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Introduction

The purpose of these notes is to provide a standard text where the student can find
statements and proofs of the relevant theorems. The notes cannot serve as a replacement
for further reading and study, even though we have tried to arrange the material in an easily
accessible and coherent manner.

The intention is to provide a basis for the justification of results and methods from the
Calculus, as well as serve as a source for new concepts and developments.

The course is mainly concerned with real-valued functions and their special properties —
continuity, differentiability, integrability are ever recurring themes throughout the course,
and may be regarded as its essence or meaning, in a very broad sense.
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The authors wish to thank Prof T. Stys and Dr. D. Norton for their invaluable assistance.
Dr. Norton’s comments, especially, laid bare many, many flaws in the original text. The

ones that remain are the responsibility of the authors. They will find their way out in the
course of time. Hopefully, they will not interfere with the understanding of the content.
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To the Student

The first contact with formal rigour is, usually, not an easy one. Often, after a feeling
of having mastered a section, you will return to it and realize that there is so much more to
understand — well, that is part of learning and understanding, and it is only to be expected.
Effort and perseverance cannot be overemphasized.
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Chapter 1

Real Numbers

1.1 The Real Numbers as a Field

We are already familiar with basic properties of numbers that involve multiplication, addi-
tion, and other operations. We are going to express this knowledge in the form of axioms
and then examine some consequences of the axioms.

First, we state the algebraic axioms for addition and multiplication.

Consider a set of objects F' where there are two operations, called addition and multi-
plication, defined for any pair of objects in F'. If a and b are two objects in F', then denote
the image of (a,b) under the operations of addition and multiplication by a + b and a e b,
respectively.

The set F, with the two operations of addition and multiplication, is called a field, if
the following axioms A1-A11 are satisfied.

Algebraic axioms of addition:

A1 Closure property:

For any two objects a,b € F' there is one and only one object a + b € F, called the
sum of a and b.

A2 Commutative law:
For any two objects a,b € F,a +b=0b+ a.

A3 Associative law:

For any three objects a,b,c € F,
(a+b)4+c=a+ (b+ c).

A4 FEuxistence of a zero:

There is an object 0 € F', called zero, such that, for all a in F',
a—+0=a.
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A5 FEuxistence of an additive inverse:

For each object a in F' there is an object € F', such that
a4+ x=0.

The number z is called the additive inverse of a and denoted by — a.

Algebraic axioms of multiplication:

A6 Closure property:

For any two objects a,b € F', there is one and only one object a e b € F, called the
product of a and b.

AT Commutative law:

For any two objects a,b € F', aeb = bea.

A8 Associative law:

For any three objects a,b,c € F, (aeb)ec=ae (bec).

A9 Erzistence of a unit:

There is an object 1 in F', different from 0, such that for every object a € F,ae 1 = a.

A10 Ezistence of a multiplicative inverse:

For each object a in F' different from 0 there is an object x € F such that
aex =1.

This number z is called the inverse of a and is denoted by a~!.

Distributive law:

A11 Distributive law of multiplication with respect to addition:
For any three objects a,b,c € F,

ae(b+c)=(aeb) + (asc).
Example 1.1 Checking the field azioms.

Let Fy = {z,y} be a set of two distinct objects and let the addition and multiplication
operations be defined by the following tables:

+ |z y e T Yy
z Ty T |z x
Y y T y |z y
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so that

rx+r==zx Texr =X
rT+y=y Teoey==zx
yt+az=y Yyer ==
yt+y==z Yey=y

Show that the set F} together with the operations + and e defined above is a field.
Solution. Axioms A1, A2, A6, and A7 are obvious for F. The verification of the
axioms A3, A8, and A11 are straightforward, case-by-case checks, which we now carry out.
Note that the addition and multiplication tables provide a 0, namely x, and a 1, namely y,
satisfying A4 and A9.
Since there are only two objects in F}, for each axiom, we need to check 8 equations
obtained by setting a, b, c equal to x or y:

a=z, b=z, c==x
a=xz, b=x, c=y
a=z, b=y, c=
a=xz, b=y, c=
a=y, b=z, c=
a=y, b=z, c=
a=y, b=y, c==x
a=y, b=y, c=y
(a +b) 4+ ¢ a4+ (b+ ¢

(x4+2)+z=x r+ (z4+2z)==x
(z+r)+y=2+y v+ (r+y =z+y
z4+y+rz=y+or=y|lz+y+z)=c+y=y
+y)+ty=y+y=z|lz+@y+ty=r+r=2
y+az)+z=y+= y+(r+r)=y+=x
y+z)+y=y+y y+(@+y)=y+y
Yty +r=z+z=z|y+y+z)=y+ty==
Wty +ty=z+y=vy|y+@+ty=y+z=y
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(aeb)ec ae(bec)
(rex)ex =xex re(rexr)=zxex
(roex)oy=zey=2x|ze(rey) =zer ==
(xoey)oex =zex re(yex)=xex
(Toy)ey=zey Te(yey) =xey
(yoezx)ex =zex =z |ye(rex)=yexr==x
(yex)ey=zxey=2z |ye(xey) =yex ==z
(yoy)ex =yox yo(yer)=yex
(yey)ey=yey yo(yey) =yey

Comment: All fields with two elements are of this type. Usually, the elements are written

0, 1 and the field is denoted by Zs.

1.2 Consequences of the Axioms

P1 The uniqueness of zero.

Suppose that 0 and 0’ are two elements of F' such that, for every a € F,

(i)

(i)
Let a =0". Then 0/ +0 =0/, by (i).
Let a = 0. Then 0+ 0" = 0, by (ii).

a4+ 0=a,
a+0 =a.

By A2, 0 +0=0+ 0, which implies 0/ = 0.

P2 The uniqueness of the additive inverse —a of a.
Given a, suppose there are two numbers x1 and x5 such that a+x1 = 0 and a+z5 = 0.
Adding x5 to both sides of the first equation and adding x1 to both sides of the second

equation gives

(a4 x1) + 22 = 29

and

(a+x2) + 21 = 27.

Hence, by the commutative and associative laws, we get

a+ (z1+x2) = 29

and

a+ (z1+ x2) = 21,

which implies that x1 = xo.
a+(—a)=0.

This unique element will be denoted by —a.

Thus
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P3 For any two numbers a and b there exists a unique number x such that
a+x=0>.
This number is given by x = b + (—a).

To prove P3 we shall show that
(i) « satisfies the equation a + z = b;
(ii) if 2’ also satisfies the equation, then z’ = z.
Proof of (i). Ifz =0+ (—a), then by A2—A4,
a+z=a+ Db+ (—a)=a+[(—a)+b=Jla+(—a)]+b=04+b=b+0=0.
Proof of (ii). Suppose that 2’ satisfies the equation a + ' = b. We shall show that
r=2a.
Adding (—a) to both sides of the equation a + ' = b, we get
(a+2')+ (—a) =b+ (—a) = .
The left hand side is
(a+2')+(—a) = a+[2'+ (—a)] = a+[(—a)+2'] = [a+ (—a)|+ 2" = 0+2" = 2.
Thus we conclude
2 =b+(—a)=2x.
P4 For a # 0 and any number b, there is a unique number z such that

axr = b.

b
This number will be denoted by a~'b , or —.
a

Proof. We first verify that = a~'b satisfies the equation ax = b :

ar=ala ' -b)=(a-a”Hb=1-b=h.
Secondly, if o’ satisfies az’ = b, then a~'(az’) = a~'b, so that 1 -2’ = a~'b. Hence
¥ =a"'b=x.
P5 For all numbers a, —(—a) = a. If a # 0, then (a=1)~! = a.

Proof. By P3, —b is that unique number such that b+ (—b) = 0. Now (—a) +a = 0.
Thus, taking b = —a, we have —(—a) = a.

The proof of the other statement proceeds analogously.
P6 For all numbers a, we have a -0 = 0.

Proof. We have -0 =a-(0+0) =a-0+a-0. Thus b = b+ b, where b = a - 0.
Adding —b to both sides, we get

(b+b)+ (=b) =b+ (-Db).
Hence b+ (b+ (=b)) =0 or b+ 0 = 0, so that b = 0, as required.
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1.3 The Real Numbers as an Ordered Field

It is known that the real numbers may be ordered in such a way that:

O0l. z<z (Reflexivity)
02. z<yandy<zr = z=y (Antisymmetry)
03. z<yandy<:z — zxz<z (Transitivity)

O4. For every x and y, one and only one of the following holds:
r=y o x<y oOr y < x. (Trichotomy)

As usual, z < y denotes “x is smaller than y or equal to 4", and x < y stands for “z is
smaller than y”.

The order and the operations of addition and multiplication are related as follows:

OA. Ifzx>y,thenx+2>y+ z for all z.
OM. Ifzx>yand z>0,thenz-2>y-z.

Definition 1.1 A field in which the above holds is called an ordered field.
Theorem 1.1 In an ordered field, 1 > 0.

Proof. By trichotomy, either 1 > 0 or 1 =0 or 1 < 0, and only one of these relations
holds. We know that 1 # 0, so we may assume that 1 < 0. Adding —1 to both sides, we
get, by OA: 0 < —1. Then 0 < (—1) - (—1), by OM. Hence 0 < 1, which contradicts 1 < 0.
Hence 0 < 1, as required.

Example 1.2 Ordered Fields.

(a) The set of rational numbers forms an ordered field.

(b) It is not possible to define an order relation in Zs in such a way that Zs becomes
an ordered field. If it were possible, then 1 > 0. Note that 1 = —1, so that —1 > 0. Hence,
by OA, 1+ (—1) > 0. Thus 0 > 0, contradicting the trichotomy property.

(c) It is not possible to define an order relation on the set of complex numbers in such
a way that it becomes an ordered field. The justification will be left as an exercise. |
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1.4 Order Completeness of the Reals

The representation of real numbers as points on a directed line illustrates an important
feature of sets of real numbers —“those that are bounded above must have a smallest
upper bound”. The precise definitions follow.

Definition 1.2 .

(i) Let ACR. A is bounded above by M, equivalently, M is an upper bound of A if
a <M foralla in A.

(ii) M is said to be the least upper bound of A if M is an upper bound for A, and, if P
is any other upper bound of A, then M < P.

The definitions of lower bound and greatest lower bound are left as an exercise.

Definition 1.3 An ordered set is said to be complete if every non-empty subset A
which is bounded above has a least upper bound.

We can now formulate the fundamental Completeness Property of R.
Axiom of Completeness. IR is a complete ordered field.

Let us examine some consequences of this axiom.

Theorem 1.2 Archimedean Property For any real number a there is an integer
n such that a < n.

Proof. Suppose this were false. Then there would exist a real number a such that
n < a for all integers n. Thus, the set of integers would be bounded above. As such, it
would have a least upper bound m (not necessarily an integer).

Thus n + 1 < m for all integers n. Hence n < m — 1, for all n. Hence m — 1 would also
be an upper bound for the set of integers. Hence m < m — 1 (since m is the least upper
bound). This last inequality implies m + 1 < m, hence, adding —m to both sides, 1 < 0,
which is impossible. This contradiction proves the theorem.

Corollary 1.1 Given x > 0, there is an integer n such that x > 1/n > 0.
(Select n so that n > 1/z, noting that x # 0.)

Theorem 1.3 FEvery nonempty subset B which is bounded below has a greatest lower
bound m.

Proof. Theset A= —B = {—b | b€ B} is bounded below. Hence A has a least upper
bound /¢. It is easily verified that m = —/ is the greatest lower bound of B. |
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Theorem 1.4 Denseness Property of the Rational Numbers
Let © < y be any real numbers. There are integers p, q such that

x<]—)<y.
q

Proof.
Casel 0O<z<y.
By the Archimedean property, there exists ¢ such that ¢ > 1/(y — x), which implies that
qy —qx > 1or
qy > 1+ qz. (1.1)

Let z = gx. Consider the subset S, of all natural numbers that are greater than z:
S,={meN | m>z}.

By the Archimedean property, S, is not empty. Denote by p the least element of S,. Then
we have the following inequality

p—1<z=qr<p,
which, combined with (1.1), gives

qr <p<qy or x<§<y.

Case 2 z=0.
The case z = 0 is covered by the previous corollary.

Case 3 The case x < 0 < y follows from —y < 0 < —z, and = < y < 0 follows from
the case 0 < (—y) < (—x), discussed above. 1l

Finally, not all real numbers are rational numbers.

Example 1.3

Let A={z €R | 22 <2 or x <0}. Then 4 is bounded above, by 2, for instance.
Let m be the least upper bound of A. Since 5/4 € A, we have 1 < m. Thus m > 0.
We show that m? = 2. If m? < 2, it is easy to verify that

2
2 —m? 2 —m?
0<——"_ and ST ) <o

2em+1) ™ <m+ 2(2m+1)> ’

which is impossible, by definition of m.
If m? > 2, then one can verify that

which again contradicts the definition of m. Thus m? = 2.
A familiar argument shows that there is no rational number whose square is 2.
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Exercises 9

1.5 Exercises

1.1

1.2

1.3

1.4

1.5

1.6

Consider the system with four elements 0,1,2,3 and the rules of addition and multi-
plication as given in the following tables:

C\DI\DHO_’_
w N = oo
S W N ==
— O W NN
N = O WlWw
W N = O e
O OO OO
W N = Ol
SR N O
N W OoO|lw

where x,y,u,z € {0,1,2,3} and z,y, and z are all different.

Is it possible to choose the values of z,y, u, z in such a way that the system is a field?

Find the least upper bound (supremum) and the greatest lower bound (infimum) of
the following sets:

(i) All numbers of the form 27" 4+ 37™ 4 57P where n, m, p > 1, are integers.
(ii) The set of all numbers x such that

22 +r—-1<0.

Let A and B be sets which are bounded above. Denote by A+ B the set of all numbers
of the form a + b, where a € A and b € b. Show that

sup(A + B) = sup A + sup B.

If A, B consist of positive numbers and A - B denotes all products of the form a - b,
where a € A, b € B, show that

sup(A - B) = (sup A4) - (sup B).

If S C T and T is bounded above, show that S is bounded above and

sup S < supT.

Let A be a non-empty subset of R. Show that x is sup A if and only if z has the
following properties:

(i) a <z, forall ae€A;

(ii) for any € > 0, there exists a in A, such that

r—e<a<ux.

Formulate an analogous characterization for inf A.



10 Chapter 1 — Real Numbers

1.7 Let —A={—a | a€ A}. Show that, for A # 0,
sup(—A) = —inf A,
inf(—A) = —sup A.

1.8 What is sup (), inf (), where ) C R is the empty set?

1.9 |z| is defined as follows:

2| = z, ifx>0
= —z, ifx<0

Prove that the following hold for all z, y in R..
(1) |z = 0;
(ii) |z| =0 <= x=0;
(i) [of? = 2%
(iv) [a] = Va?;
(v) lz+y| <|z|+|y| (Triangle Inequality);
(Vi) lz+yl=lz[+lyl < =xy=0.
1.10 Show that if |z| < e, for all positive numbers ¢, then z = 0.

1.11 In an ordered field, show that 2% > 0 for every z.

1.12 Prove by Mathematical Induction, or otherwise, Bernoulli’s inequality:
(14+2)" > 1+ nx,
provided x > —1, z # 0, n is an integer number greater than 1.

1.13 Let x1,x9,...,2, be positive numbers. Prove the following Arithmetic-Geometric
Means Inequalities. When does equality take place?

T+ X2

(i) 5 = VT2,

r1+ T2 + X3

> Vi T T
3 = 3

Ty t+xa+ -+ Ty
(iii) > Y1 - T9 - Ty
n




Chapter 2

Sequences of Real Numbers

2.1 Introduction to Sequences

Definition 2.1 A sequence of real numbers is a real-valued function f whose domain
1s the set of natural numbers N, i.e.

f:N —R.

The function f which defines a sequence is a rule that assigns to each natural number n a
unique real value, normally denoted by a,,:

fn)=an, n=1,2,...

The number a,, is called the n-th term of the sequence and the corresponding sequence is
denoted by the symbol {a,}:

{an} ={a1, a2, a3, a4, .. .}.

We will find it convenient to use the notations {b,},{cn},{dn},{zn}, {yn}, etc., in addition
to {a,}, to denote sequences, especially when we deal with two or more sequences at a time.

Example 2.1 Defining sequences.

(a) The function f(n) = ni T n € N, defines a sequence with n-th term a,, = — Z T SO
that
MTITT Ty T 1Ty BT3 Ty

and so on. We have

fand = (3,

[GVE )

(=n"

n2

(b) The function f(n) = , n €N, defines the sequence

1
b, Y =1{-1, = —= —_— = .
{ b} =11, 4 9 16> 25 36’
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(c) The function
2

F(n) =cn = (—1)"n”—+2, neN,

defines the sequence

1 4 9 16 25 n2
— (- . _Z 2 =)
{Cn} { 3 q 5 6’ 7 7( )TL+2’ }

(d) Consider a sequence with n-th term
dn:sin%, n=12....
This sequence is defined by a periodic function
f(n) :sin%, n=12,...
with period w = 8, so that
fn+8)=f(n) ie. dypyg=dn, n=12,....

The first 8 terms of the sequence are shown in the following table:

n| 1 2 3 4 5 6 7 8

dy=sin() |2 1 ¢ 0 g -1 ¢ 0

Refer to Figure 2.1 which shows a graph for each of the four sequences considered above.
Although, only the first 20 terms are shown for each sequence, we clearly see some differences
in the behaviour of the sequences {a,}, {bn}, {cn}, and {d,,}, as n changes.

is an increasing function of n, bounded by the numbers 0

For example, a, =
n
and 1:

+1
0<a,<l,

and, as n gets larger, a,, gets closer to the number a = 1.

The terms of {b,,} are positive for even values of n and negative for odd values of n. As
n gets larger, b, approaches the number 0.

Now, it is not hard to see that, as n increases,

does not get close to any number. Figure 2.2(a) shows more terms of {c,}, and we can
clearly see the trend: the absolute value |c,| of ¢, increases without bound, as n increases.
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Finally,
d, = sin ™
n

is a periodic, bounded function of n:
“1<d, <1, dpis=dn, n=12,...

Refer to Figure 2.2(b), which shows the first 50 terms of the sequence, to have a clearer
picture of the behaviour of the sequence.

n (=)™
a — = —
(@) an=_— (b) by ="—;
X mm = bd
0.1
o.sf -
0.6 0.05 ]
0.4 — T n
"-IJE'EE 10 20
0.2 -0.05
I
0 5 10 15 20 .
1 (d) dy = sin
— (— = SIn —
© = (1" »=sin
1 n n n
15 . . lz ] - - - a -
10 .
5 .
-.- + n 4 & ~ 1]
_5 L. i0 1 20 123456871 16 20
-10 .
ic 11 [] [ ] []
u _1 a =

Figure 2.1: First terms of the sequences considered in Example 2.1.
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2
n . ™
(a) cn:(—l)”n_’_2 (b) dn:smT
... 1- - u - I a a
4|:| .-. - LI} LI - n LI LI} LI} L]
I. "
20 r " 0.5
I..-
L h n
ta.. 20 30 40 50 § 1 2 3 40 50
-20 el -0.5
.-.. d & LI LI a a d & LI
—4d .-IlI _1 n n n n n n

Figure 2.2: Examples of non-convergent sequences.

2.2 Definition of Convergence

Definition 2.2 (Limit of a sequence)
A sequence {a,} is said to converge to the limit a if and only if for every e > 0 there
exists a natural number N such that

la, —a| <e for n>N.
If {a,} converges to a then we write lim,,_,o a, = a.
Since
lap, —al|<e <<= —e<a,—a<e <<= a-—-cec<a,<a+te,
the definition requires that, given € > 0, there is a number N (dependent on ¢) such that

all terms a,, of the sequence, for n > N, fall within the e-neighbourhood of the limit a, that
is within the interval (a —e,a + €).

Using the quantifiers V and 3, the above definition can be written as follows.

lim a, =a <= Ve>0 I NeN (n>N = la,—a|<e). (2.1)

n—oo
Intuitively, lim a, = a if, as n increases, a,, gets arbitrarily close to a.
n—oo
In light of the above, when we refer back to Figure 2.1, we can observe that the sequence

{an} converges to the limit a = 1 and {b,} converges to b = 0. The sequences {c,} and
{d,,} seem not to converge to any number.
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Definition 2.3 If the limit lim a,, in (2.1) exists, we say that the sequence {ay} con-
n—oo

verges or is convergent. Otherwise, we say that the sequence diverges or is divergent.

Theorem 2.1 If lim a, ezists, then it is unique.
n—oo

Proof. By definition 2.1 we have

lim a, =0 <= Ve >03IN,eN (n>N, = |a,—a|<ei)

n—o0

and

lim a,=d <<= Vea>03IN,eN (n>Ny = |a,—d]|<ey).

n—oo

€
Let € be any positive number and let e1 = g9 = 3 If n > max(Ny, No) then |a, —a| < §

and |a, — a'| < §. Consequently,
e €
0 =@ = 1(an — )~ (o0 = @) < an — 0| +|on —al < 5+ =,

which implies that a = a/, since € > 0 is arbitrary. |

Example 2.2 Showing that lim a, = a directly from the definition.

n—oo

(a) We shall show that
n

lim =1
n—oon 4 1
Let € be any positive number. We have
n 1 1

jow—al = | 1] = - )= Lo

provided n + 1 > % or n > % — 1. Thus, if we choose N being the greatest integer number
that is less than or equal to %:

1
N = [=
2l
then the condition n
-1
|n 1 | <e
is satisfied for all n > N.
(b) We shall show that
—1)"

Let € > 0 be given. We have

-1" 1
]bn—b\:]( 2) —0] = — <& provided n>N:[
n n

o
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It is clear that the value of N in (2.1) depends (normally) on &, which is the case in our
example:

1
N = {E — 1] for the sequence {a,} = {nj— 1}
N {1} for th by = (5
= |— r n nf = )
NG or the sequence

n2
Let us select some values of € and see what are the corresponding values of N:

£ | 0.1 0.05 0.02
H

N=[L1-19 19 49

N=[/i |3 4 7

In Figure 2.3, the sequences {a,} and {b,} are shown again, now with the number of

terms increased to 50. In Figure 2.3(b), grid lines corresponding to the interval (b—e,b+¢)
are included, for ¢ = 0.02.

n —1)"
(@) an=-— (b) bn:%
s 0.05
0.95 .
0.0 -
- S B LLE
. g =" 20 40
. -0.02
Il .
10 Z0 30 40 50 -0.05

Figure 2.3: Illustrating convergence of the sequences {a,} and {b,} of Example 2.1.

Example 2.3 Showing that lim a, = a directly from the definition — Pointing out
n—oo
that the smallest value of N in definition 2.1 is not necessarily needed.

(a) I n+1 1
1m = —.
Ao +3 2

Let € > 0 be given. We have

| | ‘n—i—l 1‘ 1 _1
ap — a —s| = o < —.
" 2n+3 2| 22n+3) n
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Now ] 1
n>N:[—} = —<ec.
€ n

Hence, choosing N = [%], and assuming that n > N, we have
la, —a] < — <e,
n
so that the inequality |a, — a| < £ holds for n > N = [1].

Note that we do not need to find the smallest possible value of N with the property
that the inequality |a, — a| < ¢ is satisfied for all n > N; any value of N with this property
is sufficient.

In fact, in this example it is not difficult to find the smallest possible value of N by

solving the inequality
1

<
22 +3) O

but, in general, this may be difficult.

o2n + 1 2
b) lim ———— = —.
(®) s a3

Let € > 0 be given. We are to find a natural number N such that

2n3 + 1 2
]an—a\: m—g <e for n> N. (22)

We have

| | 6n3 +3 —6n3 —2n — 8 |2n + 5 3n _3n 1

a. —al = g _——

" 3(3n3 +n+4) 33n3+n+4) 3n3+n+4  3nd  n?
Now,

1 1
n>N:_$ — E<€

1
Hence, (2.2) holds with N = [%]
n+3

(c) lim == =0,

—oon2 —5

Let € > 0 be given. We have

| | n—+3 ‘ n—|—3‘ n+3 o > 9
a —al = — = f— T n
" nZ—5 n2—5 n2—5 ’
since n? — 5 > 0 for n > 2. Now,
n+3 n—+n 2n 2n 4
= — for n >4,

= < =
n?—=5 n?2—=5 n2-5 n?2-n?/2 n
and
4 4
—<e for n>-.
n 5
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Thus 4 4 4
lap, —a| < — <e for mn >N =max{2,4, {—}} = max{4, [—} }.
n € €
(a) nlirgor" =0, |r|<1 (b) Y}eréor" =00, |r|>1

o o o o o o 0o
|l S AV RS I I (RS |

Figure 2.4: Illustrating convergence of r™ to 0 for |r| < 1 and divergence of r™ to oo for
|r| > 1.

Example 2.4 Showing that lim " =0, if |r|<1.
n—oo

If r=0then a, =0, n=1,2,... and clearly lim a, = 0. Suppose that r # 0. We are to
find NV such that e
lap, —al=|r"—0|=|r|" <e for n> N. (2.3)
loge

Take N = Tog 1]’ Since |r| < 1, log|r| is negative and we have
og|r

n>N:%ﬁ = nlog|r| <loge

= log|r|" <loge.
Since log x is an increasing function,
logr|" <loge = |r|"<e.

Refer to Figure 2.4(a) which illustrates the convergence of r™ to 0, as n — oo, for r = 2/3
andr =3/4. 1

Definition 2.4 (Infinite limit of a sequence)

(a) The sequence {ay} has limit +oo if for every positive number M there is a natural
number N such that a, > M for alln > N.

(b) The sequence {a,} haslimit —oco if for every positive number M there is a natural
number N such that a, < —M for alln > N.
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If a,, has limit +o0o then we write

lim a, = 4o0.
n—oo

If a,, has limit —oo then we write

lim a, = —oc.
n—oo

Using the quantifiers V and 3, the above definition becomes:

(a)

lim a, =400 <<= VM 3 NeN (n>N = a,>M). (2.4)
n—oo

(b)
lim a,=—-00 <<= VM I NeN (n>N = a,<M). (2.5)
n—od

Intuitively, lim a,, = +o0o0 means that a, increases without bound, as n increases,

n—oo
whereas lim a, = —oo means that a,, decreases without bound, as n increases.
n—oo

Thus, if lim a, = +oo then with any positive value of M, no matter how large it is,
n—oo
we can find an N such that all terms a,, for n > N, are greater than M. Similarly, if

lim a, = —oo, then for any M > 0 there exists N such that all terms a,,, for n > N, are
n—oo
less than —M.

Example 2.5 Infinite limits of sequences.

(a)

Let M be any positive number. Following definition (2.4), we are to find N such that
an > M for all n > N. We have

2 2

nj—l >;_n:g>M’ provided n > 2M,

ap =

so we can take N = [2M].

(b)

lim 7" = 400, if 7> 1.

n—oo
Let M > 0 be given. Choose N = [%%‘f] Then
log M

n>N — n>[ } = nlogr > log M

log r
= logr" >logM = "> M,

since log x is an increasing function.
Figure 2.4(b) illustrates the infinite limit of the sequence {r"}, as — oo, for selected
values of r > 1, namely » = 1.2 and r = 1.3.
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(c)

- —n?
lim = —00.
n—oon + 1
Let M > 0 be given. We are to find N such that a,, < —M for all n > N. We have
n? n? n?
ap = — < —— =—— < —M provided that n > V2M
n+1 2n 2

so we can take N = {\/W} [

2.3 Bounded Sequences
Theorem 2.2 If lim a, exists then the sequence {ay} is bounded.
n—oo
Proof. Let lim a,, = a. Then
n—oo

Ve>0 I NeN (n>N = a—-ec<ap,<a+e).
Let € = 1. There exists N such that
a—1<a,<a+1, for n>N.
Therefore, it is clear that the sequence {a,} is bounded:
m<a, <M, n=12,...
where
m = min(aq,ag,...,an,a — 1)

and
M = max(ay,aqg,...,an,a+1). |

2.4 The Algebra of Limits

It is clearly not always straightforward to use the definition of convergence to prove that a
sequence {a,} converges to a known limit a. Moreover, if the limit a is not known, then
the definition of convergence may not help in determining a.

Now we are going to introduce some useful results that enable us to evaluate limits of
quite complicated sequences without appealing to the definition of convergence.

The following theorem can be used to evaluate the limits of sequences that arise by
applying the arithmetic operations of addition, multiplication, and division on convergent
sequences with known limits.

Theorem 2.3 Suppose that {a,} and {b,} are convergent sequences and let ¢ be a real
number. Then the sequences

{Can}’ {an+bn}a {anbn}

are convergent and the following rules apply.
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(1) Scalar product rule:

lim ¢ a, = clim a,,
n—oo n—od

(ii) Sum rule:
lim (a, +b,) = lim a, + lim b,,
n—o0 n—oo n—oo
(iii) Product rule:
lim a,b, = lim a, - lim b,.
n—oo n—oo n—oo

(iv) Quotient rule:
Ifb, #0, for mn=1,2,..., so that the sequence {Z—n} is defined, and zfnhrgo by, # 0,

a a lim a,
then the sequence {—} converges and lim — = ">
b, n—oo b, nlLHgO by,

Proof. Let lim a, =a and let lim b, = b. By Definition 2.2 we have

n—oo n—oo

Jlim a, =a <= Ver>03 NieN (n>N = |ap—a|<ep) (2.6)
and

lim b, =0 <= Vea>0 3 NaeN (n>Ny = |b,—b| <e2). (2.7)

n—oo
(i) Let € > 0 be given and let ¢; = | |i_ T From (2.6) it follows that there exists Ny such

c
that
la, —al <e; for n > Nj.
Hence

<eg for n>DN;

Cayp — Ca cllanp, — a Cc|E Cl——
n n 1 ’C’ 1=

which implies that lim ca, = ca = c lim a,,.
n—oo n—oo

(ii) Let € > 0 be given and let ey =3 = % We have

e €
|(an +bp) — (a + )| = |(an —a) + (by, — b)| < |ap, —a| +|b, —b] < §+§ =¢
for n > N = max(N1, N3), which proves that
lim (ap, +b,) =a+b= lim a, + lim b,.
n—o0 n—o0 n—o0
(iii) Let € > 0 be given. We are to find N such that
|anby, —abl < e for n> N. (2.8)

‘We have
lapb, —abl = |(anby, — aby) + (ab, — ab)| < |(anby, — aby)| + |(ab, — ab)

= lan — allba| + [bn — bllal.
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By theorem 2.2 we conclude that the convergent sequence {b,} is bounded and con-
sequently the sequence {|b,|} is bounded too:

M >0 |by| <M for n=1,2,....

If we choose £1 = ﬁ in (2.6), then we have
£ £
lan, — al|bn| < e1M = mM =3 for n > Nj. (2.9)
Now, by (2.7), with any € > 0, |b,, — b|] < €2 for n > Ny. Let
e 1
£ = = .
272144
Then . al
£ e la £
bn —b =—-——la| == < -, 2.10

Finally, using (2.9) and(2.10) establishes the required result (2.8):

lanbn — ab] < |an — a||bn| + [bn — bl|a| < %+%:5 for n > N = max(Ny, Na).

(iv) Let € be given. We are to show that there exists IV such that

1 1, |b,—})
— — | = f N. 2.11
‘bn 2 b <e for n> (2.11)

b2
By (2.7), using €9 = 5 € we conclude that there exists Na such that

2
|bn, — b| < %5 for n > Nj. (2.12)

Since nango b, = b, by (i) we conclude that nlgréo bb,, = bnlggo b,, = b?. Therefore
Ve3 >0 3N3 (n> N3 = |bb, — b?| < &3).
Let e3 = b%/2 and let n > N3. Then
by, — b?| < €3 — b? —e3 < bb, < b® +¢3

= b-by, >b? —e3=0%—b%/2 =0b/2.

Hence,
b2

|bby,| > 5} for n > Ns. (2.13)

Using (2.12) and (2.13) we obtain

1 1, |by—0b b%/2
— = =c f N = Ny, N3).
‘bn 7 b < /2 e for n> max(Ng, N3)

Thus, by the product rule,

. an . 1 . . 1 a
lim — = lim a,— = lim a, lim — =a- = —. |



2.5 The Squeeze Theorem for Sequences 23

2.5 The Squeeze Theorem for Sequences

When examining the convergence of a given sequence {a,}, quite often it is possible to find
two sequences, say {x,} and {y,}, such that

Tp < ap<yp, for n>MEeEN,

so that, eventually, all terms of {a,} are “squeezed” between the corresponding terms of
{z,} and {y,}. If {z,,} and {y,} converge to the same limit [, then the sequence {a,} must
converge to the limit /.

Theorem 2.4 Squeeze theorem
Suppose that

Tp < ap <y, for n>MEeN (2.14)
and
Jim a, = lim g, = 1. (2.15)
Then
lim a, =1.
n—oo

Proof. Let € > 0 be given. We have to find a natural number N such that, for any

n> N,
la, — 1| <e. (2.16)
By assumption (2.15), we have
ANteN(n>N, = l—e<z,<l+e). (2.17)
ANy eN(n>Ny = l—e<y,<l+e). (2.18)

Let N = max(Ny, No, M). Then, if n > N, all the inequalities (2.17), (2.18), and (2.14) are
true simultaneously. Thus, given any ¢ > 0, we have found a value of IV such that

l—e<xp<anp <y, <l+e,
which implies (2.16). |
Example 2.6 Prove that lim r" =0 if |r| <Ll
n—o0

Solution. If r =0 then {r"} = {0}, hence lim r" = 0. Let r # 0. Then
n—oo

1 1
0<|rl<l = ﬂ>1 = ﬂzl—i—d where d > 0.
r r

Hence, by Bernoulli’s inequality,

(1+d)" >1+nd, forany n>2,

I~

which implies that

0<|r|" < for n> 1.

1
14+ nd’
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Since lim = 0, by the squeeze theorem, we conclude that
n—oo 1 + nd
lim 7" =0. 1
n—oo

Example 2.7 Prove that lim |r|" =400 if |r|> 1.
n—oo

Solution. If |r] > 1, then there exists a positive number d such that |r| = 1+ d.
Thus, by the Bernoulli inequality,

r"=14+d)" >1+nd for n>2.

Now, let M be any positive number. Then

M—-1
d

14+ nd> M provided that n >

-1
Therefore, for any M > 0 there exists a natural number N = max (2, ) with the

property that
|r|" >1+nd>M for n> N.

This means that
lim |r[* = +oc0. 1
n—oo

Figure 2.4(b) shows us the first twenty terms of the sequence {r"} for (a) r = 1/4, r =1/2,
and (b) r =3/2, r =4/3.
n

Example 2.8 Prove that lim ac_' =0, when x is any number.
n—oo n!

Solution. Let N be the smallest natural number such that N > |z|, so that a = |z|/N < 1.
Then, for n > N, we have

z" [2]" < M <\xr>”‘N“ ¥ (!x\)‘N“ "
—| = — = — | = a”.
n! (N-1DIN(N+1)(N+2)---n ~ (N-1)!'\N (N-1)!\N
Hence n

M <ec- an7

n!

where ¢ does not depend on n and 0 < a < 1. Since lim «" =0 and
n—oo

=" n
0<—'§ca, for n> N,
n!
n

.z
we have lim — = 0. [
n—oo nl
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Example 2.9 Prove that lim {/a =1, for a > 0.
n—oo

Solution. We consider two cases.
Case 1. a>1.

If @ > 1 then {/a > 1 and /a =1+ d,,, where d,, > 0. Thus, by the Bernoulli inequality,
a=1+dy,)">14+nd, for n>2.

Since 1
. a —
lim =0,
n—oo  n

by the Squeeze Theorem, it follows that

lim d, =0

n—oo
and consequently
lim {a=1+ lim d, = 1.
n—oo

n—oo

Case 2. O<a<l.
If 0 < a <1, then a = 1/b, where b > 0, and

lim Vb=1,

n—oo
which implies

1
lim {fa=——==1 1

n—0o0 lim Vb
n—oo
Example 2.10 Prove that lim /n = 1.
n—oo

Solution. We note that n > 1, when n > 1, so that we can write
Yn=1+d,, where d, >0

and we have

Thus

which implies that

2
0<d, < , for n=2,3,...,
n—1

Hence lim d,, =0 and
n—oo

lim ¢/n = lim (1+d,)=1. 1

n—o0
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2.6 Monotone Sequences

Definition 2.5 (Monotone sequence)
(1) The sequence {a,} is called increasing, if a, < ap41 for alln €N .

(ii) The sequence {ay} is called strictly increasing, if a, < an41 for alln €N .
(iii) The sequence {a,} is called decreasing, if a, > an4+1 for alln €N .
(iv) The sequence {ay} is called strictly decreasing, if a, > a1 for alln e N .
A sequence that is either increasing or decreasing is called a« monotone sequence.
Example 2.11 Monotone sequences.
(a) {27} is strictly increasing.
(b) {3%} is strictly decreasing.
(c) {(=1)"n?} is not monotone. |
Theorem 2.5 Convergence of monotone sequences
(1) If {an} is increasing and bounded above, then it converges to its least upper bound:

lim a, = supa,.
n—oo

(ii) If {an} is decreasing and bounded below, then it converges to its greatest lower bound:

lim a, = inf a,,.
n—oo

Proof.
(i) We assume that {a,} is increasing and bounded above. Let supa, = M. Then,
given any € > 0,
ap <M forall nelN,

ap > M —¢ for at least one value of n.

Let this value of n be N,. Now, {a,} is increasing, so that a, < a,y; forall n €N and
consequently a, > ay > M — ¢ for n > N,.
Hence, we have

M —e<a, <M +e orequivalently |a, — M| <e for n> N,.
Hence lim a, = M.
n o0

(i) If {a,} is decreasing and bounded below, then {b,} = {—a,} is increasing and
bounded above. Hence, by (i), we conclude that {b,} converges and

lim b, = supb,,.
n—oo
Now,

lim a, = lim (—b,) = — lim b, = —supb, = inf a,. |
n—oo n—00 n—oo
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Example 2.12

Let d;, i=1,2,..., be one of the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8 9. Consider the
sequence {a, } defined as follows:

a] = 0d1
ag = 0.d1d2
asz = 0.d1d2d3

Since
apt1 — Gp = 0.000---0dp4+1 > 0,

the sequence is monotone increasing. Since a, < 1, the sequence is bounded from above.
Hence {a,} converges to a limit a (that is unique):

a= lim a,.
n—oo

This limit is the real number represented by the decimal expansion

a=0.didyds - dy--- B

. 1++5 : -

(a) nh—{%ox”: 5 =1 (b) nhrréoan—\/i—lg
1t - - 1.5 -
1.5 1z P e N N N—
1.4 1.3
1.3
1.2
1.2
1.1 1.1
n n
Z2 3 4 5 6 7 8 9 10 2 3 4 5 a6 7 8 9 10

Figure 2.5: Illustrating convergence of the sequences {z,} and {a,} of Example 2.13
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Example 2.13 FExamining convergence of sequences defined by a recurrence formula.
(a) Let {x,} be given by
z1=1, zpr1=vV1+z, n=12 ...

The first ten terms of the sequence are shown in Figure 2.5(a). We shall show that

(i) 0<uz, <2, forallmn;
(ii) Tpt1 = Tp, for all n;
s i 145
(iii) A zp = ——.

(i) Clearly, z1 < 2. Assume that z; < 2. Prove that zj; < 2. We have

Tho1 =VIitag<Vi+2=V3<2

Thus, by Mathematical Induction, x, < 2 for all n.
(ii) To prove that z,41 > x,, proceed by induction, once again. Clearly zo > 7.
Assume xgy1 > . Then

Trro = 1+ zpg1 > VI + ) = Tpgr.

Hence z,41 > x, for all n > 1.
(iii) By (i) and (ii), {x,} is a monotone increasing sequence which is bounded above.
As such it converges (to its least upper bound). Let the limit be [. Now

x721+1:1+xn & r}LI%ox”+1:T}Lrgox”:l = P’=1+1

Thus 12 =1 —1 =0, so that [ = (14 +/5)/2. But 2, >0, n > 1, hence | = lim z, > 0.

n—oo
Hence

| = 1*“/5. |

(b) Let {a,} be given by

ap =1, apy1=

We shall show that {a,} converges and evaluate the limit.
Note that

3 17 577
o =1 ay=5 =15 ag= 5 =14166..., as= -0 =1414215 ..

Refer to Figure 2.5(b) to see that {a,} converges fairly quickly to v/2 = 1.41421356... To
prove that {a,} is a convergent sequence, we prove that (i) {a,} is decreasing for n > 2;
(ii) {a,} is bounded below.
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(i)  First observe that a,, > 0, for n > 1, can be proved easily by induction. Then

an+1 < ap <~ % (an + %) < ap

= a2 +2<2d

=  2<adl

Thus, we need to prove that a2 > 2 for all n > 2. Now a3 > 2. Assume aj > 2. We have

) 1 2\2 1, 1 1, 1
ak-l-l:Z ak"i‘a—k :Zak+1+a—z>2 Zak+a_i>1

ap +4 > 4a?

ap —4ai +4>0

rrud

(a2 —2)% > 0.

Since the last inequality is true, it follows that a2 > 2 for n > 2. Hence a1 < a, for n > 2,
as required.
(ii) By (i), we have a, > V2, n > 2.
Therefore we conclude that {a,} converges. Now we show that it must converge to v/2.
Suppose nh—{go apn = [. Then we have

I i g 1 2\ 1 I 2 —1l 2
= e =l g (et 00 =5 (et g | =30
n—~oo
Hence

1 2
zz§<z+7> — 2=2 = =42

Since a,, > /2 for all n > 1, | cannot be negative. Hence

l:nlirgoan:\/i. |

2.7 The Number e

One of the fundamental constants in Mathematical Analysis is the number
e=2,7182818284....
It can be defined as a limit of an increasing sequence, an avenue which we now explore. Let
1 n
ap=(1+=)", n=12,...
n

We shall show that (i){a,} is strictly increasing; (ii) {a,} is bounded above. So that, by
virtue of theorem 2.5, {a,} is convergent. Figure 2.6 illustrates the above concepts.
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(a) an:(l—&-%)”, n=1,2,...,10. (b) an:(l—i-%)”, n=11,12,...,100.
e = e —
2.6 e 2.6 ff—_
2.4 o . 2.4_:
2.2 ] 2.2f
2 4 & = 10 0 20 40 &0 50 100

1
Figure 2.6: The first 100 terms of the sequence a, = (1+ —)" that converges to the
n

number e.

