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PREFACE

These lecture notes are designed for undergraduate students as a complemen-
tary reading text to an introductory course on Partial Differential Equations.
It is assumed that the students have basic knowledge in Real Analysis.

The notes have been used for teaching the course MAT426 (PDE), Partial
Differential Equations at the Faculty of Science, University of Botswana.

Tadeusz STYŠ
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Chapter 1

Solution of Partial Differential
Equations

1.1 The General Solution of PDE

The general solution of a partial differential equation (PDE) is considered as
a collection of all possible solutions of a given equation.

Example 1.1 Consider the following first order linear PDE equations

ux(x, y) = 2 x+ y, −∞ < x, y <∞ (1.1)

uy(x, y, z) = x+ 2 y + z, −∞ < x, y, z <∞ (1.2)

Solution. Let the variable y in (1.1) be fixed, and let us integrate both sides
of equation (1.1) with respect to the variable x. Then, we obtain

u(x, y) = x2 + y x + f(y) (1.3)

for arbitrary differentiable function f(y). Thus, all solutions of equation (1.1)
are of the form (1.3), where f(y) is any differentiable function.
Similarly, let us integrate both sides of the equation (1.2) with respect the
variable y, when the variables x and z are fixed. Then, we obtain all solutions
of equation (1.2) in following form:

u(x, y, z) = x+ y2 + z y + g(x, z), (1.4)

for arbitrary differentiable function g(x, z).

Example 1.2 Consider the following second and third order linear PDE equa-
tions

uxy(x, y) = 2 x+ y, −∞ < x, y <∞ (1.5)

uxyz(x, y, z) = x+ 2 y + z, −∞ < x, y, z <∞ (1.6)

3
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Solution. Let us integrate both sides of equation (1.5) with respect to the
variable y, when the variable x is fixed. Then, we obtain

ux(x, y) = 2 x y +
1

2
y2 + f(x) (1.7)

for arbitrary differentiable function f(x). Next, we integrate equation (1.7)
with respect to the variable x, when the variable y is fixed. Then, we obtain

u(x, y) = x2y +
1

2
y2 x+ F (x) + g(y) (1.8)

where F (x) is an antiderivative to the function f(x) and g(y) is an arbitrary
differentiable function of the variable y. Thus, all solutions of equation (1.5)
are of the form (1.8), where F (x) is an antiderivative to the arbitrary function
f(x), and g(y) is any differentiable function of the variable y.
Now, let us integrate both sides of equation (1.6) with respect to the variable
z, when the variables x and y are fixed. Then, we obtain

uxy(x, y, z) = x z + 2y z +
1

2
z2 + f(x, y) (1.9)

Next, we integrate equation (1.9) with respect to the variable y, when the
variables x and z are fixed. Then, we obtain

ux(x, y, z) = x y z + y2 z +
1

2
z2y + F (x, y) + g(x, z) (1.10)

where F (x, y) is an antiderivative to f(x, y) with respect to the variable y, and
g(x, z) is an arbitrary differentiable function of the variables x and y.
Finally, we integrate equation (1.10) with respect to the variable x, when the
variables y and z are fixed. Then, we obtain

u(x, y, z) =
1

2
x2 y z + x y2 z +

1

2
x yz2 + FF (x, y) +G(x, z) (1.11)

where FF (x, y) is an antiderivative to the antiderivative F (x, y) with respect
to the variable x, and G(x, z) is an antiderivative to g(x, z) with respect to
the variable x.

Example 1.3 Find all solutions of the following non-linear PDE equation:

(uxx)2 + (uyy)2 = 0, −∞ < x, y <∞ (1.12)

Solution. We note that uxx = 0 and uyy = 0 . All solutions of the equation
uxx = 0 are in the form

u(x, y) = f(y)x+ g(y) (1.13)
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and all solutions of the equation uyy = 0 are in the form

u(x, y) = q(x)y+ r(x), (1.14)

for arbitrary differentiable functions f(y), g(y), q(x) and r(x). Then, all
solutions of equation (1.12) have common part which is included in both (1.13)
and (1.14). So that, the solutions which have both forms are in the following
form:

u(x, y) = a x y + b x+ c y + d,

for arbitrary constants a, b, c and d.

Example 1.4 Consider the following first order PDE equation

x ux − 2 x uy = u, −∞ < x, y <∞. (1.15)

Show that
u(x, y) = xf(2 x+ y) (1.16)

is the solution of equation (1.15) when f is any differentiable function. Find
the solution within the family of solutions (1.16), which satisfies the condition

u(1, y) = y2, −∞ < y <∞.

Solution. Let us note that f(2x + y) is the function of one variable t =
2x+ y, −∞ < t <∞. By differentiation, we find

ux(x, y) = f(2x + y) + 2 x f
′

(2x+ y), uy(x, y) = x f
′

(2x+ y).

Hence, we compute

x ux−2 x uy = x f(2x+y)+2 x2f
′

(2x+y)−2 x2 f
′

(2x+y) = x f(2x+y) = u(x, y).

Now, applying the condition u(1, y) = y2 to the solution (1.16), we find func-
tion f . Thus, u(1, y) = 1, f(2 ∗ 1 + y) = y2. Let t = 2 + y and y = t − 2.
Then, f(t) = (t− 2)2. We can choose f(2x + y) = (2x+ y − 2)2. Let us note
that the solution u(x, y) = x(2x+ y − 2)2 satisfies the condition u(1, y) = y2.

1.2 First Order PDE with Constant Coefficients

Let us consider the following equation

a ux + b uy + c u = f(x, y), a2 + b2 > 0. (1.17)

where a, b, and c are constant coefficients, and f(x, y) is a given continuous
function.
Let us consider the case when b 6= 0. Then, we shall transform the equation

a ux + b uy + c u = f(x, y),
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given in x, y coordinates to the equation

b vz + c v = f(
w + az

b
, z)

in the new coordinates w, z

w = b x− a y, z = y

Hence, we find

x =
w + a z

b
, y = z.

In terms of the new coordinates, we compute

a ux + b uy = a(vwwx + vzzx) + b(vwwy + vzzy) = (a b− b a)vw + b vz = b vz.

Thus, in the new variables, equation (1.17), takes the form

b vz + c v = f(
w + a z

b
, z) (1.18)

Now, we shall solve the equation

b vz + c v = g(w, z), (1.19)

for g(w, z) = f(
w + a z

b
, z)

In order to find the general solution of equation (1.19), we divide the above

equation by b and multiplying by the factor e

cz

b , to obtain

e

cz

b vz(w, z) + e

cz

b
c

b
v(w, z) =

1

b
g(w, z)e

cz

b ,

or

∂

∂z
[e

cz

b v(w, z)] =
1

b
g(w, z)e

cz

b . (1.20)

Integrating both sides of equation (1.20) with respect to z, and multiplying by

the factor e
−cz
b , we obtain the following general solution of equation (1.19)

v(w, z) = e
−cz
b [

1

b

∫

g(w, z)e

cz

b dz + C(w)], (1.21)

where C(w) is an arbitrary differentiable function of the variable z.
In the case when b = 0, we have already the equation in the form (1.19), so
that

aux + c u = f(x, y).
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The new function

v(w, z) ≡ u(x, y) = u(
w + a z

b
, z).

Now, we can solve equation (1.19) by formula (1.21) to get the solution v(w, z),
and then to obtain the solution u(x, y) = v(b x−a y, y). Below, we shall present
some examples following the above solution of the first order linear equation
with constant coefficients.

Example 1.5 .

(1a) Find all solutions of the equation

∂u

∂x
− ∂u

∂y
+ u = 1 (1.22)

(1b) Find the solution of equation (1.22) which satisfies the condition

u(x, y) = 2 for y = x

Solution 1a. Note that the coefficients a = 1, b = −1, c = 1 and the function
f(x, y) = 1. First, we transfer the equation to the form

vz + c v = g(w, z),

by the mapping
w = − x− y, z = y

So that we have
x = −w − z, y = z.

We consider the new unknown

v(w, z) = u(x, y) = u(−w − z, z),

for which, we compute the expression

ux − uy = (vw wx + wz zx) − (vw wy + wz zy) = −vz.

Since g(w, z) = f(−w − z, z) = 1, therefore, we obtain the equation

−vz(w, z) + v(w, z) = 1.

Multiplying the above equation by e−z, we have

−e−zvz(w, z) + e−zv(w, z) = e−z or − ∂

∂z
[e−z v] = e−z.
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By integration with z

−e−zv = −e−z + C(w) or v(w, z) = 1 − C(w)ez

Hence, we find the solution

v(w, z) = u(−w − z, z) = 1 − C(w) ez and u(x, y) = 1 − C(−x− y)ey,

for arbitrary differentiable function C(w).
Solution 1b. For y = x, we find u(x, x) = 1 − C(−2x)ex = 2.
So that

C(−2x) = −e−x

Let t = −2x. Then, we have C(t) = −e
− t

2 and the solution

u(x, y) = 1 + e

−x− y

2 ey = 1 + e

y − x

2

satisfies the condition u(x, x) = 2.

Example 1.6 Find the general solution of the equation

3 ux − 2 uy + u = x. (1.23)

Solution. We consider the new variables

w = 2 x+ 3 y, z = y.

Hence

x =
w − 3 z

2
, y = z.

Then, we introduce the unknown

v(w, z) = u(x, y) = u(
w − 3z

2
, z).

Now, we compute

3 ux − 2 uy = 3(vwwx + vzzx) − 2(vwwy + vzzy) = −2vz.

Equation (1.23), in the new variables becomes

−2vz + v =
1

2
(w − 3 z). (1.24)

Dividing by −2 and multiplying by the factor e
−z

2 , we obtain

∂

∂z
[e
−z

2v(w, z)] = −1

4
e
−z

2 (w − 3 z). (1.25)
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Integrating both sides of (1.25) with respect z, when w is fixed, we find

e
−z

2 v(w, z) = −1

4
w

∫

e
−z

2 dz +
3

4

∫

ze
−z

2 dz + C(w)

=
1

2
we

−z
2 +

3

4
[ze

−z
2 (−2) −

∫

e
−z

2 (−2) dz] + C(w)

= e
−z

2 [
w

2
− 3z

2
− 3] + C(w),

(1.26)

where C(w) is an arbitrary differentiable function of the variable w.
Hence, we find the solution

v(w, z) =
1

2
[w − 3 z − 6] + e

z

2C(w).

and coming back to the original variables, we obtain the general solution of
equation (1.23) in the following form

u(x, y) =
1

2
[2x+ 3y − 3y − 6] + e

y

2C(2x+ 3y) = x− 3 + e

y

2C(2x+ 3y).

