < 1. Now we have

∫ 1

ε

1

x
dx = lnx

∣

∣

∣

∣

1

ε
= − ln ε → +∞ as ε → 0 + .

Therefore, the improper integral

∫ 1

0

1

x
dx diverges to +∞ and we write

∫ 1

0

1

x
dx = +∞.
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(a)

∫ 1

ε

1√
x

dx, ε = .01 (b)

∫ 1

ε

1

xα
dx, ε = .01; α =

1

3

(c)

∫ 1−ε

0

1√
1− x2

dx, ε = .01 (d)

∫ 1−ε

e

1
√

x(1− x)
dx, ε = .01

Figure 8.3: Illustrating convergence of improper integrals of the second kind.

(c) Consider

∫ 1

0

1

xα
dx, where α is any real number. We note that we have already

considered this integral in (a) with α = 1
2 and in (b) with α = 1.

We deal with the infinite singularity at the point a = 0, and we note that the function

f(x) =
1

xα
is integrable over every interval [ε, 1] for 0 < ε < 1 and for every real value of α.

We have
∫ 1

ε

1

xα
dx =

1

1− α
x(1−α)

∣

∣

∣

∣

1

ε
=

1

1− α

(

1− ε1−α
)

,

provided α 6= 1. Thus

lim
ε→0+

∫ 1

ε

1

xα
dx =







1

1− α
if α < 1

+∞ if α > 1.
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Combining the above with the result obtained in (b), we conclude that the integral

∫ 1

0

1

xα
dx

converges for α < 1 and diverges for α ≥ 1. If α < 1 then

∫ 1

0

1

xα
dx =

1

1− α
.

(d) Let f(x) =
1√

1− x2
and consider the integral

∫ 1

0
f(x)dx =

∫ 1

0

1√
1− x2

dx. We

note that lim
x→1−

f(x) = +∞, so that f(x), defined for |x| < 1, is not bounded on the interval

[0, 1) (see Figure 8.3(c)). The integral has a singularity point at x = 1, but f(x) is integrable
over any interval [0, 1 − ε], where 0 < ε < 1. We have

∫ 1−ε

0

1√
1− x2

dx = arcsinx

∣

∣

∣

∣

1−ε

0

= arcsin(1− ε) → π

2
, as ε → 0 + .

Hence

∫ 1

0
f(x)dx converges to π/2:

∫ 1

0

1√
1− x2

dx = lim
ε→0+

∫ 1−ε

0

1√
1− x2

dx =
π

2
.

(e) Consider the integral

∫ 1

0

1
√

x(1− x)
dx. It has two singularity points: at x = 0

and at x = 1 (refer to Figure 8.3(d)).

We have

∫ 1−ε

ε′

1
√

x(1− x)
dx = arcsin(2x− 1)

∣

∣

∣

∣

∣

1−ε

ε′

= arcsin(1− 2ε)− arcsin(2ε′ − 1).

Thus

lim
ε,ε′→0+

∫ 1−ε

ε′

1
√

x(1− x)
dx = lim

ε→0+
arcsin(1− 2ε)− lim

ε′→0+
arcsin(2ε′ − 1)

= arcsin 1− arcsin(−1)

=
π

2
− (−π

2
) = π.

Therefore we conclude that the improper integral

∫ 1

0

1
√

x(1− x)
dx converges to π:

∫ 1

0

1
√

x(1− x)
dx = lim

ε,ε′→0+

∫ 1−ε

ε′

1
√

x(1− x)
dx = π.
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(f) Consider the integral

∫ 1

0

1

1− x
dx that has a singularity point at x = 1:

lim
x→1−

1

1− x
= +∞. We have

∫ 1−ε

0

1

1− x
dx = − ln(1− x)

∣

∣

∣

∣

1−ε

0
= − ln ε → +∞ as ε → 0 + .

Therefore,

∫ 1

0

1

1− x
dx diverges to +∞:

∫ 1

0

1

1− x
dx = +∞.

(a) lim
ε→0+

∫ 1

ε

1

x
dx = +∞ (b) lim

ε→0+

∫ 1−ε

0

1

1− x
dx = +∞

Figure 8.4: Illustrating divergence of improper integrals to +∞.
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8.4 Comparison Tests for Integrals

Theorem 8.1 Comparison Test I

Suppose that f and g are defined on the interval [a,+∞) and integrable on [a, λ] for
every λ > a.

If
0 ≤ f(x) ≤ g(x),

for all x ∈ [a,+∞), then

(i)

∫ +∞

a
f(x)dx converges if

∫ +∞

a
g(x)dx converges;

(ii)

∫ +∞

a
g(x)dx diverges if

∫ +∞

a
f(x)dx diverges.

Proof. Since 0 < f(x) < g(x), for x ≥ a, we get

0 ≤
∫ λ

a
f(x)dx ≤

∫ λ

a
g(x)dx, x ≥ a,

and each integral is monotone increasing function of λ.

Hence, if
∫ λ
a g(x)dx converges,

∫ λ
a f(x)dx is bounded above and so it converges.

If
∫ λ
a f(x)dx diverges then

∫ λ
a g(x)dx is unbounded and hence diverges.

Example 8.5 Does

∫ +∞

0

1

ex + 3
dx converge?

Solution. Let f(x) = e−x and g(x) =
1

ex + 3
, for x ∈ [0,+∞). We have

0 <
1

ex + 3
<

1

ex
= e−x, x ∈ [0,+∞),

and both functions, f and g, are integrable on [0, λ] for every λ > 0. Thus the hypotheses
of the Comparison Test I are satisfied. Now,

∫ +∞

0
f(x)dx =

∫ +∞

0
e−xdx = − lim

λ→+∞
e−x = − lim

λ→+∞
e−x

∣

∣

∣

∣

λ

0
= − lim

λ→+∞
(1− e−λ) = 1.

Therefore, by the Comparison Test, the improper integral

∫ +∞

0

1

ex + 3
dx converges.

An analogous comparison test holds for improper integrals of the second kind. We leave
its formulation to the reader. The following example illustrates the point.
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Example 8.6 Does

∫ 1

0

1

x2 +
√

x
dx converge?

Solution. We have
1

x2 +
√

x
<

1√
x

, x ∈ (0, 1],

and
∫ 1

0

1√
x

dx = lim
ε→0+

∫ 1

ε

1√
x

dx = lim
ε→0+

2
√

x

∣

∣

∣

∣

1

ε

= lim
ε→0+

(2− 2
√

ε) = 2.

Since

∫ 1

0

1√
x

dx converges, by the Comparison Test, we conclude that

∫ 1

0

1

x2 +
√

x
dx

converges.

8.5 Improper Integrals of the Third Kind

In this section we consider integrals of an unbounded function f(x) over an infinite interval,
such as

∫ b

−∞
f(x)dx,

∫ +∞

a
f(x)dx, or

∫ +∞

−∞
f(x)dx,

where the integrand f(x) has one (or more) singularity points in the interval of integration.
This kind of integral is called an improper integral of the third kind.

In order to examine convergence of an integral of this type, we express it as the sum of
two improper integrals; one of the first kind and the other of the second kind.

By definition, we say that the improper integral of the third kind converges if and only
if the corresponding integrals of the first and the second kind both converge.

Example 8.7 Examining convergence of an improper integral of the third kind.

Consider the infinite integral

∫ ∞

0

1

x2 +
√

x
dx and note that the integrand has a singular

point at x = 0. Thus

∫ ∞

0

1

x2 +
√

x
dx is an improper integral of the third kind.

We can write

∫ ∞

0

1

x2 +
√

x
dx =

∫ b

0

1

x2 +
√

x
dx +

∫ ∞

b

1

x2 +
√

x
dx,

where the point x = b for splitting up the interval of integration can be chosen quite
arbitrarily.

Let b = 1. We examine separately convergence of each of

∫ 1

0

1

x2 +
√

x
dx and

∫ ∞

1

1

x2 +
√

x
dx.

The integral

∫ 1

0

1

x2 +
√

x
dx converges by Example 8.6.



198 Chapter 8 — Improper Integrals and Applications

The integral

∫ ∞

1

1

x2 +
√

x
dx converges, by the Comparison Test, because

1

x2 +
√

x
<

1

x2
, x ∈ [1,∞) and

∫ ∞

1

1

x2
dx converges.