(i) By the Bernoulli inequality,

1 1
1—-=)">1—— f 1
( 5)" > ~ for n>

We have 1 1 1 1 1
1-=)">1-- = (1+)"0--)">1-=
n n n n n

1 1
— (1+—)"(1—5)”—1 > 1,

for all n € N . Therefore

and we get

r )”*1:an,1, for all nelN.

1
= (14 =)
n (+n) >(n—1

(ii) By the binomial expansion, for n > 2,

wmte iy =B (e S () -2 S
k=0 k=2 k=2
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The k-th term of the sum Y aj can be written as

o <Z>(%)k :n(n—1)(n—2)---(;;—k‘—l—?)(n—k:-i—l)(l)k

n

nn—1n-—2 n—k+2n—-k+11

n on n n n k!
1 1 2 k—1
= —(1=>Y1=2)...(1=
Sa-D0-2)a-t,
so that
1 1 1

ap <

ﬁ:1><2><3><~~~><k<1><2><2><---><2:2’f—17
for k = 2,3,...,n. Therefore

1+1+zn: S

a = (8% — —_ JRE—

n = k 9 92 on—1
1-(3)"

1
= 1+ i :1+2(1—(§)”)<3,

=3

foralln=1,2,.... N

2.8 Subsequences

Definition 2.6 A sequence {b} is called a subsequence of the sequence {ay,} if there
is a strictly increasing sequence of natural numbers {ny},

ng<ng <---<ng<---

such that
b =apn,, k=1,2,...

Example 2.14 Subsequences and their limits.

1\ . nmw
(a) Leta,= (1 - 5) sin —-.

Consider the subsequences {agy}, {asr—1}, and {agr+1}, k =1,2,... of the sequence {a,}:

— (1—i)s‘ —2]”—<1—i> 0=0, k=1,2
agk = 2]{; 11 2 = 2]{; = Vv, =1,4,...
1\ . (k-7 1 1
o= (1- —(1- (=1) = 1, k=1,2,...
k=1 ( 4k—1>sm 2 ( 4k—1>( )= 1 b 'S
1
aqk+1 = 1 k=1,2,...

4k + 17
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Note that, as k — 00, agr — 0;  agr—1 — —1;  agr+1 — 1. Refer to Figure 2.7(a) to see
clearly the three subsequences of {a,}.
(b) Consider again the sequence {d,} of Example 2.1:

™
d, = sin —.
4

Consider the following subsequences of {d,,}:

4
d4k:sinz7r:sin7r:0, k=1,2,...

8k — 1 v

dgr—1 = sin 1 T=-—sin}=-% k=12,...
8k —2
dgi—9 = sin 1 T=-sing=-1, k=1,2,...
8k — 3
dsi_3 = sin — —sindmT = 2 p—12..
8k +1
dspsr = sin Z —sinT =¥ k=12
8k +2
dgk+2:SiH 2_ :singzl, k:1,2,
8k + 3
dgit3 = sin Z =sin3 =¥2 k=1.2,...
(See Figure 2.7(b).) 1
1 . nm .onm \/5 \/5
(a) an:(l—g)&n? (b) dnzslnj’ [1:_77 12:7
' lae— — * *
.5
“““““““““ n . —— n
(& 16 24 32 (& 1o 24 32
-0.5
' . 1t * s L -

Figure 2.7: Subsequences.
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Theorem 2.6 lim a, = A if and only if every subsequence of {a,} converges to A.
n—oo

Proof.
=> Assume that lim a, = A. Let {a,,} be a subsequence of {a,}. To show that

n—~o0

nh_}rrgo an, = A, let € > 0 be given. We know that there is IV such that
n>N = |a,—A|<e.
Now, ny < ng < ---, so there is K such that N < ng, by the Archimedean property. Hence,
E>K = npy>ng = npy>N = |a, —A|<e,

as required.

<= It is enough to observe that every sequence is a subsequence of itself. |

Qnp,
(a) ap =a1 =1, apnt1 =an + an—1. (b) Tn = )

e

. 13/8 .
S000
. i e n
G000 5 = 10 15 20
3000 .
----- an® " n
5 10 15 20 g/5 "

Figure 2.8: Fibonacci sequence {a,} and the sequence {r,} of ratios of the consecutive
terms of {a,}.

Example 2.15 Show that the Fibonacci sequence {ay} defined by
aO:alzla Op41 = Gp + Ap—1, n:172a"'7
diverges.

Solution. We shall show that {a,} is unbounded above and hence diverges (see Figure
2.8(a)).
Note that
=1, a1 =1, as =2, a3=3, a4=05, a5=8, ag=13, a7 =21, cdots.

It is natural to expect that a, > n for all n. This is certainly true for n = 1,2. Assume
that a, > r for all » < k, where k > 2. We shall show that a1 > k + 1, so that the result
follows by Mathematical Induction. Since k£ > 2, we have

Ap+1 = af + agp—1 — ak+12k+(k_1)22+(k—1):k+1. I
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Example 2.16
Let {a,} be the Fibonacci sequence and consider the sequence {r,} of ratios of the

consecutive terms of {an}:
Qn

,n=12 ...

Ty =
an—1
Show that the sequence {r,} converges and find its limit.

Solution. To prove that {r,} converges, we shall consider separately the two subse-
quences {ro} and {rox_1} of {r,} and show that they converge to the same limit:

lim rop, = lim 795_1.
k—oo k—o0

We list the first few terms of {ry}:

3 5 8 13 21
15 27 a) P = ) To °
2" 3 5 8 13
and claim that
1<r, <2, n=12,... (2.19)
We note that n )
a a Qp_ Qj_
S Rl R G
Qg ag Qg Tk

Hence, assuming that 1 < r; < 2, we conclude that
1<1+1<1+—1—— <1+1——2
p— T —_
2~ Tk = 1 ’

and the claim (2.19) is proved by Mathematical Induction.

If n > 3, then
1 1 _
TTL—l 1 + T2 1 + Tn_g
Thus
Tn —Tn-2

rn+2 - rn = (1 + T'n)(l + rn_2)7

which implies that r,,4+2 — 7, and r,, — r,_2 have both the same sign. Now

3
T3—7“1:§—1>0 — Tok+1 — T2k—1 > 0, k=1,2,3,...

5
T4—T2:§—2<0 — rok42 —Top < 0, k=1,2,...
Hence {rox_1} is a monotone increasing sequence, bounded by 2 from above, and as such
converges. Similarly we conclude that {ro;} converges as a monotone decreasing sequence
that is bounded from below (by the number 1).
Let

ll = lim Tok—1, lg = lim T2k -
k—o0 k—o0
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By (2.20), we have

ll l2
d lh=1+——
1+l1 an 2 +1+l2’

so that both [y and Iy satisfy the equation

hh=1+

P—1-1=0.
There are two solutions to the above equation: (14 v/5)/2. By (2.19), [ > 0 and Iy > 0.

Hence
. 1+ \/5
li=103= 1lim r, = .
n—oo

2

(See Figure 2.8(b)).

2.9 Bolzano-Weierstrass Theorem

One of the fundamental properties of bounded sequences of real numbers is expressed by
the following theorem.

Theorem 2.7 Bolzano-Welierstrass theorem

Every bounded sequence has a convergent subsequence.
Lemma 2.1 FEvery sequence in R has a monotone subsequence.

Proof. Given a sequence {a,,} of real numbers, we must constuct a subsequence {a,, }
which is either increasing or decreasing.
Consider the set

SN = {aN+1,aN+2, .. }

that, given N (N =1,2,...), contains all terms {a,} of the sequence {a,} for n > N.
Now, we distinguish two cases.

(i) Every set Sy, N =1,2,..., has a largest element.
(ii) At least one of the sets Si,.52,... has no largest element.

In case (i), we can construct a decreasing subsequence {ay, } of {a,} as follows:
ap, = Maxa, = max Sy,
n>1

(p, = MAaxX a, = max Sy,
n>ni

ap. = Max a, = max.s,
ns noms n ng
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Obviously,
n<ng<ng<---

and
S1 D80 DSpy, D -,

which implies that
max S > max .Sy, > max.Sy, > ---

and the subsequence so constructed is decreasing:
anl Zang Zan3 Z

If we deal with case (ii), then there exists a natural number M such that the set Sps
does not have a largest element. Hence, for any a,, with m > M there exists an a,, such
that n > m and a, > a,,. Then we can construct an increasing subsequence {a,, } = {cx}
as follows.

Let ¢; = apr41 and let co be the first term of {a, } following ¢; such that ¢y > ¢;. Now,
let c3 be the first term of {a,} following ¢y for which ¢3 > ¢2, and so on. Hence

cp<cg<ceg<---. I

We now prove the Bolzano-Weierstrass Theorem.

Proof (of Bolzano-Weierstrass Theorem)
By the above lemma we conclude that the sequence {a,} has a monotone subsequence
{an,}. Since {a,} is bounded, so is its subsequence {ay, }. Thus {a, }, k=1,2,...1isa
monotone sequence that is bounded and consequently {a,, } converges, as k — oo.

2.10 Limit Superior and Limit Inferior

Definition 2.7 A real number x is called a cluster point of the sequence {a,} if there
exists a subsequence of {a,} that converges to x.

Let C' denote the set of all cluster points of a given sequence {a,}. By the Bolzano-
Weierstrass theorem, each bounded sequence has at least one convergent subsequence, and
consequently at least one cluster point.

If {a,} is a convergent sequence with nlgréo an = a, then C consists of one point only,
the limit of {a,}:

C ={a}.

The set of all cluster points of a given sequence can be IR. The reader is asked to find
an example of such a sequence.

Theorem 2.8 Let {a,} be bounded and let C' denote the set of all cluster points of
{an}. Then C has a supremum and an infimum.
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Lemma 2.2 Suppose that lim a, = a.
n—oo

() Ifa, >m, n=1,2,..., then a > m.

(i) Ifa, <M, n=1,2,..., thena < M.

Proof.

(i) We assume that lim a, =a and a,, > m, n =1,2,... Therefore
n—oo

Ve>0dN (n>N = a—e<ap<a+e).

Since ap, >m, n=1,2,..., we have m < a, < a+¢ for n > N. This implies that m < a+¢
and the inequality holds with any value of € > 0. Thus we conclude that

lim a, =a > m.
n—oo

(ii) We have
an <M — —a,>-M

and (i) is applicable. Thus lim (—a,) = —a > —M which implies a < M. 1
n—o0

Definition 2.8 Let {a,} be a bounded sequence. Denote by C' the set of cluster points
of {an}. Then C is a nonempty bounded set. We define:

(i) limsupa, = lim a, to be supC;
n—oo

(ii) liminfa, = lim a, to be inf C.
n—o0

When {a,} is unbounded above we define limsup a, = lim a, = +oo.
n—oo

When {ay} is unbounded below we define hnniio%f ap = lim a,, = —oo.

Example 2.17

Let ap, = (-1)", n=1,2,... Then C = {—1,1} and limsupa, =1, liminfa, = —1.

n—oo n—oo

Theorem 2.9 Existence of limits
Let {a,} be a bounded sequence. {ay} converges if and only if

lim sup a,, = liminf a,,.
n—oo n—oo

Proof. The proof is left as an exercise.
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2.11 Cauchy Sequences

If lim a, = a, the definition of convergence implies that the terms a, of the sequence
n—oo

{a,} get arbitrarily close to the limit a as n gets larger. In this situation the terms of the
sequence must be getting closer to each other.

The above idea allows us to formulate a condition for convergence that does not explicitly
involve the limit a of the sequence.

Definition 2.9 A sequence {a,} is a Cauchy sequence if, for every ¢ > 0 there
exists a natural number N such that

|am —an| <e for m,n > N. (2.21)
Theorem 2.10 FEvery convergent sequence is a Cauchy sequence.
Proof. Let lim a, = a. Then
n—00
Ve1r >0 3N (n, m>N = J|a,—al<e & |am—al <ep). (2.22)

We are to show that the Cauchy condition (2.21) is satisfied.
Let € > 0 be given and let €; in (2.22) be £; = ¢/2. We have

€ €
\am—an\:\(am—a)—(an—a)]S\am—al+\an—al<§+§:€,

provided n > N and m > N. But this shows that (2.21) holds. |

Example 2.18 Verifying that a sequence is a Cauchy sequence.

a) We shall show that {a,} = " Uisa Cauchy sequence.
+1
n

Let n > m. We have

m n m-—n n—m 1 1 1
- | = | = | < <
m+1 n+1 (m+1)(n+1) n+1m+1

lam — an = | S

Therefore 1 1
Ve>0 AN =[-] (myn>N = |ay —a,| < — <e¢).
€ m

(b) We shall show that the sequence {b,} defined by the recursive formula

1
bleé, bgzﬁ, bn+2:§(bn+1+bn), n=12...

is a Cauchy sequence.

We have
1

1
|bn+2 - bn+1| = |§(bn+1 + bn) - bn+1| = §|(bn+1 - bn)|

1 1 1
- ?‘bn - bn—l‘ - 2_3‘bn—1 - bn—Z‘ - = 2_71‘& _ﬁ’
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Hence, if n > m,

‘bn - bm‘ = ’(bn - bn—l) + (bn—l - bn—2) +-+ (bm-‘,-l - bm)‘
< ’bn - bn—l’ + ’bn—l - bn—Q‘ +- 4+ ‘bm—l—l - bm’

1 1 1
S\gztamst tomg)lf-a
18— al 1 1 1 1
< om—1 1+§+2—2+2—3+"'+2n_m_1
B—all-(3)"™ |8-aq -
= om—1 1— % = om—2 (1 - (1/2)n m)
8 —al
- om-—2
Let € > 0 be given. There exists N such that |§]\7(;’ < e. Then, for any n > N and
m > N,
18 —a
|6y, — b | < SNz <&
Thus {b,} is a Cauchy sequence. I
Now we shall prove that the condition
Ve>0 AN eN (mn>N = |am —an| <e). (2.23)

which defines a Cauchy sequence is a sufficient condition for convergence of the sequence

{an}.
Theorem 2.11 Cauchy condition of convergence
A sequence {a,} is convergent if {a,} is a Cauchy sequence.

Proof. We assume that the condition (2.23) is satisfied and prove that the sequence
{an} converges. Since (2.23) holds for any € > 0, we can use € = 1 to conclude that there
exists N such that |a,, —ay,| <1 for all n > N and m > N. In particular,

|am —ant1] <1 forall m > N,
which implies that
an+1 — 1 <am<ans1+1, m>N.

Therefore the set
S={am | m>N},

that contains all but a finite number of terms of {a,}, is a bounded. This implies that the
sequence {a,} is bounded.
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Clearly,
M <a, <M, forall nelN,
where
M' = min(ay,as,...,an,an+1 — 1)
and
M = max(aq,az,...,an,an+1 + 1).

By the Bolzano-Weierstrass Theorem, {a,} contains a convergent subsequence {a,, }. Let
lim a,, = a.

n—oo

Then
Ver >0 ANy (np > N1 = |a,, —a| <e1).

It is assumed that {a,} is a Cauchy sequence, so that
Vea >0 INy (myn >Ny = |am, — ap| < 2).

Let N = max(Ny, Ny). Let 1 = g9 = £/2. Then, for n > N and ny > N, we have
€ €
] = (3~ ) + (an, )| < Jan — | + fa, —al < 5+ 5 =

which implies that {a,} converges and its limit is a. |

2.12 Infinite Series

Definition 2.10 Let {a;}, k =0,1,2,..., be a given sequence of real numbers. Con-
sider the sequence {Sy,} defined as the sum of the first n+ 1 terms of {ax}:
n
Sp=aotai+ay+ - +a, = a (2.24)
k=0
If {S,} converges to the limit S,
lim S, =5,
n—oo
oo
then we define Z ap to be S':
k=0
o
S=>a (2.25)
k=0

and call S the sum of the infinite series (2.25). The series is then said to be convergent;
otherwise it is said to be divergent. The sum S,, defined by (2.24) is called the n-th partial
sum of the infinite series (2.25).

Note: In section 2.1 we defined a sequence as a function with domainIN = {1,2,...}.
Now, dealing with infinite series, we find it convenient to begin a sequence {ay} or {a,} with
a, rather than a;. Thus {ay} stands either for {ay} = {a,,a1,...,ak,...} or {a1,a9,...,ax,...},
depending on the context. Similarly, we use {S,,} to denote either {S,, S1,...,Sn,...} or
{S1,89,...,8n,...}.
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The following theorem gives us a necessary condition for convergence of the infinite

o0
series Z ag.
k=0

oo
Theorem 2.12 If Z ay, is convergent then lim a, = 0.
k=0 n—oo

oo
Proof.  Suppose that Zan =5, so that lim S, = S and lim S,_; = S. Since
n—0 n—oo n—oo
Sn — Sp_1 = ay, we have

lim @, = lim (S —S,-1) = lim S, — lim S, 1 =5-5=0. §

n—oo n—oo

We can see, therefore, that

lim a, =0 (2.26)
n—oo
oo
is a necessary condition for convergence of the infinite series Z Q-
n=0
Example 2.19
Show that the infinite series
o0
>
n=0
where |r| > 1, is divergent.
Solution.  Recall that lim r" = oo, when |r| > 1 and lim " = 1, when |r| = 1.
n—oo n—oo

Hence

lim a, = lim 7" #0

n—oo n—oo
and the necessary condition for convergence is not satisfied. Consequently, Y 7™ is divergent,
when |r| > 1.

(o]
Example 2.20  Find the sum of the infinite series Z " |r] < 1.

n=0
Solution. We have
Sp =14+ r4+ri+. 4"
rS, = P44 e et
and S,, — S, = 1 — r"*! which gives
1— n+1
g _ L=t
1—r
Since |r| < 1,
_ 3 n
1 — pntl 1 rnh_)rréor 1

n—0o0 n—oo 1 —r 1—7r 1—7r
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(a) r=.5, r=.25 (b) r=-5 r=-.25
- Y 1
“ r=.5
1
4/5
27+
'q: 3 "
S r=.25
H
1 0.5
! n
= i0 15 20 5 10 15 20

o0
Figure 2.9: Partial sums 5, of the series Z r™ for different values of r.

n=0
Hence we have obtained the required result:
> 1
dort=—— r|<L (2.27)
1—r
n=0
Refer to Figure 2.9 to see the behaviour of the sequence .S, for selected values of r. |

2.13 Absolute Convergence of Infinite Series

[e.9]

Consider an infinite series Z |ak|. The sequence of its partial sums
k=0
Sy = |ao| + |a1] + |ag| + - - + |an| (2.28)

is clearly increasing. If {S,} converges, then {S,} must be bounded. Conversely, if {S,}
is bounded, then, being monotone increasing, {S,} converges. Therefore the following
theorem holds.

oo
Theorem 2.13 The infinite series Z lan| converges if and only if its sequence of par-

n=0

tial sums (2.28) is bounded.



2.13 Absolute Convergence of Infinite Series 43

o o0
Series Z ay, for which Z |ay| is convergent are very important in the theory of series.
n=1 n=1

oo oo
Definition 2.11 A series Z an such that Z lan| is convergent is called
n=1 n=1
absolutely convergent.

Theorem 2.14 Absolutely convergent series are convergent.

Proof. Let

n n
Sn=> ar, Tn=>_lag
=1 =1

We know that {T),} is a Cauchy sequence. Now, if m > n, we have
Tn, — Tl = lans1| + -+ + |am
|Sn = Sl = lant1 + - + am| < lant1| + - + |an|.

Thus, for all n, m, we have
|Sn — S| < |Tn — Tl

Hence {5, } is a Cauchy sequence, so that lim S, exists. |
n—oo

The theorem we give next is a simple test for convergence of infinite series, if some
convergent series are available for comparison.

Theorem 2.15 The Comparison Test

Suppose that
0<ap<by, k=0,1,2,...

o o
Then, if Zbk converges, so does Z ag.

k=0 k=0
o o0
Proof. Let S, and T,, denote the n-th partial sums of Z ap and Z by, respectively:
k=0 k=0
Sn:a0+a1+a2+"'+an7
T,=b,+bi+by+---+0b,.
Then
0<S,<Tp, n=12,... (2.29)

o
By hypothesis, Z b, converges, so {T},} is bounded and (2.29) implies that {S,} is

n=0
also bounded. Hence, {S,} is nondecreasing and bounded and, by Theorem 2.13, {S,}
converges. This completes the proof.
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= (—1y
Example 2.21 Show that the series Z ———— converges.
—nn+1)
Solution. We have
(_1)n+1 _ 1
nn+1)| n(n+1)
> 1
Also Z: m converges, since
n=1
1 1 1
nn+1) n n+1’
so that
si=(1-3)+(G-3)++(G-g) =1y !
— _Z - _Z B =1- — as n — o0.
" 2 2 3 n n+1 n+1 ’
Thus, the given series converges. |

2.14 Exercises

2.1 Use the Cauchy definition of the limit of a sequence to show the following.

N o 2n—3 2 2?41 . 14244
(1) lim =- (i) nlLHgO n2+3n_2 (7i1) nh~>nolo —m =

| =

2.2 Show that

(1) lim ¥Y5=1 (i) lim Vn2=1.
n—oo n—oo
2.3 Show that
(7) lim Vn+1—+yn=0
n—oo
(i) lim Y5+ =7
n—oo
(797)  lim /am 4+ " = max(a, $), where >0, §>0.
n—oo

2.4 If {a,} — a as n — oo then prove that |a,| — |a|] as n — oc.
2.5 Leta, >0, n=1,2,.... Prove that a, — 0 if and only if i — Q0.

2.6 (a) Suppose {a,} increases and is unbounded above. Prove that {a,} — +oco as
n — o0o.

(b) Suppose {a,} decreases and is unbounded below. Prove that {a,} — —oc as
n — o0o.
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2.7 Let x, be given by
T = \/5, Tn+l =1/2+VZpn, n>1

Show that {x,} converges and determine its limit.

2.8 Suppose that 0 < a < 1 and that {a,} is a sequence which satisfies the condition
lant1 —an| <a”, n=1,2,...
Prove that {a,} is a Cauchy sequence and hence converges.

2.9 Let o> 0. Let 21 > \/a and define {z,,} by

1 a
Tntl = 5 Tn+— |, n=>2.
n

(a) Show that 0 < zp41 <, for n > 2.
(b) Deduce that lim a, exists and equals /a.
n—oo
(c) Put &, = x,, — /a. Show that
T 9, 2y’

271
so that 5n+1<ﬁ<%) , n=1,2,...

(d) If @ = 3 and z1 = 2, show that €;/3 < 1/10, hence g5 < 4 - 10716, g5 < 4 - 10732,
What is the significance of these last two inequalities?

How many iterates are required to calculate v/3 to 5 decimal places? Give v/3 correct
to 5 decimal places.

2.10 For each of the following sequences determine liminf a,, and lim sup a,,.

(@) an=2- % (i1) an = # (idi) an =2+ (_1)n2n”+ -
n2 _1\n
(iv) an = (—1)” + % ('u) a, = (_1)nn I (vi) an =3+ ( :L)

1
2.11 Leta, =(-1)" (1 + —), n =1,2,.... Determine
n

limsupa, and liminfa,.
n—oo n—oo

Show that these are not the same as the numbers

supa, and inf a,.
n>1 n>1

2.12 Show that {a,} converges if and only if liminf a,, = lim sup a,,.



46 Chapter 2 — Sequences of Real Numbers

2.13 Prove the following lemma.
Lemma 2.3 Suppose that lim x, =« >0 and lim supy, = (. Then
n—oo n—oo

lim sup (z,yn) = af.

n—oo

2.14 Show that lim a, = a if and only if every subsequence {a,, } of {a,} has a subse-
n—oo
quence which converges to a.



Chapter 3

Real-Valued Functions 1

3.1 Bounded Functions

Definition 3.1 A function f defined on a set I C R is called bounded if there is a
real number M such that
|f(x)| <M for every z € I.

Example 3.1 Show that the function
f(z) =22 +3
1s unbounded on R but is bounded on each bounded interval I C R.

Solution.
Suppose that f(z) is bounded on R. Then there exists a real number M > 0 such that

|f(z)| =222 + 3| < M for every =€ R.
Now, let x = M + 1. Then
f@)| = |f(M+1)]=12(M+1)2+3|>2(M +1)2> (M +1)>>M+1> M.

Hence, there exists x € R, namely = M + 1, for which |f(z)| > M. This contradicts our
assumption that the function f(z) is bounded by the number M.

If we restrict the domain of the function f(z) to a bounded interval I, say I = [a,?],
then clearly f(x) is bounded on I:

Ve el |f(x)] =222+ 3| <max(2a®>+3, 2v*+3). I

Theorem 3.1 If f and g are each bounded on I C R and k is a real number then the
functions

f+gv kfa and fg

are each bounded on I.

47
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Proof. The functions f and g are assumed to be bounded, so that there exist real
numbers M; and Ms such that

If(x)] < My and |g(z)] < My for every z € I.
Therefore, for every = € I, we have
@) [(f +9) @) =[f(@) + g(2)| < |f(@)| + |g(x)| < M1+ M,
(ii) [(kf)(z)| = |kf(z)| = |k|[f(z)] < [k|M;,
(iti) |(f - 9)(@)| = [f(@)g(@)| = |f@)||lg(x)| < My - My. B

3.2 Supremum and Infimum of a Bounded Function

If f is bounded above on the set S, then by the completeness property of R, we conclude
that f has a least upper bound. This least upper bound is called the supremum of f on
S and is denoted by

sup f(x), also sup{f(z)]| =€ S}
xeS

Similarly, a function f that is bounded below has a greatest lower bound, which is called
the infimum of f on S and is denoted by

;relgf(m), also inf{f(z)| = € S}

Thus, M = sup f(x) if and only if
TES

(i) M is an upper bound of f on S,
(ii) M is the smallest lower bound of f on S.

Similarly, m = ing f(z) if and only if
re

(i) m is a lower bound of f on S,
(ii)  m is the greatest lower bound of f on S.

Formally, we have the following definition.

Definition 3.2
M = sup f(x) = (i) VzeS f(x) <M,
z€eS
(li) Ve>0 dr,1 € 8 f(fL‘l) > M —e.

m=inf fz) = () VeeS flz)=m,
(ii) Ye>0 3z €8 f(z1) <m+e.
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1
Example 3.2 Find infimum and supremum of the function f(z) = — on the set S = [1,2].
x

Solution. Evidently,
1

S 2

<1

]

1<z<2 =
x

Thus, any number y; < i is a lower bound of f on the set S and any number yo > 1 is an
upper bound of f on S. Hence

inf f(z) = inf <%> i,

z€S 1<2<2

1
sup f(r) = sup (— | =1 |
z€S 1<z<2 \T

3.3 Minimum and Maximum of a Bounded Function

As we have seen above, any bounded function f on a given set S has an infimum and
supremum. If m = inf,cg f(x) belongs to the range of f, that is if there exists z; € S such
that m = f(z1), then m is the minimum value of f on S. In this case we say that f attains
its minimum at the point x = x; and write

m = f(z1) = min f(z).
Analogously, if there exists 9 € S such that M = sup,cq f(x) = f(x2), then we say that f
attains is maximum at the point x = x5 and write

M = f(z2) = max f(z).

If f(z1) = minges f(x) and f(z2) = maxyeg f(x), then, for all z € S, we have

fz1) < f(2) < fla).

We realize that a bounded function on S has exactly one maximum value on S, but there
could be several different points at which f(z) attains its maximum. A similar comment
applies to infima.

Example 3.3 Relating the concepts of inf f(z) and sup f(x) to the concepts of min f(x)
and max f(x). — A bounded function does not necessarily attain a minimum or mazimum.

1
(a) Consider the function f(x) = sona finite closed interval [a, b] that does not contain
the point = = 0. Refer to Figure 3.1(a). Clearly,

inf f(z) = min f(z) = £(b)

[a,b] [a,b]

sup f(x) = max f(z) = f(a).

[a,b] [a,0]
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(b) Consider the function

x

f(x):m,

—o0o<r <o

and refer to Figure 3.1(b).
The function maps the domain S = (—o0, 00) onto the interval [—31, 1]. Thus

1
m = inf f() = mip () = f(-1) = 5
and .
M = sup f(z) = max f(z) = f(1) = 5.
Hence, f attains its minimum m = —% at the point x = —1 and its maximum M

the point z = 1.
(c) Consider the function

f(x) = arctanz, —oo < x < 00

and refer to Figure 3.1(c). Clearly,

1
2

at

inf f(x) = —5.  supf(x) = 3.
but neither —7/2 nor 7/2 is ever attained. |
1 z

f@)=— f(@)=— f(x) = arctan x
CYRE . (b) PP (o) i — =

lnfxe[a,b] = f(b) lnfxe(foo,oo) = —15 € (—00,00) ~ 71_2

SUPge(a,b] = f(a) SUPgze(—o00,00) = 3 SUPze(—o00,00) = 2

¥ ¥ ¥

tla) 5 /\\ Pif2 r—

f{hj]

— \\—1 ! 10 -5
& b -5 -Pi/2

Figure 3.1: Illustrating maxima, minima, sup, and inf.
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3.4 Definition of a Monotone Function

Definition 3.3 Let f be a function defined on a set ACR: f: A— R.
(a) f is said to be increasing on A if

(1‘1, Ty € A& T < 1‘2) — f(l‘l) < f(l‘g)

(b) f is said to be strictly increasing on A if

(1, 220 € A & o1 <z9) = f(x1) < f(22).

(c) f is said to be decreasing on A if

(561, To € A& T < 562) — f(l‘l) > f(l‘g)

(d) f is said to be strictly decreasing on A if

(1, 220 € A & o1 <z9) = f(x1) > f(22).

(e) If f is either increasing or decreasing on A, then f is said to be monotone on A.

(£) If f is either strictly increasing or strictly decreasing on A, then f is said be strictly
monotone on A.

3.5 The Limit of a Function

It is important to investigate the behaviour of a function f(z) for values of x close to, but
not equal to, z,, where x, is a given point at which f is not necessarily defined. We shall
require some preliminary definitions before formulating the concept of limit for functions.

Definition 3.4 .
(i) The open interval
(o — 6,20 +9) ={z| zo—d <z <2,+6} ={2| |z —2,] <}
s called a 0 - neighbourhood of the point x,.
(ii) The set
(o — 0,Z0) U (0,70 +0) ={z| 0<|x—2,] <}
is called a deleted ¢ - neighbourhood of the point x,.

Consider a function f(x) defined on an interval I C R, except possibly for some point
xo € I. We say that f(z) tends or converges to the limit /, as = tends to z, (f(x) has a

limit [ at x,) and write
lim f(z)=1

T—To
or
fl) —1 as = — x,,

if for any e > 0 we can find a § > 0 such that |f(x) — ] < e for all values of = in the
d-neighbourhood of the point x,.
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3.5.1 Cauchy Definition of Limit of a Function
Definition 3.5

lim f(z)=1 <= Ve>030>0 (0<|z—z,|<d = |f(x)—1I<e).

T—To

Intuitively, the function f(x) converges to the limit I, as © — z,, if we can make f(z) as
close as we like to | by choosing x sufficiently close to, but not necessarily equal to, x,.

In order to prove that f(z) has limit [ as x — z,, we are required to find, for any given
value of € > 0, a deleted 0 neighbourhood of the point z, on which |f(z) — | < e.

Example 3.4  Applying the Cauchy definition to show that lim f(z) = I.

22 -9
lim —— =2.
(a) a:ll% 3(1’—3)
Let € be given. We want to find a é > 0 such that
0<|z-3l<d = |f(x)=1I<e, (3.1)
where | = 2 and )
‘-9
T =39
Now )
-9 r+3 1
—l|=|l—/———-F-2|= —2l==lr -3
£@) ~1l = |5 ~ 2 =175~ — 2= gle =3

and |f(z) — [| will be less than ¢ if |z — 3| < 3e. Hence, by choosing 6 = 3¢ we ensure that
(3.1) holds. This proves that 1in§ flx)=2.
Tr—

(b)  lim (222 + 32 — 4) = 16.
Let € be given. We want to find a é > 0 such that
O<lz—(—4)|=lz+4<éd = |f(z)-]I <e¢, (3.2)
where [ = 16 and f(z) = 22 + 3z — 4. We have
|f(x) = 1| = |(222 + 3z — 4) — 16| = |22% + 3z — 20| = |z + 4|2z — 5|.

Thus
lr+4] <0 = |f(z)—1| <|2z—5|0.
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Now, the condition |z + 4| < ¢ imposes some restrictions on the value of |2z — 5|. Note
that, once a suitable 0 has been found, any positive number ¢ < § would also be appropriate.
We can thus assume that § < 1. Then

lx+4] <o lr+4| <1
-l<z+4<1
—-H<zr< -3
—15<2x -5 < —11
—15<2x—-5<15
|2z — 5| < 15,

[

and we have

|f(xz) =1 < |22 —5]0 <150 <e provided that 6 <1 and ¢ < %
Choose -
6 = min(1, —

min( ,15),
so that

€

— ife<1b

5 G if €

1 ife>15

Then

|f(x) =1 <158 < e,
sincee <15 = 15d=cande>15 = 156=15<c¢e.

Therefore, we have shown that, given any € > 0, there exists d, namely:
€
6 = min(1, —
min(1, 15),
such that (3.2) is satisfied.

Note that the assumption § < 1, we made above, is arbitrary. In fact we can assume
that § < ¢, where ¢ is any positive number. Consequently, there are many other possibilities
for . One of these is

1 ¢
5: 1 -, —
mln(2, 14),

since for § < %, we have

1 1 1
4 < = —= 4< =
|gc+]<2 5 <Ttd<s
9< < 7
et
2 2

-14 <2z —-5< —12
-l4<2x-5<14
|2z — 5| < 14.

peey
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Therefore, given any € > 0,
5 = min(3, )
=min(=, —
2714”7
also satisfies (3.2), since

lz+4] <6 = |f(a)—1=|z+4]2z-5<145<c |

3.5.2 Sequential (Heine) Definition of Limit of a Function

Definition 3.6 A function f(x) defined on an interval I C R, except possibly for
some point x, € I, has a limit | at x, if and only if for every sequence {x,} of points of I

such that x, # xo, n=1,2,..., and lim x, = x,, it is true that
n—oo
lim f(z,) =1,
n—oo
that 1is,

V{zp} C I (zn# 20, n=1,2,..., & lim z, =2,) = lim f(z,) =1

n—oo n—oo

Theorem 3.2 The definitions of limit of Cauchy and Heine are equivalent.

Proof.
Assume that the function f(z) satisfies the conditions of Definition 3.5, so that

Ve>0 30>0 (0<|z—zo| <d = |f(x)— f(z,)| <e). (3.3)

Let € > 0 be given and consider a sequence {z,}, (z, # x,, n =1,2,...) of points of I
that converges to x,, so that

Ve1 >0 dN; €N (n>N1 — O<|1:n—xo|<51).

Since the above statement holds for every €1 > 0, it does so for €; = . Hence there is Ny
such that
0<|xp—z0] <9 for n>N;

and, by (3.3), we conclude that
|f(zn) =1 <e for n> Nj.
Therefore, for every € > 0, there exists N = N1, such that
n>N = |f(z,)—1]<e,

which means that the sequence {f(z,)} converges to the limit .

Conversely, assume that the function f(x) satisfies the conditions of Definition 3.6, so
that for each sequence {z,} (x, # z,, n=1,2,...) of points of I that converges to x,, as
n — 0o, the corresponding sequence {f(x,)} converges to [ , as n — oo:

V{z,} €I (zp #20, n=1,2,... & lim z, =2,) = lim f(x,)=1. (3.4)

n—o0o n—o0
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Now we suppose that it is not true that (3.3) holds. Hence, there is € = ¢, such that for
each value of 4 > 0 we can find x, x # x,, satisfying

0<|z—xz, <6 and |f(x)—1]>e,.

1

In particular, let § = —,n € N. Then we can find an z,, (n = 1,2,...) satisfying both
n

inequalities:

1
0 < |zn — 0| < - and |[f(xn) — 1] > eo.

The sequence {x,} so constructed converges to z,. Therefore, there exists a sequence,

{zy}, of points of I such that x,, # z,, n = 1,2,..., with lim =z, = x,, and there exists
n—od

an € = g, > 0 such that |f(z,) — | > e for all n €N which implies that Jim f(zyn) #1L.

This contradicts our assumption (3.4). |
Example 3.5 Prove that Iin%) flx) = lin% f(z®).
xr— Tr—

Solution.
Let lir% f(z) = L. Then
Tr—

Ve>0 30>0 Veel (0<z|<d = |f(z)—L|<e).
Now, if 0 < |z| < min(1, ) then
(0<le®|<d) = [fa*) ~Ll<s,
and we conclude that glcli% f(z*) = L.

On the other hand, assume that 1in% f(z®) = K. Then

Ve>0 30 >0 Veel (0<\x!<(5 = ]f(mB)—K\<£>.
If 0 < || <6 then 0< |¥z| <9, s0
[fl(V2)’] = K| <e, hence |f(z) - K| <e.

Hence, lir% fa)=kK. 1
T—
Example 3.6 An example of a function where lin% f(z?) exists, but lin% f(x) does not.
r— T—

Solution.
Let
-2 forx <O
=1 ;

forx >0

Then f(2?) =2, for — oo < < oo and lin% f(z*) =2 but lin%) f(x) does not exist. |
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3.6 Limits from the Left and Limits from the Right

Suppose that f(z) is defined on an interval (a, x,) or (z,, b), but not necessarily defined
in a neighbourhood of the point x,. Then the concept of limit of f(z), as * — x,, defined
earlier is not applicable. We can consider, however, one-sided limits as defined below. If,
for example, f is defined on an open interval (a,b), then we would be interested in the
behaviour of f(z), as x approaches b from the left or as = approaches a from the right.

Definition 3.7 .
(i)  We say that limJr flx)=A1if

Ve>0 30 >0 Ve (a<z<a+d = |f(z)—Al <e).

(i) We say that lirlr)l flx)=Bif
Ve>0 3>0Ve (b—d<az<b = |f(z)—B|<e).

Theorem 3.3 Let f(z) be defined on an interval I except possibly at a € I. lim f(z)

r—a
exists if and only if

lim f(z)= lim f(x).

T—a+ T—a—

Proof.
Suppose that lim f(x) exists and lim f(z) = K. Then
r—a r—a

Ve>0 30>0 Veel (a—-d<z<a+d = |f(z)—K|<e).
This implies that Ve >0 36 >0 Vx el
a<r<a+d = |f(x)-K|<e and a-d<z<a = |f(z)—K|<e¢,

which means that lim f(x) and lim f(z) exist and lim f(z)= lim f(z) = K.

r—a+ r—a— T—a+ T—a—

On the other hand, assume that

lierf(a:): lim f(z) = L.
Then
Ver >0 361 >0 Veel (a<z<a+d = |f(x)—L|<e)

and
Veg >0 d09 >0 Vz el (a—52<:c<a — |f(x)—L|<52).

Let € = &1 = g9 > 0 be given and let 6 = min(dy, ). If 0 < |x — a| < J, then either
a—6<a—-d<z<aorelsea<z<a+d <a+d;. Inboth cases, we have |f(x)—L| < e.
Thus lim f(z)=L. 1

r—a



3.6 Limits from the Left and Limits from the Right 57

Theorem 3.4 Let f be a function defined on the interval I = [a,b] C R and let ¢ be
an interior point of I, a < ¢ < b.

(a) If f is increasing on I, then

() lm f(z)= swp f(x),

alz<c
(if) Jim f(z)= inf f(z).

(b) If f is decreasing on I, then
(i) Jim f(z)= inf f(z),

(i) lim f(x) = sup [(x).

c<x<b

Proof. We shall give a detailed proof for the statement (i) of case (a). The proofs of
the remaining statements are similar.
Since f is increasing on I, we have

(el & z<c) = f(z) < flo).
Let L be the supremum of the set
S={f(x)]| ze€l, v <c},

which is clearly bounded above by f(c).

Given € > 0, there exists y. € I, y. < ¢, such that L — e < f(ye) < L, since L is the
smallest upper bound of S.

Let 0 = ¢ — y. and consider any y in the interval (y.,c). Since f is increasing, we have

0<c—y<d = y<y<c = L-e<f(y:)<fy)<L.

Therefore
0<c—y<d = |fly)—L|l<e.

Since € > 0 is arbitrary, we conclude that lim f(z) = L, as required. |
T—Cc—
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3.7 Properties of Limits of Functions

Theorem 3.5 Let f(z) and g(x) be defined on an interval I except possibly at a € I.
Suppose that lim f(x) = L and lim g(x) = K. Then:
r—a r—a

(i) lim(af(2)) = aL:
(i) i (/(@) + gla) = L + K

(iii) lim f(x)g(x) = LK;

1 1
iv) lim — = —, provided that K # 0;
W) 5w ~ K
. flx) L :
v) lim ——= = — provided that K # 0.
™) i, glx) K
Proof. By assumption, %11)% f(xz) =L and %11)% g(z) = K, so that
Ver >0 361 >0 Ve (0<|z—a|]<d1 = |f(z)—L|<er), (3.5)
and
Vea >0 392 >0 Vr (0<|z—a|]<dy = |g(x)— K| <eg). (3.6)
(i) We have

of (x) — aL| = |a||f(z) = L|, =€l

Assume a # 0. Let € > 0 be chosen. By (3.5), given any €1 = @—‘, there exists §; > 0 such
that
O0<|z—a|<dh = |f(x)—L|<e.

Thus

£
O<|z—al<dh = laf(z)—aLl|=|a||f(x)—-L|<|ale; = \aﬂm =ec.