Let us observe that choosing the function C(2x+ 3y), we obtain a particular
solution. For example, the particular solution is

u(x, y) = x− 3 + e

y

2 .

for C(2x+ 3y) = 1, Indeed, we have

3ux − 2uy + u = 3 + e

y

2 + x− 3 + e

y

2 = x.

Also, for C(2x+ 3y) = 2x+ 3y, we have the particular solution

u(x, y) = x− 3 + e

y

2 (2x+ 3y).

1.3 Exercises

Question 1. Find the general solution of the equations

(a) ux = 3x+ 2y,

(b) uxy = x y,

(c) uxyz = x+ y + z.
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Question 2. Find all solutions of the equations

(a) ux − 2uy + u = x+ y,

(b) ux + 2uy + 3u = x+ y,

(c) ux − uy + u = 0.

Question 3.

1. Find all solutions of the equation

ux + uy − 2u = y

2. Find the solution of the equation which satisfies the condition

u(x, 1) = x for −∞ < x <∞



Chapter 2

Classification of Partial
Differential Equations of the
Second Order

2.1 Hyperbolic, Elliptic and Parabolic Equations

We shall consider the following form of partial differential equations:

Lu ≡ a(x, y)
∂2u

∂x2
+ 2b(x, y)

∂2u

∂x∂y
+ c(x, y)

∂2u

∂y2
+

+d(x, y)
∂u

∂x
+ e(x, y)

∂u

py
+ g(x, y)u = f(x, y),

(2.1)

where u(x, y) is an unknown function and the coefficients

a(x, y), b(x, y), c(x, y), d(x, y), e(x, y), g(x, y)

and the right side f(x, y) are given functions of the variables (x, y) in the
domain Ω.
For the classification purpose, we consider the following differential operator
of the second order associated with the main part of equation (2.1)

L0u = a(x, y)
∂2u

∂x2
+ 2b(x, y)

∂2u

∂x∂y
+ c(x, y)

∂2u

∂y2

We shall observe that the differential operator

L1u = d(x, y)
∂u

∂x
+ e(x, y)

∂u

∂y
+ g(x, y)u.

of order one does not effect the type of the equation. The type of an equation
is determined by the operator L0 of the sedcond order.
Classification. All the equations of the general form (2.1) are divided in
three the following classes pending on the sign of the discriminant b2 − a c.

11
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1. (2.1) is called hyperbolic equation if the discriminant b2 − a c > 0, for
all (x, y) ∈ Ω,

2. (2.1) is called elliptic equation if the discriminant b2 − a c < 0, for
all (x, y) ∈ Ω,

3. (2.1) is called parabolic equation if the discriminant b2 − a c = 0, for
all (x, y) ∈ Ω.

Also,

1. the operator L is called

hyperbolic operator if the discriminant b2 − a c > 0,

2. the operator L is called elliptic operator if the discriminant b2 −a c < 0,

3. the operator L is called parabolic operator if the discriminant b2 −a c =
0.

Example 2.1 .

The wave equation

∂2u

∂t2
− ∂2u

∂y2
= 0,

is the hyperbolic equation, since the discriminant

b2 − a c = 02 − 1(−1) = 1 > 0.

•• Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0,

is the elliptic equation, since the discriminant

b2 − a c = 02 − 1 ∗ 1 = −1 < 0.

• The heat equation

∂u

∂t
− ∂2u

∂x2
= 0,

is the parabolic equation, since the discriminant

b2 − a c = 02 − 1 ∗ 0 = 0.
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2.2 The Standard Form of Hyperbolic, Elliptic and Parabolic

Equations

The following standard or canonical forms of hyperbolic, elliptic and parabolic
equations are considered:

1. The first standard form of a hyperbolic equation

∂2u

∂t∂x
= f∗(t, x, u,

∂u

∂t
,
∂u

∂x
),

2. the second standard form of a hyperbolic equation

∂2u

∂t2
− ∂2u

∂x2
= f∗(t, x, u,

∂u

∂t
,
∂u

∂x
),

3. the standard form of an elliptic equation

∂2u

∂x2
+
∂2u

∂y2
= f∗(t, x, u,

∂u

∂x
,
∂u

∂y
),

4. the standard form of a parabolic equation

∂u

∂t
= k2∂

2u

∂x2
+ f∗(t, x, u,

∂u

∂x
),

Here, f∗ is a function independent of the second derivatives.
In order to transform equation (2.1) into its canonical form, we consider the
new variables

ξ = ϕ(x, y), η = ψ(x, y).

For the composed function u(ξ, η) = u(ξ(x, y), η(x, y)), we compute the fol-
lowing derivatives:

∂u

∂x
=
∂u

∂ξ

∂ξ

∂x
+
∂u

∂η

∂η

∂x
,

∂u

∂y
=
∂u

∂ξ

∂ξ

∂y
+
∂u

∂η

∂η

∂y

and

∂2u

∂x2
=
∂2u

∂ξ2
(
∂ξ

∂x
)2 + 2

∂2u

∂ξ∂η

∂ξ

∂x

∂η

∂x
+
∂2u

∂η2
(
∂η

∂x
)2 +

∂u

∂ξ

∂2ξ

∂x2
+
∂u

∂η

∂2η

∂x2

∂2u

∂x∂y
=
∂2u

∂ξ2

∂ξ

∂x

∂ξ

∂y
+

∂2u

∂ξ∂η

∂ξ

∂x

∂η

∂y
+

∂2u

∂ξ∂η

∂ξ

∂y

∂η

∂x
+
∂2u

∂η2

∂η

∂x

∂η

∂y
+

+
∂u

∂ξ

∂2ξ

∂x∂y
+
∂u

∂η

∂2η

∂x∂y

∂2u

∂y2
=
∂2u

∂ξ2
(
∂ξ

∂y
)2 + 2

∂2u

∂ξ∂η

∂ξ

∂y

∂η

∂y
+
∂2u

∂η2
(
∂η

∂y
)2+

∂u

∂ξ

∂2ξ

∂y2
+
∂u

∂η

∂2η

∂y2
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Now, substituting the above relationship to equation (2.1), we obtain the fol-
lowing equation in terms of the variables ξ and η:

A
∂2u

∂ξ2
+ 2B

∂2u

∂ξ∂η
+ C

∂2u

∂η2
+D

∂u

∂ξ
+ E

∂u

∂η
+Gu = F (2.2)

where

A = a(
∂ξ

∂x
)2 + 2b

∂ξ

∂x

∂ξ

∂y
+ c(

∂ξ

∂y
)2

B = a
∂ξ

∂x

∂η

∂x
+ b(

∂ξ

∂x

∂η

∂y
+
∂ξ

∂y

∂η

∂x
) + c

∂ξ

∂y

∂η

∂y

C = a(
∂η

∂x
)2 + 2b

∂η

∂x

∂η

∂y
+ c(

∂η

∂y
)2

D = a
∂2ξ

∂x2
+ 2b

∂2ξ

∂x∂y
+ c

∂2ξ

∂y2
+ d

∂ξ

∂x
+ e

∂ξ

∂y

E = a
∂2η

∂x2
+ 2b

∂2η

∂x∂y
+ c

∂2η

∂y2
+ d

∂η

∂x
+ e

∂η

∂y

G = g, F = f.

It may be verified that

B2 − A C = (b2 − a c)(
∂ξ

∂x

∂η

∂y
− ∂ξ

∂y

∂η

∂x
)2,

where

J(ξ, η) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ξ

∂x

∂ξ

∂y
∂η

∂x

∂η

∂y

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∂ξ

∂x

∂η

∂y
− ∂ξ

∂y

∂η

∂x
6= 0,

is Jacobian of the mapping

ξ = ϕ(x, y), η = ψ(x, y), (2.3)

Thus, the type of the equation remains the same in the new coordinates ξ and
η, provided that Jacobian J(ξ, η) 6= 0.
We note that, every equation of the general form (2.1) can be transformed by
a transformation

ξ = ϕ(x, y), η = ψ(x, y). (2.4)

to a canonical form.
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2.3 Transformation of a Hyperbolic Equation into a Standard-

Canonical Form

If we assume the canonical form of the hyperbolic equation in the two variables
ξ, η

∂2u

∂ξ∂η
= f∗(t, ξ, ete, u), or

∂2u

∂t2
− ∂2u

∂x2
= f∗(t, ξ, η, u),

with the wave equation as the representative

∂2u

∂ξ∂η
= 0 or

∂2u

∂ξ2
=
∂2u

∂η2
.

then, we have to put the following conditions:

A = a(
∂ξ

∂x
)2 + 2b

∂ξ

∂x

∂ξ

∂y
+ c(

∂ξ

∂y
)2 = 0,

C = a(
∂η

∂x
)2 + 2b

∂η

∂x

∂η

∂y
+ c(

∂η

∂y
)2 = 0,

(2.5)

We shall call the curves given by equations (2.5) as characteristics of equation
(2.1), if the functions given in the implicit form

ϕ(x, y) = constant and ψ(x, y) = constant

are different solutions of characteristic equations (2.5).
Then, along of the characteristic curves the following equations hold:

∂ξ

dx
dx+

∂ξ

dy
dy = 0.

∂η

dx
dx+

∂η

dy
dy = 0,

(2.6)

or
dy

dx
= −ξx

ξy
,

dy

dx
= −ηx

ηy
,

(2.7)

Substituting relation (2.7) between
dy

dx
and ξx, ηx, ξy, ηy, to equation (2.5), we

obtain the following ordinary differential equation

a(
dy

dx
)2 − 2 b

dy

dx
+ c = 0. (2.8)
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Hence, we obtain two ordinary differential equations to determine the charac-
teristics curves:

dy

dx
= λ1 =

b(x, y)−
√

b(x, y)2 − a(x, y)c(x, y)

a(x, y)

dy

dx
= λ2 =

b(x, y) +
√

b(x, y)2 − a(x, y)c(x, y)

a(x, y)

(2.9)

where λ1 and λ2 are roots of the quadratic equation

aλ2 − 2bλ + c = 0. (2.10)

and
ξx
ξy

= −λ1,

ηx

ηy
= −λ2

(2.11)

Example 2.2 .