Therefore, we conclude that the integral

∫ ∞

0

1

x2 +
√

x
dx

converges.

(a) x = −0.5 (b) x = 0.5

(c) x = 1 (d) x = 2

Figure 8.5: The function f(t) = tx−1e−t, 0 < t < 1, for selected values of x.
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8.6 The Gamma Function

Example 8.8 Is the function f(t) = tx−1e−t, where x is a real number, integrable over
the interval [0, 1]?

Solution. We shall consider separately the three cases: x ≤ 0, 0 < x < 1, and
x ≥ 1. Refer to Figure 8.5 to see graphs of f(t), 0 < t < 1, for selected values of x.

Case 1: x ≤ 0.

On the interval [0, 1] we have et < 3, so tx−1e−t >
1

3
tx−1. By Example 8.4(b),

∫ 1

0
tx−1dt

diverges, since x− 1 ≤ −1. Hence

∫ 1

0
tx−1e−tdt diverges for x ≤ 0.

Case 2: 0 < x < 1.

If 0 < x < 1, then the function f(t) = tx−1e−t has an infinite singularity at the point

t = 0 and

∫ 1

0
tx−1e−tdt is an improper integral of the second kind.

If t ≥ 0 then 0 < e−t ≤ 1 and tx−1e−t ≤ tx−1. Now, the improper integral

∫ 1

0
tx−1dt

converges for all values of x such that 0 < 1−x < 1 or 0 < x < 1. By the Comparison Test,
therefore, we conclude that the improper integral

∫ 1
0 tx−1e−tdt converges for 0 < x < 1.

Case 3: x ≥ 1.

The function f(t) is continuous for t ∈ [0, 1] and, therefore, integrable. Hence tx−1e−tdt
exists for x ≥ 1.

Therefore, the function f(t) = tx−1e−t is integrable over the interval [0, 1], provided that
x > 0, but not integrable if x ≤ 0.

Example 8.9 Is the function f(t) = tx−1e−t, where x > 0, integrable on the interval
[1,+∞)?

Solution. The integral

∫ +∞

1
tx−1e−tdt is an improper integral of the first kind. We

shall prove that it converges by comparing the integrand f(x) with the function g(t) = t−2.

We have

lim
t→+∞

tx+1

et
= 0,

which implies that

∀ε > 0 ∃M
(

t ≥ M =⇒ tx+1

et
≤ ε

)

.

Let ε = 1 and denote by to the corresponding value of M . Then we have

tx+1

et
≤ 1 or e−ttx−1 ≤ t−2 for t > to.
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Now, the improper integral

∫ +∞

to
t−2dt converges. Hence, by the Comparison Test,

∫ +∞

to
e−ttx−1dt

converges.
Since f(t) = e−ttx−1 is integrable on any interval of the form [1, to], we conclude that

∫ +∞

1
tx−1e−tdt =

∫ to

1
tx−1e−tdt +

∫ +∞

to
tx−1e−tdt

converges, when x > 0.
Therefore, the function f(t) = tx−1e−t, where x > 0, is integrable on the interval

[1,+∞).

(a) Γ(0.5) (b) Γ(1)

(c) Γ(2) (d) Γ(3)

Figure 8.6: The Gamma function Γ(x) as the area under the curve y = tx−1e−t for fixed
values of x.
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Example 8.10 Show that the integral

∫ ∞

0
e−ttx−1dt, (8.3)

converges for all positive values of x.

Solution.
Case 1. 0 < x < 1.
The integrand f(t) = e−ttx−1 has an infinite singularity at the point t = 0 and (8.3) is

an improper integral of the third kind. Refer to Figure 8.6(a).
We choose the point b for splitting up the interval of integration to be b = 1. Then we

write
∫ +∞

0
e−ttx−1dt = I1 + I2 =

∫ 1

0
e−ttx−1dt +

∫ +∞

1
e−ttx−1dt.

By Example 8.8 and Example 8.9, the improper integrals I1 and I2 converge. Hence we
conclude that the integral (8.3) converges, when 0 < x < 1.

Case 2. x ≥ 1.
The integrand f(t) = tx−1e−t is bounded at the point t = 0 and (8.3) is an improper

integral of the first kind. Refer to Figure 8.6 (b), (c) and (d), which gives us the approximate
values of

∫∞
0 e−ttx−1dt (as the shaded area) for x = 1, x = 2, and x = 3. As we already

discussed in Example 8.8, f(t) is integrable over the interval [0, 1]. Now, by example 8.9,

the improper integral

∫ +∞

1
tx−1e−tdt converges, when x ≥ 1. Hence

∫ +∞

0
e−ttx−1dt =

∫ 1

0
e−ttx−1dt +

∫ +∞

1
e−ttx−1dt

converges when x ≥ 1.
The last example justifies the existence of the improper integral

∫ +∞

0
tx−1e−tdt

for any positive value of x. This integral considered as a function of the variable x, x > 0,
is called the gamma function and denoted by the symbol Γ(x).

Note that the integral diverges for x ≤ 0.

Definition 8.10 The gamma function is defined on the interval (0,+∞) as

Γ(x) =

∫ +∞

0
tx−1e−tdt, x > 0. (8.4)

In Figure 8.7(a), five instances of the integrand f(t) = tx−1e−t are plotted over the interval
t ∈ (0, 10), namely f(t) corresponding to the following values of x: 0.5, 1, 2, 3. Figure 8.7(b)
shows us the gamma function Γ(x) for 0 < x ≤ 5.
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(a) f(t) = tx−1e−t (b) Γ(x) =

∫ ∞

0
tx−1e−tdt

Figure 8.7: (a) The function f(t) = tx−1e−t, 0 < t < 6, for selected values of x;

(b) The Gamma function

∫ ∞

0
tx−1e−tdt, 0 < x < 5.

Theorem 8.2 The function Γ(x) defined by (8.4) has the property

Γ(x + 1) = xΓ(x). (8.5)

Proof. We have

Γ(x + 1) =

∫ +∞

0
txe−tdt = lim

λ→+∞

∫ λ

0
txe−tdt.

Integrating by parts, we obtain

∫ λ

0
txe−tdt =

−tx

et

∣

∣

∣

∣

t=λ

t=0
+

∫ λ

0
xtx−1e−tdt

= −λx

xλ
+ x

∫ λ

0
tx−1e−tdt.

Hence

Γ(x + 1) = lim
λ→+∞

(

−λx

eλ

)

+ x lim
λ→+∞

∫ λ

0
tx−1e−tdt

= 0 + x

∫ +∞

0
tx−1e−tdt

= xΓ(x).
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Example 8.11 Show that Γ(n) = (n− 1)!, if n is a positive integer.

Solution.
We apply the principle of mathematical induction.

Let n = 1. Then

Γ(1) =

∫ +∞

0
e−tdt = lim

λ→+∞
−e−t

∣

∣

∣

∣

λ

0
= 1 = 0!.

Assume that Γ(n) = (n− 1)!. Then , by 8.5,

Γ(n + 1) = nΓ(n) = n(n− 1)! = n!.

8.7 Absolute Convergence of Improper Integrals

Definition 8.11 If f is bounded and integrable over any interval [a, λ] with λ > 0,

and

∫ +∞

a
|f(x)|dx converges, then we say that the integral

∫ +∞

a
f(x)dx is absolutely

convergent.

Let

I(λ) =

∫ λ

a
f(x)dx.

If λ1 > λ1 then

I(λ2)− I(λ1) =

∫ λ2

λ1

f(x)dx.

Similarly to the Cauchy criterion for convergence of sequences, we have the following
Cauchy Condition for convergence of improper integrals.

A necessary and sufficient condition for the convergence of I(λ) as λ → +∞ is the
Cauchy condition:

∀ε > 0 ∃M
(

λ2 > λ1 > M =⇒
∣

∣

∣

∣

∣

∫ λ2

λ1

f(x)dx

∣

∣

∣

∣

∣

< ε

)

. (8.6)

Theorem 8.3 Assume that f(x) is integrable on every interval (a, λ), λ > a. If
∫ ∞

a
|f(x)| dx converges, then

∫ ∞

a
f(x) dx converges.