This completes the proof of (i), when o # 0. When a = 0, there is nothing to prove.

(ii) Let e > 0begiven. Let 1 = 2 = 5 and let 0 = min(d1,d2). Then, for x satisfying
the inequality 0 < |z — a| < 4, both (3.5) and (3.6) hold and we get

[f (@) +g(z) = (L+K)| = [(f(z) = L)+ (9(2) - K)| < [f(z) = LI +]g(z) - K| <e1+e2 =&
Hence, we have proved that
Ve >0 36 =min(d,02) >0 Vo (0<|z—a|<d = |f(z)+g(z)—(L+K)| <e),

which means that lim (f(x) + g(z)) = L + K.

r—a
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(iii) We have
[f(x)g(x) = LK| = |f(z)9(z) — Lg(z) + Lg(x) — LK|
< [f(z)g(x) — Ly(x)| + [Lg(z) — LK|
= lg(@)[[f(z) = L + |L[|g(x) — K.
Now, let £5 = 1 in (3.6). Then there exists d, = da such that
O0<|zr—a|l<dpy = |glx)—K|<1
= |g(@)| =lg(z) - K+ K| < [g(z) - K| + |[K| <1+ |K].

Let € > 0 be given and let

9 9

= d = .
20+ [K)) M 2T 2+ L)

Then there exist 6; = 417 > 0 and d9 = d91 > 0 such that
|f(x)g(z) — LK| < |g(2)[|f(z) — L]+ [L||g(z) — K|

< (1+|K|)e1 + |Lle2

€1

& g
= (14K s
DSy e
e € L e €
= — — < = - =
2 o F1 227 °

for all = satisfying the inequality
0< |l‘ — CL’ <4, where 6= min(520,511,521).

This completes the proof of (iii).
(iv) We have
L l‘ _ lol) — K]
g(z) Kl |Kl|lg(=)]

Let eo = 3|K|. By (3.6), there exists d, = 0y such that

‘ 1

&1 _ K|
2 2
Let € > 0 be given and let e = §|K|*. By (3.6), there exists d = d2; > 0 such that

O0<l|z—al<dn = |g()]=|K—(K-g(x))|=[Kl-[|K-g(x)]>[K|-

O0<|z—a|]<dn = |g(z)—K|<ea.
Therefore, choosing 6 = min(dgg, d21), we have

1 1 lg(z) — K| 2 €, .9
O<|lr—al<d = ‘———‘: < —|K|* =e.
g(z) K| [Kllg(z)] ~ |K[]*2
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1
This means that lim — = —.
Mg K
(v) Using (iii), we conclude that
1 L
lim o) = lim f(z)lim — = —. |

o g(a) emn! e TR

Theorem 3.6 Squeeze Theorem for the limit of a function
Let the functions f(x), g(x), and h(x) be defined on an interval I except possibly at a € I.
Suppose that the following inequality holds for oll x # a, x € I.

hz) < f(z) < g(x). (3.7)
If }eré h(z) = ;Lnég(:c) =L  then ;LHE f(x)=L.

Proof. By assumption, lim hA(z) = L and lim g(x) = L, so that
r—a r—a

Ver >0 361 >0 Ve (0<|x—a|<d = |h(z)—L|<eq), (3.8)

and
Vea >0 3902 >0 Vo (0<|z—a|<dy = |g(z)—L|<e2). (3.9)

Let € > 0 be given. We are to show that there exists a § > 0 such that for all x € I,
O0<|z—a|<d = |f(x)—L|<e.

Let £1 = &9 = ¢ in (3.8) and (3.9) above and let 19 and d99 be the corresponding values of
01 and da, respectively. Then, using (3.7), (3.8), and (3.9), we conclude that

30 = min(d10,020) Vz (0<|z—a|]<d = L—ec<h(z)< f(x)<g(z)<L+e).

Hence L —e < f(z) < L + ¢ or, equivalently, |f(x) — L| < € provided that 0 < |z — a| < 4.
Therefore lim f(x) = L.
r—a

sinx
=1.

Example 3.7  Show that lim
z—0 X

Solution. Let 0 < z < w/2. From the diagram,

we have
OB =0P =1,
arc BP = x,
AP =sinz,
BC = tanz.

Clearly, AP < arc BP < BC' and sinz < = < tanz.

Dividing each side of the above inequality by sin x gives

1
sinz  cosx’

1<

which implies that, for 0 < z < 7/2,

sin x
cosx < — < 1.
T
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=
_= }v@i PU/Pi

sin x

Figure 3.2: The function f(z) = considered in Example 3.7.

Since cosx is a continuous function, lim0 cosz = cos0 = 1 and, by the Squeeze Theorem,
Tr—

we obtain )
sin x
=1.

lim
z—0+ X

To complete the solution, we note that the left-hand limit is also 1:
sin z y sin(—x) sinx 1

lim = lim = lim =1.
r—0— X r—0+ —X r—0+ X

3.8 Continuity at a Point

In section 3.5 when we discussed the limit of a function f(z) at a given point z,, we were

only interested in the behaviour of f(z) as x tends to z,, not in what happens when x

equals x,. If lim f(z) exists, it is quite possible that f(z) is not defined at the point z,
T—To

or, it is quite possible that lim f(xz) # f(x,). Refer to Figure 3.3 which illustrates the
T—To

following situations:
(a) f(x) does not have a limit as z — x;

(b) lim f(z) = —oc

T—To

(c) Jim f(x) = +oo;

(d) lim f(x) exists and is finite but f(x) is not defined at the point z,;

(e) Jim f(x)=L+# f(ro)
(£) lim f(x) = L= f(x,).

T—To



62 Chapter 3 — Real-Valued Functions I
= f(x) =log|x — x|,
(a) f(w)_m’ T F# o (b) v+ Ty
v ¥
— ]
1 ®
x
1 R
— = ° 0
T # T, JLI% f(z) =2z,
¥ ¥
: . by
=0 =0
sin(z — x,)
(e) f(z)= 3, z>u, (f) f(fﬂ):{ r—z, T# T
€ V=Y 2, x<a, 1, T =1,
lim f(z) =1
¥ ¥
1

=0

=
-2 Pi \/ ®0 Fi

Figure 3.3: Non-continuous functions (a) — (e) versus a continuous function (f).
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Definition 3.8 The function f(x) defined on an interval I is continuous at x,, if

i (@) = (o).

Intuitively, a function f is continuous at the point x = z,, if the graph of f does not have
a “break” or a “jump” at the point z,.

We observe that the function (f) in Figure 3.3 is continuous at the specified point x,,
but none of the functions (a) — (e) is continuous at z,. Using the Cauchy and Heine
definitions of the limit of a function, definition 3.8 can be written as follows.

Definition 3.9 Let f(x) be defined on an interval I and let x, € I.
(i) (Cauchy definition of continuity at a point.)
f(x) is continuous at the point x = x,, if

Ve>0 30>0 Veel (x—x,/ <d = |f(x)— f(zo)]| <e).

(ii) (Heine definition of continuity at a point.)

f(x) is continuous at the point x = x,, if

Hab el (liman=z, = lim flza) = f(z,)).

n—oo

Example 3.8 Use the Heine definition of continuity to show that f(x) = 22 is contin-
uous at x,.

Solution. Let {z,,} be a sequence converging to x,. Let £ > 0 be given. We require
N such that
n>N = |22 -z <e.

Let Ny be such that n > Ny = |z, — x| < 1. Then |z,| < |z,| + 1. Hence
|z, + 20| < 2|x0| + 1.

Let N3 be such that n > Ny = |z, —z,| < c
2|z +1
For n > max(Ny, Ny), we have
2 2 €
— 2 = |2y — ) - P D=c 1
|z;, — 25| = |70 — To| - |20 + 2] wo| + 1 (2w, +1) =€

Refer to Figure 3.3(e). The function f(x) shown there is not continuous, since it does
not have a limit when x — x,. The function is defined at the point z, and the one-sided
limits exist:

lim f(x)=2 and lim f(z)=3.
T—To— T—To+

Since lim f(z) =2 = f(x,), we say that f(z) is continuous on the left of the point x = z,,.
T—To—

It is not continuous on the right of z, since lim+ flz) =3# f(z,) =2.
T—To
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The definition of one-sided limits leads to the definition of one-sided continuity.

Definition 3.10 Suppose that the function f(x) is defined on an interval I and let
z, € 1.
(1) If lim f(z) = f(z,), we say that f is continuous on the left at the point x = z,.
T—To—

Thus, f(x) is continuous on the left at x = x,, if
Ve>0 30>0 Veel (z,—d<zx<z, = |f(x)— f(zo)| <e),

or
V{zn} (xn <z & lim zp =2, = lim f(zn) = f(mo)) :

(ii) If limJr f(z) = f(x,), we say that f is continuous on the right at the point x = x,.
T—To

Thus, f(x) is continuous on the right at © = x,, if
Ve>0 30>0 Veel (z,<z<z,+0 = |f(x)— f(zo)| <e),

or
V{z,} (wn >z, & limz,=2, =— lim z,= f(aco))

n—o0 n—oo

Note that the function f(x) in Figure 3.3 (e) is left continuous.
Example 3.9 Ezxamining one-sided continuity.

Refer to Figure 3.4 which shows two functions f(z) and g(z) that are not continuous
at the point x = 0. To examine one-sided continuity of the functions, we evaluate the
one-sided limits. We have

", x#£0
fz) =

0, z =0,
lim f(z) = lim o'/ = lim a¥ = 400,
z—0+ z—0+ y—+00
lim f(z) = lim a'/® = lim @’ =0.
z—0— z—0— Yy——00

Thus
lim f(z)=0= f(0)

z—0—

and we conclude that f(x) is left-continuous at the point x = 0. Clearly, f(x) is not
right-continuous.
Now, we have

arctan(1/z), = #0
g(x) =
/2, x =0,

lim g(z) = x]i}r& arctan(1l/z) = EToo arctan y = g’

z—0+ Y
lim g(z) = lim arctan(l/z) = lim arctany = I
r—0— r—0— Y——00 2
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Thus

s
lim =-=
Jim g(z) = 5 =9(0)

and we conclude that f(x) is right-continuous at the point z = 0. Clearly, f(x) is not
left-continuous.
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al’, x#0 arctan(1/z), = #0

(b) g(x) = {
0, x=0, (a>0) /2, x =0,

fx] glx]

(a) f(z)= {

w \

Figure 3.4: Illustrating one-sided continuity of a function.

Theorem 3.7 A function f is continuous at x = x,, if and only if f is both left-continuous
and right-continuous at x,.

3.9 Algebra of Continuous Functions

Theorem 3.8 Assume that the functions f(x) and g(x) defined on an interval I are
continuous at a given point a € I. Then the following rules hold.

(1) Sum Rule: The function f + g is continuous at x = a.

(ii) Product Rule: The function f - g is continuous at x = a.

(iii) Quotient rule: If g(a) # 0 then the function f is continuous at T = a.
g

The proofs of the above rules follow immediately from the definition of continuity at a point
and the corresponding rules for limits of functions (see theorem 3.5).

Theorem 3.9 Squeeze Rule for continuous functions.
Let the functions f(x), g(x), and h(zx) be defined on an interval I and let a € I. Assume
that

hz) < f(z) < g(x)

for all x in some neighbourhood of the point x = a and that

If h(x) and g(x) are continuous at x = a then the function f(x) is continuous at the point a.
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Theorem 3.10 Composite Rule
Let f and g be continuous at a and f(a) respectively, such that the composite function
go f is defined. Then go f is continuous at T = a.

Proof. Let f(a) = d. Since g is continuous at d,
Ve>0 361 >0 Yy (y—d<d = |g(y) —g(d)] <e). (3.10)

Since f is continuous at a,

Vea >0 362 >0 Vo (lz—a|<d = |f(z)— f(a)| <ea). (3.11)
Since d; > 0, we can use €3 = d; in (3.11) to get

[ —al <d = [f(x) = fla)] <1
Now, y = f(z), d = f(a), so that (3.10) gives
[z —al < = |f(x)=fla)| <o = |9(f(z)) —g(f(a))] <e.
Hence
Ve>0 30=02>0 Vo (Jz—a|<d = |(gof)x)— (g0 f)(a)] <e)

which means that the function g o f is continuous at the point x = a. |

3.10 Continuity on a Set

Definition 3.11 A function f defined on an open interval I = (a,b) is said to be
continuous on (a,b) if it is continuous at each point x = z, € (a,b).

Extending the above definition to the case when [ is a closed interval, I = [a, b], it is natural
to require f be right-continuous at x = a and left-continuous at x = b, in addition to the
requirements of that definition.

Definition 3.12 A function f defined on a given closed interval I = [a,b] is said to be
continuous on the interval [a,b] if

(i) f is continuous at each point x = x, € (a,b);
(ii) f is right-continuous at the point x = a;
(iii) f s left-continuous at the point x = b.

Continuity may, in fact, be defined on arbitrary subsets of R but we shall not need the
concept in this course:

f is continuous on a set A if it is continuous at all points a of A:

Vac AVe>0 30>0 VeeA (z—al<d = |[f(x)— f(a)] <e).
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3.11 Types of Discontinuity

1
Example 3.10 Consider the function f(z) = x sin (E)’ x #0.

(1) Prove that f(x) is continuous at any point x # 0.

(ii) Is it possible to find a constant ¢ such that the function

c ife=0
= 1
9(z) x sin (—) x#0
x
s continuous at every point r, —oo < x < 00 ¥
Solution.
(i) Let
falz) 1 . !
= =1 = = — = = — 0.
fi=e =L fy=F5= 1w A0 fi@) = sin(fyla) =sin(). 7

Then, using theorems 3.8 and 3.10, we conclude that the functions f3(z) and fs(x) are
continuous at every point = # 0. Therefore the function f(x) is continuous for z # 0.

(ii) By the Squeeze Theorem, lirrb xzsin(—=) = 0. If ¢ = 0, therefore, the function
T— xz

0 ite=0
9(z) = { zsin(l) 2 #0

is continuous at every point x, —oo < x < 0. |

A function that is not continuous at a given point z, is said to have a discontinuity at
that point. If f(z) is not defined at x,, but the limit of f(x) at x, exists, we say that the
function f(z) has a removable discontinuity at the point z,. Defining f(z,) = lim f(x)

T—To

“removes” the discontinuity at x,, as was the case in Example 3.10.
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1 1\! x
@ )= (1+55) ar0 () )= w0
¥ ¥
1
.0
x
-z -1 1 z
X
-2 -1 1 2 T
! 1
(C) f(:r:)zsmg,:c;éO; (d) f(l’):;,x;éo
Y ¥

-1/3P1

= X
1/6P1 -2 -1 1 2
=20

Figure 3.5: Illustrating different kinds of discontinuities of a function.

Example 3.11 Different kinds of discontinuities of functions.

Refer to Figure 3.4 and observe different kinds of discontinuities.

(a) removable discontinuity.

1 1
=—(A4+—=)"! 0.
fla) = S+ )7 a2
We can see that f(x) is not continuous at the point x = 0 for f(z) is not defined at
z = 0. f(z) has a limit at z = 0, namely lin%) f(z) =1, so that we can “extend” the
Tr—

definition of f(x) to make the new function fi(x) continuous at = = 0:

1 ifz=0
fl(m) = i(4+ %)—1 T ?é 0.

2
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(b) jump discontinuity.
x

We note that f(z) does not have a limit at x = 0 for

zlir&f(m) =+1 and zlggff(a:) = -1

(c) oscillating discontinuity.
1
f(z) = sin(=), 0.
T
The oscillations are bounded.

(d) infinite discontinuity.

3.12 Exercises

3.1 Using the definition of supremum/infimum prove the following:

(@ sup (@—f))=1 (b)) _inf (x—[a])=0

—oo<xr<0oo —oo<r<oo

x

() sup = =

=0.

(d) inf

1
—co<a<oo 4 + 22 4 —co<z<00 4 4 22

3.2 Find sup f(x) and inf f(x), where they exist, for each of the following functions on
the indicated domain:

(a) flx)=3+2zx—-2% 0<z<4 b) fl@)=2, —2<z<-1
0 forxz=0 0 forx =0
@) fl=)= % for 0 < |z| <1 @) fle)= xsini for 0 < z < 27
(e) flx)y=2—-|z—-1|, —2<z<?2 (f) flx)=2x—[z], 0<z<10
(9) fla)=24e", —co<z <00 (h) flz)=14ell —c0 <z < o0
() f@) =t (-0 URx) ) [ =1ty w<r<os
(k) fla)=e*, —co<z<oo () f@)=exp(~-), o € (~00,2)U(2,00).

3.3 Find the extreme values for each function of the previous exercise.

3.4 Prove that if f and g are both bounded on an interval a < z < b, then

inf f +inf g <inf(f 4 g) <sup(f +g) <sup f +supy.
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3.5 Find functions f and g neither of which is bounded but such that the product f - g is
bounded on I.

3.6 Suppose that f is bounded on I and g is unbounded on I. Prove that the sum f + ¢
in unbounded on I.

3.7 Suppose that lim f(x) = [. Prove the following:

T—To

(i) If f(x) > 0 in a neighbourhood of z, then [ > 0;
(ii) If f(x) < 0 in a neighbourhood of x, then [ < 0.

3.8 Ifg(x) < f(z) and lim g(z) =0, lim f(x)= a, show that b < a.

T—To T—To

3.9 Show that the function

fz) =

{ T if x is rational

1 — 2 1if z is irrational

has a limit only at the point x = 1/2.

3.10 Use the Cauchy definition of limit to prove the following:

(a) 111112(562 -1)=3 (b) Iilr%(:c2 —8x+7)=-8
2 1
(¢) iiil%scsin o 0 (d) zhllgo : fzp =3
272 — 1 2 2 -4

=4.

() Jmse—3 ) Imo—

3.11 Use the Heine definition of limit to prove the following:

1
(a) lim(z?—-1)=0 (b) limazsin— =0.

rz—1 z—0 X

3.12 Find the limits:

2223 |
@ O e
in(2 1—
(@ lim S2(2) (d)  lim — 2%
x—0 x x—0 X
t
(e) lim an (f) lim (z — [z])

z—0 T r—3—

3.13 Find the following limits, if they exist.

(a) lim sinz (b) lim cosz (c) lim sinz?
r——+00 r——+00 r—+00
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3.14

lim f(x) =1 =

r—a

lim f(z)=1

r—a+

lim f(z)=1

r—a—

lim f(z)= 400

T—00

Jim_f(@) = o0

lim f(z)=1

r— —00

rtrtrrr LT

lim f(z)=+o0

r— —00

lim f(z)=—o00

T——00

!

3.15

Chapter 3
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Complete the following definitions.

Ve>036>0 (jr—al<d =

continuous at the specified point z = z,:

(b) f(z) = cosz,

Use the € — § definition of continuity to prove that each of the following functions is

where x, is a real number

(@) fo)=VETD), 20=2

2
=3 ifex#3
(e) flz)={ *~
6 if z =3,
To=2, xTo=3
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3.16 Prove the following theorem.

Theorem 3.11 Let f(x) be defined on a given interval I.
(i) If f is continuous at z, € I and f(x,) > 0 then
>0Veel (zp—0<z<z,+0 = f(x)>0).
(i) If f is continuous at x, € I and f(x,) < 0 then
B>0Verel (zp—0<zx<z,+0 = f(z)<0).
(iii) If f is right-continuous at x, € I and f(x,) > 0 then
>0Veel (zo<zx<z,+5 = f(z)>0).
(iv) If f is right-continuous at x, € I and f(x,) < 0 then
B>0Veel (zo<zx<z,+0 = f(z)<0).
(v) If f is left-continuous at x, € I and f(z,) > 0 then
>0Veel (zp—0<zx<z, = f(x)>0).
(vi) If f is left-continuous at x, € I and f(x,) < 0 then
B>0Veel (zp—0<zx<z, = f(z)<0).

3.17 For each of the following functions find all points x of discontinuity.

© ) = { x, x is rational ) f(z) = { log |z|, x# O‘

1 —x, x isirrational
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Chapter 4

Real-Valued Functions 11

4.1 Properties of Continuous Functions

4.1.1 Boundedness of Continuous Functions on Closed Intervals
Theorem 4.1 If f is continuous on the closed interval I = [a,b] then f is bounded on

[a,b].

Proof.  Without loss of generality, we may assume that the function f(z) is not
bounded above on the closed interval [a, b]. This means that for every real number we may
choose as a bound, there exists at least one point = in [a,b] such that f(x) exceeds this
bound. In particular, for every natural number n there exists a point x,, in [a,b] such that

|f(zp)] >n, n=1,2,... (4.1)

The sequence {z,} so constructed is bounded (a < x, < b, n = 1,2,...), so that it
has a convergent subsequence {z,, }. Let lim;_ x,, = x,. Since all the terms of the
sequence {x,, } are in [a, b], a closed interval, we conclude that x, € [a,b] (Lemma 2.2). By
assumption, f(x) is continuous at the point = x,, which implies that

lim f(2n,) = f(2o).
k—o0
But this is a contradiction to the claim (4.1) which implies that

lim f(x,,) = oc. |

k—o0

4.1.2 Extreme Value Theorem

Theorem 4.2 Extreme Value Theorem
If f is continuous on [a,b] then there exist points x1,x2 € [a,b] such that

f(z1) < f(x) < f(xa) forall x € [a,b;
that is,

f(z1) = Jél[ifi} f(x),  f(x2) = Jnas, f(z).

75
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Proof.
Let A be the set of values of the function f(z) when a <z <b:

A= f(la,b) = {f(@) a<a<b)

By theorem 4.1, f is bounded on [a, b], so that the set A is bounded both above and below.
Let
m=inf A and M =supA.

We shall show (by contradiction) that m and M are both values of the function f, that is,
there are values z; and x2, x1,x2 € [a,b], such that f(z;) =m and f(z2) = M.

Firstly, suppose that there is no value of x in the interval [a, b], for which f(z) = M, so
that M — f(x) >0 for all x € [a,b]. Let

1
g(x) = ———, x € la,b].
@) = =7 @ €lad
Since f(x) is continuous on [a, b], by Theorem 3.8, ¢g(x) is continuous on [a, b], too. Hence,
by theorem 4.1, g(z) is bounded on [a,b], so that there exists a number K such that
0<lg(x)] < K forevery x€ [a,b].
Now, since M — f(z) > 0 for all = € [a, b],

SK = Z<M-[@) = [@)sM-—,

<K =—
g(x) < K

M= f()
for x € [a,b]. This contradicts the fact that M = sup ¢, f(2), the least upper bound for
f on the interval [a,b]. Thus, f(x) attains its supremum.

Finally, to prove that y = f(x) attains its infimum m, observe that the supremum of
—f(w) is the infimum of f(z), z € [a, b]. §
4.1.3 Continuity and Order

Lemma 4.1 Suppose that g(z) is continuous at x = x,.

(a) If g(xy) > O then there exist 6 > 0 and ¢ > 0 such that g(z) > ¢ for all x satisfying
|z — xo| < 0.

(b) If g(z,) < 0 then there exist 6 > 0 and ¢ > 0 such that g(x) < —c for all x satisfying
|z — xo| < 0.
Proof. Since g(x) is a continuous function at the point z = x,,
Ve>0 30>0 (Jz—mo| <0 = —e<g(z)—g(z,) <e).

(a) Since g(z,) > 0 we can take € = $g(z,). Thus, there is some § > 0 such that

1 1
[z —z0| <6 = _Eg(xo) < g(z) —g(zo) < §g(xo)'
This implies that g(z) > ¢ for all z satisfying |z — x,| < &, where ¢ = 1g(z,).

(b) This follows from (a), by considering —g. |
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4.1.4 Intermediate Value Theorem

Theorem 4.3 Let f be continuous on an interval I and let [a,b] C I. For every real
number X between f(a) and f(b) there exists a number ¢, a < ¢ < b, such that

fle) =M\
Proof. There are two possible cases:
(@) fla) <A< [f(b), (b) f(b) <A< f(a)

We will give a detailed proof for the first case. The corresponding proof for case (b) is
similar. It also follows from (a) by considering the function g = —f.
Consider the following function

g(x) = f(x) — A\, x € [a,b)].

We can see that:

(@) flz)
(i) gla) = fla) = A <0,
(iii) g(b) = f(b) — A > 0.

Define A to be the set of points of [a, b] such that the function g is negative on the subinterval
[a, z]:

A = g(z) =0,

A={zx|a<x<b & g is negative on [a,z]}.

The set A is non-empty, since g(a) < 0 which implies that a € A. The set A is bounded
above by the number b. Hence, by the axiom of completeness, A possesses a least upper
bound. Let

c=supA.

Since g(x) is continuous on [a, b],
gla) <0 = 36 >0 g(x)<0 for a<z<a-+dy,
gb) >0 = Fd >0 g(x) >0 for b—3dy <z <hb.
Therefore a + 61 < ¢, b — d9 > ¢, and we have
a<a+0 <c<b—-9>0<b = a<c<h

We now show that g(c) is neither negative nor positive, that is the possibilities

are both impossible.
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Case 1. Suppose g(¢) < 0. Then, since f is continuous, g(z) < 0 for x such that
c—093 < x < ¢+ 03 for some 03 > 0. In particular, g(z) < 0 for each z in the
interval ¢ < x < ¢+ d3. Let & be the midpoint of the interval (c¢,c 4+ d3). Then
g(z) = glc+ 383) < 0. But this contradicts the fact that ¢ = sup A, the least upper
bound of the interval [a,x] at which ¢ is negative.

Case 2.  Suppose now that g(¢) > 0. Then g(z) > 0 for z in ¢ —J4 < z < ¢+ d4 for
some J4 > 0. In particular, g(z) > 0 for ¢ — 64 < = < ¢ and g(c — 3d4) > 0, again
contradicting the fact that ¢ = sup A.

Therefore the only conclusion that can be drawn is that g(¢) = 0, which implies that
f(e) = A, as required. |

An interval I in R is a set characterized by the property that if z, y are in I and
x < z <y, then z is also in I. Consideration of cases [a,b), (a,b), (—00,al, etc., will easily
convince the reader of the correctness of the characterization.

We shall now show that the continuous image of an interval is an interval.

Theorem 4.4 Let f be defined on an interval I and continuous. Then the image
fUl=Af(@) | = eI}
is also an interval.

Proof. Let J = f[I]. To show that J is an interval, consider u < w < v, where
u, v € J and show that w € J. Since u, v € J, there are points x, y in I such that
f(z) =wu, f(y) =v. Thus z # y. We may assume, without loss of generality that y < z.
By the Intermediate Value Theorem, there exists z, y < z < x, such that f(z) = w. Thus
w € J, as required. |

Example 4.1 [llustrating the concept of the image of an interval.
Let f(z) =22 —1<x < 1. Then:

L D] =[0)
fl-3D]1=01)
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4.1.5 The Fixed Point Theorem of Banach
Theorem 4.5 Fixed Point Theorem

Suppose that f is a continuous function defined on a closed interval I = [a,b] that maps I
into I and has the property

[f(z) = f(y)] < afz =y (4.2)

forallx,y € I with0 < a < 1.

(1) Then the function f(x) has exactly one fized point, that is, there is exactly one point
xo € I such that f(x,) = x,.

(ii) If z1 is any point of I and xn 11 = f(x,), n=1,2,..., then

lim z,, = z,.
n—od

Proof.
(i) To establish the uniqueness of the fixed point x,, suppose that there is another
point z’ such that f(a’) = 2’. Using (4.2), we find that

w0 — a'| = |f(wo) = f(&)] < alz, — 2'].

Since 0 < « < 1, it is clear that |z, — 2’| = 0 which implies that 2’ = z,.
(ii) Let x1 be any point of I and let 11 = f(z,), n=1,2,.... Then

|z2 — x| = |f(21) — f(22)] < afvr — 22,

|23 — x| = | f(x2) — f(23)| < |z — z3] < @P|zy — 9.
In general, we have

|T0 — Tpa1| < @™o — 2.

Let m > n be any natural numbers. Then, using the triangle inequality, we find that

|Zn —Zm| = [(Tn = Tnt1) + (@1 — Tng2) + -+ (Tm-1 — Tm))|
< zn = Tpga| + |Tngn — Tngol + o A [Tme1 — T
<z —al(@ o R4 4 ™)
= (Q4a+---+a™ " Ha" g — 2y

1 _ am—n

_ o n—1
= |z1 — x| T—o

|
1—a ’
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. — — . L1 — T2 p—
Since |z, — x| < %a" Land lim |14|a" 1 = 0, we conclude that for every
n—00 —

€ > 0, there exists a natural number N such that
|zy, — x| <e for n,m > N.
This means that {z,} is a Cauchy sequence, so that it converges. Let

lim z, = x,.
n—oo

and consider now the sequence {f(x,)}. Since f is continuous, lim f(x,) = f(z,). Now,
n—o0

f@n) =21 = f(z,) = nh_{go f(xn) = nh—{%o L+l = 7}1_{20 Ln = To-

Therefore we have established that f(x,) = z, and the proof is completed. |

4.2 Uniform Continuity

Uniform continuity is a global property of a function on a set, whereas continuity is a local
property. We recall that a function f with domain D is continuous at a point x, € D if for
each € > 0 there exists a number ¢ > 0 such that for all x € D,

[z —xo| <0 = |f(2) - flzo)| <e. (4.3)

We note that the value of ¢ in (4.3) depends on the choice of ¢ and in addition may
depend on x,.

Now, if (4.3) is satisfied for every z, in a given subset I of the domain D of f, then
f is continuous on the set I. Each z, gives us a value of § associated with it. When it is
possible to obtain one number § > 0 which will satisfy (4.3) for all points x, € I, then we
say that f(x) is uniformly continuous on I.

To contrast the difference between continuity on a set I and uniform continuity on I,
we shall, firstly rewrite (4.3) as:

Ve>0 Ve €l 30 >0 Vo el (o1 —x2l <d = |f(z1) — f(z2)] <e).
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Uniform Continuity expresses the fact that 0 depends only on ¢ and does not depend
on xi, Tro in D.

Definition 4.1 The function f with domain D is uniformly continuous on the set
I, I1CD,:f

Ve>0 30>0 Vo, za€l (Jx1—z2] <d = |f(z1) — f(z2)| <e). (4.4)
Example 4.2 Show that the function
f(x) =sinz
is uniformly continuous on the set of all real numbers R = (—o00, 00).

Solution. Let ¢ > 0 be given and let x1, o be any pair of real numbers. We have

[f(z1) = f(z2)] = [sinz; —sinay|
. X1 — T2 T+ x2
= 2|sin cos
2 2
< o214
2
= |.T1—£C2|.

If 6 = ¢, therefore,

o1 —ao| <d=¢ = |f(z1) — f(@2)] <|z1—ao| <c. N

1
Example 4.3 Show that the function f(x) = — is not uniformly continuous on the
x

open interval I = (0,1).

1 1
Solution. Let 1 = — and 29 = o where n is a natural number. Then
n n

1
™

and
1 1

|f($1)—f($2)|ZIx—l—g|:|n—2n|:n21.
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We can see, therefore, that there exists € > 0 such that for every § > 0 there are two
points x1 and z9 for which

lz1 — 22| <6 but |f(w1) — f(x2)| > €.

Namely, let ¢ = 1. Then, given § > 0, choose any n > 2—15. Ifz, = % and zo = % then we
have

1
|x1—x2|:% but |f(z1) — f(z2)|=n>1=c¢.

1
Thus the negation of (4.4) holds which proves that f(z) = — is not uniformly continuous
x
on the interval I = (0,1).
Note, that f(x) = — is continuous on every point z, € I = (0,1), so that f(z) is
x

continuous on 1. [

1
Example 4.4 Show that the function f(z) = sin — is not uniformly continuous on the
x
2
interval I = (0, —].
T

Solution. Let
2 1
] = ——— T
T en+ D nm
where n is a natural number. Then

s

f(z1) =sin(2n + 1) 5 = +1,  f(xe) =sinnm =0, |[f(z1) - f(z2)] =1,

1

= ———— when n increases, can be made sufficiently small.
n(2n+ 1)m

but |z — x9|

With ¢ = 1 there is no ¢ that is suitable for all  in (0, %] Hence the negation of
(4.4) holds, which implies that the function f(z) = sin % is not uniformly continuous on the
interval [ = (0, %} 1

It can be shown, however, that f(z) = sin
interval that does not contain 0.

1

< is uniformly continuous on any closed

Example 4.5 Show that f(x) = sin % is uniformly continuous on the interval I = [c, 00),
where ¢ > 0.

Solution. Ifzy, 73 € [¢,00) and |71 — 3| < § = c%¢, then, since |sina—sinb| < [b—al,

11 11
‘f(xl)—f(l?)fﬁ——\x1—m2\<——c25:5. |
T1 T2 cc
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We note that the concept of uniform continuity is stronger than the concept of continuity
in the sense that every uniformly continuous function on a given set I is automatically
continuous on I. We have seen in examples 4.3 and 4.4 some continuous functions that are
not uniformly continuous.

Now we will prove that if I is a closed interval then every continuous function on I is
also uniformly continuous on I.

Theorem 4.6 If f is a continuous function on a closed interval I = [a,b], then f is
also uniformly continuous on I.

Proof. ( by contradiction)
Suppose that f is continuous on I = [a,b] but not uniformly continuous on I. Then the
negation of (4.4) is true, which implies that there exists an £, > 0 such that for every ¢ > 0
there are x, y € I that satisfy

[ =yl <4 and [f(z) = f(y)] = -

Let 6 = 1/n, where n is a positive integer. For this particular value of §, we can find two
numbers z,, y, € I that satisfy

o = yal < = and[F@n) = Fm)| = 0
We can, therefore, construct two sequences {x,} and {y,} with terms in I such that
|y, — yn| < % and |f(zn) — f(yn)| > €0 for n=1,2,.... (4.5)
We note that both sequences {z,} and {y,} are bounded, as
Tny, Yo € I =a,b] forn=1,2,....

Thus, by the Bolzano-Weierstrass theorem, the sequence {x,} contains a subsequence {z, }
which converges to ¢ € I. Now n; < ng < --- determines a subsequence {yy,} of {y,}.
Since

’ynk - C‘ < ’ynk - xnk‘ + ‘xnk - C‘?

it is clear that {y,, } also converges to c. Now, f is continuous at the point ¢, so that

lim f(wn,) = 1 f(yn,) = f(c).

k—o0

But this is not possible since (4.5) implies that |f(xy, ) — f(yn,)| > €, for all k.
The above contradiction implies that the assumption we made is false. Hence f(z) is
uniformly continuous on I.
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4.3 Continuity of Inverse Functions

Continuous functions defined on intervals (a,b) which have inverses are rather special —
they must be either strictly increasing throughout the interval (a,b), or strictly decreasing
throughout the interval. This is the result we shall now prove.

Theorem 4.7 Let f be a continuous function defined on I = (a,b) and suppose f has
an inverse. Then f is a monotone function on I.

Proof. Suppose f is not monotone decreasing. Then there are points ¢, d in I such
that ¢ < d and f(c) < f(d).

We shall prove that, if x is such that ¢ < z < d, then f(c) < f(z) < f(d). Suppose not.
Then there is € (¢,d) for which f(z) < f(c) or f(x) > f(d). In the first case, we have
f(z) < f(e) < f(d), so there must be y € (z,d) such that f(y) = f(c), by the Intermediate
Value Theorem. This would contradict the fact that f is one to one, since y # c¢. Similarly,
it cannot happen that f(z) > f(d). Hence

c<r<d = f(c) < f(x) < f(d). (4.6)

Suppose u < c¢. We shall show that f(u) < f(c). Suppose not, then f(u) > f(c). I
f(d) < f(u), then f(c) < f(d) < f(u), so there is v in (u,c) such that f(v) = f(d), a
contradiction. Thus f(u) < f(d). But then f(c) < f(u) < f(d), so there is w in (¢, d) such
that f(u) = f(w), again a contradiction. Hence

u<c = f(u) < f(c). (4.7)
Analogously, one has

d<t = f(d) < f(t). (4.8)
It follows from (4.6), (4.7), and (4.8) that f is monotone increasing on (a,b). |l

In fact, the inverse function of a continuous function defined on an interval I will itself
be continuous.

Theorem 4.8 Let [ be a continuous function defined on an interval I, with an inverse
function f~' defined on J, the image of I under f. Then f~' is a continuous function on

J.

Proof. By above, we may assume that f is monotone increasing on I. Suppose f !
is not continuous at y, € J. Then there is € > 0 and {y,,} C J such that lim y, =y, and
n—oo

7 ) = £ (o) > €

Without loss of generality we may assume that {y,} is monotone, say monotone decreas-
ing to y,, since every convergent sequence in R is bounded, and, hence, has a monotone
subsequence. But then {z,}, where z, = f~!(y,), will be a monotone decreasing se-
quence in I bounded below by z,. Hence it will converge to u, say, where u > x,. Hence
nlLH;O f(zyn) = f(u), by continuity of f at z = u.
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But f(z,) =y, and lim y, = y,. Hence f(u) = y,. Since f(x,) = y,, we conclude that
n—oo
u = x,. But then {z,} is a sequence which converges to z,, contradicting

‘xn - xo’ - ‘fﬁl(yn) - fﬁl(ya)

> €.

We have shown that f~! is continuous at all y in J, as required. |

4.4 Functions of Two Variables

Definition 4.2 Let D be a subset of R? and let F be a real-valued function defined
on D, so that to each point (x,y) € D there is assigned a unique real number denoted by
F(z,y).

The set D is called the domain of F. The set V of all possible values of the function
F,

V= {F(a,y): (r,y)eD}

1s called the range of F'.
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F(z,y) =y/4—-2>—y°

Figure 4.1: Three-dimensional graph of the function F(z,y).

Example 4.6 Find the domain and range of the function
F(z,y) =4 —2% -y

Solution. The domain of definition of F is determined by the inequality 4—z2—y? > 0.
Hence the domain of F is the set of all points on the circle 2+ y? = 4 and all points interior
to that circle:

D={(z,y): >+4* <4}
The set of possible values of F' is the interval [0, 2],
v =10,2],

since 0 < 4 — 22 —y? < 4 — 0 < F(x,y) < 2. In Figure 4.1, a two-dimensional
representation of the three-dimensional graph of the function F' is given.
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4.4.1 Limits of Functions of Two Variables

We define the distance between two points z1 = (x1,y1) and 22 = (z2,y2) of R? as

21— 22 = (21, 91) — (@2, 92)| = /(@1 — 22) + (31 — y2)2.
Let (2o,%,) € R? and let § > 0 be given. The inequality

’(x7y) - (xmyo)‘ <9

determines an open disk, namely the set

{(l‘,y) : (LL’ - xo)2 + (y - yo)2 < 62}

of all points interior to the circle with radius § centred at the point (z,,y,), which is called
a d-neighbourhood of the point (z,,Y,).

The inequality

0< \(m,y) - (xmya)‘ <9

represents a d-neighbourhood of (x,,y,) with the centre (x,,y,) deleted, which is called a
deleted 0-neighbourhood of the point (x,,¥,).

Suppose that the function F(z,y) is defined in a neighbourhood of a given point (x,, ¥o),
but not necessarily at (z,,y,). We say that F'(x,y) has a limit L as (z,y) approaches (2., yo),

written ( )lir(n F(z,y), if the difference between L and the values of the function F' are
T,Y)—(To,Yo

arbitrarily small for all points (x,y) sufficiently close to (z,,¥yo)-

Definition 4.3 (Limit of a function of two variables)
A function F defined in a deleted neighbourhood of the point (x,,y,) is said to have the
limit L if for every e > 0 there is a 6 > 0 such that |F(x,y) — L| < € for all points (z,y)
in the deleted §-neighbourhood of the point (o, Yyo):

Ve>0 36>0 (0<|(z,y) — (0,Y0)| <6 = |F(z,y)—L|<e).
When the limit is L, we shall write lim  F(z,y)=L.

(@,y)—=(2o,y0)
Example 4.7 Let F(x,y) = (z + y)sin(z +y), D =R?2. Show that
lim F(x,y)=0

(z,y)—(0,0)

Solution. Let € > 0 be given. We are to find a § > 0 such that

l(z,9) — (0,0)] = /22 +y2 <d = |F(z,y)—0|<e.

We have
|F(z,y)| = [(z +y)sin(z + y)| < |z +y| < |z + |y|.
Now, \/x? +y? < ¢ implies that |z| < ¢ and |y| < d. It is clear that if we choose J = §,

then
Va2 < = |F(z,y) <l|a|+yl<20=c. |
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4.4.2 Continuity of a Function of Two Variables

Definition 4.4 A function F(x,y) defined at every point (x,y) in a neighbourhood of

a given point (z,,Y,) s said to be continuous at (o, Yo), if )lir(n F(x,y) exists and
,y)—(0,Yo

lim F(:c,y) = F(xmyo)'
(xvy)ﬁ(anyO)

We note that if F(x,y) is continuous at (z,,¥,), this requires that F(x,y) — F (s, Yo)
as (x,y) — (Z0,Yo) by any path in a neighbourhood of the point (z,,y,).

Consider now F'(z,y) as a function of the variable z with the value of y fixed, y = y,. If
F(z,y) is continuous at the point (z,,y,), then clearly F(z,y,), as a function of one variable
x is continuous at the point x = x,. This only requires that F(z,y,) — F (%o, Y) as T — z,,
or (z,y) — (x,Y,) along the horizontal line y = y,. Similarly, F(z,,y) is continuous with
respect to y at the point y = y,.

Hence, continuity in (x,y) implies continuity in each variable separately, but the converse
is not true, as shown in the Exercises.

4.4.3 The Implicit Function Theorem

The theorem says that the equation F(x,y) = 0 defines uniquely a function y = f(x) in
a neighbourhood of the point (z,,y,), provided that F(z,y) satisfies some conditions, in
particular F(z,,y,) = 0.
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Theorem 4.9 The Implicit Function Theorem I
Let F be a function of two variables x and y, where x € I, y € J, I and J are intervals
in R.. Suppose that, for (r,y) e D =1x J:

1. F(z,y) is continuous;
2. F(x0,Y0) =0 for some point (z,,Yy,), where z, € I, y, € J;
3. F(z,y) is monotonic as a function of y € J for each fixed value of x € I.