(a) Find equations of the characteristic for the following hyperbolic equation:

y2uxx − x2uyy = 0, x > 0, y > 0. (2.12)

(b) Transform equation (2.12) into the canonical form

Solution
To (a). The two characteristic equations are

dy

dx
=
b−

√
b2 − ac

a
= −x

y
,

dy

dx
=
b =

√
b2 − ac

a
=
x

y
(2.13)

Note that this is equivalent to setting A = C = 0.
Solving the above ordinary differential equations by the method of separating
variables, we find the equations for the characteristics in the implicit form

y2 − x2 = constant, y2 + x2 = constant.

To (b). We find the canonical form of the hyperbolic equation in the new
variables

ξ = y2 − x2, η = y2 + x2.

Then, we compute the coefficients A,B,C,D,E, F,G in the equation

Auξξ + 2Buξη + Cuηη +Duξ + Euη + Fu = G. (2.14)
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having the coefficients a = y2, b = 0, c = −x2, d = 0, e = 0, f = 0, g = 0 in
the equations

auξξ + auξη + auηη + auξ + euη + fu = g.

we compute

A = a(ξx)2 + 2 b ξxξy + c (ξy)2 = y2(−2x)2 − x2(2y)2 = 0

B = aξxηx + b(ξxηy + ξyηx) + cξyηy = y2(−2x)(2x) − x2(2y)(2y) = −8x2y2

C = a(ηx)2 + 2 b ηxηy + c (ηy)2 = y2(−2x)2 − x2(2y)2 = 0

D = aξxx + 2bξxy + cξyy + dξx + eξy = −2((x2 + y2)

E = aηxx + 2bηxy + cηyy + dηx + eηy = 2(y2 − x2)

F = 0, G = 0.

Substituting the above coefficients to the equation (2.14), we obtain the fol-
lowing equation

uξη =
−(x2 + y2)uξ + (y2 − x2)uη

4x2y2
. (2.15)

Hence, by the equations of the characteristics, we find the first canonical form

uξη =
ηuξ − ξuη

2(ξ2 − η2)

We can find the second canonical form of equation (2.14), introducing the new
variables

α = ξ + η, β = ξ − η.

Now, we can rewrite equation (2.15), given in variables ξ, η in terms of the
variables α, β to obtain the second canonical form.
Then, we compute

uξ = uααξ + uββξ = uα + uβ

uη = uααη + uββη = uα − uβ

uξη = uαααη + uαββη + uβααη + uβββη = uαα − uββ

Hence, by substituting, we obtain the second canonical from equation (2.12).

uαα − uββ = −βuα + αuβ

2αβ
.

Example 2.3 . Consider th equation

y
∂2u

∂x2
+ (x+ y)

∂2u

∂x∂y
+ x

∂2u

∂y2
= 0, (2.16)
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1. Find the range of x and y for which the equation is hyperbolic.

2. Transform the equation to a canonical form.

Solution. We have a = y, b =
1

2
(x+ y) c = x, d = e = g = f = 0. The dis-

criminant

b2 − a c =
1

4
(x− y)2 > 0,

is positive for all real x 6= y .
Then, equation (2.16) is hyperbolic on the whole x, y plane, except the line
y = x, where (2.16) becomes the parabolic equation.
The equation for the characteristics is:

y(
dy

dx
)2 − (x+ y)

dy

dx
+ x = 0. (2.17)

Then, we find the roots

r1 =
(x+ y) −

√

(x+ y)2 − 4xy

2 y
=

(x+ y) − |x− y|
2 y

=











x

y
, if x ≤ y

1, if x > y,

r2 =
(x+ y) −

√

(x+ y)2 − 4xy

2 y
=

(x+ y) + |x− y|
2 y

=











x

y
, if x ≥ y

1, if x > y,

So that, we consider λ1 =
x

y
and λ2 = 1.

Hence, we obtain the following two equations for characteristics

dy

dx
=
x

y
,

dy

dx
= 1 (2.18)

Solving the above equations, we find

ϕ(x, y) = y2 − x2 = constant, ψ(x, y) = y − x = constant. (2.19)

Now, we consider the mapping

ξ = y2 − x2, η = y − x. (2.20)

To transform the hyperbolic equation to the standard form, we compute

A = a(ξx)2 + 2bξxξy + c (ξy)2 = y(−2x)2 + (x+ y)(−2x)(2y) + (2y)2 = 0

B = aξxηx + b(ξxηy + ıyηx) + cξyηy =

= y(−2x)(−1) + 1
2
(x+ y)(−2x− 2y) + 2xy = −(x− y)2 = −ψ2,

C = a(ηx)2 + 2bηxηy + c(ηy)2 = y − (x+ y) + x = 0

D = aξxx + 2bξxy + cξyy + dξx + eξy = −2(y − x) = −2ψ,

E = aηxx + 2bηxy + cηyy + dηx + eηy = 0, F = 0.
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In the new variables ξ and η, the hyperbolic equation (2.16) takes the standard
form

η
∂2u

∂ξ∂η
+
∂u

∂ξ
= 0. (2.21)

2.4 Transformation of an Elliptic Equation into the Standard-

Canonical Form

In the case of elliptic equations, when the discriminant b2 − ac < 0, the roots
λ1 and λ2 of the quadratic equation (2.10) are complex and hence ϕ(x, y) and
ψ(x, y) will be also complex functions. Therefore, mapping (2.3) is determined
by the conjugate roots of quadratic equation (2.10), that is, by λ − iµ and
λ+ iµ. Then , the functions ϕ(x, y) and ψ(x, y) are solutions of the differential
equations

dy

dx
= λ(x, y) − iµ(x, y),

dy

dx
= λ(x, y) + iµ(x, y) (2.22)

Thus, if ϕ(x, y) = α(x, y) + iβ(x, y) = constant is the solution of the char-
acteristic equation then the conjugate ψ(x, y) = α(x, y) − iβ(x, y) is also the
solution of the characteristic equation. We consider the mapping

ϕ(x, y) = α(x, y) + iβ(x, y), ψ(x, y) = α− iβ(x, y).

Choosing real and imaginary parts as the new variables ξ = α(x, y), η =
β(x, y), by the formulae (2.2), we find that A = C and B = 0. So that, the
canonical form of an elliptic equation is

A(
∂2u

∂ξ2
+
∂2u

∂η2
) +D

∂u

∂ξ
+ E

∂u

∂η
+Gu = F (2.23)

or dividing by A, we obtain the canonical form

∂2u

∂ξ2
+
∂2u

∂η2
+
D

A

∂u

∂ξ
+
E

A

∂u

∂η
+
G

A
u =

F

A
, (2.24)

with the Laplace’s equation

∂2u

∂ξ2
+
∂2u

∂η2
= 0,

as the representative.

Example 2.4 . Determine type of the equation

∂2u

∂x2
+ y

∂2u

∂y2
= 0, y > 0, (2.25)

Transform the equation into the canonical form.
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Solution. The discriminant b2 − ac = −y < 0 for y > 0. So that, it is
the elliptic equation. The characteristics of this equation are defined by the
equations

(
dy

dx
)2 + y = 0,

dy

dx
= i

√
y,

dy

dx
= −i√y,

Solving the above equations, we obtain the following mapping

ϕ(x, y) = x+ 2i
√
y, ψ(x, y) = x− 2i

√
y.

Let ξ = x and η = 2
√
y. Then, we find

∂u

∂x
=
∂u

∂ξ
,

∂2u

∂x2
=
∂2u

∂ξ2

∂u

∂y
=

1√
y

∂u

∂η
,

∂2u

∂y2
=

1

y

∂2u

∂η2
− 1

2
√
y3

∂u

∂η

(2.26)

Hence, we find in terms of ξ, η

∂2u

∂x2
+ y

∂2u

∂y2
=
∂2u

∂ξ2
+
∂2u

∂η2
− 1

η

∂u

∂η
= 0, y > 0.

and the standard form of the equation in the new variables is:

∂2u

∂ξ2
+
∂2u

∂η2
− 1

η

∂u

∂η
= 0, y > 0.

2.5 Transformation of a Parabolic Equation into the

Standard-Canonical Form

For a parabolic equation there is only one repeating root of equation (2.10)

equal to
b

a
. Then, we find only one solution ϕ(x, y) = constant of the equation

dy

dx
=
b

a

In this case, we consider the mapping

ξ = ϕ(x, y), η = ψ(x, y),

where ψ(x, y) = constant is an arbitrary family of curves such that Jacobian
J(ϕ, ψ) = ϕxψy − ϕyψx 6= 0.
Because

ϕx

ϕy
= −λ = − b

a

therefore
aϕx + bϕy = 0.
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Multiplying this equation by b and using the equality b2 = ac, we find

abϕx + b2ϕy = 0

abϕx + ac2ϕy = 0

a(bϕx + cϕy) = 0 bϕx + cϕy = 0

Hence, we have

B = aϕxψx + b(ϕxψy + ϕyψx) + cϕyϕy = ψx(aϕx + bϕy) + ψy(bϕx + cϕy) = 0.

Therefore, the term with
∂2u

∂ξ∂η
in the canonical form is absent.

Example 2.5 Transform to the standard form the following equation:

utt − 2utx + uxx − ut − ux + u = 0, t ≥ 0, −∞ ≤ x ≤ ∞.

Solution. From the general form of a linear PDE of the second order (2.1),
we find the coefficients

a = 1, b = −1, c = 1, d = −1, e = −1, g = 1, f = 0.

In order to determine the type of the equation, we compute the discriminant

b2 − a c = (−1)2 − 1 = 0.

Since the discriminant equals to zero, the equation is parabolic one. Then,
there is one family of characteristics determined by the ordinary differential
equation

dx

dt
=
b

a
= −1

Hence, we obtain the solution t+ x = constant. Now, we choose the mapping

ξ = t + x, η = t.

Let us note that for η, we are free to choose any function for which the Jacobian

ξt ηx − ξxηt 6= 0.