Proof. We assume that
∫+∞
a |f(x)|dx converges so, using the Cauchy general condition

for convergence, we have

∀ε > 0 ∃M > a

(

λ2 > λ1 > M =⇒
∣

∣

∣

∣

∣

∫ λ2

λ1

|f(x)|dx

∣

∣

∣

∣

∣

< ε

)

.

Now
∣

∣

∣

∣

∣

∫ λ2

λ1

f(x)dx

∣

∣

∣

∣

∣

≤
∫ λ2

λ1

|f(x)|dx,
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and we conclude that

∀ε > 0 ∃M > a

(

λ2 > λ1 > M =⇒
∣

∣

∣

∣

∣

∫ λ2

λ1

f(x)dx

∣

∣

∣

∣

∣

< ε

)

,

which means that
∫ +∞
a f(x)dx converges.

Example 8.12 Show that

∫ +∞

0

cos x

1 + x2
dx converges absolutely.

Solution. We have
∣

∣

∣

∣

cos x

1 + x2

∣

∣

∣

∣

≤ 1

1 + x2
.

Since

∫ ∞

0

1

1 + x2
dx converges, by the Comparison test we conclude that

∫ +∞

0

∣

∣

∣

∣

cosx

1 + x2

∣

∣

∣

∣

dx

converges.

Example 8.13 Show that the improper integral

∫ +∞

0

sinx

x
dx is convergent but not ab-

solutely convergent.

Solution.
(i) To show that the integral converges we shall show that the Cauchy general condition

for convergence is satisfied:

∀ε > 0 ∃M
(

λ2 > λ1 > M =⇒
∣

∣

∣

∣

∣

∫ λ2

λ1

sinx

x
dx

∣

∣

∣

∣

∣

< ε

)

. (8.7)

By the (second) Mean Value Theorem for integrals with

f(x) =
1

x
, g(x) = sinx,

we have
∫ λ2

λ1

sinx

x
dx =

1

λ1

∫ ξ

λ1

sinxdx +
1

λ2

∫ λ2

ξ
sinxdx,

for some ξ, 0 < λ1 < ξ < λ2. Now, for any [a, b], we have

∣

∣

∣

∣

∣

∫ b

a
sinxdx

∣

∣

∣

∣

∣

= | cos a− cos b| ≤ | cos a|+ | cos b| ≤ 2.

Hence
∣

∣

∣

∣

∣

∫ λ2

λ1

sinx

x
dx

∣

∣

∣

∣

∣

≤ 1

λ1

∣

∣

∣

∣

∣

∫ ξ

λ1

sinxdx

∣

∣

∣

∣

∣

+
1

λ2

∣

∣

∣

∣

∣

∫ λ2

ξ
sinxdx

∣

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

1

λ1
+

1

λ2

∣

∣

∣

∣

≤ 4

λ1
<

4

M
,

provided λ2 > λ1 > M. Therefore we have shown that, given any ε > 0, there is M =
4

ε
such that, if λ2 > λ1 > M then

∣

∣

∣

∣

∣

∫ λ2

λ1

sinx

x
dx

∣

∣

∣

∣

∣

< ε.
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(ii) To examine absolute convergence of the integral

∫ +∞

0

sinx

x
dx, we note that

∫ λ

0

| sinx|
x

dx >

∫ nπ

0

| sinx|
x

dx,

where n is any natural number such that λ > nπ.

Now,
∫ nπ

0

| sinx|
x

dx =
n
∑

r=1

∫ rπ

(r−1)π

| sin x|
x

dx =
n
∑

r=1

∫ π

0

sin y

(r − 1)π + y
dy,

by substitution of x = y + (r − 1)π.

Since
1

(r − 1)π + y
≥ 1

rπ
, 0 ≤ y ≤ π,

we obtain
∫ λ

0

| sinx|
x

dx >
n
∑

r=1

1

rπ

∫ π

0
sin ydy =

2

π

n
∑

r=1

1

r
.

We know that the series
n
∑

r=1

1

r
is unbounded, which implies that

∫ +∞

0

| sinx|
x

dx is un-

bounded and, consequently, the integral

∫ +∞

0

sinx

x
is not absolutely convergent.

8.8 Derivatives of Functions Defined by Integrals

Suppose f is a function of two variables (t, x), such that for each x, a ≤ x ≤ b, the function
Φ(t, x) is Riemann integrable on [α, β]. Then

F (x) =

∫ β

α
f(t, x)dt

defines a function F on [a, b].

Since integrals are limits of sums and because the derivative of a sum is the sum of
derivatives, one might expect that a similar result would hold for integrals:

dF

dx
=

d

dx

(

∫ β

α
f(t, x)dt

)

=

∫ β

α

∂f

∂x
dt. (8.8)

Example 8.14 Verifying formula (8.8).

Let

F (x) =

∫ π

0
sinxtdt, x > 0.

By direct integration, we obtain

F (x) = −cos xt

x

∣

∣

∣

∣

π

0
=

1

x
(1− cos xπ).
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Hence

F ′(x) =
π

x
· sinπx− 1

x2
(1− cos πx).

Note that
∫ π

0

∂

∂x
(sinxt)dt =

∫ π

0
t cos xt · dt =

t

x
sinxt

∣

∣

∣

∣

π

0
− 1

x

∫ π

0
sinxtdt

=
π

x
sinπx− 1

x2
(− cos xt)

∣

∣

∣

∣

π

0
=

π

x
sinπx− 1

x2
(1− cos πx).

We have indeed verified that the formula (8.8) holds.

Example 8.15 Verifying that the formula (8.8) does not always hold.

It will be shown later that
∫ ∞

0

sinax

x
dx =

π

2
, for all a > 0.

Thus
d

da

(∫ ∞

0

sinax

x
dx

)

= 0, for a > 0.

But

∫ ∞

0

∂

∂a

(

sin ax

x

)

dx =

∫ ∞

0
cos axdx is divergent.

Hence, formula (8.8) does not hold.

A simple sufficient condition for (8.8) to hold shall be given below. In what follows I, J

will denote an interval [a, b], or [a,+∞), or (−∞, b], or even (−∞,∞). The symbol

∫

I
fdx

will denote the integral over the corresponding interval.

Theorem 8.4 Assume f(x, y) is a continuous function for x ∈ I and y ∈ J , such that

fy(x, y) is continuous and |fyy(x, y)| ≤ h(x), and

∫

I
hdx is convergent.

Then
d

dy

∫

I
f(x, y)dx =

∫

I

∂f(x, y)

∂y
dx.

Note: When I = [a, b] and J = [α, β], and fyy is continuous for x ∈ I and y ∈ J , the
conditions of the theorem are satisfied and, and hence, the differentiation formula is valid.

Proof. By the Mean Value Theorem we have, for each x ∈ I,

f(x, y + k) = f(x, y) + kfy(x, y) +
1

2
k2fyy(x, y + θk), for some θ, 0 < θ < 1.

Thus
∣

∣

∣

∣

f(x, y + k)− f(x, y)

k
− fy(x, y)

∣

∣

∣

∣

≤ 1

2
· k · h(x).

Let

F (y) =

∫

I
f(x, y)dx.
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To determine whether or not F (y) is differentiable, consider the following:

∣

∣

∣

∣

F (x, y + k)− F (y)

k
−
∫

I
fy(x, y)dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

I

[

f(x, y + k)− f(x, y)

k
− fy(x, y)

]

dx

∣

∣

∣

∣

≤
∫

I

∣

∣

∣

∣

f(x, y + k)− f(x, y)

k
− fy(x, y)

∣

∣

∣

∣

dx

≤ |k|
2

∫

I
h(x)dx ≤ M |k|,

for some constant M . Thus,

lim
k→0

F (y + k)− F (y)

k
=

∫

I
fy(x, y)dx,

as required.

8.9 Evaluating Integrals Depending on a Parameter

We shall illustrate the ideas involved by means of the following examples.

Example 8.16 Let

Φ(x) =

∫ ∞

0
t−1e−t(1− cos xt)dt.

Determine Φ′(x). Hence, or otherwise, evaluate Φ(x).

Solution. We have

Φ′(x) =

∫ ∞

0
e−t sinxtdt.