Then there are positive numbers h and k that define the rectangle
R={(z,y) : [o —xo| <h, |y—yo| <k}
such that the equation
F(z,y) =0

defines y as a continuous function of x, y = f(x), forx € I, ={x: |z —z,| < h} C I, with
range contained in the interval J, ={y : |y — yo| < k} C J. Moreover

f(@0) = Yo

Refer to Figure 4.2. The theorem says that for each x in I, = {x : |x — 25| < h} there is a
unique number y in J, = {y : |y — yo| < k} which satisfies the equation F'(x,y) = 0. The
totality of points (z,y) C R for which F(x,y) = 0 determines a function f whose domain
is the interval I, and whose range is contained in J,. The function f defined in this way is
a continuous function of x on its domain I, and assumes the value y, at the point x,.

(a) F(z,y) =0 = f(x,)=1o (b) 3(a*,y*) €, x J,, F(z*,y*)=0
‘y Y
Yo + K Yo + F(z*,yo+ k) >0
y* F(z*,y*) =0
Yo | o y=f(x) Yo

Yo — K Yo — K + F(a*, 90— k) <0
. . . . T . . . . T
T, —h o To+h T, —h 2* =z, To+ h

Figure 4.2: Ilustrating the Implicit Function Theorem I.
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Proof. We shall give a detailed proof for the case where F'(z,y) is an increasing function
of y for each fixed value of z, (z,y) € D, the domain of F. The proof for the other case is
left to the student as an exercise.

The proof consists of several steps:

1. We show that there is &£ > 0 such that

F(zo,y0 — k) < 0 and F(z,,yo, + k) > 0.

2. We show that there is h > 0 such that

F(z,yo— k) <0 and F(x,yo+k)>0 for |x—x,|<h.
3. We show that, for each value of x in the interval I, = (x, — h, 2, + h) there is a unique
number y = y* € J, = (yo — k, Yo + k) such that F(z,y*) = 0.

4. We show that the function y = f(z) determined in step 3 satisfies the condition
f(@o) = Yo

5. We show that the function f is continuous at the point x = z,.

6. We complete the proof by showing that the function f is continuous at x1, where x;
is any point of the interval I,,.

Step 1. Let z = x,. Then F(x,,y) can be considered as a function of y, y € J. By
hypothesis 2, F(x,,y,) = 0. By hypothesis 3, F(z,,y) is increasing. Hence, if y € J, then

Yy <Y = F(l‘my) <0, (4'9)
y>vy, — F(xo,y)>0. (4.10)
There is a positive value k such that the square

S={(z,y): |lv —zo| <k, |y—wol <k}

is contained in the domain D of the function F(z,y). Thus, the inequalities (4.9) and (4.10)
imply that
F(zo,yo — k) < 0 and F(z,,y, + k) > 0.

Step 2.  The function F(x,y, — k) is continuous as a function of z, so that the
inequality F'(z,,y, — k) < 0 implies that F(z,y, — k) < 0 in a neighbourhood of the point
Zo. Similarly we conclude that F'(x,y, + k) > 0 in a neighbourhood of z,. Therefore, there
is a (sufficiently small) number h, 0 < h < k, such that

F(z,yo—k) <0 for |z—x,<h (4.11)

and
F(z,yo+k) >0 for |z—x,<h (4.12)
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Step 3. Let z = z* be any value of x in the interval I, = (z, — h,z, + h). We
have: F(z*,y, — k) < 0, F(2* y, + k) > 0. By hypothesis 1, the function F(z*,y) is
a continuous function of y. By the Intermediate Value Theorem, therefore, there is y*,
Yo — k < y* <y, + k, such that F(z*,y*) = 0. See the diagram in Figure 4.2(b).

By hypothesis 3, if y € J, = (yo — k,yo + k), then

y<y* = F(z%,y) <0,

y>y" = F(z%,y) >0.

This implies that y = y* is the only value of y in the interval J, for which F(z*,y*) = 0.

We have shown that for every x = x* in the interval I, = (z, — h, 2z, + h) there is
a unique value y = y* in the interval J, such that F(z*,y*) = 0. Hence, the equation
F(z,y) = 0 defines a function in the rectangle R = I, x J,. Let y = f(z) be the function
under consideration.

Step 4. In particular, when x* = x,, we obtain
y" = f(=@") = vo,

using hypothesis 2 and the uniqueness of y* for any fixed value of x € I,.

Step 5. Let € > 0 be given. Suppose that ¢ < k. Replace the square S in steps 1—3
of the proof by the square

Se = {(1'7:9) : ’JE - 1‘0’ <, ’y - yO‘ < 5}'
We arrive at the conclusion that there is a value k', i’ < h, such that y = f(x) is a function
on I'={z: |z — x,| < I} whose range is contained in
' ={y:ly—yol <et ={y:f(x) — flzo)| <e}.
Therefore,
Vo<e<k IV >0 (Jz—x] <h = |f(z) = f(xo)| < e). (4.13)

We have proved that (4.13) holds for any ¢ < k. Hence (4.13) is automatically true for

every € > k and we conclude that f is continuous at the point x,.

Step 6. To show that f is continuous on the interval I,, we need to show that f is
continuous at x = x1, where x1 is any point of I,.
Let z1 € I, be given. Let y; = f(x1). Then the function y = f(x) satisfies the condition

F(z1,1) =0
so that we can repeat steps 1 — 5 of the proof replacing (x,,y,) by (x1,y1) to arrive at the

following conclusion:

There are positive numbers hy and k; such that the equation F'(z,y) = 0 defines a function
y=f(z)forz e} ={x:|x —x1| < h1} C I, with range contained in J; ={y : |y —y1| <
k1} C J,. Moreover, the function y = f1(x) is continuous at the point x = x.

Since the function y = fi(x) is the only function defined on Iy that satisfies F(z,y) = 0,
we have f(x) = fi(z) for x € I;. Hence f(x) is continuous at the point = = x;.
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4.5 Exercises

4.1

4.2

4.3

4.4

4.5

4.6

Use the ¢ — § definition of uniform continuity to prove that each of the following
functions is uniformly continuous on the specified interval.

(a) fl@)=a23+1, z€(1,2) (b)) flx)=V14+z, ze(-1,2)
() f(x)=sin(3x), z€(-00,00) () flx)=1, ze(l00)
() flx)=+x, x€/(0,00).
Show that each of the following functions is not uniformly continuous on the specified
interval.
(a’) f(l') = xzv T e (—O0,00>
1
() fl@)=—, z€(0,2).
Use the definition of limit of a function of two variables to prove that

lim 3z +2y)=1717.
(w,y)*(L?)( 2

Let F(z,y) = 2% + 4% — 1.

(a) Determine y as a continuous function of x, given that:

(1) y=-
(i) F(z,y)

hen N
when z = -5,

Sl -

0.

(b) Is it possible to determine y as a continuous function of z when the following

hold?
(1) x,=1 gives y, =0,

(i) F(x,y)=0.

Discuss when it is possible to determine y as a continuous function of x, 0 < x < 1,
when z, y satisfy:
flx,y) =z +y+sinzy = 0.

Yy

(a) Determine the domain of F'.

(b) Is F(z,y) a continuous function? Justify your answer.
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4.7 Consider the following function
Ly
<z (@Y #(0,0

F(a,y) = { g 0700
0 (z,y) = (0,0).
(a) Show that for every z,, f2(y) = F(z,,y) is continuous.
(b) Show that for every y,, fi(z)= F(z,y,) is continuous.

(c) Show that H = F(z,y) is not continuous at (0, 0).

(d) Show that H = F(z,y) is a bounded function of x and y.

93
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Chapter 5

Differentiation

5.1 Definition of Derivative

Geometrically, “f(z) is differentiable at z,” means that a tangent line can be drawn to
the curve y = f(x) at © = x,. The slope of the tangent line is f’(x,). This geometric
interpretation is shown in Figure 5.1, where o denotes the angle between the tangent line
to the curve y = f(x) at x, and the positively directed xz-axis. We note that

fzo+h) = [(0)
h

is the gradient of the line through the points (z,, f(x,)) and (z, + h, f(xo + h)). As h — 0,
the secant line approaches the position of the tangent line to the curve y = f(z) at z,.
Refer to Figure 5.1 again to see that

lim f(xo + h) - f(xo)
h—0 h

= tan a.

Definition 5.1  Let f be a function defined on a given interval I C R and let x, be
an interior point of I so that f(x) is defined in a neighbourhood of the point x,. If the limit

o H )~ ()
h—0 h

(5.1)

exists, then the function f(x) is said to be differentiable at the point x = x,. The value
of this limit is called the derivative of f(x) at the point x = x,.

If the limit (5.1) does not exist, then it is said that the function f(x) is not differentiable
at . = x, or f(x) does not possess a derivative at x = x,.

95
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Notations: The derivative of y = f(z) is denoted in a variety of ways. The most
commonly used notations for the derivative of y = f(x) at x = z, are

d d
O Fe) G L a L G D,

When y is a function of ¢, y = f(t), the derivative of y at t = ¢, is also denoted by ¥(t,).
For a function f(z) which is differentiable at the point x = =, we therefore have

Fag) = Jim L&MW = @) _ - f(@) = Jlwo)

h—0 T—To T — X,

/?=fixl

f |::_:|:|+h:| e mEmamE s mrE s s mrma s mmrms e rmrmE s rmamE

f |::':I:I:| =

»0 =0+h

Figure 5.1: Illustrating the concept of the derivative f’(z,) of the function y = f(x) at
the point z,.

From the definition, the derivative can be regarded as expressing a relationship between
the increment in y = f(z) corresponding to an increment A in x when z = x,. It is formally
stated in the following theorem.

Theorem 5.1 Let f be defined on an interval I and let x, be an interior point of I. f
is differentiable at x, if and only if there exists a constant A such that, for all h sufficiently
small,

f(l‘0+h) :f(x0)+Ah+h8(h),

where lim e(h) = 0.

—
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Proof.
— Assume [’(z,) exists. Then

f($o+h)_f(33o) f(xo'f'h)_f(l'o)

. ol gl
%E% h - f (.’IJO), so that h - f (1’0) + E(h),
where lim e(h) = 0. Hence f(z, + h) = f(x,) + Ah + h e(h), where A = f'(z,).

h—0
— If f(xo+h)= f(z,) + AL+ he(h) and lim e(h) = 0, then

h—0
f(@o+h) — f(wo)
h

Hence f/(x,) = A. The argument shows that A, if it exists, is unique and is equal to f'(x,).

= A+e(h).

Example 5.1  Show that the function f(x) = 2z + 3 is differentiable at the point
xo =1 and find the derivative f'(1).

Solution. If z, =1, then
fl@o+h)— flz,)  2(14+h)24+3—(2+3)

h h
= 4+2h

Since lim (4 + 2h) exists, we conclude that f(z) is differentiable at x, = 1 and we have

—0
o) = 1/(1) = Jim TN = S(00)

h—0

= lim (4 + 2h) = 4.
h—0

Thus f/(1) =4. 1
Example 5.2  Show that the function f(x) = 2x% + 3 is differentiable at any point

To.
Solution. We have
f@o+h)— f(z,) = 2(xo+ h)2 +3— (2.@3 +3)
= 2(x? + 2hx, + h?) — 222
= dhx, + 2h*.

Thus, with any real value of z,, the limit defined by (5.1) exists and is equal to

4h 2h?
lim e T2 i (A + 20) = 4,
h—0 h—0

This implies that the function f(z) = 222 + 3 is differentiable at z, and
(o) = 4,.
In particular, we obtain, as a special case, the result of the previous example:

=41
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(a) flx)=22%+3 (b) g(x) = o (c) k() =zl
y y y
40 4 16
20 2 .
X X - 4
-4 4 -4 4 1e
(d) f'(x) =4z (e) ¢ >:{ IO K@ =2
y y y
16 ! g
X X 4
-4 g -4 4 ¥
-16 —% -4 4

Figure 5.2: Illustrating the concept: “The derivative of a function is itself a function .”
Example 5.3  Show that the function g(x) = |z| is differentiable at any point x =
o # 0 and it is not differentiable at the point r =z, = 0.
Solution. If x, = 0 then

9(xo + h) = g(xo) = g(h) — g(0) = |h[ —[0] = [A]

and
g(xo+h) —gxo)  |h] _ 1 ifh>0
h ~ h | -1 ifh<O.
h) —
It is clear that the limit }llirr%) 9(zo + })L 9(,) does not exist, since the limit from the left
is L

h—0—
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and the limit from the right is

lim g(xo + h) - g(l'o)

=1.
h—0+ h

Therefore, the function g(x) = |z| does not possess a derivative at = 0. Let x, be any
number different from 0. We have

9(xo +h) — g(x,) _ |To + h| — ||
h h ’

If || is sufficiently small,
To >0 — z,+h>0

and
T, <0 — z, +h <O0.

Thus, if z, > 0 then
. To+h—=x
g/(xo) _ ;11%% =1
and if z, < 0 then

—(@o + h) — (=) -1

d (z,) = lim

Hence g(z) = |z| is differentiable at any point z, # 0. |
Example 5.4 Show that the function k(x) = x|x| is differentiable at any point x € R.

Solution. For a given x,, if |h| is sufficiently small, then

z,>0 = x,+h>0 and z,<0 = z,+h<0.

We have
(vo +h)? — 22 =2hx,+h?, ifx,>0
E(zo+h)—k(zo) = (Tot+-h)|Toth|—20|20] = —(z0o + h)? + 22 = —2hx, — h?, ifz,<0
hlh|, if z, = 0.
Hence,

2x,, if xz, >0
i F@e TR = ko) _ ] TS0 "

h=0 h 0, if 7, = 0.

We conclude, therefore, that the function k(x) = z|z| is differentiable at any point z = x,

and
K (o) = 2|z,|. 1
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The derivative of the function f is itself a function; its domain is the subset of the
domain of f that consists of all points x, at which f is differentiable.

By Example 5.2 we conclude that the derivative of the function f(x) = 222 + 3, is the
function f’(x) = 4x. In this case the domain of f equals the domain of f’.

In Example 5.3 we conclude that the derivative of the function g(z) = |z|, is the function

/(@) = 1, ifz>0
IWEI=3 21, ifz<o.

In this case the domain of g is Dy = (—00,00) and the domain of ¢’ is
Dy =Dy —{0} = (—00,0) U (0,00).
Figure 5.2 shows us graphs of the functions f(z), g(z), and k(z), and their derivatives.
Example 5.5 Let f be a constant function, f(x) = c. Find the derivative f'.

Solution. Let x, be any real number. We have

! o Jwo+h) — f(xo) . c—c¢
f(%)_fllli% h h—0 h

Hence

fl@)=()=o0. 1
Example 5.6 Let [ be the identity function, f(x) = x. Find the derivative f'.

Solution. Let z, be any real number. We have
To+h—x,

/ T f(xo'f'h)_f(l'o)_ : _
F(wo) = Jim, n = =

Hence,

fl@) =) =11

5.2 Omne-sided Derivatives

If a function f is defined on a closed interval [a, b], the one-sided derivatives of f at a and b
are defined by replacing the limit in (5.1) by the corresponding one-sided limit. In general,
the right-hand derivative of f can be considered at any point x, of the domain of f such
that f is defined for x, < x < z, + h for some positive h.

Analogously, the left-hand sided derivative of f can be considered at any point z, of
the domain of f such that f is defined for z, — h < « < z, for some positive h.
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Definition 5.2 If f(x) is defined for x, < x < x,+ h, for some positive h, then the
right-hand sided derivative of f at the point x = x, is
f(xa + h) — f(ma)

= lim
h—0+ h ’

f-ll—(xe)

provided that the limit exists.
If f(x) is defined for x, — h < x < x, for some positive h, then the left-hand sided
derivative of f at the point x = x, is

f,_(xo) — lim f(xa + h) — f(ma)

h—0— h

)

provided that the limit exists.

Directly from the definition of the derivative of f at z, it follows that f’(x,) exists if
and only if f! (z,) and f’ (z,) both exist and are equal.

Example 5.7  Find the derivative of the function f(x) = vz — 2, when x > 2 and
investigate whether or not the right-hand sided derivative of the function at the point x = 2

exrists.

Solution. For any z, > 2, we have

f(xo+h) — f(zo) Vo —2+h—/x,—2

lim = lim

h—0 h h—0 h
_ hm(\/xo—2+h—\/:CO—Q)(\/:CO—2+h+\/xO—2)
0 h(vVzo—2+h+\x,—2)

1 1
= lim = .
h—0 Ty —2+h+ 1, —2 2z, —2

Hence

If f(z) = vz —2 and z, = 2, we have

f@oth) = flao) _ fR+M @) VE-VO_ 1 s

h h h V%

Thus

lim fe+h) - f@) = lim = = +00.

h—0+ h h—0 \/h

and we conclude that the right-hand sided derivative of f(x) = v/z — 2 at the point x = 2
does not exist.
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(@) f(x)=vi 2 (b) f’(w):%/%
ki i
2
4
1
z
z2 g i z 4 i

Figure 5.3: A function and its derivative.

5.3 Differentiability and Continuity

Now we will prove that any differentiable function is continuous and give some examples of
functions that are continuous but yet not differentiable.

Theorem 5.2 If f is differentiable at x, then f is continuous at x,.

Proof. We have
f(xo"i_h) = f(xo)+Ah+5ha

where ¢ = ¢(h) — 0 as h — 0. Hence
%in%f(xo +h) = f(2o). i

Example 5.8 Functions that are continuous but not differentiable at the point x = x,.

(a)  We shall show that the continuous function

r, x2>2
fl@) =19 ;2

— <2

9 ¥

is not differentiable at the point z = x, = 2.
The one-sided derivatives of f at the point x = x, = 2 are:

f@+h) - f@2) _ . 2+h-2

L@ = g, h B T S
1 2
Fo) = o JQEN @) s@ENT -2,
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Since the right-hand sided and left-hand-sided derivatives of f are not equal, f does not
possess a derivative at the point z =z, = 2.
(b) We shall show that the function

f(ac):{ xsin%, x#0
0, z=0

is continuous on the interval I = (—o0, 00) but not differentiable at the point z = z, = 0.
By Example 3.10, f is a continuous function on the interval I = (—o0, 00).
Now, at the point z = 0 we have
flx+h)—f(z) f(h)— f(0) _hsin% .1

= = Sl .

h B h h h

1
Since %ir% sin ; does not exist, so the function f is not differentiable at the point x = x, = 0.
|

Refer to Figure 5.4(b) to see the behaviour of the function f(z) = zsin 1 when z — 0.
It is natural to accept that the tangent line to the curve y = f(z) cannot de drawn. Now,
in Figure 5.5, we are given another function that behaves in a similar way when z — 0.
We will show, however, that the function shown in Figure 5.5 possesses a derivative at the
point x =z, = 0.

T, T >2 xsinl/x, = #0

() f<x>={x2/27 " (b) f(fc)={07 T

¥ ¥

_ 'l'lll.,l x_

4

Figure 5.4: Functions that are continuous but not differentiable.



104 Chapter 5 — Differentiation

2?sinl/z, ifz#0
f(“")_{(x ifz=0

-1/3P1i Fi

Figure 5.5: A function that is continuous and differentiable at = = 0.

Example 5.9 Show that the function

is differentiable at the point x = 0.
Solution We have

‘M‘ = ‘hsin%‘ <|h| =0, as h—0.

Hence

f(0) = }L@OM = %igbhsm% =0.

The tangent line to the graph of the curve y = f(z), therefore, is the horizontal axis y = 0.

5.4 Differentiation of Elementary Functions

In this section we shall determine the derivatives of the following functions:

flx)y=2", neN, f(x)=¢€" f(zr)=sinz, f(x)=cosz.
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1. Let f(x) =™, where n is a natural number. If z is any real number then, by the
binomial expansion, we have

(x+h)"=a"+ (n) 2" h 4 <n> " 2R 4+ (n) h",
1 2 n

(.’L'—f—h) -z :nxn—1+ n fEn_2h++ n hn—l.
h 2 n

so that

When h — 0, all terms on the right-hand side of the above expression, except the term

nx™ 1, converge to 0 and consequently
_ n__ ..n
lim flath) - (=) = lim w = na" L.
h—0 h h—0 h

Thus, if f(z) = 2™, where n is a positive integer, then f(z) is differentiable at any point
x and
Fla) = @Y =na"

2. Let f(z) = e" and let « be any real number. Then

eTth _ et _ et —1
nCTh
It is shown in Example 6.8 (h) that
lim &Ly
o h
Therefore ( ) @) o ,
. flx+h)—f(z) e —et e -1
e h B = R
Thus,
fla) = () = &
3. Let f(z) =sinz. We have
sin(z + I:L) —sinz 2sim(h/2) C(;Ls(x + h/2) _ sh:% cos(z + 1.
2

When h — 0, then % — 0 and, by Example 3.7,

o h
Sll’l§ 1

fim, —7

2

Making use of the fact that cosx is continuous, we obtain

i L&A = fl@)
h—0 h h—0 %

o h
lng

h
lim cos(z + —) =1 cosz = cos .
h—0 2
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Alternatively,
sin(r 4+ h) —sinz ~ sinzcosh +sinhcosz —sinz
h B h
sin h . 1—cosh
= cosx — sinx——
h h
sin h _ 2sin? h/2
= cos x — sin x————
h h
sin h . [sinh/2\?
= cosr — —sinz —cosz, as h — 0.
h 2 h/2
Hence

f(x) = (sinz)’ = cosx.

4. Let f(z) = cosxz. We have

lim fx+h)— f() _ m cos(x + h) — cosx
h—0 h h—0 h
~um 2 : (_ﬁ)
= lim - sin sin

= —lim sin lim
2

2
2z +h . sin
— — b
h—0 h—0 2

= —sinzx.

. 2+ . o : .
Note that ]Em% sin = sin z, for sin z is continuous over the interval (—oo, 00). Therefore,

f(z) = (cosz) = —sinz.

5.5 The Algebra of Derivatives

Theorem 5.3 The rules for differentiation.
Suppose that the functions f and g defined on a given interval I are differentiable at some
point x, € I. Then:
(a) Addition Rule:  The function f + g is differentiable at x,, and

(f + g),($0) = f/(xa) + g,(xO);

(b) Product Rule:  The function f - g is differentiable at x,, and

(f 9),(550) = f(1:0)9/($0) + f,($0)9($0)§

(c) Scalar Product Rule:  The function h(z) = cf(x), where c is a constant, is differ-
entiable at x,, and

(o) = (c f)(wo) = ¢ f'(w0);
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1
(d) Reciprocal Rule:  If g(x,) # 0, then — is differentiable at x,, and
g

(2) (e = £,

g 9(xo)]?

(e) Quotient Rule:  If g(z,) # 0, then / is differentiable at x,, and
)

i ' z.) = f/(xo)g(xo) — f(xo)g/(xa)
(5) (o) |

Proof. By assumption, f'(z,) = A and ¢'(z,) = B exist, so that, by Theorem 5.1, we

have
f(xo+h) = f(xo) + Ah+ hei(h),
9(1’0 + h) = g(ma) +Bh+h 52(h)7
h li = li =0.
where hlir%)gl(h) 0, hlir%)e’fg(h)
(a)
We have

(f +9)(@o + h) = (f + 9)(20) + (A+ B)h + h(e1(h) + e2(h)).

Hence (f +g)'(z,) exists and equals A+ B, since 3 = €1(h) +£2(h) tends to zero as h tends
to zero.

(b) We have

fr9(@o+h) = (f(xo) + Ah + he1(h))(g(xo) + Bh + he(h))
= f(@o)g(wo) + (Ag(xo) + Bf (20))h + hes(h),

where e3(h) = Aea(h) + Bey(h) + hei(h)ea(h).
Hence (f - 9)'(z,) = Ag(z,) + Bf(z,), since llzli% es(h) = 0.

(c) Let g(x) = ¢, so that

Then,

g/(SCO) =0,
and an application of Product Rule (b) gives

h/(xo) = f(xa)g,(xa) + f/(xa)g(xo) =0- f(ma) + Cf/(xa) =c f,(xo)-
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(d) First, we show that the function 1/g is well defined for x = z, + h, when h is
sufficiently small. We argue as follows. Since g is differentiable at x,, by Theorem 5.2, g is
continuous at x,. By Lemma 4.1, therefore, there exists ¢ > 0 such that g(z, + h) # 0 for
|zo + h — | = |h| < J. Hence the expression

()rn (i

h

is defined for sufficiently small h. We have
1) (1) g(xa"i_h)_g(ma)
—|(@o+h)—(—-)(xs) = —
(5) o= (5) @ oo + Wg(o)

Ah + h81 (h)
(9(o) + Ah + he1(h))g(zo)

A
= Tl e
where Ah + her(B) — 1 (h)g(,)
= S ~ e1\MI o), as h— 0.
) = e glee) + An+ ey O S 0
Hence

(1)’ (20) = — g'(z,)

g 9(w0)?
(e) Applying Product Rule (b) and Reciprocal Rule (d), we get

(L) @) = (73) @ |
= S (5) @)+ 1) (5) @
) 8w

9(wo) [9(z0)]?
_ f/(xa)g(xO) — f(xo)g/(xo) I
l9(z,)]? '

Application of Theorem 5.3 allows us to differentiate easily some functions for which it
would be difficult to obtain the limit

lim
h—0

flxo+h) — (o)
. :
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Example 5.10 Using rules for differentiation .
(a) If f(z) = 223 + 722 + 5, then
() =2(2®) +7(z?) + (5) = 2(32%) + 7(2x) + 0 = 622 + 14x.

(b) If g(z) =27, n €N, then

_ 1\’ (™) na” ! o
g = @ = (55) = - = P =,

1
(c) Ifh(x)=— 1,then
Y G VG it V1 e VAN il 0V Bl i VR
A (x2+1)2 (x2+1)2
T@

(d) If uw(xz) = tanz, then provided that cosx # 0, ie. x # § +km, k=+£1,£2,..,

() (sin x )’ (sinz) cosz —sinz(cosz)  cos?x +sinx 1
u\xr)= = = = .
cos T cos? x cos? x cos? x
(e) If v(xz) = cot z, then provided that sinz # 0 or x # km, k=+1,£2,..,
, (cos ) sinz — cos z(sinz)  —sin®z — cos®x 1 1
v'(z) = 3 = ) =T 2
sin® sin® x sin®

5.6 Differentiation of Composite Functions

Theorem 5.4 The Chain Rule
Consider a function g with domain I C R and range J and a function f defined on the
interval J. If g is differentiable at the point x, € I and f is differentiable at the point
Yo = g(x,) € J, then the composite function f o g is differentiable at the point z, and

(f o g)/(xo) = f/(yo)gl(xo)'
Proof. Let A= f'(y,) and let B = ¢'(x,). By Theorem 5.1 we have
fo+ k)= f(yo) + Ak + 1k,  g(xo+ h) = g(z,) + Bh + eah,

where
li =i = li =i =0.
ot klﬂ%gl(k) 0, 2 T ea(h) =0
Now
(fog)(@o+h) = flg(zo+h)) = flg(x,) + (B +e2)h] = f(yo + k),
where k = h(B + £2).
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We have
fWo+k) = f(yo) + k(A+e1) = f(yo) + (A+e1)(B +e2)h = f(yo) + ABh + e3h.

Therefore
(fog)(xo+h) = f(g(zo)) + ABh + 3h,

where €3 = Aegg + Bey + €169 — 0, as h — 0. Hence, applying Theorem 5.1 again, we
conclude that (f o g)’(z,) = AB, as required. I

Example 5.11 Find derivative of the function H(z) = =",
Solution. H can be considered as a composite function f o g, where

fly)=e¥, —oo <y < oo,

y=g(x)=1-23 —oc0<z<o00.
We have )
f'ly) =¢,
g'(z) = =322
Hence

Figure 5.6: Derivative of a composite function.

Example 5.12 Determine derivative of the function H(x) = sin(cos x) at a given point
T = T,.

Solution. Let y, = g(x,) = cosx,. Then we have

H'(z,) = (f 0 9)(20) = f'(yo)g (o) = 08y, - (—sinz,) = —sinx, - cos(cos z,). N
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(a) H(x) = sin(cosx) (b) H'(xz) = —sinz cos(cosx)
¥ ¥
Sin[1 1
X X
-2 Pi 4y -Pi Pi 2 Pi -2 Pi i i 2 Pi
in[1] -1

Figure 5.7: Derivative of a composite function.

5.7 Differentiation of Inverse Functions

Theorem 5.5 Suppose that the function y = f(x) with domain I C R and range
J C R, is strictly monotone and let x = g(y) be the inverse function to f.
If f is differentiable at a given point x, € I and f'(x,) # 0, then g is differentiable at

the point y, = f(x,) and
1 1

900) = 7 = Flatwa))

Proof. Let y, = f(x,). Then g(y,) = x,. Given k # 0, let

h=g(yo+k) — g(¥o)- (5.2)

We have

f@o+h) = f(xo+9(Yo+k) —9(¥o)) = f(9(yo + k) = yo + k.

Since f’(z,) exists, we can write
f(xo+ h) = f(zo) + Ah + hey(h), where A= f'(z,) #0, e1(h) =0 as h — 0.

Hence
Yo+ k = f(xo) + Ah + hey(h),

which implies that
k = Ah+ hei(h),
or
k

h= —+——.
A+€1(h)
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Therefore, using (5.2), we get

1
9o +k) = 9(yo) +h = g(yo) + —k + ke(k), (5.3)
where h—k/A 1 1 1 (h)
k) — — = 0 kE— 0.
e(k) k A+e(h) a A+4e(h) A Th T
Clearly, (5.3) implies that g is differentiable at the point y, and
1
/ —_
g (yO) - A’

which completes the proof. |

e el

1 g

Figure 5.8: The exponential function f(z) = e”, its inverse g(y), and the derivative of the
inverse.
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(i) f(z) =2a", n even; (il) f(z)=2™, n odd;
¥ ¥
n=9n=5s
4
. Il
3 2
2 X
1 -1.5 -0.5 o.5 1 1.5
-2
-4
(iii) g(y) = /¥, n even; (iv) g(y) = /y, n odd;
X X
n=z =3
1.5 =5
1.5 n=4 1 n="v
n=a
! ¥
0.5 -4 -2 2 4
=1
¥ -1.5
1 2 3 E:
/ 1 1/n—1 1 1/n—1
(v) g'(y) =y /", neven; (vi) g(y)=—y n odd
X X
2] n=3
=5
llf n="7
¥
-4 -2 2 4
-2
¥
1 2 3 4

Figure 5.9: The power function f(x) = z", its inverse g(y), and the derivative of the inverse.
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(i) f(z) =sinz; (i) f(z) =tanux;
¥ ¥
1 !
1
® ; X
-Fif2 Pi/2 -pi/2 Piy2
: _1 ;
-1
(iii) g(y) = arcsiny; (iv) g(y) = arctany;
v b
Pifzy ., T mmmmems Fifpr-----------
X ¥
-1 1 -1 1
—piszl  —e-e-e-a Pifab----oaom-
) o) = = i) o) =1
1-— y2 1+ y2
X X
1 3 I
| |
: :
1 2 1
| |
: : 0.5
: :
| |
| |
| |
' " ¥ ¥
-1 1 -3 3

Figure 5.10: Trigonometric functions: sine and tangent; their inverses and the derivatives
of the inverse functions.
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Example 5.13 Finding derivatives of inverse functions.

(a) Consider the function y = f(z) = e®. f is one-to-one on the interval I = (—o0, 00)
and maps I onto J = (0,00). We have

and we can see that f'(z) # 0, « € I. The inverse function g(y) = log, y = log y, therefore,
is differentiable on J and we obtain

, | 11
g9 (y) = (logy) ST ey
Figure 5.8 shows us the function f(x) = e”, for —2 < = < 2, its inverse g(y) = logy, and
the derivative ¢'(x).

(b) Let f(x) = 2", where n is even. Let I = [0,00]. Clearly f is one-to-one on the
interval I and maps it onto J = [0, 00). The inverse function is g(y) = y'/™ = Yy, ye.
We have f/(z) = naz" "' #0forall x € I,z # 0. Hence g(y) is differentiable over the interval
(0,00) and its derivative is

1 1 1 1

TeoN (o 1/n\ _ _ _ i
g (y) - (y ) - f/(CC) - n:c"*1 - ny(n_l)/n - ’I’Zy , Y > 0.

Figure 5.9(i), (iii), and (v) shows us graphs of the function f(z) = 2", when n is even, along
with the inverse function g(y) = {/y and the derivative g'(y).

(c) Let f(x) =z", where n is odd, n # 1. Then f(z) is one-to-one on the whole real
line, I = (—00,00). We can see that f’(z) = naz" ! £ 0 for all z € (—00,0), except x = 0.
Now f maps I onto J = (—00,00), and the inverse function g(y) = y'/™ = Wy, yeJ, is
differentiable for y € J, y # 0. We have

1 1
dy) =W/ = —y= 1, y#£0,

provided n is odd. We note that ¢’(0) does not exist. See Figure 5.9(ii), (iv), and (vi).

Now refer to Figure 5.10 which gives us graphs of the trigonometric functions sin x and
tan z, along with their inverses and the derivatives of the inverse functions.
(d) Consider the function y = f(x) = sinz on the interval I = (=3, 5). f is strictly
1

increasing on I and maps I onto J = [—1,1]. The inverse function is

fﬁl(y) =g(y) = arcsiny, y € J.

We have f'(x) = cosz # 0 for x € I = (=%, 7). Hence the inverse function g is differen-
tiable at any point y € (—1,1) and

g,(y) _ 1 _ 1 _ 1 _ 1
f'(x) cosz \/1—sin?x V1—y?

-l<y<l.
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(e) Ify= f(x) =cosz, = €I =1[0,n], then f~1(y) = g(y) = arccosy, y € J =
[—1,1]. Since f'(z) = (cosz) = —sinx # 0 for 0 < z < 7, we get

1 1 1
'(y) = - — — —1<y<l.
g (y) (arccos y) f/(-’E) sin mv Yy
(f) Similarly we differentiate the inverse function of f(z) = tanx on the interval
I=(-%,%).
1 1 1 1

'(y) = (arctany)’ = = = = :
g'(y) = (arctany) f'(z)  sec?x 1+4tan?z 1+ y2

(g) Similarly we obtain

(arccot y)' = —co <z <oo. |

Tr

5.8 Derivatives of Higher Order

If the derivative f’ of a given differentiable function f is itself differentiable, it is said that
f is twice differentiable and the derivative of f’ is called the second derivative of f and is
denoted by f”. The domain of f” is the set I, I C R, where the derivative of the function
f! exists. If the derivative of the second derivative of f exists, it is said that f is three times
differentiable and the derivative of f” is called the third derivative of f and is denoted by
f/// or f(3)~

The process of differentiation may continue to yield the 4th, 5th, ..., nth derivatives of
f, normally denoted by f@&, f®) ),

Other notations for the nth derivative (n = 2,3, ...) of the function y = f(z) are

d:E" f(m)7 d:E" ) y ) d:p" *

The various functions f (™, n > 2, are called higher-order derivatives of f. By convention,
we shall write f(© and f to denote f and f’, respectively.

Example 5.14 Find all higher-order derivatives of the function
f(z) =3z* + 20 — 1.
Solution. For any value of z we have
fO(z) = (3z* + 22 — 1) = 122 + 2,
f@(z) = (122° 4 2)" = 3622,
f® = (3622) = 72,
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Example 5.15 Find the first and second derivatives of the function

xQSin%, x#0
f(x)_{(), z =0.

Solution. By Example 5.9, f'(0) = 0.

If x # 0 then
1 1 1 1 1 1
! 2 : / . 2/ . / . 2
f(x) (x smx) acsmx—i—m (smx) a:smx—i-x COSx( xQ)
1 1
= 2xsin— — cos —.
x x
Hence
9 i 1 1 20
rsin— —cos—,
fl(z) = T z’
0, z =0.
If 2 # 0 then
1 1\’
f(x) = <2msin——cos—)
T T
o1 1 1 . 1
= 2sin — + 2z cos — —— | tsinz | ——
T T x x
1 2 1 1 1
= 251n———cos———2sm—
x r x
Now,

PR -FO 11 1
7:2 _— = —_
h Sll’lh hCOSh
Since "(h (0 1 1 1 1 1 1 1
M‘:‘ECOSE—QSHIE‘ZWCOSE‘—Q SIHE‘ZW—Q,

for all sufficiently small h, hence f”(0) does not exist.

In fact, the range of values of w, as h approaches 0 is (—o0, 00). |
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(a) f(x) (b) f'(=z) (c) f"(=)

X

-1/3 1P -1/3 3Pi -1/3Pi 1/3P1

Figure 5.11: The function f(z) of Example 5.15 and its first and second derivatives.

Example 5.16

If f(z) = sinz, then we have
fW(z) = cosz = sin(z + 7/2),
f@(x) = —sin(x) = sin(z + 27/2),
f®(z) = = cosx = sin(z + 37/2) .

Therefore
F™ () = sin(z +nw/2), n=0,1,2,... |

Example 5.17
If f(z) = cosz, then we have
fW(z) = —sinx = cos(z + 7/2),
f@(x) = — cos(x) = cos(z + 27 /2),
fO)(x) = sinz = cos(z + 37/2) . ...

Therefore
F™(z) = cos(z +nm/2), n=0,1,2,... |
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Example 5.18

Let f(x) =log(1 + x). We have

fO(@) = (1 +a),
fO(@)=-1-(1+2)72
fO@)=1-2-(1+2)7%,
fW@)=-1-2-3-(1+2)*,

Therefore
@) = (D)"Y n—D1+2)™" n=12,... 1

Example 5.19

Let f(z) = (1 + x)®, where « is any real number. Then

fO(z) = a(l +z)*!

@ () = ala —1)(1 + )2

(@) = ala—1)(a—2)(1 +z)**

B (@) = ala—1)(a—2)(a—3)(1 +x)**

5.9 Leibniz’s Formula

Now we shall prove a useful formula for the n-th derivative of the product f - g of two
functions that are n times differentiable.

Theorem 5.6 Leibniz’s Formula If £ (a) and ¢ (a) exist, then the product f - g
1s n times differentiable and

n

(f- 9@ =3 <Z>f(’“)(a) I} (54)

k=0

Proof. (By mathematical induction)
Step 1: If n =1 then (5.4) reduces to the product rule of differentiation:

(f-9)(a) = fla)g'(a) + f'(a)g(a)

that has already been proved (see page 106).
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Step 2: We need to prove the implication
T(n) = T(n+1),
where T'(n) stands for (5.4), so that

ey S (D k)
T+ =(f- 9" a)=> |, |fP(a)g (a).
k=0

Making use of the assumption that (5.4) is true and using the product rule of differen-

tiation, we obtain

(f-9)" ) (a)

To simplify notations,
respectively. Hence,

(f- 9" (a) =

we will use f@ and g instead of £ (a) and ¢ (a), i =1,2,...

mn n

+ <711>f/ g(n) + (T) f// g(nfl)

n _ n e
2>f~ gD 4 <2>f<3) 42

Recall the following identities

9
()
Y

:<n+1>:1
0
:<n+1>:1
n—+1
n n—+1
k=0,12,...
+(k+1) (M),

7n+17
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to conclude that

RN PR (U S WO BN NS DU (K it S WG N I (el WP CRE L B (O
(f-9) (a) <O>fg +<1fg++n+1fg

n+1
- if(”;ﬂfwmm@“k%@.l
k=0

Example 5.20 Using Leibniz’s formula.
Find the 4-th derivative of the function

H(z) = 23,
Solution.
Let f(z) = 23 and g(z) = €%, so that H(z) = f(z) - g(z). We have
fOz) = o
fO@) = 347,
fP@) = 6,
D@ =6,
fO@) = o,
¢d®(z) = € k=0,1,2,3,4.
Hence

HO@) = (f-9)" (@)
= [O@)g (@) +4fV(2)g®(z) + 6@ (2)g? ()
+ 4O (@)gW (@) + fD (2)g) (@)
= e (2% + 1222 + 362 + 24) .

Therefore HY (z) = (w3e“)(4) —e® (23 + 1202 + 360 +24). 1

5.10 Extreme Values

In Section 3.3, we defined the minimum and maximum of a function f on a given set S. If
f attains its minimum on S at the point x1, then

Ve e S f(xy) < f(x); (5.5)
if f attains its maximum on S at the point x9, then
Vo eS flu) > fa). (5.6)

If the inequality (5.5) is satisfied for all = in a neighbourhood of a given point z, (that is
contained in S), then we say that f has a local minimum at the point x,. If the inequality
(5.6) is satisfied for all z in a neighbourhood of the point z, (that is contained in S), then
we say that f has a local maximum at x,.
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Definition 5.3 Let f be a function defined on a set S. A point x, € S is a local
minimum/maximum point for the function f on S if there is some § > 0 such that z,
is a minimum/mazimum point for f on the set SN (z, — 6,2, + 9).

The value f(x,) is then called a local maximum /local minimum or, simply, an
extreme value of the function f.

Theorem 5.7 Local Extremum Theorem If f has an extreme value at the point
xo and f'(x,) exists, then

f'(zo) = 0.
Proof. Suppose that f has a local maximum at x, so that there exists d > 0 such
that if 0 < h < § then
f(xo+h)_f(xo) 207
f(xa_h)_f(ma) > 0.

Dividing the above inequalities by h and by k = —h, respectively, gives

f(xo‘i‘h)_f(xo) f(afg—i-k‘)—f(l'g)
h >0 and B

for 0 < h < d and —§ < k < 0. Since f’(x,) exists, the one-sided derivatives of f at z, exist
and are equal, we arrive at the conclusion

<0,

/ _ g ) .
f(-%'o) f+(.%'o) 1I(I)l+ 5 >
k) —
f(@o) = (o) = Tim f(@o+ ]z f(xo) <0
Hencev f/(xo) =0.
Analogously, if f(z) has a local minimum at z,, the same conclusion holds. |

5.11 Rolle’s Theorem

Theorem 5.8 Rolle’s Theorem Suppose that f is continuous on the closed interval
[a,b] and differentiable on the open interval (a,b). If f(a) = f(b) then there exists an x,,
a <z, <b, such that f'(x,) = 0.