Now, we compute the coefficients

A = a(ξt)
2 + 2bξt ξx + c(ξx)2 = 1 − 2 + 1 = 0,

B = aξt ηt + b(ξt ηx + ξx ηt) + c ξx ηx = 1 − (0 + 1) + 0 = 0

C = a (ηt)
2 + 2b ηtηx + c(ηx)2 = 1 − 2 ∗ 0 + 0 = 1,

D = a ξtt + 2b ξtx + c (ξx)2 + d ξt + e ξx = 0 − 2 ∗ 0 + 0 − 1 − 1 = −2,

E = a ηtt + 2b ηtx + c (ηx)2 + d ηt + e ηx = 0 − 2 ∗ 0 + 0 − 1 − 0 = −1,

G = 1, F = 0.
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Hence, by the general form (2.2), we obtain the standard form of the equation

uηη − 2uξ − uη + u = 0.

or

uξ =
1

2
uηη +

1

2
uη −

1

2
u.

Example 2.6 . Determine type of the equation

x2∂
2u

∂x2
+ 2xy

∂2u

∂x∂y
+ y2∂

2u

∂y2
= 0, (2.27)

Transform the equation into the canonical form.

Solution. The discriminant b2−ac = x2y2−x2y2 = 0, so that it is a parabolic
equation for all real x and y.
In order to find the canonical form of the equation, we solve the characteristics
equation

dy

dx
=
y

x
.

It is easy to find the solution y = kx, where k is a generic constant. Then, we
consider the mapping

ξ = y − kx, η = ψ(x, y),

Here, ψ(x, y) is an arbitrary function such that Jacobian ξxψy − ξyψx 6= 0. Let
ψ(x, y) = x. Then, we find the coefficients

A = x2ξ2
x + 2xyξxξy + y2ξ2

y = (kx− y)2 = 0,

B = x2ξxηx + xy(ξxηy + ξyηx) + y2ξyηx = 0,

C = x2η2
x + 2xyηxηy + y2η2

y = x2,

Hence, in the new variables ξ and η equation (2.27) takes the canonical form

∂2u

∂η2
= 0.

Applications of the canonical form of elliptic, parabolic and hy-
perbolic equations

1. The three major classifications as elliptic, parabolic and hyperbolic equa-
tions, in fact classify physical problems into three basic physical types:
steady-state problems, diffusion and wave propagation. The mathemat-
ical solutions of these three types of equations are very different.
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2. Much of the theoretical work on the properties of solutions to hyperbolic
problems assume the equation has been written in the canonical form

uξξ − uηη = Φ(ξ, η, u, uξ, uη).

3. Many computer programs have been written to find the numerical so-
lution of the canonical form. Having the numerical solution in the new
variables, we can always come back to the original variables.
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2.6 Exercises

Question 2.1 Classify the following equations:

1.
9uxx + 12uxy + 4uyy + ux = 0.

2.
uxx − 8uxy + 2uyy + xux − yuy = 0,

3.
4uxx + 2uxy + uyy − uy = 0.

4. Find characteristics curves of the above three equations.

5. Transform the above three equations into their canonical forms.

Question 2.2 Transform the equation

utx + ut + ux + u = f(t, x),

into the equation
uξ,η − uξξ + uξ + uη + u = g(ξ, η).

Question 2.3 Find characteristics of Tricomi’s equation

y uxx + uyy = 0,

in the lower half-plane y < 0. Transform Tricomi’s equation into the canonical
form in the upper-half of the plane when y > 0.

Question 2.4 Show that all linear partial differential equations of the second
order in two variables x and y of elliptic type with constant coefficients can be
transformed into the canonical form

uxx + uyy + gu = f(x, y)

Question 2.5 Show that all linear partial differential equations of the second
order in two variables t and x of hyperbolic type with constant coefficients can
be transformed into the canonical form

utt − uxx + gu = f(t, x)



Chapter 3

Hyperbolic Equations

3.1 The Initial Value Problem for Wave Equation

Find the solution u(t, x) of the initial value problem

utt = k2uxx, −∞ < x <∞,

u(0, x) = φ0(x), ut(0, x) = φ1(x), 0 < t <∞.
(3.1)

This problem, which has no boundaries, describes the motion of an infinite
string with given initial conditions and was solved by French mathematician
D’Alembert. The solution u(t, x) is given by the D’Alembert formula

u(t, x) =
1

2
[φ0(x− kt) + φ0(x+ kt)] +

1

2k

∫ x+kt

x−kt
φ1(ξ)dξ. (3.2)

3.1.1 D’Alembert Solution

We shall solve initial value problem (3.1) into four steps.
Step1. We note that the characteristics equations for the wave equation (3.1)
are

(
dx

dt
)2 − k2 = 0,

dx

dt
= k,

dx

dt
= −k.

which have the solutions

x− kt = constant and x+ kt = constant.

Let us write equation (3.1) in terms of the new variables

ξ = x− kt, η = x+ kt.

to obtain the first canonical form of equation (3.1).

uξη = 0. (3.3)

25
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Simple application of the chain rule gives

ux = uξ + uη

ut = k(−uξ + uη)

uxx = uξξ + 2uξη + uηη

utt = k2(uξξ − 2uξη + uηη)

and, by substitution, it leads us to the first canonical form of equation (3.1)

uξη = 0.

This completes step 1.
Step 2. In step 2, we integrate equation (3.3), firstly with respect to the
variable ξ, to obtain the solution

uη(ξ, η) = φ(η)

and secondly, we integrate the equation with respect to the variable η to obtain

u(ξ, η) = ϕ(η) + ψ(ξ), ϕ(η) =
∫

φ(η dη,

Thus, all solutions of equation (3.3) have the following form:

u(ξ, η) = ϕ(η) + ψ(ξ),

where φ(η) and ψ(ξ) are differentiable arbitrary functions of the variables ξ
and η.
For example, one can easily check that the functions

u(ξ, η) = sin η + ξ2

u(ξ, η) = η2 + eξ

u(ξ, η) =
1

η
+ tan ξ,

are all solutions of uξ,η = 0. This completes step 2.
Step 3. In the step 3, we transform the solution u(ξ, η) given in terms of the
variables ξ and η to the original variables t and x
To find all solutions in terms of the original variables t and x, we substitute

ξ = x− kt, η = x+ kt,

into
u(ξ, η) = ϕ(η) + ψ(ξ),
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to obtain
u(t, x) = ϕ(x+ kt) + ψ(x− kt). (3.4)

The general solution (3.4) (all solutions) represents the sum of any two moving
waves, each wave moves in opposite directions with velocity k. For example,
the functions

u(t, x) = sin(x− kt), one − right moving wave

u(t, x) = (x+ kt)2, one− left moving wave

u(t, x) = sin(x− kt) + (x+ kt)2, two oppositely moving waves

Step 4. In the step 4, we shall choose from all solutions that one which
satisfies the initial-value conditions.
Thus, among all solutions of the form

u(t, x) = ϕ(x+ kt) + ψ(x− kt) (3.5)

with arbitrary differentiable functions ϕ and ψ, we choose that one which
satisfies the initial-value conditions

u(0, x) = φ0(x), ut(0, x) = φ1(x)

In order to find functions ϕ and ψ, we apply the initial conditions

ϕ(x) + ψ(x) = φ0(x), kϕ
′

(x) − kψ
′

(x) = φ1(x). (3.6)

We now integrate the second equation of (3.6) to obtain a new expression in
φ(x) and ψ(x). Then, we solve algebraically the two equations. Then, by
carrying out the integration on the second equation of (3.6) by integrating
from x0 to x, we obtain

ϕ(x) − ψ(x) =
1

k

∫ x

0
φ1(ξ) dξ +K. (3.7)

From (3.6) and (3.7), we find

ϕ(x) =
1

2
φ0(x) +

1

2k

∫ x

0
φ1(ξ) dξ +

K

2

ψ(x) =
1

2
φ0(x) − 1

2k

∫ x

0
φ1(ξ) dξ −

K

2
.

(3.8)

Now, we substitute to formula (3.5),

ϕ(x+ kt) =
1

2
φ0(x+ kt) +

1

2k

∫ x+kt

0
φ1(s) ds+

K

2

ψ(x− kt) =
1

2
φ0(x− kt) − 1

2k

∫ x−kt

0
φ1(s) ds− K

2
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Hence, the solution of the initial-value problem is

u(t, x) =
1

2
[φ0(x− kt) + φ0(x+ kt)] +

1

2k

∫ x+kt

x−kt
φ1(ξ)dξ. (3.9)

Examples
1. Let us consider the initial value problem

utt − k2uxx = 0, t > 0, −∞ < x <∞,

u(0, x) = sinx, ut(0, x) = 0.

The sine wave would have the solution

u(t, x) =
1

2
[sin(x− kt) + sin(x+ kt)]

2. Let us consider the initial problem with the initial velocity

utt − k2uxx = 0, t > 0, −∞ < x <∞,

u(0, x) = 0, ut(0, x) = sinx.

The solution u(t, x) is given below

u(t, x) =
1

2k

∫ x+kt

x−kt
sin ξ dξ =

1

2k
[cos(x+ kt) − cos(x− kt)].

3.1.2 The Initial Boundary Value Problem for Wave Equation

Let us consider the following initial boundary value problem:

utt = k2uxx, 0 < x < L, 0 < t <∞,

u(0, x) = φ0(x), ut(0, x) = φ1(x).
(3.10)

When variable x ∈ [0, L], the following three kind of boundary conditions are
considered:
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1. Controlled end points boundary conditions

u(t, 0) = ψ0(t),

u(t, L) = ψ1(t).

2. Force specified on the boundaries

ux(t, 0) = ψ0(t),

ux(t, L) = ψ1(t).

3. Elastic attachment

ux(t, 0) − γ0u(t, 0) = ψ0(t),

ux(t, L− γ1u(t, L) = ψ1(t).

3.2 Solution to the Finite Vibrating String by Separa-

tion of Variables

To solve the initial boundary value problem

utt = k2uxx, 0 < x < L, 0 < t <∞,

u(0, x) = φ0(x), ut(0, x) = φ1(x),

u(t, 0) = 0, u(t, L) = 0, t ≥ 0.

(3.11)

we start by seeking standing wave solutions to the wave equation, that is,
solutions of the following form:

u(t, x) = X(x)T (t)

Substituting this expression into the wave equation and separating variables
gives us two ordinary differential equations

T
′′

(t) − k2λT (t) = 0, X
′′

(x) − λX(x) = 0. (3.12)

where, now the constant λ can be any real number.
In order to solve these ordinary differential equations, we find roots of the
polynomials

P2(α) = α2 − k2λ = 0, Q(α) = α2 − λ = 0.