Now

I =

∫ ∞

0
e−t sinxtdt = sinxt(−e−t)

∣

∣

∣

∞

0
+ x

∫ ∞

0
e−t cosxtdt

= x

[

cos xt(−e−t)
∣

∣

∣

∞

0
− x

∫ ∞

0
e−t sinxtdt

]

= x(1− xI).

Hence I = x− x2I, so that I = Φ′(x) =
x

x2 + 1
.

Thus

Φ(x) =

∫

x

x2 + 1
dx + C =

1

2
log(x2 + 1) + C.

But Φ(0) = 0, so that C = 0.
Thus

Φ(x) =
1

2
log(x2 + 1).
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Example 8.17

Let

G(y) =

∫ ∞

0
e−xy sinx

x
dx, y > 0.

(i) Find G′(y).

(ii) Hence evaluate G(y).

(iii) Deduce that

∫ ∞

0

sinx

x
dx =

π

2
.

(iv) Show that

∫ ∞

0

sin ax

x
dx =











π/2 if a > 0
0 if a = 0

−π/2 if a < 0.

Solution.

(i) For y > 0, we have

G′(y) =

∫ ∞

0

∂

∂y

[

e−xy sinx

x

]

dx

= −
∫ ∞

0
e−xy sinxdx

= −1

y

∫ ∞

0
e−t sin

(

t

y

)

dt, by the substitution t = xy,

= −1

y
· 1/y

(1/y)2 + 1
, by the previous Example 8.16.

Hence

G′(y) = − 1

y2 + 1
, y > 0.

This could also have been obtained by integrating by parts the integral

∫ ∞

0
e−xy sinxdx.

(ii) Thus

G(y) = −
∫

1

y2 + 1
dy = − arctan y + C.

Now

lim
y→+∞

G(y) = lim
y→+∞

∫ ∞

0
e−xy sinx

x
dx = 0.

Hence 0 = −π/2 + C, so that C = π/2.



8.9 Evaluating Integrals Depending on a Parameter 209

(iii) Hence
∫ ∞

0
e−xy sinx

x
dx = − arctan y +

π

2
,

valid for y > 0. Taking limits of both sides as y → 0+, we get

∫ ∞

0

sinx

x
dx =

π

2
.

(iv) Let a > 0 and u = ax. Then

∫ ∞

0

sinax

x
dx =

∫ ∞

0

sinu

u
du =

π

2
.

For a < 0, put b = −a. Then

∫ ∞

0

sin ax

x
dx =

∫ ∞

0

sin(−bx)

x
dx = −

∫ ∞

0

sin bx

x
dx = −π

2
.

Clearly, if a = 0 then
∫ ∞

0

sin ax

x
dx = 0.

Note. Two important limits were considered above without proper justification. The
justification is left as an exercise:

(i) lim
y→∞

∫ ∞

0
e−xy sinx

x
dx = 0;

(ii) lim
y→0+

∫ ∞

0
e−xy · sinx

x
dx =

∫ ∞

0

sinx

x
dx.

Example 8.18

Let

f(y) =

∫ ∞

0

sinxy

x(x2 + 1)
dx, y > 0.

(i) Show that f ′′(y) = f(y)− π/2.

(ii) Hence show that f(y) = π(1− e−y)/2.

Solution.

(i) We have

f ′(y) =

∫ ∞

0

cos xy

x2 + 1
dx

f ′′(y) = −
∫ ∞

0
x · sinxy

x2 + 1
dx
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= −
∫ ∞

0

(

x2 + 1

x
− 1

x

)

sinxy

x2 + 1
dx

= −
∫ ∞

0

sinxy

x
dx +

∫ ∞

0

sinxy

x(x2 + 1)
dx

= −π

2
+ f(y), for y > 0.

(ii) Solve the differential equation

f ′′(y)− f(y) = −π

2
,

to obtain

f(y) = Aey + Be−y +
π

2
,

where A, B are constants. Thus

f ′(y) = Aey −Be−y.

Now, f(y) → 0, as y → 0+, and

lim
y→0+

f ′(y) =

∫ ∞

0

1

x2 + 1
dx =

π

2
.

[As in the previous example, these limits have to be carefully justified.]

Hence,
{

0 = A + B + π/2
π/2 = A−B.

So that A = 0, B = −π/2. Hence

f(y) =
π

2

(

1− e−y) .

8.10 Exercises

8.1 Let

Φ(a) =

∫ π

0
log(1− 2a cos x + a2)dx.

Show that Φ′(a) = 0. Hence evaluate Φ(a) for |a| < 1 and |a| > 1.

8.2 Let

F (y) =

∫ y

0
log(1 + tanx · tan y)dx, −π

2
< y <

π

2
.

Show that F ′(y) = log(sec y) + y tan y. Hence, deduce that

F (y) = y log sec y.



8.10 Exercises 211

8.3 Evaluate
∫ ∞

0

e−ax − e−bx

x
dx, 0 < a < b.

8.4 Show that
∫ 1

0

(
∫ ∞

0

1

1 + x2 + y2
dx

)

dy =

∫ ∞

0

(
∫ 1

0

1

1 + x2 + y2
dy

)

dx.

Deduce that
∫ π/2

0

arctan(sin θ)

sin θ
dθ =

π

2
log(1 +

√
2).

8.5 Let

Φ(y) =

∫ ∞

0

(

sinxy

x

)2

dx.

Show that Φ′(y) = π/2 for y > 0. Hence evaluate Φ(y), for all y.

8.6 Let

Φ(a) =

∫ ∞

0
e−(x2+a2)/x2

dx.

Show that Φ′(a) = −2Φ(a). Hence determine Φ(a).
Hint:

∫ ∞

0
e−x2

dx =

√
π

2
.

8.7 Consider the Gamma function

Γ(x) =

∫ ∞

0
tx−1e−tdt, x > 0.

Justify the following, specifying for which values of x it is true:

Γ′(x) = (x− 1)

∫ ∞

0
tx−2 · e−t · ln t · e−tdt.

8.8 Assume a > 0. Which of the following integrals are convergent?

(i)

∫ ∞

a

1

x4/3
dx, (ii)

∫ ∞

a

1

c2 + x2
dx,

(iii)

∫ ∞

a

x

c2 + x2
dx, (iv)

∫ ∞

a

x2

c2 + x2
dx.

8.9 Show that
∫ ∞

a
f(x)g′(x)dx =

(

lim
x→+∞

f(x) · g(x)

)

− f(a) · g(a) −
∫ ∞

a
f ′(x) · g(x)dx.

Hence, or otherwise, obtain the formula:
∫ ∞

1

√
x

(1 + x)2
dx =

1

2
+

π

4
.

Hint: Put x = t2, t > 0.
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8.10 Show that the integral
∫ ∞

0

xs−1

1 + x
dx

is convergent if and only if 0 < s < 1.

8.11 Show that

(i) lim
y→∞

∫ ∞

0
e−xy sinx

x
dx = 0;

(ii) lim
y→0+

∫ ∞

0
e−xy · sinx

x
dx =

∫ ∞

0

sinx

x
dx.



Chapter 9

Sequences of Functions and Power
Series

9.1 Pointwise and Uniform Convergence

Definition 9.1 Let {fn} be a sequence of functions defined on a given interval I and
let f be a function that is also defined on I. If lim

n→∞
fn(x) = f(x) for each point x in I,

we say that the sequence {fn} converges pointwise to the function f on I. Thus, {fn}
converges pointwise to f on I, if

∀ε > 0 ∀x ∈ I ∃Nε,x (n > Nε,x =⇒ |fn(x)− f(x)| < ε) .

Definition 9.2 Let {fn} be a sequence of functions defined on a given interval I and
let f be a function that is also defined on I. The sequence {fn} is said to converge
uniformly to f on I if

∀ε > 0 ∃Nε ∀x ∈ I (n > Nε =⇒ |fn(x)− f(x)| < ε) .

The concept of convergence in the sense of Definition 9.1 is called pointwise because it
relates to the behaviour of the sequence {fn(x)} at each point x — The value of N in this
case depends on the point x ∈ I, as well as on ε, in contrast to the uniform convergence
defined by Definition 9.2, where the value for N does not depend on the choice of x. Note
the order of the quantifiers ∀x ∈ I and ∃N in the two definitions. Uniform convergence has
to do with the behaviour of {fn} over the whole interval.