Proof. Since f is continuous on a closed interval, by the boundedness theorem, it
attains a minimum value and a maximum value on this interval. Let
m= min f(x) = f(z1), M= max f(z) = f(z2).
z€[a,b] z€[a,b]
We can assume that m # M, since if this is not the case then f is a constant function,
f(x) =¢, a <z <b, which implies that f'(z) =0, a < x < b, and then the theorem is
obviously true.

Since f(z1) =m # M = f(x2) and f(a) = f(b), it follows that at least one of the points
x1 or zo is not the end-point of the interval [a, b].
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If 1 € (a,b), then by the hypothesis, f'(x1) exists, and by the local extremum theorem
we conclude that f'(z1) = 0.

If 5 € (a,b), then by the hypothesis, f'(z2) exists, and by the local extremum theorem
we conclude that f'(xz2) = 0.

Theorem 5.9 The Cauchy Mean Value Theorem
If f and g are continuous on [a,b] and differentiable on (a,b), then there is ¢ in (a,b) such
that

[f(0) = f(a)] §'(¢) = [9(b) — g(a)] f'(0). (5.7)

Proof. Consider H(z) = Ag(x) + Bf(x), where A = f(b) — f(a), B = g(a)— g(b).
It is easily verified that H(a) = H(b). Hence H'(c) = 0 for some ¢ in (a,b). Thus

Af'(e) + Bg/(c) = 0,
as required. |

Theorem 5.10 The Mean Value Theorem
If f is continuous on [a,b] and differentiable on (a,b), then there is ¢ in (a,b) such that

/) = f(a)

1'e) = =

Proof. Put g(z) = z in the statement of Cauchy’s Mean Value Theorem. |

5.12 Exercises

5.1 Directly from the definition, show that

d (cy) dy
—(cy) =c- ==.
dx Y dx

. dy
5.2 Let y=a”, a > 0. Use the chain rule to find I
x

Hint:
a* = emloga.

d
5.3 Lety =2, z>0.Find 2,
dx
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5.4 Let u = arctanz. Show that
d? du

1+ 2250 42,58 = .
(+x)dx2+ e

Differentiate n-times using Leibniz’s theorem and hence determine the values of u ™ (0), n > 1.
Lz + M

22 —2Bx+C

2?2 —2Bx + C +2(:C—B)

i P kSl

n+Dn+2) "7 ny1

5.5 If u, denotes the nth derivative of , show that

Up+1 + Uy = 0.
Hint: First derive the equation for n = 0, then use Leibniz’s theorem.
5.6 If y = (arcsin)?, and y, denotes the nth derivative of y, show that
(1 — 2 ynio — 22(n+ Dyps1 — n(n+ )y, = 0,n > 1.
Hence determine y,(0), n > 1.
5.7 Show that

n(l—z7 ") <logz < n(z'/"—1), for z>1, n>1

n —n
<1+y) <ey<<1—£) .
n n

logz = lim n(ml/”—l), x> 0.

n—-+o00

Hence show that

5.8 Show that

5.9 Ifa<band0< a< 1, show that
a®b' ™ < aa + (1 — a)b,
as follows:
1. Write the expression as
' — e < (1 - a)(b—a)a",

and use the Mean Value Theorem.

2. Alternatively, notice that y = log x is concave and, hence, derive the inequality.

5.10 Use the results of the previous question to derive the following inequality (Holder’s
inequality):

1 1
For p, ¢ > 1 such that — + — =1 and a1, a9,...,a,; bi,b2,...,b, >0,
p q

n n 1/p n 1/q
Zambm§<2afn> (Z b‘}n> .
m=1 m=1 m=1
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5.11 From the results of the previous question, derive the following inequality (Minkowski’s
inequality):

Ifp>1anda;, b >0, i=1,2,...,n, show that

n 1/p n 1/p n l/p
o] = (Sn) ()
m=1

m=1 m=1

5.12 (a) Using 5.9, show that if p, ¢ > 0 are such that p + g = 1, then, for any positive
ai,ag
pa1 + qag < afas,

unless a1 = as, in which case pai + qas = alfag.

(b) By induction, show that if aq,as,...,a, > 0and py+pe+---p, =1,p; >0 for i=1,2,...

then, unless all a; are equal,

p1 D2
aytay’ ---abt < pray + paag + - prag.

(c) From (a) and (b) prove the geometric-arithmetic means inequality for positive
numbers a;:

ay+ag+ -+ ap
n b

Yairag---an <

where equality takes place if and only if all a;, i =1,2,...,n, are equal.
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Chapter 6

Applications of the Mean Value
Theorem

6.1 Taylor’s Theorem

Theorem 6.1 Taylor’s Theorem I  Suppose that f is (n + 1)-times continuously
differentiable in an open interval (a,b) and let x, be any point of (a,b). Let P, » (x) be the
Taylor polynomial of degree n for the function f about the point x,:

I (o) I (o) f(n)(xO)

2
1 o (@) et T

(x — o) +
and denote by Ry (x) the remainder
Ry (z) = f(z) — P, 2,(2).

Then, for each x € (x,,b), there exists some £, x, < < x, that

FrE)
(n+ 1)

Py, 2 (x) = f(xo) + (x—x,)", z € (a,b),

R, (z) = (x — )" (6.1)

Proof. We prove this theorem by applying Rolle’s theorem to an auxiliary function.
Let = be an arbitrary point of (a,b). Consider the function

O(t) = f(x) — Py, t(x), xo <t<ux,

and note that
D(zo) = f(2) = P, o, (2) = Ru(2). (6.2)
Clearly, ®(¢) is differentiable in the interval (z,,z) and

[’:_“ f““()]

d'(t) = o
[ e k’(t)+—(x_t)kf(’““)(t) :

X
.

127
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Thus, in calculating ®'(t), we obtain 2n + 1 terms, and they all cancel out but one, to give

(—t)"
n!

() = - FD(@). (6.3)

Now we define the function
W(t) = B(t) — (

and assert that U satisfies the hypotheses of Rolle’s theorem on the interval [z,, z].
Clearly, ¥ is continuous on [z,, z], differentiable on (x,,z) and

x—t

n+1
) B(xo), w0 <1<,
T — T,

T —

n+1
U(z,) = (z0) — (m - x) B(z0) = 0,
U(zx) = ®(x) = f(z) — Py, 2(x) = f(x) — f(z) = 0.

By Rolle’s theorem, ¥/(£) = 0 for some point &, z, < § < x.
Now,

(n+1)(x —t)"
(x — xo)nH!
By substituting in the values for ®'(¢) and ®(x,) given by (6.2) and (6.3) and replacing ¢

by £, we obtain

V() =d'(t) + D(z,), xo <t <uwm.

(n+1)(z—-8"

(x — x,)n L

@& poen e

0=0'(e)=- Ro(x)

which gives the desired result (6.1). |

The approximation of functions by polynomials is a very useful technique in the analysis
of real functions.

If f is n times continuously differentiable at a specified point x = x,, then f can be
approximated by the n-th Taylor polynomial P, ., (z) and the measure of the approximation
is given by the remainder

Ry(z) = f(z) = Pna,(2)
that can be expressed in the form specified by (6.1).

Example 6.1 Find the Taylor polynomial for the function f(x) = (1+x)", where n is
an integer, about the point x, = 0.

Solution. We have

fO@@) =1+ )",
f(x)
fO(x) +nn—1)(1+2)"2,

n(l+z)" 1,
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Hence, at the point x = 0,

f™(0) = n!

fm©) =0, for m>n+1.
The Taylor polynomial for f(z) = (14 )™ with z, =0 is
(n—l)x2+n(n—1)(n—2) 3 nn—1)---1

n
Poo(r) =14 nz+ =, 31 nl

and the remainder is
R,(z)=0.
Hence, by Taylor’s theorem, we obtain
nn—1) 4 nn—-1)(n-2) 4

1+x)"=14nz+ T + al R A

the familiar binomial formula. Nl
Example 6.2 Find the Taylor polynomial for f(x) = e* about x, = 0.

Solution. We have f((z) = e for all n > 0, so that f™(0) =1, n =1,2,....
Therefore the Taylor polynomial is

2 3 n
G T T
The remainder is .
xn
R, (x) = nt 1)‘65, 0<¢é<u.
By Taylor’s theorem, therefore,
. T IE2 .’E3 " xn-l—l ¢
e :1+ﬁ+§+§+"'+m+m€ )
for some & between 0 and z.
n+1 |$|n+1

We note that

et < - el s0 that, for fixed z, the remainder Ry, (z) tends
(n+1)! (n+1)!

to zero as n increases. Figure 6.1 shows how the polynomials P, o approximate the function
f(z) = e” on the intervals (—2,2), (—3,3), and (—4,4), when n =1,2,3,4,5,6.
In particular, if z = 1, we get

0

I R I
T T TRNCES

where 0 < 6 < 1. [
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(a) Poo(x), n=1,2,3; ze€(-2,2) (b) Puo(z), n=4,5,6; € (-2,2)
¥ ¥
[
4
2
il F-—-—'_'_'_._._'_."-F
- x ®
-Z 2 -2 -1 1 2
(c) Puo(z), n=4,5,6; =€ (-3,3) (d) Pno(z), n=4,5,6; z € (—4,4)
¥ ¥
20 £ /
/ 2
7 40 ¢
10 J 30 -
20 &
10
e ] ® —— ®
- 3 -4 -z 2 4

T

Figure 6.1: Taylor polynomials P, o(z) for the function f(x) = e”.

Example 6.3 Find the Taylor polynomial of degree 2k+1 for the function f(x) = sinx
with x, = 0.

Solution. If f(z) = sinz then f(z) = sin(z + nn/2), n=1,2,.... Hence
f@R0) =sinkr =0, and fEFV(0) = sin(kr +7/2) = (-1F, k=1,2,...

The Taylor polynomial is
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An application of Taylor’s theorem gives

] T .133 .CC5 .T7 o1 $2k+1
SIHIE:F—§+§+F+(—) W+R2k+1,

where (2h42)
/ (§) okio k41 SInE gpio
N 7 ()RS
Rorir = "oy @ D gt 0<e<a
since

FEF2(€) = sin[€ + (2k + 2)m/2] = sin[¢ + (k + 1)7] = (—1)*Lsine.
Figure 6.2 shows Taylor polynomials P, o(x) for the function f(z) = sinz on the interval

(—2m, 2m) for selected values of n.

(a) Pyo(x), n=1,3,5; x € (—2m,2m) (b) Pno(x), n=7,9,11; x € (—2m,2m)

¥ ¥
L _}:" - I|. _q 1
L 4 - : Il 1
Lg P 1 'h=9
. 2 )

s -2 ! -z
- 3 ! n=7.n=11
1 — H = I'- '
/-:l q -,In 3 |: _4 lII

Figure 6.2: Taylor polynomials P, o(z) for the function f(x) =sinz.

Example 6.4 Find the Taylor polynomial of degree 2k for the function f(x) = cosx

with x, = 0.
Solution. If f(z) = cosz then f((x) = cos(z +nm/2), n=1,2,... Hence
FPR0) = coskr = (=1)*, and fE*V(0) = cos(km +7/2) =0, k=1,2,...

The Taylor polynomial is

o R 22k
P, =1 - 4 —1)*
Hence we have
o R S N 22k
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where (k1)
f (€) okt kbl COSE  opiy
Rop = =——= = (- — 0
G N A O A
since

FEEED(E) = cosl€ + (2k + 1)m/2] = cos(é + km +7/2) = (=1)" cos .

Figure 6.3 shows Taylor polynomials P, o(x) for the function f(x) = cosz on the interval

(=27, 2m) for selected values of n.

(a) Pyo(x), n=2,4,6; x€ (—2m,2m) (b) Pno(x), n=28,10,12; z € (—2m,2m)
¥ ¥
't 2 ; l\‘ 2 ; /n=12
‘-\'\ L" //_-\\ ’f “&X\Wf_‘xwf ®
- - ¥ _ c R
-2 Pi\p—'}{ Vi oz Py 2 2 4 F
;_.-" ! _z 5 ‘*-,I : ‘n=10
S m:g._ln= & . -4 '-I
f . oA | '
Figure 6.3: Taylor polynomials P, o(z) for the function f(z) = cosz.
Example 6.5

Find the Taylor polynomial of degree n for:

(a) flz)=logz withz, =1, (b) g(z)=Ilog(l+z) with z, = 0.
Solution.
(a) We have
f(z) =logz,
fO(@) =271,
fO(@) = -2,
fO(z) = 2273
fW@)=-1-2-327*
fO(x)=1-2-3-427°
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Thus, we have

Hence

(k)
ap=f(1)=1logl =0, a= / kl(l) = (—1)’“—1%, k=1,2,...

Hence the Taylor polynomial for f(z) = logx with z, =1 is

Pyi(zx)=(zx—1)— %(x—l)Q—i—%(ac—l)‘g— i(x—l)‘l—i—---%(x—l)”.

(b) To find the Taylor polynomial of degree n for the function g(x) = log(1+z) with x, =0
we note that

g(@) = f(1+x)
. Hence
g¥ @) =Pa+z), ¢"®0)=r"0), k=12,...
and the Taylor polynomial for g(x) = log(1l + z) with z, = 0 is

22 3 gt _1)n+l
ano(x):x—5+?—z+-~%x”.

Figure 6.4 shows Taylor polynomials P, (z) for the function f(z) = log(l + z) on the
interval (—1,1) for selected values of n.

(a) Pho(z), n=1,2,3; ze(-1,1) (b) P,o(x), n=4,5,6; ze€(—-1,1)
¥ ¥
n=1
' o CR3 '

5

Figure 6.4: Taylor polynomials P, o(z) for the function f(z) = log(1 + )
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6.2 Indeterminate Forms

In this section we consider several limits which take the form:

g, E, 0-00, 0o—o0, 1%, 0%, oo
To each of these symbols there corresponds an expression that involves two functions, say
f(z) and g(z), and the limit, as  — x,, or as x — oo, of the expression considered.
Suppose that the functions f and g are defined in a (deleted) neighbourhood of a given
point x, and suppose that
lim f(z) = lim g(z) = 0.

T—To T—To

Then the limit
lim _f(x)
0
is said to be of the 0 form. We have already considered some limits of this form,

sinz

for example lim
z—0 x

0
The symbol — is called an indeterminate symbol. This is because if P_. # 0, then ¢

is uniquely determined by p = ¢ - ¢. When p = ¢ = 0, any value of ¢ satisfies p = ¢ - c.
Now we define the first two indeterminate symbols.

Definition 6.1 The expression

=
&

(6.4)

Q

—
8

~—

0
s of 0 form at the point x,, if

lim f(z)= lim g(x) = 0;

T—To T—To
L 0 .
it is of 0 form, as x — oo, if

lim f(z)= lim g(z)=0.

T—00 T—00
The expression (6.4) is of — form at the point x,, if
00

lim f(z)= lim g(x) = oo;

T—To T—To
00
it is of — form, as x — oo, if
00

lim f(z) = lim g(x) = oc.

r—00 r—00
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Refer to Figure 6.5 to see several examples of undeterminate expressions at the

point z = 0. Although all the expressions are of g form, the limits lin% fgx))
Tr— g X

g9(z)

are different.

Example 6.8 deals with the evaluation of these limits.

0
A collection of theorems, called L’Hopital rules, is useful in the evaluation of 0 and s
0

forms at a given point z = z, and as x — oo.

0
We shall prove L’Hopital rules for limits of the — form at a given point z = x, and show

how to manipulate other indeterminate forms through examples.

6.3 L’Hopital’s Rules
Theorem 6.2 L’Ho6pital Rule I  Suppose that

lim f(x) =0 and lim g(z) =0,

T—To T—ZTo

/
and suppose that lim f/(x) exists. Then lim (z)
M @) 1, g(a)

@ _ S
v g

also exists and

[y
[y
N~—

lim
T—To g

(6.5)

—~

!/

Proof. The hypothesis that lim
" (@)

exists implies that there is a (deleted) neigh-

bourhood of z,,
Nyos ={z:0< |z —z,| <4}

such that

(i) f and g are continuous and differentiable on Ny 5 ,

(i) ¢'(z) #0 for x € Nys.

Thus f and g are continuous on (x, — §, x, + ) except, perhaps, for z = z,, where f
and g are not even assumed to be defined.

Step 1. We replace the functions f and g by F' and G, respectively, where

ﬂ@:{f@%x%%

0, T =x,,

0, T = X,

The new functions F' and G are continuous at the point z, and consequently are continuous
on the interval (z, — 0, z, + ). Also,

G'(x) #0 for x € (x5 — 0, T+ ), T F# Tp. (6.6)
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Step 2. Let x be any point with z, < x < x, + J and consider the interval (z,,z).
The functions F' and G are continuous and differentiable on [z,,x]. We apply the Mean
Value Theorem to G to conclude that there exists x1 in (x,,z) such that

G oy C@) = Cla) _ G

T — T, T — T,

We see that
Glz) £0,
for if G(z) = 0 there would be G'(x1) = 0, where 21 € (z, — 0, =, + d), contradicting (6.6).
Step 3. Now we apply the Cauchy Mean Value Theorem to F' and G on the interval
[0, 2] to conclude that there is a number £ in (z,,z) such that

[F(x) = F(2,)|G'(§) = [G(z) — Glao)|[F'(8)
F(x)G'(§) = G(x)F'(¢)

which gives
F(z) _ F'(€)
G(z)  G'(&)

The number £ obviously depends on z. Since £ € (z,, ), we see that { — z,+ as © — x,+.
/ /

(6.7)

Si li
ince lim @)

(6.7) we obtain

exists, the one-sided limits of as x — x,, exist and are equal. By

G'(x)’

Fa) . PO _ . F()

.
ot G(z)  o—met GIE)  eoaat GI(E)

Hence Fl) F2)
. xr . T
A G T A Gy

Step 4. Let z be any number with z, — 0 < z, and consider the interval [z, z,].
Repeat the arguments of Step 2 and Step 3 to arrive at the conclusion that

(6.8)

. Fl) o Fl(x)
1 =1 . 6.9
i—zo- G(z)  o=w0 G'(2) (6.9)
.. . F(z) .
Step 5. Combining (6.8) and (6.9), we conclude that lim @ exists and
T—To T

i @) _ L F()

T—To G(m) zLHa}o G/(.’E)

which is equivalent to the required statement (6.5). |
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xT

e -
Example 6.6 FEvaluate A = lim S .
z—0log(e —x) + (v — 1)

Solution.
flx)=e"—e™", g(x) =logle — )+ (z — 1),
1
/ — 5T T / — 1 _
F0) = ) =1
g'(0) #0
Hence , N . 5
A—hmf(x): e—i—el < [
z—0 g/(:p) z—0 1 — e—1

Vo9r — 4 — 3
Example 6.7 Evaluate A = lim z :1:4 \/E
z—1 1 — V3

fla) = Vaz —at - ¥, g() = 1 Va?,

Solution.

1—223 1 3
/ _ o / - _ ]
fiw) = V2r —at 3Va? 7(@) e

Since f/(1) = —3, ¢'(1)=—2#0, we obtain
AT fl(x) —4/3 16

olgl(z)  —3/4 9

0
Example 6.8 Using L’Hopital’s Rule to evaluate limits of the 0 form at a given point

x = x,. Note: Figure 6.5 shows us graphs of the first six functions Ex) considered in this
g(x
example.
Si cos
(a) lim BT i 8 .
z—0 x x—0 1
sin 5
(b) lim 2% _ lim 5cosz = 5.
z—0 z—0
(c) lim cos?x —1 ~ lim 2sinx cosx ~ lim sin 2z _ 1
z—0 x2 z—0 2x x—0 21
T
lim —— = lim ———— = i =1
(d) o0 tanz | o 1/ cos?x P
. 1—cosx . sin x . 1 1
(e) lim ——— = lim ~———— = lim =-.
z—0 sin“x rz—02sinxcosx z—02cosx 2
1-— 2 2z sin 2 2
() hmﬁz 1mﬂ:hm - x limsinz?2=1-0=0.
z—0 sin“x z—02sinxcosx z—0sin2x z—0
2T — 3% 27 log 2 — 3% log 3 2
(g) lim — — lim =22 o8 =log2 —log4 =log —.
z—0 sinx z—0 cosT 3
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Example 6.9 FEvaluate
. sinx —xcosx
A=lim ————.
a—0  xsinx
Solution. Let f(z) =sinz —zcosz, g¢g(x) = zsinxz. We see that f(0) = ¢g(0) =0,

so that the limit is of % form. We have

f'(xr) = cosx —cosz+wsinx = zsinw,
g (x) = sinz+xcosz.
/!
Since f’(0) = ¢’(0) = 0, the limit lim f(z) is also of the § form. We evaluate
20 g'(x)
f'(x) = sinzx+zcosz
d"(z) = cosx+cosx— xsinx =2cosx — xsinx,
"
and find out that lim f//(:c) exists. Namely,
20 g"(z)
f"(x) .. sinz4xzcosx _9_0
20 g"(x) 2-02cosx —xsinz 2
/
Thus, lim (@) exists which implies that lim 1) exists. We obtain
z—0 g/(.%') z—0 g(x)
/ "
AzlimM:limf(x) :limf (z) =o0. 1

2 gla) b gla) e g(a)

0
Example 6.10 Repeated application of L’Hopital Rule to limits of the 0 form at a given

point x = x,.

. 1—cosx . sinx . coszx 1
(a) lim ——— = lim = lim =_.
z—0 €T z—0 21 z—0 2 2
3 2 2
-zt —x+1 L 3 —2x—1 . bxr—2
(b) ilinl 3 —22 4+ _ilaml?)mz—llx—i—l_zanlGx—ll_z
(c) lim 1 —cgs%:  lim 2sinz cosx ~ fim sin 2z ~ jim 2cos 2x _ 1L i
x—0 T x—0 2x x—0 2x x—0 2

In Example 6.10, we needed to apply the L’Hopital Rule twice for each of the limits.
We must remember to verify the hypotheses of the rule each time we apply it. Consider
the following use of the L’Hopital Rule:

o4 r—=2 o 3x2+1 . bz
lim ———— = lim = lim — = 3.
=122 —-324+2 o—122—3 z—1 2

2

Note that 322 +1 — 4 and 22 — 3 — —1 when = — 1, so that lim

rx—1 €T —

form and the L’Hopital Rule is not applicable to this limit. In fact, we have

0
is not of the 0

4+ ax—2 . 3:c2+1_ 4 _ 4 i

hm4: 1m =
=12 —-3z+2 21 2z —3 -1
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m:sinx M:sinfm
® @ = ®) e =
¥ ¥
5
\\\\\R v v’\foﬂ f\ ﬂmfﬁx — ¥
—2\1:*1\_/ 0.2 \\_,Z/Pi -2 Pi v U1 v 2 Pi
f(z)  cos?z—1 M: x
(c) 9(2) - 22 (d) g(x) tan
¥ ¥

-2 Pi

x
2 Pi )
= Y
-Fi Pi
-5
=10

= f =
(e) g(z) sin® z (f) g(x) sin® z
¥ ¥
2 j
. /\j
-Fi Pi X
-1 Fi
. , . f(@) 0 Lt
Figure 6.5: Functions @) that are of 5 form at the point = = 0.
g(x
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Example 6.11 Show that we cannot use I’Hépital’s Rule to evaluate

1

xT

22 sin

im —
z—0 SInx
which is ofg form at x = 0.
. o . 1 . , 1 1
Solution. Let f(z) = z°sin — and g(z) = sinz. Then f'(x) = 2zsin — — cos — and
x

oo x x
g (z) = cosx. Now

f(x) . 2wsini—cosi

z—0 g’(x) - z—0 COS T

1
which does not exist as lim cos — does not exist.

rz—0 €T
However,
. T ) 1
lim — =1, limxsin—=0.
z—0 sIn x x—0 T
Hence ) .
T°sin = . T . o1
im —% = lim — Adimzsin-=1-0=0. §
z—0 SInx z—0sInxr z—0 X

By repeated application of the L’Hopital Rule I we obtain the following generalization of
the rule.

Theorem 6.3 Generalization of L’Hopital Rule for limits of the 8 form Let f
and g be n-times continuously differentiable on the interval [a,b] and suppose that

f(r)(:co) = g(r)(xo) =0 for r=0,1,2,...,.n—1,

(n)
where z, € (a,b). If g (x,) # 0 and lim F o) exists, then lim f (@) exists and
T—To g(") (;CO) T—To g(m‘)
(n)
fa)
T—To g(q;) T—To g(n) (SC)
Example 6.12  Evaluate
Ao &6 —2%
10 g —singx
Solution. We have
f@)=et—e =2, g)=z—sinz,  fO)=0,  g(0)=0,
flx)=e"+e -2 g (x) =1—cosz, 1'(0) =0, g'(0) =0,
f'x)=e*—e™™, g"(z) =sinz, f7(0) =0, g"(0) =0,

fO(z) =e® +e77, 9% (z) = cosz, F3(0) =2, g®(0) =1.
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Hence @)
X —X 2
Y T i CO i I P |
2—0 g(3) (x) 2—=0 cosx 1

Theorem 6.4 L’Hépital Rule IT  Assume that f and g are differentiable (and hence
continuous) on a giwen interval [b,+00), that is for sufficiently large x. Assume further that
lim f(z) =00, lim g(z) = oo, and ¢'(x) # 0 for all z > b.

r— 00 r—0Q0

If lim g :((g =1, then lim %

@) )
M) T ge)

/(:C

= exists and

~—

Proof. We assume that lim = [, so that
z—0c0 g'(7)
/
Ve >0 da (ac >a = f,(x) - l‘ < 5) (6.10)
g ()
Given 1 > 0 we show that % — l‘ < g1 for sufficiently large values of .
g(x

Let &1 be given. We can assume that g(x) > g(a) for every > a. Otherwise we get
contradiction with the assumption that ¢’(x) # 0. Explicitly, suppose that g(z1) < g(a)
for some z; € (a,00). Since xl;néog(m) = 00, there is zg > x; such that g(x2) > g(a). By
the Intermediate Value Theorem, we have g(c) = g(a) for some ¢, 1 < ¢ < x9. By Rolle’s
Theorem, there is d between a and ¢, such that ¢'(d) = 0.

Now, with any x > a we consider the interval [a,z] and apply the Cauchy Mean Value
Theorem to the functions f and g on this interval to get

f@) = fla) _ f'(@o)
g(x) —gla)  g'(xo)

Thus, using (6.10) with ¢ = &, we conclude that for all 2 > a,

, for some =z, € (a,x).

—1 < = (6.11)

Since Jim f(z) = o0, Jim g(x) = oo, we can choose z > a so large that f(z) > f(a)

and g(z) > 0. We can assume, therefore, that for sufficiently large x,

6@) > g(a), @) > f(a), glz) >0, (6.12)
We can write
@) | _1f@) f@- @] [f@) - f@)
‘g@:) ng(x) 4(z) — g(a) +‘g@c)—g(oo ! (6.13)
Now,
f@) f@) - f@)| |[f@-f@] | @) e —gla)
‘g@:) 9(z) — g(a) ‘}g@:)—gm) ‘f(x)—f(a) o) 1}' (6.14)




142 Chapter 6 — Applications of the Mean Value Theorem

By (6.11), we have

<7<l+€—1 = ‘
2 g(r)—g(a) 2

Since lim f(x) = oo and xlirrolo g(x) = oo, we have

flx)  g(x) —g(a)

lim =1

v=o0 f(z) = fla)  g(z) ’

which implies that, if x is sufficiently large, then

‘ flx)  g(x) —gla)
f(x)=fla)  g(z)

—1‘ < €9,

€1 . .
h =————H 6.14 lies that
where €9 ST e172) ence (6.14) implies tha
EC R (G T
9(x)  g(x)—g(a) 2/ 2(ll+e1/2) 2
Consequently, using (6.11) and (6.13) we get
f(x) ‘ g1 €1
—_— < — _— =
‘g(x) I=2+3 ==

for all sufficiently large values of x. This completes the proof. |

G @)tz
(2) g(z) e (b) g(r)  tan3z
¥ ¥
1/E
3n
0.2
15
3 a H
X X
1 5 9 Pi/f3 Pi/2 2Pi/f3

f(z)
g(z)

Figure 6.6: Functions that are of — form, (a) as x — oo, (b) as x — g
00
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Example 6.13 Find lim z

r—o00 ¥

Solution. Let f(z) =z, g(z)=¢€", sothat f'(z)=1, ¢'(z)=e". Then

/
1
lim f(z) = lim g(z) =00, lim f/(x) = lim — =0
T—00 T—00 T—00 g (q;) r—o00 ¥
!
Since lim f(z) exists, the limit lim @) also exists and we have
#=00 g (x) v=o0 g(x)
lim = = lim — = 0.
r—o00 e¥ r—o00 e¥
. N € : 1
Figure 6.6(a) shows us a graph of the function @) e over the interval (0, 10).
g(x e
1 1 1
(a) flo) _logz 5. (b) flo) _logz . (c) flo) _logz s
gle) — x2 g(xz) =z g(xz) =z«
¥ ¥ ¥

EI.?E[I—»_\___ 0.75 0.75
: M:-:

|
X X
X0 al X0 al I al
. . . logx
Figure 6.7: Illustrating the concept of lim = 0 for selected values of a, a >
r—oo %
0; x0=el/®.

Example 6.14 Using L’Hépital’s Rule to evaluate limits of the > form.
00

. tan x . 1/ cos? x 1 . cos3x 2 1 . 3sin3x 2
(a) lim = lim ——— = 3 lim = - | lim =
xr—

z—2 tan3x  z—2 3/cos? 3z z—Z COST 3 Z sinw

log 2 i L/ = lim 1 =0, for a>0. |

r—oo & r—00 (v r—oo %
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6.4 Further Indeterminate Forms

We shall illustrate the methods through specific examples. The general pattern should be
clear.

Example 6.15 Limits of the co — oo form.

(a) Evaluate A = lim [z — V22 + z].

r—00
We have
z—V +x—x<1— 1+—>: 1 L
x
x
which is the — form. Hence
1\ ~1/2 1
T ) ()
A = lim L — lim L L
2
x x
~1/2
= lim [—l (1—1—1) 1 :—l
T—00 €T
1 1
(b) Evaluate A = lim - .
z—1\logx x—1
1 1 —1-1 1-1
A = lim< ——>zlimw:hm—/$
z—1\logz x—1 a—1 (x —1)logz a—llogr+1—1/z
. 1/z? 1
= lim ———— =

z—1 1/.’E+1/l‘2 5
Example 6.16 Limits of the 0 - oo form.

) log = ) 1/z .
(a)mli%l-&-(x 10g l‘) zli>I(I)1+ 1/1‘ N zll>r(l)1+ T/:EQ N a:li%l—&- —r=0
.t _1 s 2 2
(b)hm zcotz = lim —— = lim “l/sin"e (lim = ) =12 =1
a—01/x  2—0 —1/22 z—0 sin
1 1 1
(c) lim “logz = lim 6% — lim i:—— lim 2 =0, a>0 [
—0+ =0+ 7% 2—0+ —qr— ! az—0+
Example 6.17 Limit of the 0° form.
Evaluate A = lim (sinz)”.
z—0+
log(sin z)

We note that log(sinz)® = zlog(sinx) =
and g(z) = 1/z. Then

m is of the 52 form. Let f(z) = log(sinx)
T

f'(x)  cosx/sinx

= —ITCOST -

= 0 0+.
g () —1/x? sinz 0 =T +
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Hence

A= zlir&(sm x)* = exp <x1£51+ log(sin z) ) —exp(0)=1. 1

Example 6.18 Limit of the 0o® form.

tan x
lim (ﬁ) = iiir(l)exp(— tanzlogz?) = e’ =1,

z—0

for

21 2 —25in?
lim (tan z log %) = lim 98T _ lim LQ = lim T 0. 1
z—0 z—0 cot t—0 —1/sin“x  2—0 T

Example 6.19 Limits of the 1°° form.

(a) Evaluate A = hn%(l —2z)3/7,
r—

We have
log(1 —2
(1 o 2$)3/x — eXp <3 . Og( ﬂj)> )
T
log(1 — 2x) -3 22
lim =72 = lim —=% = —2.
z—0 X z—0 1
Hence

log(1 — 293)) _ 3(-2) _ 6

A= e Iy <5

(b) Evaluate A = li]fn1 2T

We have
1 <logx>
rT-7 = exp ,
1—=x
! log _ 1/z _ 4
z—11—zx z—1 —1
Hence
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1 1
(a) zlog(l+—-)—1, as z — o0 (b) (1+-)*—e, as z — 0
T T
¥ ¥
1 ............................. E- .............
2.5
0.5

2

X X

10 =20 30 40 S50 10 20 30 40 50

Figure 6.8: Illustrating convergence of the functions zlog(1 + 1) and f(z) = (1 + 1), as

x
xr — OQ.

1
Example 6.20  Evaluate A = lim (1 + —)*.
T

r—00
Solution. We have

(1 + l)z — elog(l—&-%)x — emlog(l-i—%).
X

1
Now evaluate B = lim xlog(l+ —) = lim T
—00 T T—00 =

Hence . )
1 log(1 4+ = 1\~
B = lim zlog(l+ —) = lim M = lim <1+ —> = 1.
T—00 €T r—00 = T—00 X
T
Finally, we use the continuity of e* to conclude that
1
lim (14 —)* = lim emlos(113) — 0B — ¢l — ¢
T—00 €T T—00
Refer to Figure 6.8 which illustrates the convergence of the functions zlog(1l + %) and
(14 1) to 1 and e, respectively, as z — oc. |
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6.5 Monotone Functions

Theorem 6.5 Suppose that f is differentiable (and hence continuous) in a given inter-
val (a,b) and f'(x) =0 for all x € (a,b). Then f is a constant function on (a,b):

f(z)=C, z € (a,b),
for some value of C.

Proof. Let z1, z2 ba any two points in (a, b). By the Mean Value Theorem, there is
¢ between x1 and x9 such that

f(x1) = fx2) = (21 — 22) f'(c).

By assumption, f’(¢) = 0. Hence f(x1) = f(x2) for any x1, x2 € (a, b), which implies that
f is a constant function on (a, b).

If the derivatives of two functions f and g are equal, then applying the above Theorem
to f — g we conclude that f — g = C, for some constant C'.

Corollary 6.1 If f and g are differentiable in (a,b) and

f/(x) = g/(x)v T e (CL, b)’
then there is a constant C such that

f(@) = (@) +C, € (a,b).

Example 6.21 Showing that the identity f(x) = g(x) holds on a given interval.

We shall prove the following identity:

arctan x = arcsin \/% (6.15)
Let
x) = arctan x, x) = arcsin .
(@) e -
We have 1
1) —
f (.%') - 1 + 3727 )
1 + :E2 _ xi
J(z) = 1 . V1422 _ 1
72 14 22 1+ 22
]_ —
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Since f'(z) = ¢'(x) for —oo < x < 0o, by Corollary 6.1, there is a constant C' such that
the identity

. z
arctan r = arcsin ——— + C

V1 + 22

holds for z in any finite interval (a,b) and therefore for every z in (—oo,00). To evaluate
C, let x = 0. Then f(0) = arctan0 = 0 and ¢(0) = arcsin0 = 0 imply that C' = 0. Hence
the identity (6.15) is proved.

Theorem 6.6 Suppose that f is differentiable on [a,b] and continuous on |a,b].
(@) If f'(x) > 0 for all x in (a,b), then f is strictly increasing on [a,b).
(b) If f'(x) <O for all  in (a,b), then f is strictly decreasing on [a,b].

Proof. Let z1, 22 € [a,b] and let z; < x3. By the Mean Value Theorem we can write
flx1) = f(z2) = f/(€)(x1 — x2), for some £ € (xq,1).
(a) By the hypothesis, f'(£) > 0. Thus
a1 <z = f(z1) = fla2) = f(§)(z1 —22) <0 = [(z1) < f(a2).
(b) By the hypothesis, f/(¢) < 0. Thus
<z = f(@) - fl@) =)@ —22) >0 = flxr)> flxz). B
Example 6.22 Showing that the inequality f(x) > g(z) holds in a given interval.

We shall apply Theorem 6.6 to prove the following inequalities:
(a) QA+2)*>14+azx, >0, a>1.
(b) sinz <z, z>0.
3
(c) sinz>z-— %, x> 0.
Solution.
(a) Let f(z) = (1+2)* — (1 +ax). Then f'(z) =a(l+2)* ' —a=a[l+2)* 1 -1 >0
forx >0, a>1.
Hence f(x) is increasing on [0, co), which implies that

f(z)> f(0)=0 for z > 0.
(b) Let f(z) =2 —sina. Then f'(x) =1 — cosxz > 0, for all z.

Hence f(z) is increasing on (—oo, 00), and
f(z)> f(0)=0 for > 0.
x3 22
(c) Let f(x) = sin:c—q:—kg. Then f'(z) = cosx—1+3 and f’(x) = —sinx+x, x> 0.

Since f”(xz) > 0, for x > 0, we conclude that f’(z) is increasing on [0, oco) which
implies that

f(0) > f(0) =0, for z>0.
Hence we conclude that f(x) is increasing on [0, oo] and consequently

f(x) > f(0)=0, for =z > 0.
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6.6 Convex and Concave Functions

A function f with domain D is convex on a given interval I (contained in D), if the line
segment joining any two points P= (1, f(x1)) and Q= (x2, f(z2)) on the curve y = f(z),
x1, x2 € I, lies above the graph of the function f. If this line segment lies below the graph
of f, then the function f is said to be concave.

Figure 6.9: Illustrating the concept of a convex function.

Refer to Figure 6.9 and note that the equation of the line through the two points
P= (.’El, f(l'l)) and Q: (x27 f(l'Q)) is
_ f(@2) = f(=1)

Ty — X1 (x — 1) + f(z1) = g(x).

Thus, f is convex if f(z) < g(x) for 1 < z < x9 and f is concave on I if f(z) > g(x)
for x1 < x < x9, where x1, xo are any points in I. Now,

f(@2) — f(z1)
9 — X1

e @) =S @) - ) (6.16)
ro — I r—

f(z) < g(=) = f(z) < (x —x1) + f(z1)

The inequality (6.16) can be written equivalently using a parameter ¢, 0 <t < 1. Note that
if 1 < xq, then as ¢ ranges from 0 to 1, the point x = (1 — ¢)x1 + txy traverses the interval
(1,x2) and the point (z,y), where y = (1 —¢)f(x1) + tf(z2), traverses the line segment
joining the points P and Q.

Hence (6.16) is equivalent to

fIA =)z +tas] < (1 —1) fla) +1 fx2), (6.17)

or
flsx1 +txo] <s f(x1)+t f(x2), (6.18)
whenever s+t=1, 0<s<1, 0<t<1.



150 Chapter 6 — Applications of the Mean Value Theorem

Definition 6.2 A function f with domain D is convex on a given interval I € D, if
for any x1,x9,x € I such that x1 < x < x2 the following condition holds:

f(xa) — f(z1) > f(z) = f(x1)
Ty — X1 - x—x
The function f is concave on I, if
f(xa) — f(z1) < f(z) = f(x1)
To — I - T — I

for any x1,x2,x € I such that 1 < x < x2.

We note that the above definition does not require a convex/concave function to be
differentiable at all. If f is differentiable, it is convex on the interval I, if and only if its
derivative f’ is increasing on I. If f is twice differentiable on I, therefore f is convex on [
if and only if f”(x) > 0 for all x € I.

Theorem 6.7 Suppose that a function f with domain D is differentiable on I = [a,b] C D.
(a) The function f is conver on I if and only if [’ is increasing on I.

(b)  The function f is concave on I if and only if [’ is decreasing on I.

Proof. We note that the condition (6.16) can be rewritten equivalently as

(g — ) f(x1) + (21 — 22) f(x) + (x — 1) f(22) > 0,

. f@) = 1) _ J@) = )

r — I r — T2

, (6.19)

where 1 < x < 9, x1, 22 € I.
—> We assume that f is convex on I, so that (6.19) holds for any choice of 1 < z < x5
in I. Since f is differentiable on I, f’(x1) and f’(z3) exist. Using (6.19), we have

(1) = lim f(x) = f(z1) < f(z1) — f(22)
T—T1 Tr — I Tr1 — T2
and
F(z2) = lim f(@) — flz2) > flz2) — f(fﬂl)'
T—x2 Tr — T Tro — I
Thus
f/(xl) S f(xl) — f(xQ) < f,(-’L'Q)-

1 — T2

Hence, if 21, 29 € I and 1 < z9, then f'(z1) < f'(x2) so f' is increasing on I.
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<= We assume that f’ is increasing on I. Let x1, w2, v € I and 21 < x < 5. Applying
the Mean Value Theorem to f on [z1, ] gives

f(x) = f(z1)

= f'(&) for some &1, m <& <.
r — T

Applying the Mean Value Theorem to f on [z, x2] gives
f(x2) — f(=)

= f/(&) for some &3, x < & < 9.
ro — T

Now, f’ is increasing on I, so that

fx) = f(z1) < f(l’)—f(f%).

T — T - T — T2

Li<& = flla)<f(&) =

Hence the proof of Part (a) of the theorem is complete.

To prove Part (b), we observe that if g(x) = — f(x) is convex with increasing derivative
g (z) = —f'(x), then —g(z) = f(x) is concave with decreasing derivative. Thus application
of the above proof to the function g(x) = —f(x) proves Part (b) of the theorem.

Suppose now that f is twice differentiable on I. Then f’ is increasing on [ if and only
if f’(x) >0, z €I, and f’is decreasing on I, if and only iff”(z) <0, z € I. Hence we
obtain the following theorem.

Theorem 6.8 Let I be an open interval and suppose that f : I — R has a second
derivative.