Then, we consider the following three cases:
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Case 1. λ < 0.
If λ < 0 then there are two complex roots α1 = −ik

√
−λ and α2 =

ik
√
−λ. So that, for λ = −β2, the solutions are

T (t) = A sin(kβt) +B cos(kβt),

X(x) = C sin(βx) +D cos(βx).
(3.13)

where A,B,C and D are constants to be determined by the initial and
boundary conditions.

Case 2. λ = 0
If λ = 0 then there are linear solutions to the equations (3.12)

T (t) = At +B, X(x) = Cx+D.

In this case the solution can be trivial (u(t, x) ≡ 0) or unbounded and
feasible because of the initial value conditions.

Case 3. λ > 0.
If λ = β2 > 0 then the solutions of equations (3.12) take the form

T (t) = Aekβt +Be−kβt, X(x) = Ceβx +De−βx.

So, in this case, the solution either it is trivial (u(t, x) = 0) or unbounded
because of initial boundary conditions.

Let us consider the solution given by formula (3.13), when λ < 0 . Now, we
apply the homogeneous boundary conditions plugging into u(t, 0) = u(t, L) =
0, t ≥ 0. Then, we obtain

u(t, 0) = T (t)X(0) = D[A sin(kβt) +B cos(kβt)] = 0, D = 0,

u(t, L) = T (t)X(L) = C sin(βL)[A sin(kβt) +B cos(kβt)] = 0, sin(βL) = 0.

The constant β has to satisfy the equation sin(βL) = 0. So that, we find

βn =
nπ

L
, n = 1, 2, ....

We note that for

Tn(t) = An sin(kβnt) +Bn cos(kβnt),

Xn(x) = sin(βnx)

un(t, x) = sin(βnx)[An sin(kβnt) +Bn cos(kβnt))]

(3.14)

un(t, x) is the solution of the wave equation which satisfies the homogeneous
boundary conditions for arbitrary constants An, Bn, n = 1, 2, ...;
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Because the wave equation is linear one, therefore every linear combination of
u1(t, x), u2(t, x), ...; is also a solution of the wave equation which satisfies the
homogeneous boundary conditions. So that, the function

u(t, x) =
∞
∑

n=1

sin
nπx

L
[An sin

nπkt

L
+Bn cos

nπkt

L
] (3.15)

satisfies the wave equation and homogenous boundary conditions.
Substituting sum (3.15) into the initial conditions

u(0, x) = φ0(x), ut(0, x) = φ1(x),

gives the two equations

∞
∑

n=1

Bn sin
nπx

L
= φ0(x),

∞
∑

n=1

An
nπk

L
sin

nπx

L
= φ1(x) (3.16)

Using the orthogonality condition

∫ L

0
sin

mπx

L
sin

nπx

L
dx =















0, m 6= n,

L

2
, m = n

we can find the coefficients

An =
2

nπk

∫ L

0
φ1(x) sin

nπx

L
dx,

Bn =
2

L

∫ L

0
φ0(x) sin

nπx

L
dx.

(3.17)

for n = 1, 2, ...;
Finally, the solution u(t, x) of the initial boundary problem is given by formula
(3.15) with the constants An and Bn, n = 1, 2, ...; determined by the formulae
(3.17).
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We present these three cases below on the following diagram :

Solution u(t, x)�
�Possible values of λ

�
�XXXXXXXXXX

������������
�

�
�

?

λ < 0, λ = −β2

�
�

�
�

?

λ > 0, λ = β2

?�
�

�
�λ = 0

�
�

�
�

?

T (t) = A sin(kβt) +B cos(kβt)
X(x) = C sin(βx) +D cos(βx)

�
�

�
�

?

T (t) = Ae(k2β)2t +Be−(k2β)2t

X(x) = Ceβx +De−βx

?�
�

�
�

T (t) = At+B
X(x) = Cx+D

�
�

�
�u(t, x) = X(x)T (t)

@
@

@
@

@
@@R

�
�

�
�

�
�	?

?

We shall now make the following observations:

1. Let us note that the solution takes the following form:

u(t, x) =
∞
∑

n=1

Bn sin
nπx

L
cos

nπkt

L
(3.18)

if the initial velocity φ1(x) = 0 with the homogeneous boundary condi-
tions, when the initial position of the vibrating string u(0, x) = φ0(x) is
present.
Let the function

φ0(x) =
∞
∑

n=1

Bn sin
nπx

L
.

Then, simple sine vibration of a string is given by the term

Bn sin
nπx

L
cos

nπkt

L
.

Thus, adding the terms of each simple vibration, we obtain the solution
of the initial boundary problem. Namely, consider the initial state of a
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vibrating string with fixed end points

φ0(x) =
m

∑

n=1

bnsin
nπx

L
,

and with zero initial velocity φ1(x) = 0.
Then, the solution of such initial boundary value problem is

u(t, x) =
m

∑

n=1

bn sin
nπx

L
cos

nπkt

L
. (3.19)

We can obtain formula (3.19) from the solution given by (3.18). Indeed,
from the initial conditions, the coefficients are bn for n = 1, 2, ..., m; and
bn = 0 for n > m. So, we compute the coefficients

Bn =
2

L

∫ L

0
φ0(x) sin

nπx

L
dx

=
2

L

m
∑

s=1

bs

∫ L

0
sin

sπx

L
sin

nπx

L
dx

= bn.

Hence, by formula (3.18), we get the solution (3.19). For example, sup-
pose that the initial string position is

φ0(x) = sin
πx

L
+ 0.5 sin

3πx

L
+ 0.25 sin

5πx

L
.

The overall response to this initial condition would then be the sum of
the responses to each term, that is

u(t, x) = sin
πx

L
cos

πkt

L
+ 0.5 sin

3πx

L
cos

3πkt

L
+ 0.25 sin

5πx

L
cos

5πkt

L
.

2. The n-th term in the solution (3.15)

sin
nπx

L
[An sin

nπkt

L
+Bn cos

nπkt

L
]

is called n-th mode of vibration or n-th harmonic. This harmonic can be
rewritten in the following form

Rn sin
nπx

L
cos

nπk

L
(t− δn), (3.20)
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where δn is the phase angle and Rn is the amplitude. Indeed, we have

[An sin
nπkt

L
+Bn cos

nπkt

L
] =

√

A2
n +B2

n[
An

√

A2
n +B2

n

sin
nπkt

L
+

Bn
√

A2
n +B2

n

cos
nπkt

L
] =

√

A2
n +B2

n[sin
nπkδn

L
sin

nπkt

L
+ cos

nπkδn

L
cos

nπkt

L
] =

√

A2
n +B2

n cos
nπk

L
(t− δn) = Rn cos ωn(t− δn),

where ω =
nπk

L
is frequency, Rn =

√

A2
n +B2

n is the amplitude and δn is

the phase angle.

Example 1.

1. By using separation variables and Fourier cosine series, solve the following
problem for finite string with fixed ends for appropriate initial data φ0(x)
and φ1(x)

utt = 4uxx, 0 ≤ x ≤ L, 0 < t <∞,

u(t, 0) = 0, u(t, L) = 0,

u(0, x) =
m

∑

n=1

1

2n
sin

nπx

L
, ut(0, x) = 0.

(3.21)

2. Determine the frequency ω, the amplitude Rn and the phase angle δn .

3. Graph the solution u(t, x) for m = 1, L = 2 and t = −1, 0, 1

Solution.
To (a): By the formula (3.19), we find the solution

u(t, x) =
m

∑

n=1

1

2n
sin

nπx

L
cos

2nπt

L
.

To (b). From the above formula, we find that the frequency is ω =
2nπ

L
, the

amplitude is Rn =
1

2n
and the phase angle δn = 0.

To (c): For m = 1, L = 2, the solution is

u(t, x) =
1

2
sin

πx

2
cos πt.
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.
Example 2.
Solve the following initial boundary problem by the method of separation of
variables:

utt = 36uxx, t > 0, 0 ≤ x ≤ 1,

u(0, x) = 0, ut(0, x) = 4, 0 ≤ x ≤ 1,

u(t, 0) = 0, u(t, 1) = 0, t ≥ 0.

(3.22)

Solution. We note that φ0(x) = 0. Therefore, by formula (3.17), the coefficint
Bn = 0 and we compute the coefficients

An =
1

3nπ

∫ 1

0
4 sin nπx dx =

4

3n2π2
[1 − (−1)n].

Hence, by formula (3.15), the solution is:

u(t, x) =
∞
∑

n=1

4

3n2π2
[1 − (−1)n] sin(nπx) sin(6nπt).

Example 3. What is the solution to the simple supported at the ends beam
with initial conditions

u(0, x) = sinπx, ut(0, x) = sinπx, , 0 ≤ x ≤ 1.

Solution. We note that the solution u(t, x) satisfies the wave equation

utt = k2uxx, 0 ≤ x ≤ 1,

with the homogeneous boundary conditions

u(t, 0) = 0, u(t, 1) = 0, t ≥ 0.
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and the initial value conditions

u(0, x) = sinπx, ut(0, x) = sinπx, 0 ≤ x ≤ 1.

By method of separation variables, the solution is given by the formula

u(t, x) =
∞
∑

n=1

sin
nπx

L
[An sin

nπkt

L
+Bn cos

nπkt

L
],

Hence, for φ0(x) = sinπx, ψ1(x) = sinπx, and L = 1, we compute the
coefficients using formulae (3.17)

An =
2

nπk

∫ 1

0
sinπx sinnπxdx =











1

kπ
, n = 1,

0 n 6= 1,

Bn = 2
∫ 1

0
sinπx sinnπxdx =







1, n = 1,

0 n 6= 1,

Thus, the solution u(t, x) of the supported beam problem is

u(t, x) = sinπx[
1

πk
sin(πkt) + cos(πkt)],

for 0 ≤ x ≤ 1 and t ≥ 0.
Example 4. A gitar string of length L = 1 is pulled upward at middle so the
it reaches heigt 0.5 and satisfies the wave equation

utt = 9uxx, 0 ≤ x ≤ 1.

Assuming the initial position of the string

u(0, x) =







x, 0 ≤ x ≤ 0.5,

1 − x, 0.5 ≤ x ≤ 1,

and the initial speed of the string

ut(0, x) = 1, 0 ≤ x ≤ 1.