When {fn} converges to f pointwise, then

1. it may happen that f(x) is not continuous even if every fn(x) is continuous (see
Example 9.4);

2. it does not follow that f(x) is differentiable even if every fn(x) is differentiable (see
Example 9.6); even if f is differentiable, it may not be true that f ′(x) = lim

n→∞ f ′n(x),

(see Example 9.7);

213
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3. it does not follow that
∫

I
f(x)dx = lim

n→∞

∫

I
fn(x)dx,

even if the above limit exists (see Example 9.5).

fn(x) = x +
1

n
sinnx, −π ≤ x ≤ π

Figure 9.1: Illustrating uniform convergence of {fn(x)} to f(x) = x on the interval [−π, π].

Example 9.1 Show that the sequence of functions {fn}, where

fn(x) = x +
1

n
sinnx, n = 1, 2, . . .

is uniformly convergent to the function f(x) = x in any interval I ⊂ RI .

Solution. Let ε > 0 be given. We have

|fn(x)− f(x)| = 1

n
| sinnx| ≤ 1

n
< ε

for all values of x, provided n > N = [ 1
ε ].

Refer to Figure 9.1 to see the behaviour of selected functions of the sequence, namely
fn(x) for n = 1, n = 3, and n = 5, over the interval (−π, π).
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fn(x) =
1

nx
, 0.01 ≤ x ≤ 1

Figure 9.2: {fn(x)} converges uniformly to f(x) = 0 on the interval [0.01, 1].

Example 9.2

Consider the sequence of functions {fn}, where

fn(x) =
1

nx
n = 1, 2, . . . .

(a) Show that {fn(x)} converges pointwise to f(x) = 0 in the interval I = (0,+∞), but
not uniformly.

(b) Show that {fn} converges uniformly to f(x) = 0 on any interval (c,∞), where c > 0.

Solution.

(a) Let x be any fixed point of the interval (0,∞). Then lim
n→∞

1

nx
= 0. Thus {fn(x)}

converges pointwise to the function f(x) = 0, 0 < x < ∞.

This convergence is not uniform, since we cannot find such N , independent of x, that
for every ε > 0 the inequality

|fn(x)− f(x)| = 1

nx
< ε

holds for all values of x, 0 < x < ∞, when n > N .

(b) If I = (c,∞), then

∀ε > 0 ∃N =

[

1

cε

]

∀x
(

c < x < ∞ & n > N =⇒
∣

∣

∣

∣

1

nx
− 0

∣

∣

∣

∣

=
1

nx
<

1

Nc
< ε

)

.

Figure 9.2 shows us graphs of selected functions fn(x) for x ∈ [0.01, 1].
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fn(x) =
nx

enx2
, 0 ≤ x ≤ 1

Figure 9.3: Selected functions fn(x), (n = 1, 5, 10, 20) of a sequence that converges point-
wise (but not uniformly) to the function f(x) = 0, x ∈ [0, 1].

Example 9.3 Show that the sequence given by fn(x) = nxe−nx2

, n = 1, 2, . . . , con-
verges pointwise, but not uniformly, to the function f(x) = 0 on the interval I = [0, 1]
(Refer to Figure 9.3).

Solution. Let x be any real number. Then the sequence {fn(x)} converges to the limit 0:

lim
n→∞

nx

enx2
= lim

t→∞
tx

etx2
= lim

t→∞
x

etx2 · x2
= 0,

for x 6= 0. If x = 0, clearly, lim
n→∞

fn(x) = 0.

Hence {fn} converges pointwise to f on the whole real line, −∞ < x < ∞, and in
particular on the interval I.

Suppose now that {fn} converges uniformly to f on the interval I = [0, 1]. Then given
any ε > 0, the inequality |fn(x)| < ε must hold for all x ∈ [0, 1] and all n > N , where N
does not depend on x. Suppose that such N exists and let

x =
1√
2n

∈ I, n = 1, 2, . . . . (9.1)

Then fn(x) =

√
n√
2e
→ +∞, as n → ∞. We see that |fn(x)| < ε cannot hold for all x

values defined by (9.1) and all n > N , since {
√

n√
2e
} is unbounded, as n →∞.
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fn(x) = xn, −1 ≤ x ≤ 1

Figure 9.4: Illustrating convergence of the sequence {fn(x)} to 0 when |x| < 1 and to 1
when x = 1.

Example 9.4 Examining convergence of fn(x) = xn on the interval I = (−1, 1].

(a) We have

lim
n→∞

fn(x) = f(x) =

{

0, |x| < 1
1, x = 1

Thus {fn} converges pointwise to f on the interval I.

(b) {fn} does not converge uniformly to f on I = (−1,+1], since, if x = 1− 1

n
, then

fn(x) = (1− 1

n
)n → 1

e
.

(c) {fn} converges uniformly to f on any interval of the form [−a, a], where a < 1, since
|xn − 0| = |xn| ≤ an < ε for all x ∈ [−a, a] and all n > N = [ ln ε

lna ].
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Theorem 9.1 Uniform Convergence and Continuity
Suppose that {fn} is a sequence of continuous functions defined on a closed interval I =

[a, b]. If fn converges uniformly on I to a function f then f is continuous on I.

Proof. Let xo ∈ I and ε > 0 be given. Consider the identity

f(x)− f(xo) = f(x)− fn(x) + fn(x)− fn(xo) + fn(xo)− f(xo).

Hence, for any x ∈ I and any n = 1, 2, . . ., we get

|f(x)− f(xo)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(xo)|+ |fn(xo)− f(xo)|. (9.2)

Since fn → f , uniformly on I, there is an integer N such that |fn(x) − f(x)| < ε
3 for all

x ∈ I and n ≥ N . Thus

|f(x)− f(xo)| ≤
ε

3
+ |fn(x)− fn(xo)|+

ε

3
, n ≥ N, x ∈ I.

The above inequality holds for any value of n such that n ≥ N ; in particular for n = N :

|f(x)− f(xo)| ≤
ε

3
+ |fN (x)− fN (xo)|+

ε

3
, x ∈ I. (9.3)

Now, the function fN (x) is continuous on I, so that there exists a δ > 0 such that

|x− xo| < δ =⇒ |fN (x)− fN (xo)| <
ε

3
.

Therefore, by (9.3), |f(x)−f(xo)| ≤ ε provided |x−xo| < δ. This proves that f is continuous
at any point xo arbitrarily chosen in the interval I. Hence, f is continuous on I.

Example 9.5 Give an example of a sequence {fn(x)} that converges (pointwise) on a
given interval to a integrable function, but

lim
n→∞

∫

I
fn(x)dx 6=

∫

I
lim

n→∞
fn(x)dx.

Solution. Consider the following sequence of functions:

fn(x) =











2n2x, 0 ≤ x ≤ 1/2n
2n− 2n2x, 1/2n ≤ x ≤ 1/n
0, 1/n ≤ x ≤ 1.

Selected functions of the sequence {fn(x)} are shown in Figure 9.5. We note that {fn}
converges pointwise to f(x) = 0 on the interval I = [0, 1]. It can be shown that {fn(x)}
does not converge uniformly on I.

We have
∫ 1

0
fn(x)dx =

∫ 1/2n

0
2n2x2dx +

∫ 1/n

1/2n
(2n− 2n2x)dx =

1

2
,
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fn(x) =











2n2x, 0 ≤ x ≤ 1/2n
2n− 2n2x, 1/2n ≤ x ≤ 1/n
0, 1/n ≤ x ≤ 1.

Figure 9.5: An example of a sequence {fn} that converges to a integrable function f on the

interval I = [0, 1], but
∫

I f(x)dx 6= lim
n→∞

∫

I
fn(x)dx.

but
∫ 1

0
f(x)dx =

∫ 1

0
odx = 0.

Hence,

lim
n→∞

∫ 1

0
fn(x)dx 6=

∫ 1

0
lim

n→∞
fn(x)dx =

∫ 1

0
f(x)dx.

Theorem 9.2 Uniform Convergence and Integration
Suppose that {fn} is a sequence of functions defined on a closed interval I = [a, b]. If fn

converges uniformly on I to a function f , then f is integrable on I and

∫ b

a
f(x)dx = lim

n→∞

∫ b

a
fn(x)dx. (9.4)

Proof. To show that f is integrable we shall prove that, for a given ε > 0, there is a
partition P for which

|U(P, f)−L(P < f)| < ε.
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Fix n such that
∀x ∈ I |fn(x)− f(x)| < ε

3(b− a)
.