(a)  The function f is convex on I if and only if f"(x) >0, for all x in 1.

(b)  The function f is concave on I if and only if f"(x) <0, for all x in I.

6.7 Partial Derivatives

Consider a real-valued function F(x,y) defined in a neighbourhood of the point (z,,¥,).
The partial derivative of F'(x,y) with respect to = at the point (x,,y,) is denoted by one

of the symbols

OF OF (x0,Yo)
%@oayo)a T) Fx@m?/o)

and calculated simply by differentiating F'(x,y) with respect to z, treating y as a constant.
Similarly, the partial derivative of F'(x,y) with respect to y at the point (z,, y,), denoted
by one of the symbols,

OF OF (x4,90)
R —_ g F
8y (x()’yO)’ ay ’ y(x07yo)

is calculated by differentiating F'(z,y) with respect to y, treating = as a constant.
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Definition 6.3 Let F(x,y) be a real-valued function defined in a neighbourhood of the
point (x,,Yo). The partial derivative of F(x,y) with respect to x at the point (z,,Y,) is

F h _F
Fou(20,10) = %12% (2o + 790}2 (%0, Yo)

)

provided that the above limit exists.
The partial derivative of F(x,y) with respect to y at the point (z,Y,) is

F kY- F
Fy(xO,yg) — l};im (%o, Yo + ]3: (a:o,yo)’

—0

provided that the above limit exists.

We can see that the above definition corresponds to the definition of an ordinary derivative
for the function f(x) = F(x,y,). Hence, all the rules of differentiation of a function of one
variable we have developed are valid for partial derivatives.

Example 6.23 Finding partial derivatives.

(a) If F(z,y) = 2® —y +3y*, (x,y) € R?, then the partial derivatives of F(x,y) exist at
any point (z,y) of R%:

Fz(‘r7y) :2337 Fy(‘r7y):6y—1

1
the domain D of F, where D = {(z,y) : —o0o < x < 00, y # 1}. We have

(b) If F(x,y) = &, y # 1, then the partial derivatives of F' exist at any point (z,y) of
Yy —

OF _ _y_

oxr y—1

OF z(y—-1-—zy
Oy (y —1)? (y—1)*

(c) If F(x,y) = arctan Q’ x # 0, then we have
x

OF  —y/a*> —  y
ax_1+(%)2_ x2 +y2’
oF  1/x x

dy 1+ ()? 224y
at any point (x,y) of the domain D = {(z,y) : ¢ # 0, —o0 < y < oo} of the function
F.

2zy
(d) Let F(z,y) ={ =2+¢* (,y) # (0,0)
0, (z,y) = (0,0).
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If (z,y) # (0,0), then

0 2r 2%+ y?) — 222 2y(y? — 22
Fx(m,y):—( y):y( ) y _ 2y(y )

Ox \ a2 + 12 (22 + y2)? (22 y2)2
To find F(0,0) we use the definition:
ROO=m = T
Hence ( ) 2)
2y(y* —x
———— (z,y) # (0,0)
Fy(z,y) = (% +52)%

0, (z,y) = (0,0). N

6.8 The Implicit Function Theorem Revisited

Theorem 6.9 The Implicit Function Theorem II

Let F be a function of two variables x and y, where x € I, y € J, I, J are open
intervals. Suppose that forx eI, y e J,

1. F(z,y) is continuous;

2. The partial deriwatives F, and F, exist and are continuous;

3. For some point (x4,Y), To € I, Yo € J, we have F(x,,y,) =0 and Fé(xo,yg) # 0.

Then there are positive numbers h and k that determine the rectangle
R={(z,y): |z —xo| <h, |y—uyo| <k}
such that the equation
Fz,y) =0
defines y as a function of x,
y=1[f(), velo=A{z:|r—zo| <h} CI,
whose range is contained in
Jo=Ay:ly —vol <k} CJ.
The function f is determined uniquely on I and has the following properties:
(a)  f(zo) = Yo,
(b)  f is continuous on I,,
(c)  f is differentiable on I,

(d) f’ is continuous on I, and can be expressed as

’ Fi(z,y)
f (.%') = _Fy(x,y) .
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Lemma 6.1 Suppose that the function G(x,y) possesses the partial derivatives G, =
Ga(z,y) and Gy = Gy(x,y) at the point (z,,Y,) and in a neighbourhood of (xo,Yo). If G
and Gy are continuous as functions of two variables x and y, then the difference

AG(20,Y0) = G20 + AL, yo + Ay) — G20, Yo)
can be expressed as
AG(30,Yo) = Gu(To, Yo) Ax + Gy(0,50) Ay + a(Az, Ay) Az + f(Az, Ay) Ay, (6.20)
where oo — 0 and B — 0 as both Ax — 0 and Ay — 0.
Proof. Clearly, we have
AG(20,Y0) = [G(z0o + Az, Yo + Ay) — G(T0, Yo + Ay)] + [G(z0, Yo + Ay) — G20, Yo)].

By the Mean Value Theorem, there exists ¢; between x, and x,+ Ax, ¢; = z,+01Az, 0<
01 < 1, such that

G(l'o + Az, Yo + Ay) - G(ajm Yo + Ay) = G:v(xo + 01 Az, Yo + Ay)Al‘
Similarly, there exists co =y, + 02Ay, 0 < Oy < 1, such that
G($O, Yo + Ay) - G(ona yo) = Gy(xm Yo + Gsz)Ay

When Az — 0 and Ay — 0 then z, + 01Ax — x, and y, + oAy — y,. Since G, and
G are continuous, there exist o« = a(Az, Ay) and 8 = B(Az, Ay), such that

Gy(zo + 1Az, yo + Ay) Az = Gy(x0, Yo) + a(Az, Ay), (6.21)
Gy(xoa Yo + 92Ay) Ay = Gy(‘rm yo) + B(A.T, Ay)a (622)

where a(Ax, Ay) — 0 and S(Az,Ay) — 0, when Az — 0 and Ay — 0.
Hence, we obtain

AG(xo,Y0) = Gu(T0, Yo) Az + Gy(x0, Yo) Ay + alAx + SAY.
|

Proof of the Implicit Function Theorem II. By the hypothesis 3, Fyy(x,,y,) # 0.
We assume that Fy(x,,y,) > 0; otherwise we replace F' by —F and repeat the argument.
Since F), is continuous, there is a (sufficiently small) square

S={(z,y) : |x — x| <k,|ly—yo| <k}

on which F is positive. For each fixed value x = z*, |2* — z,| < k, we have F,(z*,y) > 0,
which implies that F(z,y) is increasing as a function of y for fixed value of z, (z,y) € D =
I x J, the domain of F. Therefore, the Implicit Value Theorem I is applicable.
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The existence of a unique function y = f(x) that is continuous on I, and satisfies the
property f(x,) = ¥, is then guaranteed by that theorem. We are only to prove the properties
(c) and (d) for the function f.

Let = € I,. For a given point (x,y) on the curve y = f(x), consider another point
(x + Az,y + Ay) on the same curve and define

We have

y = f(z), y+ Ay = f(x + Ax),
F(z,y) =0, F(z+ Az,y + Ay) =0,

so that, for (z,y) € I x J,
AF(z,y) =

Applying Lemma 6.1, we obtain
0=AF(z,y) = Fy(2,y)Az + Fy(z,y) Ay + aAz + SAy,
where @« — 0 as Az — 0 and 8 — 0 as Ay — 0. This implies that

&_f(x—i_Ax)_f(x’y) Fx(SC,y)-f‘Ol

Ax Ax Fy(z,y) + 8
and gives
. Ay : Fo(z,y) +a
() = lim — = — lim ————12——.
fle)= Jm e = A TR ) + 8

Now, if Az — 0 then Ay = f(z + Az) — f(x) — f(x) — f(z) = 0, since f is continuous.
Hence o« — 0, 8 — 0, and
Fo(z,y)+a _ Fi(z,y)

lim = —
Az—0 Fy(z,y) + 8 Fy(z,y)

which implies that f’(z) exists and is given by

6.9 Exercises

6.1 Evaluate, using L’Hopital’s rules, the following limits:

W .. tanz—=x
(i) lim —5—;
.. .o
(i) lim —;

z——+oo el
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6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Chapter 6 — Applications of the Mean Value Theorem

Show that, for 0 < x < m/2, the following functions are increasing functions:

z3/6

r —sinz

x x2/2

(i) (ii)

_t iii
sinzx 1—cosxz (1)

From the previous question (i) deduce that

9 .
—<Smx<1, for 0<35<E.
T T 2
Show that )
7T<M§4, for 0<ax<l.
z(1l—x)

Sketch the graph of the function.

Sketch the graph of the function

1 1
flz)=mcotmz — — — ——, 0<z<L
r x-—1

Sketch the general form of the graph of y, given that

dy (622 +2—1)(x — 1)%(z+1)3
= 5 :

dzx T

(a) Use Cauchy’s Mean Value Theorem to show that there are numbers ¢,d, e, be-
tween x and a such that:

@ =N o,
X)) — a r—a (1) a
y L=l el 1 o,
r —a 2
f@) - [1@) + @ - 0@ + ES 0@
(iii) = =519

(b) Use part (a) to construct an inductive proof of Taylor’s Theorem.

Determine if F'(z,y) has continuous partial derivatives Fy, Fy, Fpy, Fyz, Fiz, Fyy,

where
2zy

Flz,y)=q «*+y*
0, when (z,y) = (0,0).

when (z,y) # (0,0)

Is F' continuous at (0,0)?

Show that = + y + sinxy = 0 defines y as a function of x in (—h,h), y in (—k, k), for
some h, k > 0.

d
Determine _y.
dx

Sketch the graph of y.
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Integration

7.1 Lower and Upper Sums

Definition 7.1 A partition P of the closed interval [a,b] is a finite collection of
points

{:UO)xlaan cee 7$n}

that satisfy the condition
a=T, <1 <T9 <+ <z =b.

Definition 7.2 Consider a function f that is bounded on an interval a,b] and let

P ={xo,x1,T2,...,24}
be a partition of |a,b]. Let
Arj =z —xi1, my= inf f(x), M;= sup f(x).
Ti—1STET zi—1<z<x;

The lower sum of f for P, denoted by L(P, f), is
L(P,f) = zn:miAxi.
i=1
The upper sum of f for P, denoted by U(P, f), is
UP, f) = ZH:MZAxZ
i=1

If f is a positive function, the lower and upper sums have a clear geometric interpreta-
tion. The lower sum L(P, f) is the area of the union of rectangles with base [z;_1,x] and
height my; the upper sum U(P, f) is the area of the union of rectangles with base [xj_1, z]
and height Mj, (see Figure 7.1).

157
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Example 7.1 Consider the partition

1.
P =A{xo,x1,22,..., 20}, x;= e 1=0,1,....,n

of the interval I = [0,1] and consider the function f(x) = x2 on the interval I. Find the
lower sum and the upper sum of the function f for the partition P.

Solution. For the partition P, we have

Ami = xi—.%i_l:%—%:%, i:1,2,...,n,
N2
m; = infﬂ?i_lgmgxi f(ﬂ:') = f(x’i—l) = (%) , 1= 1727 s
N2
M, = SUpP,, | <p<q, f(T) = f(25) = (%) , i=1,2,...,n.

The lower sum is

L(P,f) = miAzy + malAxg + - -mpAx,

1
= —(matmy )

N n\n2 n2 n? n2
Lo oo 2
= ﬁ(l +22 4+ (n—1)%)
B 1 (n—1)n(2n—-1)
N n3 6
The upper sum is
U(P, f) = MiAxq + MaAxo + - M, Axy,

1
= (Mt Myt My)

1/(1 22 n?
= - —+ﬁ+---+$

_ Lo o2 2
= (P24
B 1 nmn+1)(2n+1) 1
n3 6 )
Definition 7.3 Let P = {xo,21,...,2,} be a partition of the interval I. If Q =
{Yo, Y15+ -y Ym}, m > n, is a partition of I such that each point xy, 1 <k < n, of the

partition P belongs to Q, that is if P C Q, then we say that the partition Q is a refinement
of the partition P.

Figure 7.1 shows the lower and upper sums for f (x) = a:2 corresponding to three parti-

tions of the interval I = [0,1]; the partltlon P = {0, i 10, cen 10, 1} and two refinements
= {0, 5 25 20, e 20, 1} and Qs = {0, £ 0 40, e 40,1} of the partition P.
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(a) L(P,f)=0.285000 (b) U(P, f) = 0.385000
J _J
(c) L(Q1,f) = 0.308750 (d) U(Qu, f)=0.358750
‘j J
(e) L(Qa,f)=0.320937 (f) U(Qa, f) = 0.345979
J J
Figure 7.1: The lower and upper sums for f(z) = 22 corresponding to the partition
P =10 L1 ..,1} and two refinements of P.

7%5%7'
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Now we shall prove the following results which are clear on geometric grounds:
e the lower sum is less than or equal to the upper sum of the same partition;
e refining a partition increases lower sums and decreases upper sums.

We shall combine them to conclude that a lower sum is always less than or equal to an
upper sum even if they correspond to different partitions.

Lemma 7.1 Let f be a bounded function defined on a given interval I = [a,b] and let

P ={xo,21,...,2,} be a partition of I. Denote by m and M the infimum and supremum
of f onl:

m = inf f(x), M =sup f(z).

zel xel

The following hold:
(a) m(b—a) <LP,f) <UP,f) < M((b—a).

(b) If Q is a refinement of the partition P, then

LP,f) < L(Q. f) and UQ, f) <UP, ).

Proof. Let
mr= inf  f(z), Mp= sup f(x), Ap=ar—xk_1, k=1,2,...,n.
$6[$k_1,$k} CEE[:L‘k,l,{L‘k}
(a) We have
LP.f)=> mply, UP,f)=> Myl
k=1 k=1
Since

n
m<mp <M, <M, k=1,2,...,n, and ZAk:b—a,
k=1
we get

n

mb—a) =Y mA <> mpAp <Y MA <Y MA,=M(b—a),
k=1 k=1 =1 k=1

and so
m(b—a) < LP,f) <UP,f) < M- a).

(b) If Qis a refinement of P, P C Q, then Q can be obtained from P by adjoining a
finite number of points to P.
Let P’ be the partition obtained from P by adjoining one point z to P, where z;_1 <
z < xy, for some k:
P ={2o, 01, .., Th_1,2,Thy--.,Tp}.



7.1 Lower and Upper Sums 161

Let

mp= inf f(@), mi= inf f(z),
TE[TE_1,2] T€[z,xk]

and let A} = z — x;_; and A} =z — z. Then my < mj and my < mj, and we have
mpA, = mkA;g + mkAg < m%A% + mgAlkl
Hence
L(P,f)= Z m;Aj + mi Ay + miA] > Z m;iA; +mpAy = L(P, f).
J#k J#k
We can see, therefore, that adjoining one point to P increases the lower sum:
L(P', ) > L(P, [).

Since the refinement Q of the partition P can be obtained by adjoining a finite number of
points to P, one at a time, repeating the above argument we conclude that

L(P, [) < L(Q, f)-

Now we shall examine how the upper sum changes when one point is adjoined to the
partition. Let

M, = sup f(z), M} = sup f(x).

T€[TK—_1,2] z€lz,i]

Then Mk > Ml;’ Mk > Ml;/ and

n
UP', f) = MiAj+ MyAj + MyAY <Y MA; =U(P, f).
i#k j=1
Hence the upper sum decreases when a point is adjoined to the partition:
UP', f) <UP, f).

Now, adjoining a finite number of points to P we obtain Q, so repeating the above argument
we infer that

UQ, f) <UP, f).
The proof is complete. |

Lemma 7.2 Let f be a bounded function defined on a given interval I C R and let Py
and Py be any two partitions of I. Then

L(Py, [) SU(Pa, f).

Proof. Let Q@ =P;UP;y. Then P; C Q and Po, C 9, so Q is a refinement of both Py
and P2. By Lemma 7.1(a) we have

L(Q,f) U f)
and, by Lemma 7.1(b), we have

L(P1, f) <L(Q,f)
UQ, f) <U(Pa, f)

Hence the required result follows:

LOPLF) < L(Q.f) SUQ. f) <UPs, f). I



162 Chapter 7 — Integration

7.2 Lower and Upper Integrals

Let f be a bounded function defined on the interval I. To each partition P of the interval
I there correspond its lower sum L(P, f) and its upper sum U(P, f). If we consider the
collection P(I) of all possible partitions of the interval I, we obtain two sets of numbers:
the set of lower sums

Se={l: Il=L(P,f), PeP()}
and the set of upper sums
Su={u: u=UP,f), PeP()}.

Since f is bounded, by Lemma 7.1, each set S, and Sy, is bounded, and as such possesses
an infimum and supremum. The supremum of S is called the lower integral of f on I and
the infimum of Sy is called the upper integral of f on I. The function f is said to be
integrable over the interval I if the lower and upper integrals are equal.

Definition 7.4 Let f be a bounded function defined on the interval I. Let P(I) be the
collection of all possible partitions of the interval I.
The lower integral of f on I, denoted by L(f), is

L(f)= sup {I: I=L(P, )}
PeP()

The upper integral of f on I, denoted by U(f), is

U(f) = Pél’ll?f(l){u cu=UP, [}

Example 7.2  Finding lower and upper integrals.
(a) Let f(x) = c be a constant function on the interval [a,b]. Clearly
U(Pvf) :C(b_a’)7 ‘C(Pvf) :C(b_a)‘

Hence
L(f) =U(f) = (b - a).
(b) Let f be defined on the interval [0, 1] as follows

0 if = is rational
1 if z is irrational

Then
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Theorem 7.1 If f is a bounded function defined on the interval I C R, then the lower
integral L(f) and upper integral U(f) of f on the interval I exist and satisfy the inequality

L(f) <U(f). (7.1)

Proof. The existence of L(f) and U(f) follows directly from the hypothesis that f is
bounded.

To prove the inequality (7.1), we let P; and Ps be any partitions of the interval I. Then
L(P1,f) <U(Pa, f). Since P; is arbitrarily chosen from the collection of partitions P (1),
we conclude that the number U(Ps, f) is an upper bound of the set S, of the lower sums.
Now, L(f) is the supremum of S, so

L(f) SU(Ps, f).

Because Py is arbitrarily chosen, the above inequality implies that the number L(f) is
a lower bound for the set Sy; of upper sums. Consequently the infimum of this set, U(f),
must satisfy the inequality

L <uv(s). 1
7.3 The Riemann Integral

Definition 7.5 Let f be a bounded function on the interval I = [a,b]. The function f
is said to be Riemann integrable on I if the lower integral L(f) and the upper integral
U(f) are equal.

If f is integrable on I then the Riemann integral of f on I is defined to be the common
value of L(f) and U(f) and is denoted by

/abf(a:)dx or /ab f

In addition, we define

/aaf(a:)d:c =0 and /baf(a:)d:r =— /abf(a:)d:c.

Example 7.3 Using Definition 7.5.

(a) Let f(z) = c be a constant function on the interval [a,b]. Clearly
U(Pvf) = c(b—a) = E(Paf) = C(b_a)'

Hence f is integrable and

b b
/acdx:/a Fla)de = L(f) = U(f) = (b — a).
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(b) Let f be defined on the interval [0, 1] as follows

fz) = 0 if x is rational
= 1 if z is irrational
Then we have
0=L(f) #U(f) =1
and we conclude that f is not integrable on the interval [0, 1]. |

7.4 Existence of the Integral

The above definition of the Riemann integral does not provide an easy criterion to establish
whether or not f;’ f(x)dx exists. The next theorem gives us a necessary and sufficient
condition for existence of the integral.

Theorem 7.2 Integrability Criterion
Let f be a bounded function defined on I = [a,b]. The function f is integrable on I if and
only if for every e > 0 there exists a partition Pz of I such that

U(Pe, [) = L(Pe, f) <e. (7.2)

Proof.
—>  We assume that f is integrable on I, so L(f) = U(f). Let € > 0 be given. Let
P be the collection of all possible partitions of I.

Since L(f) = sup {l: 1= L(P, )}, by definition of the supremum of a set, we have
PeP(I)

IP € P (L( f) - % < L(Py, f)> . (7.3)

Since U(f) = Pgl?f(l){u . u=U(P, f)}, by definition of the infimum of a set , we have

e (U +5>UPL). (7.4)
Let P. = P1 UPy. Then P. is a refinement of both P; and P,. By Lemma 7.1 we have

L(Pe, f)

; L(P1, f),
U(Pe, f)

U(PQ’f)7

IN IV

which implies that
UPe, ) = L(Pe, [) SUP2, f) = L(Py, f).

Now, U(f) = L(f) by the hypothesis. Hence, using (7.3) and (7.4) we get

=E&.

U(P., f) = £(P., /) SU(f) + 5 = L(f) +

| ™
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<= We assume that for every £ > 0 there exists a partition P, of I such that (7.2)
holds. We note that for any partition P of I we have L(P, f) < L(f) and U(f) <U(P, f),
which implies that

U(f) = L(f) <UP, f) = L(P, [).

Let € > 0 be given and let P, be the corresponding partition of I for which (7.2) holds.
Thus

U(f) = L(f) SUPe, f) = L(Pe, f) <e.
Since ¢ is arbitrary, we conclude that U(f) < L(f). Hence, by Theorem 7.1
u(f)=Li)- B

Corollary 7.1 Let f be a bounded function defined on I = [a,b]. If there is a sequence
{Pn} of partitions of I such that

T [U(Pu f) — L(Pa )] =0 (7.5)
then f is integrable on I and
Jin 2Py ) = [ 1) =t 4P, ) (76)

Example 7.4 Show that g(x) = x? is integrable on the interval [0,1].

Solution. Using the results of Example 7.1 we get

) ) nin—1)2n —1) 2 1
fm ePun = gm [T = G
. . [n(n+1)(2n+1) 2 1
Uy = MR = E g

2

Hence, by Corollary (7.1), g(x) = z* is integrable on the interval [0, 1] and

1 1 1
/ g(z)dx = / ?de = -. 1
0 0 3

We now consider two important classes of Riemann integrable functions.

7.5 Integrability of Monotone Functions
Theorem 7.3 Any function f that is monotone on I = [a,b] is integrable on I.

Proof. Suppose that f is nondecreasing on I. Let P,, n=1,2,..., be the partition
of I into n equal subintervals, so that

b—a
n

Amk:-%'k_-%'kfl: s k:1,2,...,n.
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Now 1 < 2, = f(zk—1) < f(xp), and we have my = f(xz_l), My = f(x), k=
1,2,...,n, where

fl@)=sup f(t), and f(z)=inf f(s).

t<z <8
Thus
> (Mg —my,) = flaeg) = flag) + flag) = flay) + -+ flan) = flaa_y)
k=1
< f(@n) = f(zo) = f(b) — f(a).
Therefore, we have
M(anf) _ﬁ(anf) = Z(Mk _mk Axk = mk
k=1 k=1
b—a

IN

(f(b) = f(a)) =0, asn—0.

Hence condition (7.5) is satisfied.
The above arguments can be repeated for the case when f is nonincreasing. |

Example 7.5 Let

A IN
8 8
IN IA
e

~

&

Il
—
[
SN
= O

Then f is Riemann integrable on [0, 1].

7.6 Integrability of Continuous Functions

Theorem 7.4 Any function f that is continuous on I = [a,b] is integrable on I.

Proof. We note that any function that is continuous on a closed interval is uniformly
continuous on the interval. Thus f is uniformly continuous on I. This means that

Ver >0 30 >0 Yug, ug € I (Jlup —ugl <6 = |[f(u1) — f(u2)| < e1). (7.7)

Let € > 0 be given and set ¢ = ¢/(b—a). Then (7.7) implies that there is a positive ¢ such
that

Var,u € 1 (ym Cwpl < = |f(ur) = flus)] < ﬁ) . (7.8)

Let d = (b—a)/d. Choose P = {xz,, 1,...,x,} be the partition of I into n equal subintervals,
where n > d. Then Ay =2 — a1 =(b—a)/n<6, k=1,2,...,n

Now, if w1, us € [rg_1,2x] then |u; —uz] < (b—a)/n < 0 and, by (7.8), we have
|f(u1) — f(uz)|] < e/(b— a), which implies that My, — my < (b —a)/n < 0. Hence

n

UP, f) = L(P, f) = (M = mi) Az < — z Ay = ——(b—a) =¢.
k=1 k=1

Therefore, given € > 0, we have shown that there is a partition P of the interval I that
satisfies the hypothesis (7.2) of Theorem 7.2. Since ¢ is arbitrary, by Theorem 7.2, we
conclude that f is integrable on I.

Example 7.6  f(x) =sinx is Riemann integrable over any interval [a, b].
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7.7 Properties of the Integral

We now establish some basic properties of the Riemann integral, which, in a sense, justify
the choice of the word “integral”.

Theorem 7.5 If f(x) is integrable on [a,b], then the function kf(z) is integrable on
[a,b] for any constant k, and

/ab kf(x)dx = k:/abf(x)da: (7.9)

Proof.
Case 1: k£ > 0.
To prove that the function kf(x) is integrable on [a, b] requires finding a partition P of
[a, b] such that
UKf,P)—LKkf,P)<e

for any € > 0.
Let € be given. Since f is integrable on [a, b], there is a partition P. of [a,b] such that

U(LP) = L. Pe) < 1

Now

Z/{(k‘f, Pa) - E(kfa PE)

kU, P)—k L(f,P:)
_ k (U(f,P) = L(f,P:))

< k-z=ce

Thus the function kf(x) is integrable on [a,b]. It remains to show that (7.9) holds. We
have

k‘[,(f, PE) = ,C(k:f, Pz—:) < /b kf(x)dx < Z/{(]Cf, PE) = kU(f, PE) (7'10)
and )
L($.P2) < [ faydz <U(f.P.)
Multiplying the above inequality by k& (k > 0) gives
e P) <k [ <RUP.) (.11)

From (7.10) and (7.11) it follows that

Ve >0 <e. (7.12)

/abk:f(:p)dm - k‘/abf(x)dz

We conclude that (7.9) holds.

Case 2: £ =0.

For every = € [a,b], kf(z) =0, so that the function kf is integrable by Example 7.3.
It is clear that (7.9) holds.

Case 3: k£ < 0. This case is left to the student as an exercise. |



168 Chapter 7 — Integration

Theorem 7.6 Suppose that f and g are integrable on the interval I = [a,b]. Then the
function f + g is integrable on I and

b b b
/ [f(z) + g(x)]dx = / f(z)dx +/ g(z)dz. (7.13)
Proof. Let P be any partition of the interval I = [a,b]. Since
. S .
inf[f(z) + g(z)] 2 inf f(z) + inf g(2),

sup(f(z) + g(z)] < sup f(z) + sup g(z),
xel xel xel

the lower and upper sums satisfy the inequalities:
L(P,f+g)=L(P,f)+L(P,g),
UP, f+g) <UP,f)+UP,g).

Since the partition P is arbitrary, we have the following inequalities for the lower and upper
integrals of f 4+ g, f, and g on the interval I:

L(f +g) = L(f) + L(g),
U(f+9) <U(f)+Ul(g)

Now for any bounded function, the lower integral is less than or equal to the upper integral,
so L(f+g) <U(f+ g). Thus we have

L(f)+L(g) < L(f+9) <U(f +g) <U(f) +U(g).

But the functions f and g are integrable on I, so L(f) = U(f), L(g) = U(g), and L(f) +
L(g) =U(f) 4+ U(g) implies that

L(f+9)=U(f+9).

Hence we conclude that the function f+ g is integrable on the interval I = [a,b], and (7.13)
holds.

Theorem 7.7 If f is Riemann integrable on I = [a,b], and f(x) > 0 for all x € |a,b],
then

/abf(:v)dx > 0.

Proof. Let P = {z,,21,...,2,} be a partition of I arbitrarily selected from the
collection P of all partitions of I. Then

mp = inf f(z)>0, k=1,2,...,n,

TE[TR—1,Tk]
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and consequently
n
= mi(zp — zp-1) > 0.

Since L(P, f) > 0 for any partition P € P, we conclude that
L(f) = sup L(P, f) = 0.
PP

Since f is integrable on I = [a, b], we have

/f L(f)>o. 1

Theorem 7.8 If f and g are integrable and bounded on I = [a,b], and if
f(x) <g(z), x€la,b],

/abf(a:)dx < /ab g(x)dz.

Proof. By theorem 7.5, the function — f is integrable, so is g — f = g + (—f), and

/ab[g(ﬂ”) — f(@)]dz = /abg(x)da: - /abf(:c)dx

By the hypothesis, g(x)— f(x) > 0. Applying Theorem 7.7 to the function g— f, we conclude
that

/ab[g(:E) — f(z)]dz = /ab g(z)dx — /abf(:c)dx >0, or /ab g(x)dz > /abf(:v)dx |

Theorem 7.9 If f is integrable on I = [a,b] and
m< f(z) <M, zel,

then

then
m(b—a) < /abf(:c)dx < M(b—a).

Proof. By Example 7.3, the constant functions, ¢g1(z) = m and go(x) = M are
integrable on I and

/abgl(x)dx = /abmdm =m(b—a), /abgg(m)dm = /abMda: = M(b—a).

Hence, by Theorem 7.8,

m < f(x) zel=1[ab] =

m(b— a) /mdm</f d1:</de— b—a),

and the proof is complete. |
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Theorem 7.10 Let f be a bounded function on the interval I = [a,b] and let ¢ be any
interior point of I that splits I up into Iy = [a,c| and I3 = [c,d].

The function f is integrable on I if and only if f is integrable on both I and Is. In this
case

/ab f(x)dr = /:f(a:)d:c + /Cdf(a:)d:c. (7.14)

The proof of this theorem makes use of the following lemma.

Lemma 7.3 Suppose that the assumptions of Theorem 7.10 hold. Let L(f), L1(f), and
Lo(f) denote the lower integrals of f on the intervals I, Iy, and Is, respectively. Similarly,
let U(f), Ur(f), and Us(f) denote the upper integrals of f on I, Iy, and I, respectively.
Then we have

(1) L(f) = L1 (f) + La2(f),
(i) U(f) = Ui(f) + Ua(/).

Proof of Lemma.

We shall only prove the (ii) part of the lemma. The proof of (i) proceeds in a similar
way.

Let P be any partition of [a,b]. Then Py = (P U {c}) N a, (] is a partition of [a,c] and
Py = (P U{c})N]c,d] is a partition of [c,b]. From the definition of the upper sums, we have

UP U{ch, ) =UPL, f) +UP, f).
Also, since P U {c} is a refinement of P, U(P U {c}, f) <U(P, f). Hence

U(P, f) > U(Pr, ) +U(P2, f)
> Ui(f) + Ua(f).

Since this inequality holds for all partitions P of I, we conclude that

U(f) =2 Ui(f) + Ua(f).

For the reverse inequality, let € > 0 be given. By definition of the upper integral, there
is a partition P; of [a,c] and a partition Ps of [c, b] for which

UL(f) SUPL ) < Ui(F) + 5

Us(f) SUP, f) < Uslf) + 5.
Then
U(PLUPa, f) =U(P, f) +UP2, [) < UL(f) + Ua2(f) +e.

But U(f) < U(P1UPso, f), so that U(f) < Ur(f) + Ua(f) + e. Since € > 0 is arbitrary, we
have

U(f) <UL(f) + U2(f). |
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Proof of Theorem 7.10.
—> We assume that f is integrable on I, so that L(f) = U(f) and, using the state-
ments (i) and (ii) of Lemma 7.3, we conclude that

Li(f) + La(f) = L(f) = U(f) = Ur(f) + Ua(f)- (7.15)

Now, by Theorem 7.1, L1(f) < Ui(f) and La(f) < Ua(f). We claim that L, (f) = U1(f) and
Lo(f) = Ua(f), for if either Ly (f) < Uy (f) or La(f) < Ua(f), we would have a contradiction
to (7.15). Hence f is integrable on I1 and on Iy and (7.14) holds.

<= We assume that f is integrable on I; and on I, so that Li(f) = Ui(f) and
Lo(f) = Ua(f). Now, by (i) and (ii) of Lemma 7.3, we get

U(f) = Ui(f) + Ua(f) = L1(f) + L2(f) = L(f),

so that L(f) = U(f), meaning that f is integrable on I and (7.14) holds. |

7.8 Integrability of Composite Functions

Theorem 7.11 The Composite Theorem

Let I = [a,b] and J = [e,d] be intervals and let ¢ : J — R be continuous and assume
that f : I — J is Riemann integrable. Then the composite function oo f : I — R is
Riemann integrable on 1.

Proof. We shall show that for every € > 0 there is a partition P, of I such that
UPe, oo f) = L(Peypo f) <e, (7.16)

so that, by Theorem 7.2, the function ¢ o f is integrable on I.
We note that the function ¢, being continuous on a closed interval is uniformly contin-
uous on this interval. Thus ¢ is uniformly continuous on J = [¢, d] and we have

Ver >0 36>0 (s, ted & [s—t|<d = |o(s)—p(t) <e1). (7.17)

Since f is integrable on I, for every €9 > 0, there exists a partition P of the interval I, such
that
U(P7 f) - ‘C’(Paf) < €2.

We consider an arbitrary value of £1 and the corresponding value of §; and an arbitrary

value of €5 and the corresponding partition P = {x,,x1,...,2,} of the interval I.
The partition P divides I into n subintervals [z;_1,zx], K = 1,2,...,n. Let
mg=__inf f(z), My= sup f(z)

xe[xkflvzlk} xe[xkflvzlk}



172 Chapter 7 — Integration

We shall consider separately those subintervals [z_1, x| for which My — my < J. Let
A denote the corresponding set of indices:

A:{k:: Mk—mk<6},
and let
B={k: Mp—my >4}

If we denote by iy, and M), the infimum and supremum of the function o f on the interval
[*k—1, zk], then we can write

My —rp = sup  (po f(z)—po f(y)).
T,YElTp_1,2k]
Now, if k € A and z, y € [zg—1, 2k, then |[f(x) — f(y)| < 4, which, by (7.17), implies
that |p o f(z) — po f(y)| < €1, so that My, — my < e for k € A. We conclude, therefore,
that

Z(Mk — mk)($k — .%k,l) S El(b — a). (7.18)
keA

On the other hand, if k € B, we have My, — 17y, < 2K, where K = sup,c |¢(t)]. Hence

Z(Mk — fnk.)(a:k — xk,l) < 2K Z(Z’k — xk,l).
keB keB

If k€ Bthen M, —mp >0 — %(Mk. —my) > 1 and we can write

1
> (zk — 1) < 5 (M, — my)(zp, — Tp—1)
keB keB
1 n
< = > (M — my) (xg — Tp—1)
0=
1 1
= E(U(P,f)—ﬁ(P,f))< 562
Hence -
> (My, — 1) (ke — wp—1) < 2 (7.19)
keB
Combining (7.18) and (7.19) gives
2K
UP,po f) = L(P,pof)<D=cilb—a)+ —e2 (7.20)

The above holds for any 1 > 0 and any €2 > 0, where § corresponds to €1 as specified in
(7.17). Without loss of generality, we select 6 < 1.

The objective of the proof is to show that (7.16) holds for any ¢ > 0.

Let € > 0 be given. If we set

3

- - :52
b—a+ 2K’ =2 ’

g1 =
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and recall that § < g1, we get D of (7.20) equal to e:
D=c¢ci(b—a)+2Kd<ei(b—a)+2Ke; =¢c1(b—a+2K)=c¢.
Hence we have shown that there exists a partition P. = P of the interval I such that
UP,po f)=L(P,pof)<e,

which means that the function ¢ o f is integrable on the interval 1. |

7.9 Further Properties of the Integral

Theorem 7.12 If f is integrable on I = [a,b] then the function |f]| is integrable on I,

and
[ s@ae] < [ 15

Proof. Since f is integrable on I, f is bounded, so there exists K > 0 such that
lf(z)| < K, ze€l.

Let J = [-K, K]. Define ¢ : J — R as ¢(t) = |t|, and note that the composite function
po f defined on Iis po f =|f].

Since ¢(t) = |t| is continuous on J, the Composite Theorem applies to conclude that

pof=Ifl
is integrable on I = [a, D].

To prove the inequality, note that f(z) < |f(z)|, and —f(z) < |f(z)], so —|f(z)|] <
f(z) <|f(z)|. Hence, by Theorem (7.8), we have

[ s@ar] < [C1sas. B

Theorem 7.13 Let f be integrable on I = |a,b]. Then the function ™, for any natural
number n, s integrable on I.

Proof. Since f is integrable, f is bounded on I, so that |f(x)| < K, z € I, for some

K > 0. Let p(t) =t" for t € J = [-K,K]. Then po f = f™ and the Composite Theorem
applies.

Theorem 7.14 The Product theorem
If f and g are both integrable on I = |a,b], then so is the product f - g.

Proof. We have 1
fo=3lf+9° = f* =% i
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Theorem 7.15 Suppose that f is integrable on I = [a,b] and f(x) > 9, x € I for some

1
0 > 0. Then the function ? 1s integrable on I.

Proof. Since f is integrable on I, f is bounded on I. Thus we have
§<flx)<K, z€l.

1
Let J = [4, K] and define ¢(t) on J as ¢(t) = 7 Clearly, ¢ is continuous on J and

pof= % is integrable on I by the Composite Theorem. |

Theorem 7.16 Schwarz’s Inequality.
If f and g are integrable over the interval I = [a,b], then

2
([ 10 storae) < [t [ oo (721

a

Proof. Let A be a constant and consider the expression (f + Ag)? which is nonneg-
ative. We have

(f +Ag)* = f2+2\fg+ \g* >0,

for all real values of the constant .
Since both f and g are integrable then, we conclude that

b b b
A2 / Pdr + 2\ / Fod + / F2dz > 0. (7.22)

Now the quadratic in A\, AN + BX + C, where A > 0, is nonnegative for all A € R if and
only if A = B? — 4AC < 0. Hence (7.22) holds if and only if

b 2 b b
4( / f(w)'g(ﬂf)dw> —4( / gQ<x>daz>~< / f2<x>dz> <o,

which proves the Schwarz’s inequality (7.21). |

7.10 The Fundamental Theorem of Integral Calculus

Theorem 7.17 Suppose that f is integrable over the interval I = [a,b] and let F be
defined on I by

Fz) = / FOdt, wel. (7.23)
(a) F is a continuous function of x in I = [a,b].

(b) F is differentiable at any point ¢ € I at which f is continuous, and
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Proof.
(a) Since f is integrable on I, f is bounded on I, so that

|f(t)] < M =sup|f(z)], tel
zel
Let x1, x9 € [a,b], x1 < z2. We have

[F(21) — F(x2)| =

/fdt—/fdt‘ /fdt‘

/ I \dt</ Mdt = |1 — wo| M.
Tl

IN

We can see, therefore, that
Ve >0 36 = % >0 ((w1, w2 €1, o1 —22| <8) = |F(z1) — F(a2)| <2,

which means that the function F'(x) defined by (7.23) is continuous in the interval I = [a, b].
(b) Since f is continuous at the point ¢, we have

Ve>030>0 (t—cl<d = [f(t)—f(o)<e). (7.24)

Fle+ h,)l SO % /Cc+h[f<t> = flo)ldt,

F(c+h)— F(c) /

(@) =+ /

Let € > 0 be given and let §(¢) be the corresponding value of ¢ in (7.24). If |h| < d(¢e)
then, on application of Theorems 7.12 and 7.9, we get

Flc+h) — F(c) 1 [eth
S ARUORNICIT

— f(e) =
) )
Since ¢ is arbitrary, we conclude that

lim (F(c—i—h}i—F(c) B f(c)) _0

h—0

We can write

since

1
(c)|dt < —e¢|h| =e.
\h!/ Id

Hence

F(e) = }LIE% F(c+ h}i — F(c)

exists and equals to f(¢): F'(c) = f(c). |
Comments: The above theorem ensures that every continuous function possesses

T2
an antiderivative. It also gives a method for evaluating / f(t)dt, provided that an
€T

1
antiderivative of f is known. If F' is an antiderivative of f, then

[ rwa= [ war= [ = ro

= F(xg) — F(l’l)
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We recall that two antiderivatives of f differ by a constant, so that F' may be chosen to be
any antiderivative of f. In particular, when f(x) = h/(x), we obtain

/ W)z = h(b) — h(a). (7.25)

It is clear that the definition of the Riemann integral is closely related to the geometric
notion of area. The properties of the integral were developed independently of this and, in
fact, one may define the area A under y = f(z), a < x <b, to be

a= [ wlas,

as shown in Figure 7.2 A simple example involving the calculation of the “area under a
curve” is given in Section 7.13 (see Example 7.9).

(a) y=flz) (b) y=I[f(x)]

¥ ¥

b b
Figure 7.2: The Area,/ f(z)dz, and/ |f(z)|dz.

a

7.11 Integration by Parts

Theorem 7.18 Integration by Parts Consider two functions f and g defined on a
closed interval I = [a,b]. If f and g have continuous derivatives on I then

b

b b
/a F(@)g(x)dz = f()g(x)| — / f(2)g (z)da. (7.26)

a
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Proof. Let h denote the product of the functions f and g:
h(z) = f(x)g(x), =€ I.
We note that the function h is differentiable and its derivative
W(w) = f(2)g(x) + f(2)g' (), v €1,
is a continuous function on I = [a,b]. Hence

b

[ @@+ i@ = [ W =ho) -
F0)90) ~ fla)g(a)

Hence

b b b
| (@) + f@)g @) = [ f@glade + [ @) @) = f@g@]L.

which implies (7.26). |

Theorem 7.19 (The Mean Value Theorem for Integrals)
Let f and g be continuous functions on the closed interval [a,b] and suppose that g(x) > 0
for x € [a,b]. Then there is some value ¢ in [a,b] such that

b b
| t@gtade = 10 [ g(w)da. (7.27)

Proof. Since f is continuous on a closed interval, f is bounded. Let

m = min_f(z) and M = max f(z),
z€[a,b] z€la,b]

so that
m < f(x) <M, x € la,b].