Find the position u(t, x) of the string at time t and point x.
Solution. We note that the solution u(t, x) satisfies the wave equation

utt = 9uxx, 0 ≤ x ≤ 1,

with the homogeneous boundary conditions

u(t, 0) = 0, u(t, 1) = 0, t ≥ 0.
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and the initial value functions

u(0, x) = φ0(x) =







x, 0 ≤ x ≤ 0.5,

1 − x, 0.5 ≤ x ≤ 1,
ut(0, x=φ1(x) = 1. (3.23)

By method of separation variables the solution is given by the formula

u(t, x) =
∞
∑

n=1

sin
nπx

L
[An sin

nπkt

L
+Bn cos

nπkt

L
,

Hence, for the given functions φ0(x), ψ1(x) by (3.23) and for L = 1, we (icients
using formulae (3.17)

An =
2

nπk

∫ 1

0
sinnπxdx =

2

knπ
(

1

nπ
− cosnπ

nπ
) =

2

kn2π2
[1 − (−1)n],

Bn = 2
∫ 1/2

0
x sinnπxdx + 2

∫ 1

1/2
(1 − x) sinπx dx =

=
2 sin

nπ

2
− nπ cos

nπ

2
n2π2

+
2 sin

nπ

2
+ nπ cos

nπ

2
n2π2

=
4 sin

nπ

2
n2π2

Hence, the solution u(t, x) of the gitar string problem is

u(t, x) =
∞
∑

n=1

2sin(nπx)

kn2π2
((1 − (−1)n) sin(3nπt) +

4 sin
nπ

2
n2π2

cos(3nπt),

for 0 ≤ x ≤ 1 and t ≥ 0.

3.3 Exercises

Example 3.1 Solve the following initial value problems:

1.
utt = 4uxx, t > 0, −∞ < x <∞,

u(0, x) = cos 3x, ut(0, x) = x.

2.
utt = uxx, t > 0, −∞ < x <∞,

u(0, x) = sin 3x, ut(0, x) = cos 3x.

3.
utt = uxx, t > 0, −∞ < x <∞,

u(0, x) =







sin 2x, −π ≤ x ≤ π,

0, |x| > π,
ut(0, x) = 0,
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Example 3.2 For the following equation:

yutt − 16xuxx = 0, t > 0, x > 0, (3.24)

(a) Determine type of the equation (3.24)

(b) Find characteristic curves of the equation (3.24).

(c) Transform equation (3.24) into canonical form.

Example 3.3 For the following equation:

uxx + 3uxy + 2uyy = 0, −∞ < x, y∞. (3.25)

(a) Determine type of the equation (3.25)

(b) Find characteristic curves of the equation (3.25).

(c) Transform equation (3.25) into its canonical form.

Example 3.4 For the following equation:

utt − 4utx + 4uxx − ut = 0, t geq0, −∞ < x <∞. (3.26)

(a) Determine the type of the equation (3.26)

(b) Find the characteristic curves of the equation (3.26).

(c) Transform the equation (3.26) into its canonical form.

Example 3.5 Solve the initial value problem by the D’Alembert method.

utt − 9uxx = 0, t ≥ 0, ∞ < x <∞

u(0, x) = cos 4x, ut(0, x) = sin 4x, −∞ < x <∞.
(3.27)

Example 3.6 Solve the initial boundary value problem by the method of sep-
aration of variables.

utt − 9uxx = 0, t ≥ 0, 0 ≤ x ≤ 4

u(0, x) = x(4 − x), ut(0, x) = 1, 0 ≤ x ≤ 2,

u(t, 0) = 0, u(t, 2) = 0, t ≥ 0.

(3.28)
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Example 3.7 Consider the telegraphic equation

utt + ut + u = c2uxx, t ≥ 0, 0 ≤ x ≤ L.

Find the solution u(t, x) of the telegraphic equation which satisfies the initial
condition

u(0, x) = x(L− x), ut(0, x) = 0, 0 ≤ x ≤ L,

and the homogeneous boundary value conditions

u(t, 0) = 0, u(t, L) = 0, t ≥ 0.

Hint: Apply the method of separation of the variables t and x.
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Chapter 4

Parabolic Equations

4.1 Initial Boundary Value Problem

We shall consider the heat equation

ut = k2uxx + f(t, x), t ≥ 0, 0 ≤ x ≤ L, (4.1)

with the initial condition

u(0, x) = φ0(x), 0 ≤ x ≤ L, (4.2)

and with the boundary conditions

u(t, 0) = ψ0(t), u(t, L) = ψL(t), t ≥ 0. (4.3)

Here, k2 is a constant and the given functions f(t, x), φ0(x), ψ0(t), ψL(t) are
continuous for 0 ≤ x ≤ L, t ≥ 0.
Let us establish some of the properties of the solution u(t, x). Firstly, we shall
state the weak maximum principle for the heat equation

ut = k2uxx (4.4)

in the closed rectangle R = {(t, x) : 0 ≤ x ≤ L, 0 ≤ t ≤ T}, with the
boundary

∂R =







(t, x) : (0 ≤ x ≤ L) when t = 0

(t, x) : 0 ≤ t < T when x = 0 or x = L

Let us note that the points on the interval (T, x), when 0 ≤ x ≤ L, are not
included in the boundary ∂R.

41
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.

-

6t

T

L x0
u(0, x) = φ0(x)

u = ψ0 u = ψL
u(t, x)

R
in

The initial boundary conditions at ∂R

.

The maximum principle 4.1 Let u(t, x) be a solution of the heat equation
(4.4) in the rectangle R. Then u(t, x) assumes its maximum value on whole
closed rectangle R at a point on the boundary ∂R. Also, u(t, x) attains its
minimum at a point on the boundary ∂R of R.

Proof. We know that u(t, x) attains its maximum M at the closed rectangle
R. Also, we know that u(t, x) attains its maximumM∂R at the closed boundary
∂R. To proof the thesis of the maximum principle, we shall show that

M = M∂R.

That is, the maximum on the boundary does not exceeds the maximum on
the closed rectangle, so that M∂R ≤ M . Suppose that M −M∂R = ε, then we
choose a point (t0, x0) ∈ R interior to R, such that u(t0, x0) = M. Since ε > 0
and (t0, x0) is not on the boundary ∂R, therefore 0 < x0 < L and 0 < t0 < T .
Define the auxiliary function

w(t, x) = u(t, x) +
ε

4L2
(x− x0)

2.

Then, consider w(t, x) at points on ∂R. We note that

w(0, x) = u(0, x) +
ε

4L2
(x− x0)2 ≤ M∂R +

ε

4L2
(x− x0)2

≤ M − ε +
ε

4L2
L2 = M − 3ε

4
< M.

In similar way, we arrive at the inequalities

w(t, 0) < M, and w(t, L) < M, 0 ≤ t ≤ T.
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Indeed, we have

w(t, 0) = u(t, 0) +
ε

4L2
(0 − x0)

2 ≤ M∂R +
ε

4L2
(0 − x0)

2

≤ M − ε +
ε

4L2
L2 = M − 3ε

4
< M.

and

w(t, L) = u(t, L) +
ε

4L2
(L− x0)

2 ≤M∂R +
ε

4L2
(L − x0)2

≤ M − ε +
ε

4L2
L2 = M − 3ε

4
< M.

But w(t0, x0) = u(t0, x0) = M . Therefore the maximum of w(t, x) on R is at
least M and it is attained at a point (t1, x1) ∈ R, not on the boundary ∂R.
Because 0 < x1 < L, 0 < t1 < T, then

wt(t1, x1) = 0, wxx(t1, x1) ≤ 0. (4.5)

Hence
wt(t1, x1) − k2wxx(t1, x1) ≥ 0. (4.6)

But

wt(t1, x1) − k2wxx(t1, x1) = ut(t1, x1) − k2uxx(t1, x1) − k2 k
2ε

2L2
= −k

2ε

2L
< 0.

(4.7)
Thus, we have arrived at the contradiction, the inequality (4.6) against the
inequality (4.7). Therefore, u(t, x) attains its maximum value on the boundary
∂R of the rectangle R.
Similarly, we can prove for minimum of u(t, x), taking −u(t, x) instead of
u(t, x).
Then, we conclude that M = M∂R. End of the proof.
Conclusion. From the weak maximum principle, it follows that every solution
u(t, x) of the initial boundary value problem ( 4.1), (4.2),(4.3) satisfies the
inequality

|u(t, x)| ≤ max
(t,x)∈∂R

|u(t, x)|, t ≥ 0, 0 ≤ x ≤ L. (4.8)

As a consequence of the maximum principle, we can state the following theo-
rems

Theorem 4.1 (Uniqueness) The initial boundary value problem (4.1),(4.2)
and (4.3) has at most one continuous solution.

Proof. Assume that there are two solutions u1(t, x) and u2(t, x). Then, it is
easy to show that the difference w(t, x) = u1(t, x) − u2(t, x) is the solution of
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the homogeneous heat equation with the homogeneous initial boundary con-
ditions. By the maximum principle, we conclude that such a homogeneous
initial boundary value problem has only trivial solution, that is w(t, x) ≡ 0 for
all (t, x) ∈ R. Indeed, because w(t, x) attains its total maximum on R at the
boundary ∂R, not greater than zero, therefore w(t, x) ≤ 0 for all (t, x) ∈ R.
But, also w(t, x) attains its total minim on R at the boundary ∂R. So that
w(t, x) ≥ 0 for (t, x) ∈ R. Hence w(t, x) ≡ 0 for all (t, x) ∈ R. End of the
proof.

Theorem 4.2 Let u(1)(t, x) and u(2)(t, x) be two solutions of the two initial
boundary value problems

u
(1)
t = k2u(1)

xx + f(t, x), 0 ≤ x ≤ L, t ≥ 0,

u(1)(0, x) = φ
(1)
0 (x), 0 ≤ x ≤ L,

u(1)(t, 0) = ψ
(1)
0 (t), u(1)(t, L) = ψ

(1)
L (t), t ≥ 0,

(4.9)

and
u

(2)
t = k2u(2)

xx + f(t, x), 0 ≤ x ≤ L, t ≥ 0,

u(2)(0, x) = φ
(2)
0 (x), 0 ≤ x ≤ L,

u(2)(t, 0) = ψ
(2)
0 (t), u(2)(t, L) = ψ

(1)
L (t), t ≥ 0,

(4.10)

for the same sours of energy f(t, x). Suppose that the distance of the initial
boundary conditions is less than ε > 0, so that

|φ(1)
0 (x) − φ

(2)
0 (x)| < ε, |ψ(1)

0 (t) − ψ
(2)
0 (t)| < ε, |ψ(1)

L (t) − ψ
(2)
L (t)| < ε,

(4.11)
Then, the inequality

|u(1)(t, x) − u(2)(t, x)| < ε,

holds for all t ≥ 0, and 0 ≤ x ≤ L.