Since fn is integrable, there exists P for which

|U(P, fn)−L(P, fn)| < ε

3
.

For that partition P, we have

|U(P, f)−L(P, f)| ≤ |U(P, f) −U(P, fn)|

+|U(P, fn)−L(P, fn)|+ |L(P, fn)−L(P, f)|

<
ε

3
+

ε

3
+

ε

3
= ε,

since, if h and k are any two functions for which |h(x)− k(x)| < ε′ for all x in I, and P ′ is
any partition, then

|U(P ′, h)− U(P ′, k)| ≤ ε′(b− a) and |L(P ′, h) −L(P ′, k)| ≤ ε′(b− a).

Now we shall show that (9.4) holds. Let ε > 0 be given. Since fn converges uniformly
to f on the interval I, there is some N such that

∀x ∈ I (n > N =⇒ |fn(x)− f(x)| < ε

b− a
).

We have already proved that f is integrable. Thus for n > N , we have

∣

∣

∣

∣

∣

∫ b

a
fn(x)dx−

∫ b

a
f(x)dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ b

a
[fn(x)− f(x)]dx

∣

∣

∣

∣

∣

≤
∫ b

a
|fn(x)− f(x)|dx

≤
∫ b

a

ε

b− a
dx = ε.

We conclude that
∫ b

a
f(x)dx = lim

n→∞

∫ b

a
fn(x)dx.

The behaviour of uniform convergence with respect to differentiation is more complex.
In fact, a sequence of differentiable functions {fn(x)} may converge uniformly to a function
f which fails to be differentiable. Even if f is differentiable, it may not be true that

f ′(x) = lim
n→∞

f ′n(x).

Two examples that illustrate the phenomena are given below.
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(a)

f1(x) =

{

|x|2 sin 1/x, if x 6= 0
0, if x = 0

(b)

f5(x) =

{

|x|6/5 sin 1/x, if x 6= 0
0, if x = 0

(c)

f10(x) =

{

|x|11/10 sin 1/x, if x 6= 0
0, if x = 0

(d)

f(x) =

{

|x| sin 1/x, if x 6= 0
0, if x = 0

Figure 9.6: A sequence of differentiable functions converging to a function that is not
differentiable.

Example 9.6

Let

fn(x) =











|x|1+1/n sin
1

x
, if x 6= 0

0, if x = 0.

Then {fn} converges to

f(x) =







|x| sin 1

x
, if x 6= 0

0, if x = 0

Note that each fn is differentiable on RI , but f is not differentiable at x = 0.
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fn(x) =
1

n
sinn2x, 0 ≤ x ≤ π

Figure 9.7: An example of a sequence {fn} that converges uniformly to a differentiable
function f , but f ′(x) 6= lim

n→∞
f ′n(x).

Example 9.7

Let {fn} be given by fn(x) = 1
n sin(n2x), n = 1, 2, . . .. Clearly, the sequence converges

uniformly to f(x) = 0 on the whole real line, −∞ < x < ∞, since

|fn(x)| =
∣

∣

∣

∣

1

n
sin(n2x)

∣

∣

∣

∣

≤ 1

n
, n = 1, 2, . . . , −∞ < x < ∞.

We have
f ′n(x) = n cos(n2x),

and we can see that
lim

n→∞
f ′n(x) 6= f ′(x) = 0,

as lim
n→∞n cos(n2x) does not always exist (for example, it does not exist if x = 0).
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The following result is useful and provides conditions under which the uniform limit of
differentiable functions is differentiable.

Theorem 9.3 Uniform Convergence and Differentiation
Suppose that {fn} is a sequence of functions defined on I = [a, b] that are differentiable on

I. Suppose further that for some functions f and g defined on I, where g is continuous, we
have

(i) fn → f in I,

(ii) f ′n → g uniformly in I.

Then f is a continuous and differentiable function on I, and we have

g(x) = f ′(x) = lim
n→∞

f ′n(x) for x ∈ I.

Proof. Let x be any number of the interval I. Applying Theorem 9.2 to the interval
[a, x], we get

∫ x

a
g(t)dt = lim

n→∞

∫ x

a
f ′n(t)dt = lim

n→∞
[fn(x)− fn(a)] = f(x)− f(a),

so that
∫ x

a
g(t)dt = f(x)− f(a).

Differentiating both sides of the above equation gives

d

dx

∫ x

a
g(t)dt = f ′(x)− 0,

and we obtain
g(x) = f ′(x), x ∈ I = [a, b].

9.2 Power Series

Definition 9.3 A power series about a point xo is

∞
∑

n=0

an(x− xo)
n = ao + a1(x− xo) + a2(x− xo)

2 + · · · , (9.5)

where an, n = 0, 1, 2, . . ., are constant coefficients. In particular, when xo = 0, the power
series (9.5) takes the form

∞
∑

n=0

anxn = ao + a1x + a2x
2 + · · · . (9.6)
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Evidently, every power series (9.6) is convergent at the point x = 0.

A power series
∞
∑

n=0

anxn has one of the following properties:

1. the series is divergent for all values of x, except x = 0;

2. the series is convergent for all values of x, −∞ < x < ∞;

3. there is a number R > 0, called the radius of convergence of the series, such that
∞
∑

n=0

anxn converges for |x| < R and is divergent for |x| > R.

A series that converges for all x, −∞ < x < ∞, is said to have radius of convergence R = ∞
and the series that only converges for x = 0 is said to have radius of convergence R = 0.

The following theorem gives a formula for the radius of convergence R.

Theorem 9.4 Consider the power series

∞
∑

n=0

anxn. (9.7)

Let

α = lim
n→∞

sup |an|
1

n . (9.8)

Then the radius of convergence of the power series (9.7) is

R =



















0 if α = ∞
∞ if α = 0

1

α
otherwise.

Proof.

Case 1. Suppose that α is finite and α 6= 0. Consider any x with |x| < 1
α . There is a

δ > 0 such that

|x| < 1/α

1 + δ
<

1

α
. (9.9)

Let ε = αδ/2. We conclude that there is an integer N such that

n > N =⇒ |an|1/n < α + ε.

Hence

|an|1/n < α

(

1 +
δ

2

)

=⇒ |an| < αn
(

1 +
δ

2

)n

, for n > N.

Using (9.9), we get, for n > N ,

|anxn| < αn
(

1 +
δ

2

)n 1

αn(1 + δ)n
=

(

1 + δ/2

1 + δ

)n

= βn,
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where 0 < β < 1. Since |β| < 1, the series
∑

βn converges and by the Comparison Test,
the series

∑ |anxn| also converges.
We have shown that the power series (9.7) converges for any x with |x| < 1

α = R.
Also, if |x| > 1/α, then α > 1/|x|, so that, by definition of α, there are an infinity of

values of n for which

|an|1/n >
1

|x| .

For such n we have |anxn| > 1. Hence lim
n→∞anxn 6= 0, so that

∑

anxn diverges.

Thus R is the radius of convergence.
Case 2. α = 0.

If α = 0, then limn→∞ |aN |1/n = 0. Given any x 6= 0, we have

|an|1/n|x| ≤ r < 1, n ≥ N,

for some N and some r. Then |anxn| ≤ rn. But
∑

rn converges, hence so does
∑

anxn.
Hence the series converges for all x, so that R = ∞.

Case 3. α = +∞.
If

lim sup
n→∞

|an|1/n = +∞,

then for x 6= 0, the sequence {|an||xn|} does not tend to 0. Hence, the series
∑

anxn

diverges. Thus R = 0.

9.3 Taylor and Maclaurin Series

Consider a function f(x) in a neighbourhood N(xo) of the point x = xo. Suppose that
f and its derivatives f (k)(x), for k = 1, 2, . . . n, are continuous in N(xo). Then f can be
approximated by the n-th degree Taylor polynomial

Pn, xo
(x) =

n
∑

k=0

f (k)(xo)

k!
(x− xo)

k.