Since g(x) >0, z € [a,b], we have
mg(x) < f(x)g(x) < Mg(x), = € [a,b].

Hence, by theorem 7.8,

m/abg(a:)dx < /abf(:v)g(a:)dx < M/ab g(x)dx. (7.28)

b b
If / g(x)dx = 0, then (7.27) holds for every choice of c. So, we assume / g(x)dz # 0.

a
Then (%.27) implies that

< M. (7.29)
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Now, the function f as a continuous function on the interval [a, b], must assume every value
between m and M. In particular, there is a point ¢ in the interval [a,b] such that

_ Je F@)g(w)dx
= e
and (7.27) holds for this value of c. I

Comments: The theorem is also valid when g(x) < 0 for all z € [a,b] and the
b

proof is similar. In this case, / g(z)dz <0, and the inequality (7.29) still holds, when the

a
denominator is not zero.

Suppose that the function g is the constant function, f(z) = 1 for all x € [a,b]. Then
we obtain, as a special case, the following Corollary.

Corollary 7.2 If f is continuous on [a,b], then there is some value ¢ in (a,b) such that

[ e = )

Theorem 7.20 The second Mean Value Theorem for Integrals
Let f, f', and g be continuous on I = [a,b], with f' > 0 in I. Then there exists a
number £, a < & < b, such that

LU@M@Mx=ﬂ@L%@Mx+ﬂ@L%@M%

T

Proof. Let G(x) = / g(t)dt. Integrating by parts, we get

a

b b b
| f@g@is = 1@)G@)| - [ F@)6@ds = 106 - [ @6,

since G(a) = 0. By the Mean Value Theorem for integrals, we conclude that thereisa ¢ € I,
such that

b b
quwmw=aaéfmm
Hence
[ @0 = G©10) - 1] = FOCE - F@EE), a<e<b

Therefore

[fﬂmmmM: = FD)G) — FHGE) + )G
- f@ﬂé%@ﬁ—éﬁ@ﬁ

+ﬂ@LiﬁMt

= f(a) /(j g(x)dx + f(b) /gbg(ac)dac, a<¢<b 1
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7.12 Taylor’s Theorem Revisited

Theorem 7.21 Taylor’s Theorem with integral form of the Remainder.
Let f be (n+ 1) times differentiable on the interval |x — x,| < h, h > 0. Then for all x
in this interval we have

n_ (k) (g
f(z)= Z f k(' o) (x — o) + Ry (2), (7.30)
k=0 '
where . f(”+1)(t)
Ro(z) = /x L —tya (7.31)

Proof. (by Mathematical Induction)
Step 1. If n =0 then (7.30) reduces to
f(@) = f(2o) + Ro(x),
where R,(x), as defined by (7.31), is

R,(x) = /: f(t)dt.

Thus, using (7.25), we have
Ro() = f(x) = f(zo)
and it is clear that (7.30) is valid for n = 0.

Step 2. Assume that (7.30) and (7.31) are valid for a particular value of n.
Now integrate (7.31) by parts to obtain

Ry () = % /: FOD ) (@ — ) dt

+ m /; FOD () (2 — ¢)" Tt

Zo

(x _ t)n+1

= M0 e

- (ni 1)!f(n+1)(%)(x —20)"" + Rupa ().

Inserting the above expression for R, (z) into (7.30) gives

ntl ek (g
f) =3 T R ),
k=0 :

and proves the theorem for the case n + 1. The proof is complete. |

Example 7.7 Suppose that f is (n + 1)-times continuously differentiable on a given
interval [x,,x]. Apply the Mean Value Theorem (for integrals) to prove that

f(n+1)(§)($ _ xo)n—l—l T f(n+1)(t) .
(n+1)! B /mo n! (z —t)"dt,

R, (z) = (7.32)

for some value of § in the interval (z,,x).
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Solution. Replace x by ¢ in Theorem 7.19 and apply it to the interval [z,,x] to get

/Z " Htg(t)dt = £(6) /m " g(t)dt  for some & € (o, 7).

Replace f(z) by f(¢) and set g(t) = (z — ), t € [x,,2], s0 g(t) > 0 for t € [x,,x].
We obtain

[ e -orde = 0 [ o
’ " n+1
— (n+1) (.%' — xO)
jorn et
for some value of ¢ in [z,,z].
Example 7.8

In Example 6.3, we found the Taylor polynomial of degree = 2k + 1 for the function
f(x) =sinx:
5 L a2kl
P U R G |, S
Find the integral form of the remainder

Rot1(x) = f(@) = Py, 0().
Compute sin 2 with an error of less than 104,
Solution. The remainder is given by

z £(2k+2) ¢
f ( ‘) (.’E o t)2k+1dt.

Rapy1(w) = o @k

Since |f®)(z)| <1, k=1,2,..., we get

1 T
|R2]€+1(.’E)| < m /0 (:C — t)2k+1dt‘ ,
and —
/x(x B t)?k-i—ldt _ (1’ _ t)2k+2 _ x2k+2
0 2k + 2 —o 2k +2°

Thus we obtain the following estimate of the remainder Roj1(x):

‘x’2k+1

< —_—
| Bo1(2)] < (2k + 2)!

Therefore,
sin2 = P2k+1(2) + R2k+1(2),
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where
92k+2

R < —
[Rateia| < (2k + 2)!
Hence, Py;1(2) approximates sin 2 with an error of less than 10~* provided that

22k+2

o) <1074 (7.33)

92k+2
By a straightforward substitution of £ = 1,2,3,4, and 5 into the expression

can see that (7.33) holds for k£ > 5.

Qk+2)

Therefore, sin 2 can be computed as

23 25 27 29 211
e I R I TR T}

with an error of less than 10~%. |

7.13 Integration by Substitution

Theorem 7.22 First Substitution Theorem. Consider a function ¢ with domain
J = o, 8] and range I = ¢(J) and consider a function f(x) defined on I:

o: J=[o,f0] — I, f: I— R.
If f is continuous on I and ¢ has a continuous derivative on J, then
B , b
[ #ew)e i = [ fwdu (730

where u = p(t), a=p(a) and b= p(f).

Proof. Since f is continuous on I, we can define a function F' on I by

F(u) = /auf(a:)d:c, uel.

We have )
F(a)=0, F(b)= / fx)de (7.35)

and
Let

By the Chain Rule,
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Since H(«a) = F(p(a)) = F(a) = 0, we have

o

B B
| se@e o= [ H @t = HE) - H(a) = H(E).
On the other hand, using (7.35), we have

b
H(B) = F(¢(8)) = F(b) = / f(x)dz.

The last two equations prove (7.34). 1

Example 7.9 Show that the area A of the ellipse defined by the equation

2 2
x Y
2 et

is A = wab.

(7.36)

Solution. The area enclosed by the ellipse (7.36) is, by symmetry, four times the area

in the first quadrant (see the diagram).
Thus,

A:4/ yd:c:4/ é\/CLQ—xQdSC.
0 0o a

Put z = asinf, to get

4b [T/2
A = — (a-cosf)-acosbdd
a Jo

w/2
= 4ab/ cos® 0d0
0

w/2
= 2ab/ (cos26 + 1)db
0

in?2 /2 /2
0 0
= 2ab - =
2
= mab.

Note. When a = b, the ellipse (7.36‘ becomes a circle of radius a. The above formula

reduces to a familiar one: A = 7a?.

7.14 Exercises

7.1 Use the definition of the integral to prove that

b 1
/ xdr = §(b2 —a?).
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7.2

7.3

7.4

7.5

7.6

7.7

Let
f(z) =

z if z is rational
1—=x if z is irrational.

Evaluate, for a given partition P, the upper and lower sums U (P, f), L(P, f). Hence
determine the upper and lower integrals U(f), L(f) and decide whether or not the
function is Riemann integrable.

Let
0, 0<wr<i
f(z) =
1, $<z<Ll

Find a formula for F(z) = / f(t)dt.
0

Is it true that F'(z) = f(x)?
Compare with Comments to Theorem 7.17.

Assume g, f are continuous functions on [a, b] with f having a continuous non-negative
derivative in the same interval.

(i) Show that there is ¢, a < ¢ < b, for which

[ sz = @) |

a

c

o)z + 1(0) [ gl

Hint: Let G(x) = / g(t)dt, so that G’ = g.

a

(ii) Show that there is d, a < d < b, for which
d

[ s@@) = @) [ gara

Show that whenever 2’ > z > 0.

2
< —
T

! .
T sinx
dx
x X

Hint: Use 7.4 (i) above.

If " exists on (a,b), show that for z and h with x, 2 4+ h, z — h in (a,b), there is ¢
between x 4+ h and x — h such that

fl@+h)+ flz —h) = 2f(z) = h*f"(c).

Show that
a+b

2

[ s@dr=0-af () + 510~ s,

24
where a < ¢ < b.
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Chapter 8

Improper Integrals and
Applications

8.1 Improper Integrals

The Definition of Riemann integral | ;’ f(x)dz is only meaningful when the integrand f(x)
is a bounded function defined on the closed interval [a, b].

In this section we shall extend the definition of the integral [ ; f(x)dx to the situation
where the interval of integration is infinite and f(z) is not necessarily bounded over the
interval (a,b). We shall consider integrals

/_boo f(z)dx, /:oo f(z)dz, /+oo f(x)dz,

— 00

when one or both limits of integration are infinite, as well as | ; f(z)dz, when f(x) has
infinite singularity at one or more points of the interval [a, b].

Example 8.1

1
(a) Consider the function f(x) = T3 22 and refer to Figure 8.1(a) that shows the area
x

A(X) under the curve y = T2 o the interval [0, A], where 0 < A < 10. If A — o0,
x

then the limit )\hrf A()\) can be considered as the area under the curve y = T over
— 400

2
x
the interval [0, +00). Hence we define

+o0 1
/ dx
0 1+ 2

to stand for the limit lim A(\), provided that this limit exists:

A——+o00

dz.

- d li AN li g
/0 1—|—$2 m_)\—1>r—ir-lc>o ()—)\_1)111000 1—|—$2

In Example 8.2(b) we shall show that A(\) — , as A\ — +oc.

185
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1
(b) Consider the function f(z) = 7 that is defined for all  # 0. Refer to Figure
T
8.1(b) to see the area B(e) under the curve y = ﬁ over the interval [e, 1], where 0 < ¢ < 1.
11
—dzx
/0 Ve

to stand for the limit lir(r)1+ B(e), provided that this limit exists. We shall show in Example
e—

It is reasonable to define

8.4(a) that B(e) — 2, as ¢ — 0+. |

1
1+ 22

(a) A(A):/OA da, (b) B(a):/;%dx,

A =8,09. e = .01, .05.
¥ ¥

o o o o

A
Figure 8.1: Illustrating convergence of A(\) = / f(z)dz, as A — oo, and convergence of
0

B(e) :/Elf(ac)dac, ase — 0+.

8.2 Improper Integrals of the First Kind

In this section we examine the effect of relaxing the condition that the interval of integration
is a closed, bounded interval [a,b] in the definition of Riemann integral. Thus, we replace
one or both of a and b in f; f(x)dx by oo and introduce the symbols

/boo f(z)dz, /:OO f(x)dz, /+Oo (x)dz,

—00

(called infinite integrals of f(x)) to stand for the appropriate limits as defined below.

We define the infinite integral of f(z) over the interval [a, +00] as the limit of | C:\ f(x)dzx,
when A — 400, provided that this limit exists.

We define the infinite integral of f(z) over the interval (—oco, b] as the limit of [° ) flz)dx,
when A — 400, provided that this limit exists.
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Definition 8.1 Let f be bounded and integrable over the interval [a, \] for every A > a.
If
A
lim / f(z)dx (8.1)

A—o00
exists, then we say that [ f(x)dz converges and write

/aoo f(x)dx = lim /a/\ f(x)dx.

A—00

If the limit (8.1) does not exist, we say that [;° f(x)dz diverges.
If the limit (8.1) is infinite, we say that [° f(x)dx diverges to —oo/ + oo and write

/ f(z)dx = —o00, or / f(x)dz = 400,
respectively.

Definition 8.2 Let f be bounded and integrable over the interval [—\,b] for every X,
such that —\ < b. If

A—00

b
lim /_)\ f(z)dx (8.2)

exists, then we say that ffoo f(x)dx converges and write

b b
/ f(x)dx = lim / f(x)dx.
—0 A—o00 J )\
If the limit (8.2) does not exist, we say that ffoo f(x)dx diverges.
If the limit (8.2) is infinite, we say that ffoo f(z)dz diverges to —oo/ + oo and write

/b f(z)dzx = —o00, or /b f(z)dz = +oo,

—00 — 00

respectively.

A similar approach is used for integrals over the entire line. The improper integral [0 f(z)dx
is defined as the limit of | ;j f(x)dx, when y — —oo and A — +o0, independently of each
other, provided that this limit exists. Equivalently, [0 f(x)dx can be expressed as the sum
I - f(x)dz + [, f(x)dz, where b is any real number. Since b can be arbitrarily chosen,
in practice we choose b so that the two integrals ffoo f(z)dz and [,"*° f(z)dx can be easily
examined.

Definition 8.3 Let f(x) be bounded over the whole line, —oco < z < co. We say that
[*° f(x)dr converges if

“+00

A
_ f@dr = Jim / fa)ds.

M,)\—>+OO

Otherwise, we say that [T°° f(z)dx diverges.



188 Chapter 8 — Improper Integrals and Applications

Definition 8.4 The integral of a function f(x) defined and bounded on an interval
that is not bounded, such as

[ s [ s o [ s

1s called an improper integral of the first kind.

> ] 1
(a) /1 s (b) /0 o
¥ ¥
1
o.a 0.4
0.e
0.4 0.4
0.z
- = x
1 5 10 5 10

(c) /0 edx (d) /_J:O rlﬂd:r

Figure 8.2: Illustrating convergence of improper integrals of the first kind.

Example 8.2 Ezxamining convergence of improper integrals of the first kind.

>~ 1
(a) Consider the infinite integral / —dz. We have
1T
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1 >~ 1
and lim I(\) = lim (1 - X) = 1. Therefore, the infinite integral / — converges to
1z

A—00 A—00
the limit 1:
/ Y =1
.z r=1.
>~ 1
(b) Consider / ———dz. We have
o 1+=x
I(\) = f’\ —L_dx = arctan z - arctan A
0 1—‘,—3}2 0 )
lim I(A\) = lim arctan A = il
A—00 A—00 2
e < 1 @
Therefore, the infinite integral / dx converges to —:
o 1+ x? 2

/OO 1 d m
o 11227

0
(c) / e®dr = 1, since
—0o0

0 0 1
]()\):/ etdr = e* :1—6_>\:1——)\—>1, as A\ — oo.
-\ _>\ e
(d) Consid /OO La
onsider —=dax.
1 VT

We have

I\ = /1A %dw =2z

© 1 > 1
Thus / —dx diverges to +oo and we write / —dxr = +o0.
1 1

v v

0
(e) Consider / sin xzdx. Since

A
=2(VA—1) = 400, as A — +oo.
1

— 0o
0 0
I()\):/ sinxzdr = —cosx| = —1+cosA,
0
I(X) has no limit as A\ — oo (I () oscillates between —1 and 1), we conclude that / sin xdx
—00
diverges.
o
(f) The integral / sin zdzx diverges, since
0
2 A
I(\) = / sinzdr = —cosx| =1—cosA,
0

0

has no limit as A — oo.
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0 1
(g) The integral /_ 112 dx converges to g, since
01 0 7'('
I(\) = / dr = arctanx| = —arctan(—\) = arctan\ — —, as A\ — +oo.
1422 Y 2
o0 1
(h) Consider / 5dz. We have
o 1+
A 1
/ ——dz = arctan \ 4+ arctan p,
—wl+z
© 1
[m H—mzdm = A7P}il€1roo(arctan A + arctan \) = g + g =.
oo
(i) The integral / sin xdx diverges, since
—0o0
00 A
/ sinzdr = lim sinzdr = lim (cosp — cos ),
—00 Hy A—=+00 J —yy My A—+00

which does not exist.

Definition 8.5 Let f be bounded over the entire line and integrable over the interval
(=X, A), for any X\ > 0. The limit

lim //\ f(x)dx,
A

A—00

if it exists, is called the Cauchy principal value of the integral / f(x)dx, and is

written

P/_O:O f(x)dx = lim /_/\/\f(:c)dx

A—00

Note that the existence of the Cauchy principal value

lim /);\ f(x)dx

A—00
o0 o0
does not imply that / f(x)dx converges. The convergence of / f(x)dx requires exis-
—00 —00

A
tence of the limit of / f(z)dz, when p — oo and A — oo, independently on each other.
—u

o
Example 8.3 Find Cauchy principal value of the integral / sin zdzx.
—0oQ

Solution We have
A A

/ sinzdr = —cosx| = —cosA—+cosA =0,
-\
-\
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so that \
lim sinxdzr =0
A—o0 )\
and
oo
P / sinzdr =0. |
—00
[e.e]
Note, that we have already observed (see the previous example (i)) that / sin xdx
— 0o

does not exist.

8.3 Improper Integrals of the Second Kind

In this section we consider integrals over a finite interval [a, b], when the integrand f(x) has
infinite singularity at some point or points in [a, b]. Recall that f has an infinite singularity
at the point z = z,, if f is not defined at the point z, and when one-sided limits, as x
approaches x,, are infinite.

Definition 8.6 Assume that f is integrable on every interval of the form [a,b— ¢],
where 0 < € < b—a, but f has an infinite singularity at the point x = b, that is lilil f(x)
r—b—
1s infinite.
Then the integral [ (f f(x) is called an improper integral and is defined as
b—e

[ sy = 3w [ sy

a

provided that this limit exists.

Definition 8.7 Assume that f is integrable on every interval of the form [a + €,b],
where 0 < e < b—a, but f has an infinite singularity at the point x = a, that is lim f(x)

r—a+
is infinite.
Then the integral f;’f(:c) is called an improper integral and is defined as

b b
/ f(z)dz = lim f(z)dz,
a e=0+ Jate
provided that this limit exists.

If the appropriate limit in Definitions 8.6 and 8.7 exists, we say that the improper
b b
integral / f(x)dx converges. Otherwise, we say that / f(x)dx diverges.
a a

Definition 8.8 Suppose that f has an infinite singularity at a point x = x,, where

b
a < xo, <b. We say that the improper integral / f(x)dx converges if and only if both
a
To b
improper integmls/ f(x)dx and/ f(z)dz converge. Otherwise we say that the improper
a Zo

b
integral / f(x)dx diverges.
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b
If/ f(x)dx converges, then, we define:

/ab f(z)dx = /a% f(z)dz + /:) f(z)dz.

The integrals considered in Definitions 8.6, 8.7, and 8.8 are called improper integrals of
the second kind.

b
Definition 8.9 The integral / f(x)dx over the finite interval [a,b] is said to be an

a
improper integral of the second kind if the integrand f(x) has an infinite singularity
at finitely many points of the interval [a,b].

The case when f(x) has more than one singularity point in [a,b] is illustrated in the
next example (f).

Example 8.4 Ezxamining convergence of improper integrals of the second kind.

11 1
(a) Consider / —=dz. The integrand f(z) = NG is not bounded on the interval
0 x x
0,1] and lim f(x) = +o0. The function f(x), however, is integrable over every interval
0
x—0—

[e,1], for 0 < e < 1. We have

|
/ —dzr =2\/z
g

1
=2(1-+e)—2, as e—0+.
Vv :

11
Therefore, the improper integral / de converges to the limit 2:
0 Vv

11 |
—dz = li —dz = 2.
/oﬁxei%ia\/ix

11 1
(b) Consider / Edm. Similarly to (a), the integrand f(z) = - is not bounded on the

interval (0,1] and lirgl f(z) = +o0. Moreover, the function f(z) is integrable over every
x—0—

interval [e, 1], for 0 < e < 1. Now we have

11
/ —dr=Inz
e X

11
Therefore, the improper integral / —dx diverges to +o00 and we write
0T

1

=—Ilne—+o00 as €—0+.
€

11
/ —dr = +o0.
0T
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(a) /11d 01 (b) /lld e= 01 !

¥ ¥
10
5 4
& 3
4 2
2 1
® ®
0.5 1 .5 1
1—¢ 1 d 1—¢ 1 P
c ——dx, ¢=.01 / —dx, e=.01
©) /0 V1—z? (d) e Vr(l—x)
¥ ¥
7 10
6 g
5
4 o]
3 4
2
1 Z
¥ ¥
0.5 1 0.5 1

Figure 8.3: Illustrating convergence of improper integrals of the second kind.

11
(c) Consider / —dz, where a is any real number. We note that we have already
0T

considered this integral in (a) with o = 1 and in (b) with a = 1.
We deal with the infinite singularity at the point a = 0, and we note that the function

1
f(z) = — is integrable over every interval [¢, 1] for 0 < e < 1 and for every real value of .
x

We have
! 1 11—«
_1_a(1_€ )’

provided a # 1. Thus

1
11 :
lim —ad.fE: T = fa<l
=0t Je +00 if a > 1.
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L1
Combining the above with the result obtained in (b), we conclude that the integral / —dz
0T

converges for o < 1 and diverges for a > 1. If & < 1 then

1 1
/—dm: .
0 T 1—«

1 1 1
(d) Let f(x) = N and consider the integral /0 f(x)dx :/0

1
——dx. We
V1—2?
note that lir? f(z) = +o00, so that f(z), defined for |z| < 1, is not bounded on the interval

z—1—
[0,1) (see Figure 8.3(c)). The integral has a singularity point at x = 1, but f(z) is integrable
over any interval [0,1 — ¢], where 0 < £ < 1. We have

1—¢ 1 l—e

0 V1—22

dx = arcsinx = arcsin(l —¢) —

E, as € — 0+.
0 2

1
Hence / f(x)dx converges to m/2:
0

1—¢ 1 T
lim

1 1
0 V1—2z? =—=0+Jo  V1-—2z? 2

1 1
e Consider the integral / —dx.
(©) & 0 Va(l—uz)
and at z =1 (refer to Figure 8.3(d)).

It has two singularity points: at z = 0

We have

1—e 1—¢

1
¢ Vr(l—x)

dr = arcsin(2z — 1)| = arcsin(1 — 2¢) — arcsin(2¢’ — 1).

5,
Thus

1—e¢ 1
lim = lim arcsin(l —2¢) — lim arcsin(2¢’ — 1)

——dx
e,e’—0+ Jg! \/1‘(1 — .Z‘) e—0+ e/ =0+

= arcsin 1 — arcsin(—1)

= 5—(—5):71

1

—————dx converges to :
Va(l —x) 8

1
Therefore we conclude that the improper integral /
0

1—¢ 1
= lim ——dr =T.

1 1
/O \/.%'(l—x)dx e,6/ =0+ Jg! \/m
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L
(f) Consider the integral / T dz that has a singularity point at z = 1:
0o 1—2x
lim = 4-00. We have
z—1-1—2x
| I—¢
/ dxr = —1In(1 — z) =—Ilne— 400 as €—0+.
o 1-=z 0

|
Therefore, /
o 1

— X

dx diverges to +oo:

11
/ dr = +o0o.
o 1—=x

. 1 1 . 1—¢
(a) Elir(r)lJr/E Edm =t (b) Eli%lJr/() 1-— .ledx =t
¥
50 a0
40 40
a0 a0
20 20
10 10
x - X
0.5 1 0.5 1

Figure 8.4: Illustrating divergence of improper integrals to +oc.
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8.4 Comparison Tests for Integrals

Theorem 8.1 Comparison Test I

Suppose that f and g are defined on the interval [a,+00) and integrable on |a, \| for
every A > a.

If
0< f(a) < g(z),

for all z € [a +00), then
() / f(x)dx converges zf/ x)dx converges;

+00 +°°
(ii) / x)dx diverges zf/ x)dx diverges.

Proof. Since 0 < f(z) < g(x), for x > a, we get

OS/)\f(ac)de/)\g(x)dx, x> a,

and each integral is monotone increasing function of A.
Hence, if [ a)‘ g(x)dx converges, [ a)‘ f(z)dz is bounded above and so it converges.

If | a)‘ f(z)dx diverges then [ (j g(2)dz is unbounded and hence diverges. |

+o0 1

Example 8.5 Does/

dx converge?
o e*+3

1
Solution. Let f(x) =e " and g(x) = L for x € [0, +00). We have

1

0< <6—x:e*x, x € [0, +00),

et +3
and both functions, f and g, are integrable on [0, A] for every A > 0. Thus the hypotheses

of the Comparison Test I are satisfied. Now,

A

=— lim (1—e?)=1
0 A—400

+oo +o0
/ f(x)dx = / e ¥dr=— lim e *=— lim e*
0 0 A——+o00 A——+o00

dx converges. |

+oo
Therefore, by the Comparison Test, the improper integral / 13
0o €

An analogous comparison test holds for improper integrals of the second kind. We leave
its formulation to the reader. The following example illustrates the point.
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1

Example 8.6 Does/ dx converge?

0o 22+ \x

Solution. We have 1 1

—F— < —F= € (0,1
$2+\/E \/E’x (7]7

and
11 11 !
L M. —dr = lim 22| = lim (2 - 2\E) = 2.
/0 el = i [ oode = lip 2| = T, (2 2VE)

1

1 1 1
Since / ——=dx converges, by the Comparison Test, we conclude that / ———=dx
0 0o 22+

NG

converges.

8.5 Improper Integrals of the Third Kind

In this section we consider integrals of an unbounded function f(z) over an infinite interval,
such as
b 400 400
|t f@dz, ov [ f(w)ds,
— 0o a —0o0
where the integrand f(z) has one (or more) singularity points in the interval of integration.
This kind of integral is called an improper integral of the third kind.
In order to examine convergence of an integral of this type, we express it as the sum of
two improper integrals; one of the first kind and the other of the second kind.
By definition, we say that the improper integral of the third kind converges if and only
if the corresponding integrals of the first and the second kind both converge.

Example 8.7 Ezamining convergence of an improper integral of the third kind.

oo
Consider the infinite integral / dxr and note that the integrand has a singular
0

1
22+ /x

point at x = 0. Thus dx is an improper integral of the third kind.

]
/0 2+ \/x

We can write
o0 1 b 1 o0 1
———=dx = / ——=dx / ———=dx,
/0 22+ \/z 0o 22+ +b 22 4+ x
where the point x = b for splitting up the interval of integration can be chosen quite

arbitrarily.
Let b = 1. We examine separately convergence of each of

1 1 o0 1
——=d d ——=dx.
/ox2+\/5x a /1 2tz
1
2 +\/x

1
The integral / dx converges by Example 8.6.
0
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1
x?+\/x

1
x € [1,00) and / — dx converges.
1T

o
The integral / dx converges, by the Comparison Test, because
1

1 - 1
2+  2?’

Therefore, we conclude that the integral

I
——————=ax
0o 22+
converges. |
(a) z=-05 (b) =05
fit) ticl
400 20
200 1IIIL
t t
] 0.5 1 0.5 1
(c) z=1 (d) ==
i) £it]
1 L il :
0.2 i
i/ef- . :
A A
] 0.5 1 0.5 1

Figure 8.5: The function f(t) = t*~le™t, 0 <t < 1, for selected values of z.
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8.6 The Gamma Function

Example 8.8 Is the function f(t) = t*~te~t, where = is a real number, integrable over
the interval [0,1] 7

Solution.  We shall consider separately the three cases: * <0, 0<x <1, and
x > 1. Refer to Figure 8.5 to see graphs of f(t), 0 <t < 1, for selected values of x.

Case 1: z <0.

1 1
On the interval [0, 1] we have ¢! < 3, so t* te™! > gt’”_l. By Example 8.4(b), / =t
0

1
diverges, since x — 1 < —1. Hence / t*~tetdt diverges for z < 0.
0

Case 2: O0<z<1.
If 0 < 2 < 1, then the function f(¢) = t*“le~! has an infinite singularity at the point

1
t =0 and / t*~tetdt is an improper integral of the second kind.
0

1
If t >0 then 0 < e7* < 1 and t* le~! < t*~1. Now, the improper integral / t*dt

0
converges for all values of x such that 0 < 1—x < 1or 0 < x < 1. By the Comparison Test,
therefore, we conclude that the improper integral fol t*~le~tdt converges for 0 < z < 1.

Case 3: z > 1.
The function f(t) is continuous for ¢ € [0, 1] and, therefore, integrable. Hence t* e ~!dt
exists for x > 1.

Therefore, the function f(t) = t*~le~! is integrable over the interval [0, 1], provided that
x > 0, but not integrable if x < 0.

Example 8.9 Is the function f(t) = t* et where x > 0, integrable on the interval
[1,+00)?

+oo
Solution. The integral / t*"te7tdt is an improper integral of the first kind. We
1

shall prove that it converges by comparing the integrand f(z) with the function g(t) = ¢ 2.

We have
t1‘+1

im =0,
t—4oo et

which implies that

ta?-i—l
ve>03IM (t>M = —<el.

ot =
Let e =1 and denote by ¢, the corresponding value of M. Then we have

tx+1

— <1 or el <72 for t>t,.
e
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“+o0o +oo
Now, the improper integral t~2dt converges. Hence, by the Comparison Test, / et dt

to to
converges.

Since f(t) = e~ '*~1 is integrable on any interval of the form [1,%,], we conclude that

“+o0o to “+o0o
/ et dt = / T et dt + t*=Lemtdt
1 1 to

converges, when x > 0.
Therefore, the function f(t) =t*"'e~, where z > 0, is integrable on the interval

1, +ool).

(a) T(0.5) (b) I'(1)
fit) fit)
1
10
t t
1 2 4

(c) T(2) (d) T(3)

fit) fit)

1/ef-

Figure 8.6: The Gamma function I'(z) as the area under the curve y = t*~le~* for fixed
values of z.
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Example 8.10 Show that the integral

/ e 't 1dt, (8.3)
0

converges for all positive values of x.

Solution.

Casel. 0<z<l1.

The integrand f(t) = e #*~! has an infinite singularity at the point ¢ = 0 and (8.3) is
an improper integral of the third kind. Refer to Figure 8.6(a).

We choose the point b for splitting up the interval of integration to be b = 1. Then we
write

+o00 1 “+00
/ e At =1+ I, = / et dt +/ et Lat.
0 0 1

By Example 8.8 and Example 8.9, the improper integrals I; and I converge. Hence we
conclude that the integral (8.3) converges, when 0 < z < 1.

Case 2. z > 1.

The integrand f(t) = t*"le~! is bounded at the point ¢ = 0 and (8.3) is an improper
integral of the first kind. Refer to Figure 8.6 (b), (c) and (d), which gives us the approximate
values of [;°e 't 'dt (as the shaded area) for x =1, z =2, and z = 3. As we already
discussed in Example 8.8, f(t) is integrable over the interval [0,1]. Now, by example 8.9,

+00
the improper integral / t*Le~tdt converges, when = > 1. Hence
1

+o0o 1 +o0o
/ e*tt“*dt:/ e*ttxfldwr/ e Lt
0 0 1

converges when x > 1. |
The last example justifies the existence of the improper integral

—+o00
/ t*~le~tdt
0

for any positive value of x. This integral considered as a function of the variable x, x > 0,
is called the gamma function and denoted by the symbol I'(z).
Note that the integral diverges for = < 0.

Definition 8.10 The gamma function is defined on the interval (0,+00) as
+00
I(z) = / t"le7tdt, x> 0. (8.4)
0
In Figure 8.7(a), five instances of the integrand f(t) = t*~ e~ are plotted over the interval

t € (0,10), namely f(t) corresponding to the following values of z: 0.5,1,2,3. Figure 8.7(b)
shows us the gamma function I'(x) for 0 < x <5.
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(b) T(z)= /0 Tty

¥

15

10

Figure 8.7: (a) The function f(t) = t*le7?, 0 < t < 6, for selected values of x;
o0

(b) The Gamma function / t"le7tdt, 0 <z <5.
0

Theorem 8.2 The function I'(x) defined by (8.4) has the property
I'(z+1) =2l (x). (8.5)
Proof. We have

+oo A
I(z+1)= / tYe"tdt = lim t e~ tdt.
0 A—+o0 Jo

Integrating by parts, we obtain

A _tx t=A\ A
/ tTetdt = - + / zt* e tdt
0 € |t=0 0
T A
= - +:c/ t*~te7tqt.
x 0
Hence
T A
I(z+1) = lim (——)\) + 2z lim t"le~tat
A——+o00 e A——+o00 J0

“+o00
= 0+ x/ t* e tdt
0

= oT(z). |
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Example 8.11 Show that T'(n) = (n — 1), if n is a positive integer.

Solution.
We apply the principle of mathematical induction.
Let n =1. Then

+oo
(1) = / e ldt = lim —e '] =1=0.
0 A——+00 0

Assume that I'(n) = (n — 1)!. Then , by 8.5,

F(n+1)=nT(n)=n(n-1)=n. §

8.7 Absolute Convergence of Improper Integrals

Definition 8.11 If f is bounded and integrable over any interval [a,\] with A > 0,
400 +o0
and / |f(x)|dx converges, then we say that the integral / f(x)dx is absolutely
a a

convergent.

Let \
IO = /a f(x)de.

If Ay > A1 then
A2

I00) = 100) = [ f(a)do.

A1
Similarly to the Cauchy criterion for convergence of sequences, we have the following
Cauchy Condition for convergence of improper integrals.
A necessary and sufficient condition for the convergence of I(\) as A — +oo is the
Cauchy condition:

A2
f(x)dx

Ve >0 dM ()\2>)\1>M —
A1

< 5) . (8.6)

Theorem 8.3 Assume that f(z) is integrable on every interval (a,\), A > a. If
oo [e.e]
/ |f(z)| dx converges, then/ f(x) dx converges.
a

a

Proof. We assume that ["*|f(z)|dz converges so, using the Cauchy general condition
for convergence, we have
< ) |

A2
Ve>0 3M >a <)\2>)\1>M = ‘/ |f(z)|dx
A1

A2
f(z)dz
A1

< ["1sa,

1
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<),

and we conclude that

A2
f()dx

Ve >0 dM > a <)\2>)\1>M —
A1

which means that [;"*° f(z)dx converges. |

T cosx
Example 8.12 Show that / mdm converges absolutely.
0 T

Solution. We have

cos T 1
1422~ 1422
' o1 . oo | cosw
Since / dx converges, by the Comparison test we conclude that / ——|dx
o 1+a2 0 1+ 2

converges.

+0 sinx

Example 8.13 Show that the improper integral / dx is convergent but not ab-
0

x
solutely convergent.

Solution.
(i) Toshow that the integral converges we shall show that the Cauchy general condition
for convergence is satisfied:
A2 gin
/ dx
A1 €

By the (second) Mean Value Theorem for integrals with

Ve >0 dM ()\2>)\1>M -

< 5) . (8.7)

1
flx)=—=, g(x)=sinzx,
T
we have \ . \
2 qj 1 1 2
/ Smxd:c = — sin xdx + —/ sin xdz,
N T 15 A2 Je

for some &, 0 < Ay <& < A\y. Now, for any [a, b], we have

b
/ sin xdx
a

Az gin g 3 A2
/ dx / sin xdx / sin xdx
/\1 X /\1 5

4
provided Ao > A1 > M. Therefore we have shown that, given any € > 0, there is M = —
€
such that, if Ao > A\; > M then
/)‘2 sin x ‘
dz| < e.
N

= |cosa — cosb| < |cosal+|cosb| < 2.

Hence

1,1
A Ao

4 4

< =,
-\ M

<1 +1
PN A2

<2
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+0 ginx

(ii) To examine absolute convergence of the integral / dz, we note that
0

/’\ ’Sinx‘d:c - /”” \sinx!dx,
0 T 0 T

where n is any natural number such that A > nmx.

Now,
nm ]smm\ / \smx\ / siny
——dy,
/0 Z (r—)m T Z Y

(r—1)m+y

by substitution of x =y + (r — 1)m.
Since

we obtain

T | gin x
We know that the series Z — is unbounded, which implies that / ual:c is un-
0 x

r= 1

+© ginx
is not absolutely convergent. |

bounded and, consequently, the integral /

8.8 Derivatives of Functions Defined by Integrals

Suppose f is a function of two variables (¢, z), such that for each z, a < z < b, the function
®(t,x) is Riemann integrable on [«, 5]. Then

B
_ / £t ) dt
(0%
defines a function F on [a, b].
Since integrals are limits of sums and because the derivative of a sum is the sum of
derivatives, one might expect that a similar result would hold for integrals:

dm T dx </ uy ) / o dt. (88)

Example 8.14  Verifying formula (8.8).

Let -
F(x) :/ sinztdt, x> 0.
0

By direct integration, we obtain
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Hence 1
T
F'(z) = = -sinmz — — (1 — cos mx).
T T
Note that
™0 ™ t o1 T
/ — (sinzt)dt = / tcosxt-dt = —sinxt| — —/ sin xtdt
0o Oz 0 x o xJo
T T o7
= —sinmr — —(—cosxt)| = —sinmx — — (1 — cos 7).
x x2 0 T x2

We have indeed verified that the formula (8.8) holds.
Example 8.15 Verifying that the formula (8.8) does not always hold.

It will be shown later that

.
/ M e =" forall a>0.
0 x 2

Thus di </ smawd$> =0, for a>0.
0

a x
But / — (Sm aa:) dx = / cos axdx is divergent.
o Oa T 0

Hence, formula (8.8) does not hold.

A simple sufficient condition for (8.8) to hold shall be given below. In what follows I, J
will denote an interval [a, b], or [a, +00), or (—o0,b], or even (—o00,00). The symbol /fda:
I

will denote the integral over the corresponding interval.

Theorem 8.4 Assume f(x,y) is a continuous function for x € I and y € J, such that

fy(z,y) is continuous and |fyy(x,y)| < h(zx), and /hdm is convergent.
1

Then J of(z.v)
- T,y
d—y/lf(x,y)dx—/lgay dx.

Note: When I = [a,b] and J = [, 3], and fy, is continuous for x € I and y € J, the
conditions of the theorem are satisfied and, and hence, the differentiation formula is valid.
Proof. By the Mean Value Theorem we have, for each x € I,

1
flx,y+ k) = f(z,y) + kfy(z,y) + 5kayy(gc,y +0k), forsome 6, 0<0<1.

Thus

f(ﬁ?,y—l—k) —f(x,y)

- fy(x,y)‘ <

Let

F(y) = /If(w,y)dﬂﬂ-
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To determine whether or not F'(y) is differentiable, consider the following:

F(m,y+k)—F(y)_/f(x y)da _ /{f(x,erk)—f(x,y)_f(x y)} du
k [ I & o
fla.y+k) - fz,y)
< /1 . — fylw,y)| dz
< ‘Qﬁ’/lh(x)dxgmk\,

for some constant M. Thus,

iy W k) — Fly) _
k—0 k

/Ify(x,y)dm,

as required. |

8.9 Evaluating Integrals Depending on a Parameter

We shall illustrate the ideas involved by means of the following examples.

Example 8.16 Let

O(x) = / t~ et (1 — cos at)dt.
0

Determine ®'(x). Hence, or otherwise, evaluate ®(x).

Solution. We have -
' (z) = / e~ ! sin xtdt.
0

Now
o 00 o
I:/ e !sin xtdt = sinxt(—e*t)‘o —i—m/ e ! cos wtdt
0 0

BN & —t .
= x | cosxt(—e )0 —x/ e "sinztdt
0

= (1 —zI).

T

Hence I = 2 — 221, so that I = ®'(z) = ——-
e +1

Thus

x 1
@(x):/x2+1d:c+C: ilog(z2+1)+C.

But ¢(0) = 0, so that C' = 0.
Thus 1
B(z) = 5 log(z* +1). 11
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Example 8.17

Let

(i) Find G'(y).

(ii) Hence evaluate G(y).

o
(iii) Deduce that / ST e =T
0 T 2
(iv) Show that
o /2 ifa>0
/ 8w = 0 ifa=0
o 7 —7/2 if a < 0.
Solution.
(i) For y > 0, we have
®© 9 sinx
el - [ 5 [ ~ay } d
(v) e
o
= —/ e "Ysin xdx
0
Lo o, [t o
= ——/ e 'sin| — ) dt, by the substitution t = zy,
Yy Jo Yy
1 1/y
= ——+——=——— by the previous Example 8.16.
y (1/y)?*+1
Hence
Gy = ———- 0.
(y) A Y7

This could also have been obtained by integrating by parts the integral

o0
/ e "Ysinzdzx.
0

(ii) Thus
1
G(y) = — / mdy = — arctany + C
Now
0o .
lim G(y) = lim eI gp = 0.
y4>+oo y4>+oo 0

Hence 0 = —m/2 + C, so that C = /2.
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(iii) Hence

e sinx s
/ e "W ——dx = —arctany + —,
0 T 2

valid for y > 0. Taking limits of both sides as y — 04, we get
oo
/ sinx dr — E_
0 x 2

(iv) Let a > 0 and u = az. Then

> sin ax > ginu T
/ dx:/ du = —.
0 T 0 2

For a < 0, put b = —a. Then

/ smazdm:/ sm(—bm)dx:_/ smbxdx:_z.
0 0 0 2

T T

Clearly, if a = 0 then

X

/OO sinawdm _o I
0

Note. Two important limits were considered above without proper justification. The
justification is left as an exercise:

. . e _ ,sinz
(i) lim e dx = 0;
Y= Jo T
s . L, Sinz  sinx
(ii) lim e . dx :/ dzx.
y—0+ Jo X 0 X

Example 8.18
Let o
fly) = /0 %dm, y > 0.
(i) Show that f"(y) = f(y) — /2.
(ii) Hence show that f(y) = m(1 —e~¥)/2.

Solution.
(i) We have

, o cos Ty
= d
S /0 2 +1 v

" ©  sinzy
I ) /0 ™
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/°° 2+1 1 sinxyd
= - - = T
0 x x) x2+1

_ _/°° sinxydx+/°° sinxy da
0 x o xz(z2+1)

= —g—f—f(y), for y > 0.
(ii) Solve the differential equation
T
Fy) = fly) = =3

to obtain

where A, B are constants. Thus
f'(y) = Ae¥ — Be™ V.