Proof. Let us note that the difference

v(t, x) = u(1)(t, x) − u(2)(t, x)

is the solution of the heat equation

vt = k2vxx, t ≥ 0, 0 ≤ x ≤ L,

which satisfies the initial condition

v(0, x) = φ
(1)
0 (x) − φ

(2)
0 (x), 0 ≤ x ≤ L,
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and the boundary conditions

v(t, 0) = ψ
(1)
0 (t) − ψ

(2)
0 (t), v(t, L) = ψ

(1)
L (t) − ψ

(2)
L (t), t ≥ 0.

By the assumption, |v(0, x)| < ε, |v(t, 0)| < ε, |v(t, L)| < ε. Then, by the
maximum principle

|v(t, x)| < ε,

for all t ≥ 0 and 0 leqx ≤ L.
Question 1. Consider the following initial value problem:

ut = k2uxx, −∞ < x <∞, t ≥ 0,

u(0, x) = φ0(x), −∞ < x <∞,

Assume that the given function φ0(x) is continuous and bounded for all x ∈
(−∞,∞) and u(t, x) → 0 when x→ ∓∞. Using the maximum principle show
that

|u(t, x)| ≤ max
−∞<x<∞

|φ0(x)|.

for all t ≥ 0 and −∞ < x <∞.
Solution. Let x ∈ [−a, a] for a positive a > 0. Then, by the weak maximum
principle (see (4.8))

|u(t, x)| ≤ max
(t,x)∈∂R

|u(t, x)|, t ≥ 0, −a ≤ x ≤ a.

where ∂R = {(0, x), (t,−a)), (t, a)}.
By the assumption u(t, x) → 0, when x → ∓∞, so that, for sufficiently large
a, we have

|u(t, x)| ≤ max
x∈[−a,a]

|φ0(x)|,

for all t ≥ 0 and |x| ≥ a. Therefore, the inequality

|u(t, x)| ≤ max
x∈[−∞,∞]

|φ0(x)|,

for all t ≥ 0 and −∞ < x <∞.

4.2 Solution by Separation of Variables

. Let us consider the following initial boundary value problem

ut = k2uxx, t ≥ 0, 0 ≤ x ≤ L,

u(0, x) = φ0(x), 0 ≤ x ≤ L,

u(t, 0) = 0, u(t, L) = 0, t ≥ 0.

(4.12)
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Substituting u(t, x) = T (t)X(x), to the heat equation, we obtain

X
′′

X
=

T
′

k2T
= −λ,

where λ is the separation constant. Hence, we get the equations

X
′′

+ λX = 0, T
′

+ λk2T = 0. (4.13)

Solving the boundary value problem for the ordinary differential equation

X
′′

+ λX = 0, X(0) = X(L) = 0, (4.14)

we arrive at the solution

Xn(x) = sin
nπx

L
, λn =

n2π2

L2
, n = 1, 2, ... (4.15)

Now, the equation for T (t) becomes

T
′

+
k2n2π2

L2
T = 0, n = 1, 2, ...

with the solution

Tn(t) = e

−k2n2π2t

L2 , n = 1, 2, ... (4.16)

Hence, we find the solution of the heat equation

un(t, x) = Tn(t)Xn(t) = e

−k2n2π2t

L2 sin
nπx

L
, n = 1, 2, ... (4.17)

which satisfies the homogeneous boundary conditions. The function

u(t, x) =
∞
∑

n=1

Bne
−

k2π2n2t

L2 sin
nπx

L
, (4.18)

is also the solution of the heat equation and satisfies the homogeneous bound-
ary conditions for any choice of the coefficients Bn, n = 1, 2, ...
In order to determine the coefficientsBn, n = 1, 2, ..., we expand in the Fourier
series of sines the function φ0(x) given in the initial condition. Then, we have

u(0, x) = φ0(x) =
∞
∑

n=1

Bn sin
nπx

L
.

Having Fourier series of the initial function

φ0(x) =
∞
∑

n=1

Bn sin
nπx

L
, Bn =

2

L

∫ L

0
φ0(ξ) sin

nπξ

L
dξ,
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we arrive at the solution of the initial boundary value problem

u(t, x) =
2

L

∞
∑

n=1

[
∫ L

0
φ0(ξ) sin

nπξ

L
dξ]e

−n2π2k2t

L2 sin
nπx

L
(4.19)

Example 1. Solve the following initial boundary value problem:

ut = k2uxx, t ≥ 0, 0 ≤ x ≤ 1,

u(t, 0) = 0, u(t, 1) = 0, t ≥ 0,

u(0, x) = φ0(x) = sinπx+
1

2
sin 3πx,

(4.20)

Solution. We note that the coefficients of the Fourier series of the initial value
function

φ0(x) = sinπx +
1

2
sin 3πx,

are B1 = 1, B2 = 0, B3 =
1

2
, B4 = B5 = ... = 0.

Therefore, the solution is

u(t, x) = e−π
2k2t sinπx+

1

2
e−9π2k2t sin 3πx.

Example 2. Solve the following initial boundary value problem by the method
of separation of variables

ut = k2uxx, t ≥ 0, 0 ≤ x ≤ L,

u(t, 0) = 0, u(t, L) = 0, t ≥ 0,

u(0, x) = φ0(x) =



















x, 0 ≤ x ≤ L

2
,

L− x,
L

2
≤ x ≤ L

(4.21)
Solution. We compute the coefficients Bn, n = 1, 2, ... of the Fourier series
of the initial value function φ0(x)

Bn =
2

L

∫ L

0
φ0(ξ) sin

nπξ

L
dξ = 2L

(−1)n − sin nπ
2

2nπ
+

2 sin nπ
2

n2π2
]

Hence, by the formula (4.19), we get the solution

u(t, x) = 2L
∞
∑

n=1

[
(−1)n − sin nπ

2

2nπ
+

2 sin nπ
2

n2π2
]Exp[−−π2n2k2t

L
] sin

πnx

L
(4.22)
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4.3 Transformation of Non-homogeneous Boundary Con-

ditions to Homogeneous

Let us consider the heat equation with constant temperature at the end of a
rod. So, we consider the following initial boundary value problem:

ut = k2uxx, t ≥ 0, 0 ≤ x ≤ L,

u(t, 0) = ψ0, u(t, L) = ψL, t ≥ 0,

u(0, x) = φ0(x),

(4.23)

where this time ψ0, ψL are constants.
In order to transform the non-homogeneous boundary conditions to homoge-
neous ones, we introduce the new unknown function v(t, x) by the formula

u(t, x) = v(t, x) + ψ0 +
x

L
(ψL − ψ0).

Clearly, the unknown v(t, x) satisfies the homogeneous boundary conditions
v(t, 0) = v(t, L) = 0. So that v(t, x) is the solution of initial boundary problem

vt = k2vxx, t ≥ 0, 0 ≤ x ≤ L,

v(t, 0) = 0, u(t, L) = 0, t ≥ 0,

v(0, x) = φ0(x) − [ψ0 +
x

L
(ψL − ψ0)], 0 ≤ x ≤ L.

(4.24)

By the formula (4.22), we find the solution

v(t, x) =
2

L

∞
∑

n=1

[
∫ L

0
φ0(ξ) sin

nπξ

L
dξ]e

−n2π2k2t

L2 sin
nπx

L
, (4.25)

where φ0(ξ) = φ0(x) − [ψ0 +
x

L
(ψL − ψ0)]. Finally, in terms of original un-

known
u(t, x) = v(t, x) + [ψ0 +

x

L
(ψL − ψ0)]. (4.26)

Example 3. Solve the following initial boundary value problem:

ut = 4uxx, t ≥ 0, 0 ≤ x ≤ 2,

u(t, 0) = 1, u(t, 2) = 4, t ≥ 0,
(4.27)

u(0, x) = 1, 0 ≤ x ≤ 2. (4.28)

Solution. By introducing the new unknown function v(t, x) by the formula

u(t, x) = v(t, x) + ψ0 + x
L

(ψL − ψ0) = v(t, x) + 1 + x
2
(4 − 1)

= v(t, x) + 1 + 3x
2
,

(4.29)
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we note that
vt(t, x) = ut(t, x), vxx = uxx(t, x),

Therefore v(t, x) is the solution of the heat equation. So that

vt = k2vxx, t ≥ 0, 0 ≤ x ≤ L.

and
u(t, 0) = v(t, 0) + 1 = 1,

u(t, 2) = v(t, 2) + 1 + 2
2
(4 − 1) = v(t, 2) + 4 = 4.

Hence, we obtain

v(t, 0) = 0, v(t, 2) = 0, t ≥ 0.

Then, the new unknown function v(t, x) satisfies the initial condition

v(0, x) = φ0(x) = φ0(x) − [ψ0(0) +
x

2
(ψL(t) − ψ0(t))

= 1 − [1 +
x

2
(4 − 1)] = −3x

2
.

Hence, by the formula (4.19), we obtain the solution

v(t, x) =
2

L

∞
∑

n=1

[
∫ L

0
φ0(ξ) sin

nπξ

L
dξ]e

−n2π2k2t

L2 sin
nπx

L

=
∞
∑

n=1

[
∫ 2

0
−3ξ

2
sin

nπξ

2
dξ]e

−4n2π2t

4 sin
nπx

2

=
∞
∑

n=1

3

nπ
e−n

2π2t sin
nπx

2

(4.30)

Now, coming back to the original unknown function u(t, x), by the formula
(4.29), we find the solution

u(t, x) = 1 +
3x

2
+

∞
∑

n=1

3

nπ
e−n

2π2t sin
nπx

2
, t ≥ 0, 0 ≤ x ≤ 2.