Formally, by Taylor’s theorem,

f(x) = Pn, xo
(x) + Rn(x),

where the remainder Rn(x) may be specified in different forms.
Suppose now that f (n)(xo) exists for all n = 1, 2, . . . . We can then form a power series

∑

an(x− xo)
n, whose coefficients are the Taylor coefficients

an =
f (n)(xo)

n!
.
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The question that naturally arises is under what conditions f(x) can be represented as
the corresponding power series

∞
∑

n=0

f (n)(xo)

n!
(x− xo)

n. (9.10)

which is called the Taylor series of f at xo. Note that, if the Taylor series (9.10) converges
for |x− xo| < R, R > 0, it is not necessarily true that it converges to f(x).

A necessary and sufficient condition for the power series (9.10) to converge to f(x) is

lim
n→∞

Rn(x) = 0,

where
Rn(x) = f(x)− Pn, xo

(x).

If lim
n→∞Rn(x) = 0 for |x− xo| < R, R > 0, then we have

f(x) =
∞
∑

n=0

f (n)(xo)

n!
(x− xo)

n, for |x− xo| < R, R > 0,

and the power series (9.10) is called the Taylor expansion of f about the point xo. The
special case, xo = 0, in (9.10) is called the Maclaurin expansion of f .

The Taylor theorem (Theorem 6.1) gives the remainder Rn(x) in the following form:

Rn(x) =
f (n+1)(ξ)

(n + 1)!
(x− xo)

n+1, 0 < ξ < x.

Suppose that all the derivatives f (k)(x) are bounded in |x− xo| < R, R > 0, by the same
constant M :

|f (k)(x)| ≤ M, |x− xo| < R. (9.11)

Then, for any fixed value of x, |x− xo| < R, we have

|Rn(x)| ≤ M
(x− xo)

n+1

(n + 1)!
→ 0, as n → 0.

Hence, f(x) can be represented by its Taylor expansion.

Definition 9.4 A function f is said to be analytic at xo if and only if f can be
represented by its Taylor series in some neighbourhood of xo.

We can see that any function that satisfies (9.11) is analytic.
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Example 9.8 Showing that sinx and cos x are analytic at any point x ∈ RI .

(a) If f(x) = sinx, then f (k)(x) = sin(x + kπ/2), k = 0, 1, 2, . . . , so that

|f (k)(x)| ≤ M = 1, −∞ < x < ∞.

Hence Rn(x) → 0, as n →∞. Thus f(x) = sinx is analytic at any point x ∈ RI . Using the
results of Example 6.3, we have

sinx =
∞
∑

n=0

(−1)n

(2n + 1)!
x2n+1, −∞ < x < ∞. (9.12)

(b) Let f(x) = cos x. Following the logic of (a) and using the results of Example 6.4,
we conclude that f(x) = cos x is analytic at any point x ∈ RI and

cos x =
∞
∑

n=0

(−1)n

(2n)!
x2n, −∞ < x < ∞. (9.13)

Example 9.9 Show that f(x) = ex is analytic at x, −∞ < x < ∞.

Solution. If f(x) = ex, then f (k)(x) = ex, k = 0, 1, 2, . . . . For a fixed value of x, we
have

|Rn(x)| ≤
∣

∣

∣

∣

ex

(n + 1)!
xn+1

∣

∣

∣

∣

≤ e|x||x|n+1

(n + 1)!
→ 0, as n →∞.

Hence, f(x) = ex is analytic at any point x ∈ RI . Using the results of Example 6.2, we have

ex =
∞
∑

n=0

xn

n!
, −∞ < x < ∞.

Now we give an example of a function that has all derivatives f (n)(x) in a neighbourhood
of xo = 0, (|x| < δ, δ > 0), and yet does not have a Taylor expansion valid for that interval.

Example 9.10 A function that is not analytic at the point 0 and has derivatives f (n)(0)
for all n ≥ 1.

Let

f(x) =

{

e−1/x, x > 0
0, x ≤ 0.

We evaluate the derivatives f (n)(0), n = 1, 2, . . ..

f ′(0) = lim
x→0

f(x)− f(0)

x
= lim

x→0

f(x)

x
,

lim
x→0−

f(x)

x
= 0, since f(x) ≡ 0 for x < 0,

lim
x→0+

f(x)

x
= lim

x→0+

1

x
e−1/x = lim

t→∞
te−t = lim

t→∞
t

et
= lim

t→∞
1

et
= 0.
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Hence f ′(0) = 0. Similarly,

f ′′(0) = lim
x→0

f ′(x)− f ′(0)
x

= lim
x→0

f ′(x)

x
.

The limit from the left is obviously 0. The limit from the right is

lim
x→0+

f ′(x)

x
= lim

x→0+
x−3e−1/x = lim

t→∞
t3e−t = lim

t→∞
t3

et
= lim

t→∞
3t2

et
= lim

t→∞
6t

et
= 0.

Hence f ′′(0) = 0. By induction, we get f (n)(0) = 0 for all n = 1, 2, . . . . Hence the Taylor
coefficients at 0 are

an =
f (n)(xo)

n!
= 0, n = 1, 2, . . . .

If we had a Taylor expansion of f(x) at xo = 0, then we would have

f(x) =
∞
∑

n=0

anxn ≡ 0, |x| < δ,

which does not hold.

9.4 Differentiation of Power Series

Consider a power series
∞
∑

k=0

ak(x− xo)
k (9.14)

with a given radius of convergence R, R > 0. For each x, |x− xo| < R, the series (9.14) is
a function of x:

f(x) =
∞
∑

k=0

ak(x− xo)
k.

We know that many familiar functions can be represented as power series, for example

f(x) =
1

1− x
=

∞
∑

k=1

xk, if |x| < 1.

In this section we deal with the question of whether a power series can be differentiated
and how the derivative can be calculated.

Note, for example, that the sum of the series
∑

xn is a differentiable function whose
derivative is

f ′(x) =

(

1

1− x

)′
=

1

(1− x)2
, |x| < 1.

Hence
( ∞
∑

n=0

xn

)′
=

1

(1− x)2
, |x| < 1. (9.15)
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Theorem 9.5 Differentiation of Power Series
Let the power series

∑

anxn have the radius of convergence R > 0 and let

f(x) =
∞
∑

n=0

anxn, |x| < R.

Then f(x) is differentiable for |x| < R and

f ′(x) =
∞
∑

n=0

(anxn)′ =
∞
∑

n=1

nanxn−1.

Moreover, the series
∑

nanxn−1 has the radius of convergence R.

Note that an application of this theorem to (9.15) gives us a familiar result

∞
∑

n=1

nxn−1 =
1

(1− x)2
, |x| < 1.

Proof. Assuming that the radius of convergence of

f(x) =
∞
∑

n=0

anxn

is R, we are to prove that

(i) the series
∞
∑

n=0

(anxn)′ =
∞
∑

n=1

nanxn−1 (9.16)

has radius of convergence R;

(ii) f ′(x) =
∞
∑

n=1

nanxn−1, |x| < R.

Proof of (i) Let R′ be the radius of convergence of (9.16). Since

∞
∑

n=1

nanxn−1 =
1

x

∞
∑

n=1

nanxn, x 6= 0, and lim
n→∞

n
√

n = 1,

we have
lim sup

n→∞
n

√

|nan| = lim
n→∞

n
√

n · lim sup
n→∞

n

√

|an| = lim sup
n→∞

n

√

|an|,

which implies that R′ = R.
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Proof of (ii) Let c be any point of I = (−R,R) and let r be another point of I such
that |c| < r < R. Let h be such that 0 < |h| < r − |c|, so that c + h ∈ (−r, r).

To prove that

f ′(c) =
∞
∑

n=1

nancn−1

we introduce Dh, a function of h defined as

Dh =
f(c + h)− f(c)

h
−

∞
∑

n=1

nancn−1

and prove that Dh → 0, as h → 0.
By the hypothesis,

f(c + h) =
∞
∑

n=0

an(c + h)n, f(c) =
∞
∑

n=0

ancn,

so that

f(c + h)− f(c) =
∞
∑

n=0

an [(c + h)n − cn] .