Now, f(y) — 0, as y — 0+, and

limf’()—/oo L =T
y—0+ ¥ = 0 .%'2+1 _2.

[As in the previous example, these limits have to be carefully justified.]
Hence,

0 = A+ B+ /2
/2 = A—-B.

So that A =0, B = —n/2. Hence

8.10 Exercises

8.1 Let -
®(a) = / log(1 — 2acos z + a?)dz.
0

Show that ®'(a) = 0. Hence evaluate ®(a) for |a| < 1 and |a| > 1.
8.2 Let

y T ™
F(y) :/0 log(1 4 tanz - tany)dz, ~3 <y< 5

Show that F'(y) = log(secy) + y tany. Hence, deduce that

F(y) = ylogsecy.
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8.3

8.4

8.5

8.6

8.7

8.8

8.9

Evaluate

00 p—ar _ e—bx
/ ——dr, 0<a<hb.
0 T

Show that

1 00 1 [e) 1 1
——dz | d :/ (/ 4d)dx.
/o (/0 14 22 + g2 ) Y= 0o 1+ 2%+ y? Y

Deduce that
/”/2 arctan(sin 6)
0

sin 6

O(y) = /OOO <Sm;y>2dx.

Show that ®'(y) = m/2 for y > 0. Hence evaluate ®(y), for all y.

9 = glog(l +V2).

Let

Let -~
®(a) = / e (@ Ha?)/2% gy
0

Show that ®'(a) = —2®(a). Hence determine ®(a).

Hint:
/OO e_xde = ﬁ
0 2

Consider the Gamma function

oo
I'(z) :/ t*le7tdt, x> 0.
0

Justify the following, specifying for which values of x it is true:

IM(z) = (z — 1)/0 t* 2.7t Int - e tdt.

Assume a > 0. Which of the following integrals are convergent?

. 1 .. < 1
(i) /a e dz, (ii) /a o dz,
0 0 2
ces x . x
(lll) /a mdﬁ?, (IV) /a mdﬂ?

Show that

/:O f(@)g' (x)dx = < lim f(x) .g(x)) ~ f(a) - g(a) — /a°° F(2) - g(x)

T—+00

Hence, or otherwise, obtain the formula:

Am(idm:%—i-

14 x)?

Hint: Putxz=1t2, t>0.

211
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8.10 Show that the integral

oo ps—1
/ R
o l+uz
is convergent if and only if 0 < s < 1.

8.11 Show that

o0 sin x
(i) lim e
y—oo Jo x

dxr = 0;

N .
(i) T A /
0

y—0+ Jo X

oo
sin x
d

Z.
x



Chapter 9

Sequences of Functions and Power
Series

9.1 Pointwise and Uniform Convergence

Definition 9.1 Let {f,} be a sequence of functions defined on a given interval I and
let f be a function that is also defined on I. If lim f,(z) = f(x) for each point x in I,
n—oo

we say that the sequence {f,} converges pointwise to the function f on I. Thus, {f,}
converges pointwise to f on I, if

Ve>0Vzel IN., (n>N., = |fo(z)— f(z)|<e).

Definition 9.2 Let {f,} be a sequence of functions defined on a given interval I and
let f be a function that is also defined on I. The sequence {fy,} is said to converge
uniformly to f on I if

Ve>0 IAN. Ve el (n>N. = |fu(x)— f(x)] <e).

The concept of convergence in the sense of Definition 9.1 is called pointwise because it
relates to the behaviour of the sequence {f,(z)} at each point x — The value of N in this
case depends on the point = € I, as well as on €, in contrast to the uniform convergence
defined by Definition 9.2, where the value for N does not depend on the choice of z. Note
the order of the quantifiers Vo € I and 3N in the two definitions. Uniform convergence has
to do with the behaviour of {f,} over the whole interval.

When {f,} converges to f pointwise, then

1. it may happen that f(x) is not continuous even if every f,(x) is continuous (see
Example 9.4);

2. it does not follow that f(z) is differentiable even if every f,(x) is differentiable (see
Example 9.6); even if f is differentiable, it may not be true that f'(z) = Jim fh(x),

n

(see Example 9.7);

213
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3. it does not follow that
/ f(x)dx = lim / fnlx
I n—oo

even if the above limit exists (see Example 9.5).

n
7
] D
— H’
- A
= s
s w7
Ed
1 II'I.f___.- -
Forsh
>
—-Fi -~ Pi
'J;,a"l — L (=]}
- il
LT d — — £1ix]
i -
-3 -z
i E ----Ff3 [H]
- -~
T e _ s £5 ()

Figure 9.1: Tllustrating uniform convergence of { f,,(z)} to f(x) = x on the interval [—7, 7].

Example 9.1 Show that the sequence of functions {f}, where

1
folz) =2+ —sinnz, n=1,2,...
n

is uniformly convergent to the function f(x) =z in any interval I C R.
Solution. Let € > 0 be given. We have
Fnla) — F(@)] = ~|sinnal < - <
z)— f(x)| = —|sinnz| < — < ¢
" n n
for all values of z, provided n > N = [1].

Refer to Figure 9.1 to see the behaviour of selected functions of the sequence, namely
fu(z) for n =1, n =3, and n = 5, over the interval (—m, 7). |
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£1 (=)

— — Iz (¥)

---- £5(x)

Figure 9.2: {f,(x)} converges uniformly to f(z) = 0 on the interval [0.01, 1].

Example 9.2

Consider the sequence of functions {f,,}, where
fn(z) = L n=12....
nx
(a) Show that {f,(z)} converges pointwise to f(z) = 0 in the interval I = (0,+o0), but

not uniformly.

(b) Show that {f,} converges uniformly to f(x) = 0 on any interval (¢, c0), where ¢ > 0.

Solution.

1
(a) Let x be any fixed point of the interval (0,00). Then lim — = 0. Thus {f,(x)}

n—0o NI
converges pointwise to the function f(z) =0, 0 <z < oco.

This convergence is not uniform, since we cannot find such N, independent of x, that
for every € > 0 the inequality

ful) — f(2)] = — <&

nx
holds for all values of z, 0 < x < co, when n > N.

(b) If I = (¢,00), then

1 1 1 1
Vs>03N:[—} YV (C<:C<oo&n>N — ——O‘:—<—<s>.
ce n n Nec

Figure 9.2 shows us graphs of selected functions f,(z) for x € [0.01, 1]. |
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falz) = = 0<z<1
ena)
¥
. — 1 (%)
1.5 7 ° - - £5(x]
i }h ---- £10 ()
.!I -'II 5 d .I". -I-"HH - e 20
i . - (=)
I:I--S :E'II:-I.I"I ~ —
- - —_ -

0.2 0.4 0.6 0.8 1

Figure 9.3: Selected functions f,(z), (n =1,5,10,20) of a sequence that converges point-
wise (but not uniformly) to the function f(x) =0, z € [0,1].

—TL]?Q

Example 9.3 Show that the sequence given by fn(x) = nxe , n=12 ..., con-
verges pointwise, but not uniformly, to the function f(x) = 0 on the interval I = [0,1]
(Refer to Figure 9.3).

Solution. Let x be any real number. Then the sequence { f,,(x)} converges to the limit 0:

. nr . tx . T
lim 7 = lim — = lim ——
n—oo N« t—oo et t—oo etT? . g2

:0,

for  #£ 0. If x =0, clearly, lim f,(z)=0.
n—oo

Hence {f,} converges pointwise to f on the whole real line, —oco < z < oo, and in
particular on the interval I.

Suppose now that {f,} converges uniformly to f on the interval I = [0, 1]. Then given
any € > 0, the inequality |f,(x)| < € must hold for all € [0,1] and all n > N, where N
does not depend on x. Suppose that such N exists and let

1
r=——=—€l, n=12,.... (9.1)

Vn
NG

Then f,(z) = == — +00, as n — oco. We see that |f,(z)| < ¢ cannot hold for all

Vv 2e
values defined by (9.1) and all n > N, since {\/7} is unbounded, as n — co. |l
e
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falz)=2" —1<zx<1

¥
1:'..

k)

o

o
'“-__"H-L
- =

-1 H,.’

o - — f2ix)
- -1
4 ----£3 (%)

[T f_q: c}{:l

Figure 9.4: Tllustrating convergence of the sequence {f,(z)} to 0 when |z| < 1 and to 1
when x = 1.

Example 9.4 Ezamining convergence of fn(z) = x™ on the interval I = (—1,1].

(a) We have
0, lz] <1
1, r=1

lim f,(z) = f(z) = {

n—oo

Thus {f,} converges pointwise to f on the interval I.

1
(b) {fn} does not converge uniformly to f on I = (—1,+1], since, if x =1 — —, then
n

fn(m) = (1 - _)n - -

n €

(c) {fn} converges uniformly to f on any interval of the form [—a,a], where a < 1, since
|:Cn — O| = |Jjn| <a" < e forall x € [—a,, a] and alln > N = [lns]'

Ina
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Theorem 9.1 Uniform Convergence and Continuity
Suppose that {f,} is a sequence of continuous functions defined on a closed interval I =
[a,b]. If fn converges uniformly on I to a function f then f is continuous on I.

Proof. Let z, € I and € > 0 be given. Consider the identity

f(x) - f(xo) = f(li) - fn(x) + fn(x) - fn(xo) + fn(xo) - f(lio)'

Hence, for any x € I and any n =1,2,..., we get

[f (@) = f@o)| < [f(2) = fu(@)| + | fu@) = fulwo)| + | fn(20) — f (o). (9:2)

Since f,, — f, uniformly on I, there is an integer N such that |f,(z) — f(z)| < § for all
xz €l and n > N. Thus

F@) = F@o)] < 5+ ue) = falao) +5, n2 N, el
The above inequality holds for any value of n such that n > N; in particular for n = N:
F(@) = flao)| < 5+ |fn(e) = o)l + 5 @€ 1. (93
Now, the function fy(x) is continuous on I, so that there exists a 6 > 0 such that
=zl <6 = |fn(@) ~ ()] < 3

Therefore, by (9.3), |f(z)— f(z,)| < € provided |z—z,| < 0. This proves that f is continuous
at any point x, arbitrarily chosen in the interval I. Hence, f is continuous on I. |

Example 9.5 Give an example of a sequence {f,(x)} that converges (pointwise) on a
given interval to a integrable function, but

lim /]"n(:c)dm";té lim f,(z)dx.
n—oo I

I n—oo

Solution. Consider the following sequence of functions:

2n’x, 0<z<1/2n
fnlx) = 2n — 2n%x, 1/2n <z <1/n
0, 1/n<z<1

Selected functions of the sequence {f,(z)} are shown in Figure 9.5. We note that {f,,}
converges pointwise to f(xz) = 0 on the interval I = [0,1]. It can be shown that {f,(x)}
does not converge uniformly on 1.

‘We have

1 1/2n 1/n 1
/ fn(z)de = / onx?dr + (2n — 2n°z)dx = =,
0 0 1/2n 2
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2n’x, 0<z<1/2n
fnlx) = 2n — 2n2x, 1/2n<zxz<1/n
0, 1/n<z <1
K
10, ,n=10
g
G

Figure 9.5: An example of a sequence { f,,} that converges to a integrable function f on the
interval I = [0,1], but [; f(x)dz # lim /fn(x)dac
n—oo I

but . .
/0 flx)dx :/0 odr = 0.

1 1 1
lim /0 fn(ac)dx#/o nh_)rrgofn(a:)dx:/o f(z)dz. N

n—o0

Hence,

Theorem 9.2 Uniform Convergence and Integration
Suppose that {f,} is a sequence of functions defined on a closed interval I = [a,b]. If fy,
converges uniformly on I to a function f, then f is integrable on I and

/abf(:c)d:c = lim_ /ab fo(z)dz. (9.4)

Proof. To show that f is integrable we shall prove that, for a given £ > 0, there is a
partition P for which
UP, f) = LP < f)l <e.
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Fix n such that
Ve el |[fo(z)— f(z)] <

3(b—a)’

Since f,, is integrable, there exists P for which
€
|U(Pv fn) - ‘C(P7 fn)| < g

For that partition P, we have

U(P, f) —L(P, f)| < UP, ) —UP, fn)l
+|U(Pvfn) - L(P7 fn)| + |‘C(7)a fn) - [’(Pvfﬂ
g g 15} _
< §+§+§—€,

since, if h and k are any two functions for which |h(x) — k(x)| < &’ for all z in I, and P’ is
any partition, then

U(P',h) —UP' k)| <e'(b—a) and |L(P',h) — L(P' k)| <E'(b—a).
Now we shall show that (9.4) holds. Let € > 0 be given. Since f,, converges uniformly
to f on the interval I, there is some N such that

€

Veel (n>N — \fn(x)—f(m)\<b_a).

We have already proved that f is integrable. Thus for n > N, we have

/ab Jn(2)dz — /abf(x)dx /ab[fn(x) — f(z)]dz

IN
2
&
|
~
—~~
&
a
8

We conclude that ) )
/ f(z)dx = nh—{rc}o/ fo(z)dz. |

The behaviour of uniform convergence with respect to differentiation is more complex.
In fact, a sequence of differentiable functions { f,,(x)} may converge uniformly to a function
f which fails to be differentiable. Even if f is differentiable, it may not be true that

fl(z) = lim f(x).

n—oo

Two examples that illustrate the phenomena are given below.
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(a) L | (b) o |
fl(x):{ |z|*sin1/z, ifx#0 f5(x):{ |z|%/° sin 1/, if . #0

0, ifz=0 0, ifz=0
¥ Y
0.05 0.03
0.04 0.04
i = x AU%M-‘WD%‘&UH
-1/3P1 1/3P1i -1/3F1 3Pi
-0.04 -0.04
-0.03 -0.08

/10601 /2 ifx#0 |z|sinl/x ifx#0
flO(:C) — { |$| ’ ) f(CC) — )
0, itez=0

Figure 9.6: A sequence of differentiable functions converging to a function that is not
differentiable.

Example 9.6

Let

1
|27/ sin — ifz#0
T

fnlx) =
0, if x =0.

Then {f,} converges to

1 .
Flz) = \x]sm;, ifx#0
0, ifx=0

Note that each f,, is differentiable on R, but f is not differentiable at = = 0. |
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1
fo(z) = =sinnz, 0<z <7
n

o o o O

Figure 9.7: An example of a sequence {f,} that converges uniformly to a differentiable
function f, but f/(z) # lim_ Il ().
n—

Example 9.7
Let {f,} be given by f,(z) = %sin(ngx), n = 1,2,.... Clearly, the sequence converges
uniformly to f(x) = 0 on the whole real line, —oco < = < oo, since
1. 1
|fn(x)| = |=sin(n“z)| <=, n=1,2,..., —oc0o<z<0.
n n

We have

fl(x)=n COS(TL2(L'),

and we can see that

lim f)(z) # f'(x) = 0,

n—oo

as lim ncos(n’z) does not always exist (for example, it does not exist if z = 0). 1l
n—oo
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The following result is useful and provides conditions under which the uniform limit of
differentiable functions is differentiable.

Theorem 9.3 Uniform Convergence and Differentiation
Suppose that {fn} is a sequence of functions defined on I = [a,b] that are differentiable on
1. Suppose further that for some functions f and g defined on I, where g is continuous, we
have

(i) f] — g uniformly in I.

Then f is a continuous and differentiable function on I, and we have

g(z) = f'(z) = lim f)(z) forz€l.

n—oo

Proof. Let x be any number of the interval I. Applying Theorem 9.2 to the interval
[a, x], we get

n—oo

[ st = tim [* 0t = i [£(@) = fa(@)] = £(2) @)

so that

Differentiating both sides of the above equation gives

d

= [ awar =@ -0

and we obtain

9.2 Power Series

Definition 9.3 A power series about a point x, is

o0
Zan(:c—xo)":ao+a1(x—:po)—f—ag(:c—:po)Q—i—---, (9.5)
n=0

where an, n = 0,1,2,..., are constant coefficients. In particular, when x, = 0, the power

series (9.5) takes the form

o0
Z ant"™ = ap + 1T + agx® + - - . (9.6)
n=0
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Evidently, every power series (9.6) is convergent at the point x = 0.
o0

A power series Z a2 has one of the following properties:
n=0

1. the series is divergent for all values of z, except = 0;
2. the series is convergent for all values of x, —oco < z < o0;

3. there is a number R > 0, called the radius of convergence of the series, such that

oo
Z anz™ converges for |x| < R and is divergent for |z| > R.
n=0

A series that converges for all z, —oo < x < 00, is said to have radius of convergence R = oo
and the series that only converges for x = 0 is said to have radius of convergence R = 0.
The following theorem gives a formula for the radius of convergence R.

Theorem 9.4 Consider the power series

Z anz”. (9.7)
n=0

Let
1
a = lim sup|ap|». (9.8)
n—oo

Then the radius of convergence of the power series (9.7) is

0 if a =00
R— 00 ifa=0

1

— otherwise.

o

Proof.

Case 1. Suppose that « is finite and o # 0. Consider any x with |z| < é There is a
0 > 0 such that

< < =, 9.9
& . 99)
Let € = ad/2. We conclude that there is an integer N such that

1/n

n>N = |a,|"" <a+e.

Hence 5 sy
]an\l/"<a(1+§) — \an\<a"(1+§) , forn > N.

Using (9.9), we get, for n > N,

N1 1+06/2\"
nn n1 e — — n’
lanz"] < < +2> ar(1+0)" <1+5> ’
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where 0 < # < 1. Since || < 1, the series Y 8" converges and by the Comparison Test,
the series Y |a,z"™| also converges.
We have shown that the power series (9.7) converges for any x with |z| < 1 = R.
Also, if |z| > 1/a, then o > 1/|z|, so that, by definition of «, there are an infinity of
values of n for which
a1/ > L
|z
For such n we have |a,x™| > 1. Hence TLleréo anx”™ # 0, so that > a,z™ diverges.
Thus R is the radius of convergence.
Case 2. a=0.

If @« =0, then lim,, s |aN|1/”

= 0. Given any = # 0, we have
[zl <7< 1, n >N,

for some N and some r. Then |a,z"| < ™. But > 7" converges, hence so does Y a,z".
Hence the series converges for all x, so that R = oo.

Case 3. a = +o00.
If

lim sup |an |/ = +oo,
n—oo

then for x # 0, the sequence {|a,||z"|} does not tend to 0. Hence, the series > a,x"
diverges. Thus R = 0.

9.3 Taylor and Maclaurin Series

Consider a function f(z) in a neighbourhood N(z,) of the point x = z,. Suppose that
f and its derivatives f*)(z), for k = 1,2,...n, are continuous in N(z,). Then f can be
approximated by the n-th degree Taylor polynomial

2 ) ()
Pran(w) = Y T2 = )
k=0
Formally, by Taylor’s theorem,
f(@) = Py 2,(z) + Ry(2),

where the remainder R, (z) may be specified in different forms.

Suppose now that f(x,) exists for all n = 1,2,.... We can then form a power series
> an(z — x,)", whose coefficients are the Taylor coefficients
(n)
an = Fz,) (:CO)

n!
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The question that naturally arises is under what conditions f(z) can be represented as
the corresponding power series

< fn)(g,
ST o
n=0 :

which is called the Taylor series of f at x,. Note that, if the Taylor series (9.10) converges
for |x — z,] < R, R > 0, it is not necessarily true that it converges to f(x).
A necessary and sufficient condition for the power series (9.10) to converge to f(x) is

lim Ry(z) =0,

where
Ry (z) = f(x) — Pn, 2,(2).
If lim_ R,(z) =0 for |x — x,| < R, R >0, then we have

o0 £(n)
f(x):ZfT(le)(x—xO)”, for |z -z, <R, R>0,
n=0 '

and the power series (9.10) is called the Taylor expansion of f about the point x,. The
special case, x, = 0, in (9.10) is called the Maclaurin expansion of f.
The Taylor theorem (Theorem 6.1) gives the remainder R, (z) in the following form:

FrIE)

o n+1
CE] (x—x,)", 0<E<u.

R,(x) =

Suppose that all the derivatives f*)(z) are bounded in |z — z,| < R, R > 0, by the same

constant M:
fB (@) <M, |z —=,| <R (9.11)

Then, for any fixed value of z, |[x — x,| < R, we have
)n+1

x—x
‘R”(x)ISM((nfOl)!_)O’ as n—0.
Hence, f(z) can be represented by its Taylor expansion.

Definition 9.4 A function f is said to be analytic at x, if and only if f can be
represented by its Taylor series in some neighbourhood of x,.

We can see that any function that satisfies (9.11) is analytic.
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Example 9.8 Showing that sinx and cosx are analytic at any point € R..
(a) If f(x) =sinz, then f®)(z) =sin(z + kn/2), k=0,1,2,..., so that
Pz <M=1, —0 <z < 0.

Hence R, (z) — 0, as n — oo. Thus f(z) = sinz is analytic at any point z € R. Using the
results of Example 6.3, we have

. = (_1)n 2n+1
sinz = X:O mﬂ: , —00 < x < oo. (9.12)
n=

(b) Let f(x) = cosx. Following the logic of (a) and using the results of Example 6.4,
we conclude that f(x) = cosz is analytic at any point z € R and

cos T = i (_1)nx2” —o<z<oo U (9.13)
N 2n)! " ' ’

n=0

Example 9.9 Show that f(x) = e is analytic at x, —oo < x < 0.

Solution. If f(z) = e*, then f®*)(z) =¢®, k=0,1,2,.... For a fixed value of z, we
have
e’ n+1 6\x\|x|n+1

(n+1)! =11

Hence, f(xz) = e” is analytic at any point € R. Using the results of Example 6.2, we have

[ B (2)] <

— 0, as n — oo.

o
e"’”:zx—, —o<z<oo. N
Now we give an example of a function that has all derivatives f () (x) in a neighbourhood
of x, =0, (Jz] < J, & > 0), and yet does not have a Taylor expansion valid for that interval.

Example 9.10 A function that is not analytic at the point O and has derivatives f(”)(O)
foralln > 1.

Let )
e 1/z, z >0
fla) = { 0, z < 0.
We evaluate the derivatives f(™(0), n=1,2,....

@)= £0) . f@)

Lo 1
f (0) B ill% x z—0 X ’

lim f@) =0, since f(z)=0 for z<O0,

r—0— X

lim @ = lim lefl/x = lim te” ! = lim t = lim i =0.

r—0+ X r—0+ 2 t—o0 t—o0 et t—o0 et
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Hence f’(0) = 0. Similarly,

(0) 1 L@ =O) @)

z—0 xT z—0 X

The limit from the left is obviously 0. The limit from the right is
t? 3¢ 6t

!
. x . _3 _ . _ . . .
lim f( ): lim z %% = lim *¢! = lim — = lim — = lim — = 0.
z—0+ X r—0+ t—o00 t—o00 et t—o0 et t—o00 et

Hence f”(0) = 0. By induction, we get f(™(0) = 0 for all n = 1,2,.... Hence the Taylor
coefficients at 0 are

_ ) (z,)

n! =0

an n=12,....

If we had a Taylor expansion of f(x) at x, = 0, then we would have
f(z) = Z apz™ =0, |z| <4,
n=0
which does not hold. [l

9.4 Differentiation of Power Series

Consider a power series
o

Z ap(x — )k (9.14)

k=0

with a given radius of convergence R, R > 0. For each z, |z — z,| < R, the series (9.14) is
a function of z:

oo
flx) = Z ap(x — :Eo)k.
k=0
We know that many familiar functions can be represented as power series, for example

1 [e.9]
flz)= => o i x| < 1.
k=1

1—z

In this section we deal with the question of whether a power series can be differentiated
and how the derivative can be calculated.

Note, for example, that the sum of the series > z" is a differentiable function whose
derivative is

f/(x)Z( ! )/2(1;2, lz| < 1.

11—z —x)

Hence

<§: x”) = ﬁ x| < 1. (9.15)

n=0
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Theorem 9.5 Differentiation of Power Series
Let the power series > anx™ have the radius of convergence R > 0 and let

o
=Y an2", |z| <R.

Then f(x) is differentiable for |x| < R and

fl(x) = i (anx™ Z napx"”
n=0

Moreover, the series Y. na,x™ ' has the radius of convergence R.

Note that an application of this theorem to (9.15) gives us a familiar result

> 1
Z na" 1 = m, ‘.’E’ < 1.
n=1

Proof. Assuming that the radius of convergence of

o
=Y o
n=0
is R, we are to prove that

(i) the series
o0
Z anz™) Z nanT (9.16)
n=0

has radius of convergence R;

(ii) f'(x Z napz" ", |z| < R.
Proof of (i) Let R’ be the radius of convergence of (9.16). Since

n—oo

o 1 o0

E napx™ = = E na,z”, r#0, and lim {¥n=1,
T

n=1 n=1

we have
lim sup {/|na,| = hm Yn - hmsup Vlan| = hmsup lan!,

n—oo

which implies that R’ = R.
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Proof of (ii) Let ¢ be any point of I = (—R, R) and let r be another point of I such
that |¢| < r < R. Let h be such that 0 < |h| < r —|c|, so that ¢+ h € (—r, 7).

To prove that
o0
= Z na,c” !
n=1

we introduce Dy, a function of h defined as

Dh — f(C+h) —f(C) . Znancn—
n=1

h

and prove that Dy, — 0, as h — 0.
By the hypothesis,

o0 oo

S e A FO =3 ane

n=0 n=0
so that

flc+h) Z an [(c+ h)" —c"].
By Taylor’s theorem applied to the functlon g( ) = a™ we have
1
(c+h)" =" +nhc" ! + §n(n — 1)h%(c+6h)" 2

for some 0, 0 <6 < 1.
Hence

b, - ‘f(wh});f(@_inancnl‘:

1 oo
ﬁz n(n — 1)h*(c+ 6h)"~

1 oo
< 5l Z::n(n— 1) ay |c+ 0h]" 2.
Now, |c+ 0h| < |c| + |h| < r, so

|Dp| < = |h| Z (n—1) ‘anx”_Z

, where |z|=|c+6h| <R.

Applying (i) to the series > na,z" ! that has radius of convergence R, we arrive at the

conclusion that the series
[oe)

Z n(n — 1)a,z" > (9.17)

n=1
has also radius of convergence R. Therefore (9.17) converges absolutely and consequently
is bounded for x = ¢ + 6h, say:

o0
Z n(n — 1D)|an(c+6R)"2| < M, for some M >0, independent of h.
n=1
Hence 1
Dyl < Sh|M =0, as h—0. |
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Example 9.11 Obtain the Maclaurin expansion for cos x by application of Theorem 9.5
to the Maclaurin expansion of sinz.

Solution. By Example 9.8 (a), we have

sing = i ﬂx%ﬂ -0 < x <0
¢ (2n+ 1)! ’ '

By Theorem 9.5, we can differentiate the above series term by term to obtain:

= (1 = (-1
=S ) _(@n+1)z
COS T T;(2n+1)(n+ nZ::O

(compare with Example 9.8 (b)). |
Example 9.12

Prove that the power series
oo
> e
n=1
converges for |z| < 1 and determine its sum. Hence evaluate
oo
2 .
=2
Solution. If R denotes the radius of convergence of 3. n?z" then we have
1
— = limsup Vn? = hm Yn- lim {/n=1.
R n—oo

n—oo

Hence R =1 and the series converges for |z| < R = 1.
Consider now the series Y x™, with radius of convergence 1:

o0

Z , x| < 1.

On an application of Theorem 9.5 (twice), we obtain the formulas:

> 1
an"fl = —0, |z| <1
— PR )
— (1—2x)
> 2
Zln(n — 1)3371—2 = m, |$| < 1.
n—=
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Therefore

D xD
Z n2a” = Z n(n —1) + njz"
n=1 n=1

[oe)

= Z (n—1) ”2+m2nx
n=1 n=1
22 T

= T <
— X

Hence we have -
1
Zn%” = L —|—ac3)’ |z| < 1.
— (1—2x)

In particular, putting = 1/2, we get

5

N)’S

9.5 Integration of Power Series

Theorem 9.6 Integration of Power Series

Let
o0
=Y o
n=0

have radius of convergence R. Then, for any z, |z| < R, we have

T [e.e]
/0 Ftyde =y (9.18)
n=0
and the power series
oo
an n+1
> T (9.19)
—n+1

also has radius of convergence R.

Proof.
oo
Let g(z) = Z na—:lxnﬂ. The series for f(z) and g(z) have the same radius of conver-
n=0

gence, since ¢'(z) = f(x), as proved in Theorem 9.5. But then / f(t)dt = g(z) — g(0), by
0
the Fundamental Theorem of Integral Calculus. Now ¢(0) = 0, hence (9.18) holds. |
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Example 9.13 Integrating power series term by term.

(a) By Example 2.20, we have

1 o
1 =Y 2" |z <1 (9.20)
—F n=0
Let z = —z, where |z| < 1. Then we obtain
1 o0
=> (=", |z < 1.
L+ =

If |x| < 1 then, by Theorem 9.5, we can integrate the above series term by term:

[e.o]

xT 1 T
—dt = —1)" t"dt 1.
/Om S >/0 ol <

n=0
Hence we arrive at the following expansion for of function log(1 + x):

0o n+1 00

T z"
log(1+z)=>Y (-1)" => (=)™ =, 2 < 1. (9.21)
n=0 n+1 n=1 n

(b) Let z = —22, where |z| < 1. Then 9.20 gives

1 0o

n,_.2n
—— =Y (-1, o] < 1.
1+=x =

Applying Theorem 9.5 to the above, we arrive at the following expansion of the function
arctan x:

rctan —iﬂ 2tz < 1.

arcta x—n:02n+1x , lx .

Comments: Recall that in section 6.1 we dealt with the approximation of the function
log(1+4x) by its Taylor polynomials P, o(x). In Figure 6.4 we illustrated this approximation
on the interval (—1,1). The question that naturally arises is whether Taylor’s polynomials
can be used to approximate f(z) =log(l + x) on a wider interval, say for x € (—1,2).

Example 9.13 ensures that the approximation is valid for |z| < 1. Now, for |z| > 1, the
power series 9.21 diverges. Hence the polynomials P, (x), being the partial sums of the
series 9.21, cannot be expected to provide an approximation of f(x).

Refer to Figure 9.8 to see the behaviour of the polynomials P, o(z) for 1 <z < 2.
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n o
Pro(z) = Z(—l)kﬂz

k=1
¥
n=5
2.5
2 =3
L
1.5 s T
1 — :--h""_-_;d
b= =
Q.5p——————== S == n=>2
- .
1.2 1.4 1.6 n=4

Figure 9.8: Illustrating divergence of the Taylor series of f(x) = log(1 + z) for = > 1.

9.6 Exercises
9.1 Let
ful@)=1—2?+2* — 4+ (=D, -1<z<l

(a) Determine, for each x in (—1,1),

f(x) = lim f,(x);

n—oo

(b) Does {f,} converge uniformly to f? Consider the cases:
(i) -1<z<1,
(i) -1+0<x<1-9, where 0<d<1.
9.2 If |fu(x) — f(x)| < ap, for n > 1 and x € I, show that {f,} converges uniformly to f
on I, whenever a,, — 0, as n — oo.

Use this result to justify the following formulas, where —1 < z < 1:

| 1 /z 1 &t +x2+x3+x4+
(0] = _— =T —_— —_— —
I 01—t 2 T3y ’

L (Hx) /x L oo B 8 %
—lo — R = JR— JE— JE— e,
& 0 1—¢2 375 7
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9.3

9.4

9.5

9.6

9.7

9.8

9.9

Let fn(x) = 2™, 0<ax <1.Does {f,} converge uniformly? Justify your answer.

Let f(z) = Y (ana™), |z| < R and let g(x) = Y (b,2™), |z| < R', where R, R’ > 0.
If f(z) = g(x) for all = such that |z| < ¢, for some ¢ > 0, show that a,, = b, for all n.

Thus, two power series that represent the same function must be identical.

Prove the following theorem.

Theorem 9.7 Let R be the radius of convergence of Y (anx™) and let K be a
closed and bounded subset of the interval of convergence (—R, R). Then the power
series converges uniformly on K.

Let
o
Y= Z apz”, |z| < R,
n=0

be a solution of the differential equation y” + y = 0. Determine the coefficients a,,,
and identify the solutions.

Obtain an explicit formula for a, and b, given by:
(Z) (p+2 = Apt1 — Qn; 6o =0, a3 =1.

(Z’L) bnto =bpi1 +bn; b,=0, by =1

Prove the following theorem.

Theorem 9.8 The limit of a power series is continuous on the interval of con-
vergence. A power series can be integrated term-by-term over any closed and bounded
interval contained in the interval of convergence.

Use the Fundamental Theorem of Integral Calculus and the above results showing
that a power series may be integrated term by term within its domain of convergence,
to justify that a power series may be differentiated term-by-term within its domain
of convergence.
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Absolute convergence of infinite series,42
Absolute convergence of integrals,199
Algebra of continuous functions,64
Algebra of derivatives,102
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Archimedean Property,7
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Bolzano-Weierstrass Theorem,35
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Boundedness of continuous functions,73
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Cauchy Mean Value Theorem; applications,123
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Cluster point,36
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Composite Rule for continuous functions,64

Concave functions,145
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boundedness of functions,73
Cauchy definition,62
Composite Rule,64
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Heine definition,63
of functions on closed intervals,73, 80
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Product Rule,64
Quotient Rule,64
Squeeze Rule,64
Sum Rule,64
uniform,78
Continuous functions,62
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Convergence:
absolute,42
Bolzano-Weierstrass Theorem,35
Cauchy condition for integrals,199
Cauchy condition,39
comparison test for integrals,192
comparison test,43
of improper integrals,183, 187
of infinite series,40
of monotone sequences,26
of power series,220
of sequences,15
pointwise,209
radius of convergence,220
uniform,209
Convex functions,145
Decimal expansion of a real number,27
Deleted neighbourhood,51
Denseness Property of the Rational Numbers,8
Derivative(s):
Addition Rule,102
as a function,96
Chain Rule,105
definition,91
geometric interpretation,91
I’Hopital rules,131
left-hand,96
Leibniz’s formula,115
notations,92
of 7,100
of x2™,100
of z'/™ 111
of arccosz,112
of arcsinz,111
of arctan z,112
of cosx,100
of logy,111
of sinx,100
of arccotx,112
of a constant function,96
of composite function,105
of higher order,112
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of inverse function,107

of the identity function,96

one-sided,96

partial, 147

Product Rule,102

Reciprocal Rule,102

right-hand,96

rules for differentiation,102

Scalar Product Rule,102

of functions defined by integrals,202
Differentiability of continuous functions,98
Differentiation,91

of composite functions, 105

rules for,102,105

of power series,224

examples of not differentiable functions,94

partial derivatives,147
Discontinuity,66
Extreme Value Theorem,73
Extreme values:
local maximum,118
local minimum,118
Fibonacci sequence,33
Field:
Commutative law,2
additive inverse,2
Antisymmetry,6
Associative law,1
Associative law,2
axioms of addition,1
axioms of multiplication,2
axioms of order,6
Closure property,1
Commutative law,1
complete,7
definition,1
Distributive law,2
Existence of a zero,1
Existence of a multiplicative inverse,2
Existence of a unit,2
Existence of an additive inverse,2
multiplicative inverse,2
ordered,6
Reflexivity,6
Transitivity,6
Trichotomy,6
uniqueness of the additive inverse,4
uniqueness of zero,4
Fixed Point Theorem,77
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Function(s):

algebra of continuous functions,64
analytic,222
antiderivative,171
bounded,47
bounded above,48
bounded below,48
integrability of a constant function,159
integrability of bounded functions,161
integrability of composite functions,167
integrability of continuous functions,162
concave,145
continuity

relating to boundedness,73

relating to differentiability,98
continuous: 62,64

Composite Rule,64

integrability of,162

but not differentiable,98

on an interval,65

on the left,63

on the right,63

Product Rule,64

Quotient Rule,64

Squeeze Rule,64

Sum Rule,64
convex,145
defined by integrals—derivatives of,202
derivatives of composite functions,105
derivatives of higher order,112
partial derivatives,147
differantiation of,91
differentiable at a point,92
discontinuity points,66
infimum of,48
infinite discontinuity,67
integrability,159
integrability of sum,164
inverse function—derivative of,107
jump discontinuity,68
L’Hopital rules,131
left-continuous,65
limit of,51

Cauchy definition,52

Heine definition,54

L’Hopital rules,131

one-sided,56
local maximum,118
local minimum,118
Maclaurin expansion of,222
maximum of,49



238

minimum of,49
monotone,143
monotone — integrability of, 161
not differentiable; example,94
nth derivative,112
nth derivative—Leibniz’s formula,115
of two variables,83
continuous,85
Implicit Function Theorem,86, 149
limits,84
partial derivatives,147
one-sided derivatives,96
oscillating discontinuity,67
partial derivatives,147
pointwise convergence,209
product—integrability,169
right-continuous,65
second derivative,112
supremum of,48
Taylor expansion of,223
third derivative,112
uniform convergence,209
uniformly continuous,78
upper bound,48
Fundamental Theorem of Integral Calculus,170
Gamma function,195,198
Gamma function; properties, 198
Gamma function; relating to the factorial,198
Greatest lower bound of a set of real num-
bers,7
Heine definition of continuity,63
Heine definition of limit of a function,54
Implicit Function Theorem,86, 149
Improper integrals:,181
of the first kind,182, 184
absolute convergence,199
Cauchy principal value,186
convergence of,183, 187
of the second kind,188
of the third kind,193
Cauchy condition,199
comparison test,192
Indeterminate Forms:
of 0- oo form,130
of co — 0o form,130
of 0°° form,130
of 1°° form,130
of % form,130
of 2= form,130
ofoo? form,130
Infimum of a function,48
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Infinite discontinuity,67
Infinite singularity,181
Integrability Criterion,160
Integrability of composite functions,167
Integrability of continuous functions,162
Integrability theorems,160 — 169
Integrability:

of k- f(x),163

of monotone functions,161

of f(x)+ g(x),164

of f(x) - g(x),169

of a bounded function,161

of a constant function,159
Integral(s), Riemann:

lower,158

partition,153

refinment of a partition,154

upper,158

of f(x)+ g(x),164

of k- f(x),163

depending on a parameter,203

existance,159

as geometric notion of area,172

improper of the first kind,182

comparison test,192

improper of the second kind,193
Integration,153

by parts,172

of power series,228

by substitution,177

of |(x)],169

antiderivative,171

of composite functions,167

Schwarz’s Inequality,170
Intermediate Value Theorem,75
Inverse function; differentiation,107
Jump discontinuity,67
L’Hopital rules for limits:

of 0 - co form,140

of 00 form,140

of 1°° form,141

of co — oo form,140

of oo form,141

of % form,131 — 136

of 22 form,137

of 22 form,139

of 22 form,139

repeated application,135
Least upper bound of a set,7
Left-hand derivative,96
Leibniz’s formula,115
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Limit(s): as an ordered field,6
algebra of,20 axiom of completeness,7
convergence of subsequences,33 completeness property,7
existence of,37 decimal expansion of,27
infinite,18 Denseness Property of the Rationals,8
lim inf,36 Order Completeness,7
lim sup,36 the number e,29

of a sequence,14

of functions. of two variables,84
Product rule,21

Quotient rule,21

Scalar product rule,21

Squeeze Theorem,23

Sum rule,21

the number ¢,29

uniqueness of,15

of functions,51

Refinement of a partition,154
Remainder in Taylor’s Theorem:,123
equivalence of two forms,175

two forms of,175

intergal form of,175
Removable discontinuity,66
Riemann integral,159
Right-hand derivative,96
Rolle’s Theorem,118

one-sided limits of a function,56 Schwarz’s inequality, 170
of functions of two variables,84 Sequence(s): o
Lower bound of a set of real numbers,7 algebra of limits,20

Lower integral,158
Maclaurin expansion of a function,222
Maclaurin series,222
Mean Value Theorem for Integrals,173
Monotone Functions,161
Monotone sequences,26
Neighbourhood of (z,, y,),84
Neighbourhood,51
Neighbourhood; deleted,51
One-sided continuity,63
One-sided derivatives,96
One-sided limits of a function,56
Order Completeness of the Reals,7
Ordered field,6
Oscillating discontinuity,67
Partial derivatives,147
Partial sum,40
Partition,153
Pointwise Convergence,209
Power series:
convergence of,220
differentiation of,224
integration of,228
radius of convergence,220
Properties of limits of functions,58
Properties of the Integral,163, 169
Quotient Rule,102
Radius of convergence,220
Real Numbers:
Archimedean Property,7
as a complete ordered field,7

Bolzano-Weierstrass Theorem,35
bounded,20
Cauchy condition of convergence,39
Cauchy sequence,38
cluster points of,36
convergence of subsequences,33
convergent,15
decreasing,26
definition,11
existence of limits,37
Fibonacci sequence,33
increasing,26
infinite limit of,18
lim inf,36
lim sup,36
limit Inferior,36
limit Superior,36
limit of,14
Product rule,21
Quotient rule,21
Scalar product rule,21
Squeeze Theorem,23
monotone relating to convergence,26
monotone,26
of functions,209
convergence of subsequences,33
subsequences,31
Sum rule,21
the number e,29
uniqueness of limit, 15
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Series:
absolutely convergent,42
comparison test,43
convergent,40
divergent,40
infinite series,40
Maclaurin series,222
necessary condition for convergence,40
partial sums,40
power series,219
Taylor series,222
Set(s):
bounded above,7
bounded below,7
greatest lower bound,7
least upper bound,7
lower bound of,7
upper bound of,7
Squeeze Rule:
for continuous functions,64
for sequences,23
Sum, Riemann:
Lower,153
Upper,153
Supremum of a function,48
Taylor expansion of a function,222
Taylor series,222
Taylor’s Theorem,123, 175
The number €,29
Types of discontinuity,65
Uniform continuity,78
Uniform convergence
definition,209
relating to continuity,213
relating to differentiation,218
relating to integrability,215
Upper bound of a set of real numbers,7
Upper integral, 158
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