By Taylor’s theorem applied to the function g(x) = xn we have

(c + h)n = cn + nhcn−1 +
1

2
n(n− 1)h2(c + θh)n−2,

for some θ, 0 < θ < 1.
Hence

Dh =

∣

∣

∣

∣

∣

f(c + h)− f(c)

h
−

∞
∑

n=1

nancn−1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

2h

∞
∑

n=1

n(n− 1)h2(c + θh)n−2an

∣

∣

∣

∣

∣

≤ 1

2
|h|

∞
∑

n=1

n(n− 1) an |c + θh|n−2.

Now, |c + θh| ≤ |c|+ |h| < r, so

|Dh| ≤
1

2
|h|

∞
∑

n=1

n(n− 1)
∣

∣

∣anxn−2
∣

∣

∣ , where |x| = |c + θh| < R.

Applying (i) to the series
∑

nanxn−1 that has radius of convergence R, we arrive at the
conclusion that the series ∞

∑

n=1

n(n− 1)anxn−2 (9.17)

has also radius of convergence R. Therefore (9.17) converges absolutely and consequently
is bounded for x = c + θh, say:

∞
∑

n=1

n(n− 1)|an(c + θh)n−2| ≤ M, for some M > 0, independent of h.

Hence

|Dh| ≤
1

2
|h|M → 0, as h → 0.
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Example 9.11 Obtain the Maclaurin expansion for cos x by application of Theorem 9.5
to the Maclaurin expansion of sinx.

Solution. By Example 9.8 (a), we have

sinx =
∞
∑

n=0

(−1)n

(2n + 1)!
x2n+1, −∞ < x < ∞.

By Theorem 9.5, we can differentiate the above series term by term to obtain:

cosx =
∞
∑

n=0

(−1)n

(2n + 1)!
(2n + 1)x2n =

∞
∑

n=0

(−1)n

(2n)!
x2n,

(compare with Example 9.8 (b)).

Example 9.12

Prove that the power series
∞
∑

n=1

n2xn

converges for |x| < 1 and determine its sum. Hence evaluate

∞
∑

n=1

n2

2n
.

Solution. If R denotes the radius of convergence of
∑

n2xn then we have

1

R
= lim sup

n→∞
n
√

n2 = lim
n→∞

n
√

n · lim
n→∞

n
√

n = 1.

Hence R = 1 and the series converges for |x| < R = 1.
Consider now the series

∑

xn, with radius of convergence 1:

∞
∑

n=0

xn =
1

1− x
, |x| < 1.

On an application of Theorem 9.5 (twice), we obtain the formulas:

∞
∑

n=1

nxn−1 =
1

(1− x)2
, |x| < 1,

∞
∑

n=1

n(n− 1)xn−2 =
2

(1− x)3
, |x| < 1.
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Therefore

∞
∑

n=1

n2xn =
∞
∑

n=1

[n(n− 1) + n]xn

= x2
∞
∑

n=1

n(n− 1)xn−2 + x
∞
∑

n=1

nxn−1

=
2x2

(1− x)3
+

x

(1− x)2

=
x(1 + x)

(1− x)3
, |x| < 1.

Hence we have ∞
∑

n=1

n2xn =
x(1 + x)

(1− x)3
, |x| < 1.

In particular, putting x = 1/2, we get

∞
∑

n=1

n2

2n
= 6.

9.5 Integration of Power Series

Theorem 9.6 Integration of Power Series
Let

f(x) =
∞
∑

n=0

anxn

have radius of convergence R. Then, for any x, |x| < R, we have

∫ x

0
f(t)dt =

∞
∑

n=0

an

n + 1
xn+1 (9.18)

and the power series
∞
∑

n=0

an

n + 1
xn+1 (9.19)

also has radius of convergence R.

Proof.

Let g(x) =
∞
∑

n=0

an

n + 1
xn+1. The series for f(x) and g(x) have the same radius of conver-

gence, since g′(x) = f(x), as proved in Theorem 9.5. But then

∫ x

0
f(t)dt = g(x)− g(0), by

the Fundamental Theorem of Integral Calculus. Now g(0) = 0, hence (9.18) holds.
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Example 9.13 Integrating power series term by term.

(a) By Example 2.20, we have

1

1− z
=

∞
∑

n=0

zn, |z| < 1. (9.20)

Let z = −x, where |x| < 1. Then we obtain

1

1 + x
=

∞
∑

n=0

(−1)nxn, |x| < 1.

If |x| < 1 then, by Theorem 9.5, we can integrate the above series term by term:

∫ x

0

1

1 + t
dt =

∞
∑

n=0

(−1)n
∫ x

0
tndt, |x| < 1.

Hence we arrive at the following expansion for of function log(1 + x):

log(1 + x) =
∞
∑

n=0

(−1)n xn+1

n + 1
=

∞
∑

n=1

(−1)n+1 xn

n
, |x| < 1. (9.21)

(b) Let z = −x2, where |x| < 1. Then 9.20 gives

1

1 + x2
=

∞
∑

n=0

(−1)nx2n, |x| < 1.

Applying Theorem 9.5 to the above, we arrive at the following expansion of the function
arctan x:

arctan x =
∞
∑

n=0

(−1)n

2n + 1
x2n+1, |x| < 1.

Comments: Recall that in section 6.1 we dealt with the approximation of the function
log(1+x) by its Taylor polynomials Pn,0(x). In Figure 6.4 we illustrated this approximation
on the interval (−1, 1). The question that naturally arises is whether Taylor’s polynomials
can be used to approximate f(x) = log(1 + x) on a wider interval, say for x ∈ (−1, 2).

Example 9.13 ensures that the approximation is valid for |x| < 1. Now, for |x| > 1, the
power series 9.21 diverges. Hence the polynomials Pn,0(x), being the partial sums of the
series 9.21, cannot be expected to provide an approximation of f(x).

Refer to Figure 9.8 to see the behaviour of the polynomials Pn,0(x) for 1 < x < 2.
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Pn,0(x) =
n
∑

k=1

(−1)k+1 xk

k

Figure 9.8: Illustrating divergence of the Taylor series of f(x) = log(1 + x) for x > 1.

9.6 Exercises

9.1 Let
fn(x) = 1− x2 + x4 − . . . + (−1)nx2n, −1 < x < 1.

(a) Determine, for each x in (−1, 1),

f(x) = lim
n→∞

fn(x);

(b) Does {fn} converge uniformly to f? Consider the cases:

(i) −1 < x < 1,

(ii) −1 + δ < x < 1− δ, where 0 < δ < 1.

9.2 If |fn(x)− f(x)| ≤ an, for n ≥ 1 and x ∈ I, show that {fn} converges uniformly to f
on I, whenever an → 0, as n →∞.

Use this result to justify the following formulas, where −1 < x < 1:

log
1

1− x
=

∫ x

0

1

1− t
dt = x +

x2

2
+

x3

3
+

x4

4
+ · · · ,

1

2
log

(

1 + x

1− x

)

=

∫ x

0

1

1− t2
dt = x +

x3

3
+

x5

5
+

x7

7
+ · · · .
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9.3 Let fn(x) = xn, 0 ≤ x ≤ 1. Does {fn} converge uniformly? Justify your answer.

9.4 Let f(x) =
∑

(anxn), |x| < R and let g(x) =
∑

(bnxn), |x| < R′, where R, R′ > 0.
If f(x) = g(x) for all x such that |x| < c, for some c > 0, show that an = bn for all n.

Thus, two power series that represent the same function must be identical.

9.5 Prove the following theorem.

Theorem 9.7 Let R be the radius of convergence of
∑

(anxn) and let K be a
closed and bounded subset of the interval of convergence (−R,R). Then the power
series converges uniformly on K.

9.6 Let

y =
∞
∑

n=0

anxn, |x| < R,

be a solution of the differential equation y ′′ + y = 0. Determine the coefficients an,
and identify the solutions.

9.7 Obtain an explicit formula for an and bn, given by:

(i) an+2 = an+1 − an; ao = 0, a1 = 1.

(ii) bn+2 = bn+1 + bn; bo = 0, b1 = 1.

9.8 Prove the following theorem.

Theorem 9.8 The limit of a power series is continuous on the interval of con-
vergence. A power series can be integrated term-by-term over any closed and bounded
interval contained in the interval of convergence.

9.9 Use the Fundamental Theorem of Integral Calculus and the above results showing
that a power series may be integrated term by term within its domain of convergence,
to justify that a power series may be differentiated term-by-term within its domain
of convergence.
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∞
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Partial sum,40
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