4.4 More Developed Heat Equation

Let us consider the following initial boundary value problem:

ut = k2uxx − βu, 0 ≤ x ≤ L, t ≥ 0,

u(0, x) = φ0(x), 0 ≤ x ≤ L,

u(t, 0) = 0, u(t, L) = 0, t ≥ 0

(4.31)
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Here, the term −βu, β > 0, represents heat flow across the lateral boundary.
Let us note that by the substitution

u(t, x) = e−βtv(t, x), ut = −βe−βtv(t, x) + e−βtvt(t, x), uxx = e−βtvxx(t, x)

we can transform the initial boundary problem (4.31) into simple one for the
new unknown v(t, x).

vt = k2vxx, 0 ≤ x ≤ L, t ≥ 0,

v(0, x) = φ0(x), 0 ≤ x ≤ L,

v(t, 0) = 0, v(t, L) = 0, t ≥ 0

(4.32)

Solving the initial boundary value problem (4.32), by the formula (4.19), we
obtain the solution

u(t, x) = e−βtv(t, x) =
2

L
e−βt

∞
∑

n=1

[
∫ L

0
φ0(ξ) sin

nπξ

L
dξ]e

−n2π2k2t

L2 sin
nπx

L
(4.33)

Example 4. Let us consider the initial boundary value problem:

ut = uxx − u, 0 ≤ x ≤ L, t ≥ 0,

u(0, x) = sinπx +
1

2
sin 3πx, 0 ≤ x ≤ L,

u(t, 0) = 0, v(t, L) = 0, t ≥ 0,

(4.34)

Solution. We apply the substitution

u(t, x) = e−tv(t, x),

to eliminate the term −u. Then, v(t, x) satisfies the heat equation with the
initial boundary conditions

vt = uxx, 0 ≤ x ≤ L, t ≥ 0,

v(0, x) = sinπx +
1

2
sin 3πx, 0 ≤ x ≤ L,

v(t, 0) = 0, 0, u(t, L) = 0, t ≥ 0,

(4.35)

The solution of the problem (4.35) is

v(t, x) = e−π2t sinπx +
1

2
e−9π2t sin 3πx,

Hence, coming back to the original unknown, we find the solution

u(t, x) = e−t[e−π2t sin πx +
1

2
e−9π2t sin 3πx],
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4.5 Non-homogeneous Heat Equation

Let us consider the non homogenous heat equation with the initial boundary
value conditions

ut = k2uxx + f(t, x), t ≥ 0, 0 ≤ x ≤ L,

u(0, x) = ϕ(x), 0 ≤ x ≤ L,

u(t, 0) = 0, u(t, L) = 0, t ≥ 0.

(4.36)

In the previous section (see (4.18), we have found the solution

u(t, x) =
∞
∑

n=1

Bne
−k

2π2n2t

L2 sin
nπx

L
. (4.37)

when f(t, x) ≡ 0, ψ0(t) ≡ 0, ψl(t) ≡ 0. Now, we shall find the solution u(t, x)
of the non homogeneous heat equation, when f(t, x) 6= 0.
Assume that the given function as the heat sourse f(t, x) possesses the follow-
ing series presentation:

f(t, x) = f1(t) sin
πx

L
+ f2(t) sin

2πx

L
+ ...+ fn(t) sin

nπx

L
+ ... (4.38)

In order to find the coefficients fn(t), n = 1, 2, ...; we multiply both sides of

(4.38) by sin
mπx

L
, and integrate from zero to L with respect to the variable

x. Then, we obtain
∫ L

0
f(t, x) sin

nπx

L
dx =

∞
∑

n=1

fn(t)
∫ L

0
sin

nπx

L
sin

mπx

L
dx =

L

2
fm(t). (4.39)

Hence, by the orthogonality of the sequence {sin
nπx

L
, n = 1, , 2, ...; } we find

the coefficients

fn(t) =
2

L

∫ L

0
f(t, x) sin

nπx

L
dx, n = 1, 2, ...; (4.40)

Replacing the heat sourse function f(t, x) by its decomposition (4.38). we find
the solution

u(t, x) =
∞
∑

n=1

Tn(t) sin
nπx

L
(4.41)

of the initial boundary value problem

ut = k2uxx +
∞
∑

n=1

fn(t) sin
nπx

L
, t ≥ 0, 0 ≤ x ≤ L,

u(0, x) = ϕ(x), 0 ≤ x ≤ L,

u(t, 0) = 0, u(t, L) = 0, t ≥ 0.

(4.42)
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where the functions Tn(t), n = 1, 2, ...; are to be determined.
By substitution (4.41) to the equations (4.42), we have the following equations:

∞
∑

n=1

T
′

n(t) sin
nπx

L
= −k2

∞
∑

n=1

n2π2

L2
Tn(t)sin

nπx

L
+

∞
∑

n=1

fn(t) sin
nπx

L
∞
∑

n=1

Tn(t) sin 0 = 0,
∞
∑

n=1

Tn(t) sinnπ = 0, t ≥ 0,

∞
∑

n=1

Tn(0) sin
nπx

L
= ϕ(x), 0 ≤ x ≤ L.

(4.43)

Hence
∞
∑

n=1

[T
′

(t) +
k2n2π2

L2
Tn(t) − fn(t)] sin

nπx

L
= 0,

∞
∑

n=1

Tn(0) sin
nπx

L
= ϕ(x).

(4.44)

Then,we find the coefficients Tn(t), n = 1, 2, ...; solving the ordinary differen-
tial equations

T
′

n(t) +
k2π2n2

L2
Tn(t) = fn(t), t ≥ 0, n = 1, 2, ...,

Tn(0) =
2

L

∫ L

0
ϕ(x) sin

nπx

L
= Bn.

(4.45)

By integrating factor method, we find the solution

Tn(t) = Bne
−k

2π2n2t

L2
+

∫ t

0
e
−k

2π2n2

L2
(t− τ )

fn(τ ) dτ. (4.46)

Finally, the solution of the initial boundary value problem (4.36) is given by
the following formula:

u(t, x) =
∞
∑

n=1

Bne
−k

2π2n2t

L2 sin
nπx

L
+

∞
∑

n=1

sin
nπx

L

∫ t

0
e
−k

2π2n2(t− τ )

L2 fn(τ ) dτ.

(4.47)

Example 4.1 Solve the following initial boundary value problem:

ut = uxx + sinπx+ sin 2πx, 0 ≤ x ≤ 1, t ≥ 0,

u(0, x) = sinπx, 0 ≤ x ≤ 1,

u(t, 0) = 0, u(t, 1) = 0, t ≥ 0.

(4.48)
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Solution. We shall find the solution u(t, x) in the series form

u(t, x) =
∞
∑

n=1

Tn(t) sinnπx, 0 ≤ x ≤ 1, t ≥ 0,

where the coefficients Tn(t), n = 1, 2, ...; are determined by the ordinary dif-
ferential equation

T
′

(t) + n2π2Tn(t) =
∫ 1

0
[sinπs+ sin 2πs] sinnπx ds =

1

2
fn(t), 0 ≤ x ≤ 1, t ≥ 0,

Tn(0) = 2
∫ 1

0
sinπs sinnπs ds = Bn.

(4.49)
We compute

fn(t) = 2
∫ 1

0
[sinπs+ sin 2πs] sinnπx ds =







1, n = 1, 2

0, otherewise,

Bn = 2
∫ 1

0
sinπs sinnπs ds







1, n = 1,

0, otherewise

Solving the ordinary differential equation (4.49) for n = 1, 2, ...; we find

n = 1, T
′

1(t) + π2T1(t) = 1, T1(0) = 1, T1(t) =
π2 + eπ

2t − 1

π2eπ
2

n = 2, T
′

2(t) + 4π2T2(t) = 1, T2(0) = 0, T2(t) =
1 − e−4π2t

4π2
,

n ≥ 3, T
′

n(t) + n2π2Tn(t) = 0, T1(0) = 0, Tn(t) = 0.

(4.50)

Finally, we obtain the solution

u(t, x) =
∞
∑

n=1

Tn(t) sinnπx = T1(t) sinπx+ T2(t) sin 2πx

=
π2 + eπ

2t − 1

π2eπ
2 sinπx+

1 − e−4π2t

4π2
sin 2πx.

4.6 Fundamental Solution for the Heat Equation

Let us consider the heat equation

ut = uxx, (4.51)
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The fundamental solution of the heat equation is given by the formula

U(x − ξ, t − η) =
1√
t− η

e
−(x− ξ)2

4(t− η) , (4.52)

Let us note that the fundamental solution is the function of two points P =
(t, x) and Q = (ξ, η) given for η < t.
Also, we note that U(t, x; ξ, η) satisfies the heat equation as the function of
the variables t and x at fixed ξ and η. Indeed, we find

ut = [
(x− ξ)2

4(t− η)5/2
− 1

2(t − η)3/2
]e
− (x− ξ)2

4((t− η)

and

uxx = [
(x− ξ)2

4(t− η)
5

2

− 1

2(t− η)3/2
]e
− (x− ξ)2

4((t− η)

So that ut = uxx.
Also, one can check that the fundamental solution U(t, x, ξ, η) satisfies the
conjugate heat equation

uη + uξξ = 0,

as the function of the variables ξ and η, at fixed t and x.

4.7 Fundamental Formulae

Green’s Formula. Below, we present Green’s formula in its simplest form
for two continuosly differentiable functions P (x1, x2) and Q(x1, x2)

∫

R

∫

∂Q

∂x1
− ∂P

∂x2
]dx1 dx2 =

∫

∂R
P dx1 +Q dx2, (4.53)

where the rectangle

R = {(x1, x2) : a ≤ x1 ≤ b, c ≤ x2 ≤ d}.

with the boundary ∂R.
Proof. We shall show that

∫

R

∫ ∂P

∂x2
dx1 dx2 = −

∫

∂R
P dx1

∫

R

∫

∂Q

∂x1
dx1 dx2 =

∫

∂R
Q dx2
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Indeed, we compute (see picture)

∫

R

∫

∂P

∂x2

dx1 dx2 =
∫ b

a
dx1

∫ d

c

∂P

∂x2

dx2 =
∫ b

a
[P (x1, d) − P (x1, c)]dx1

= −
∫ b

a
P (x1, d)dx1 −

∫ b

a
P (x1, c)dx1 = −

∫

∂R
P dx1

∫

R

∫

∂Q

∂x1
dx1 dx2 =

∫ d

c
dx2

∫ b

a

∂Q

∂x1
dx1 =

∫ d

c
[Q(b, x2) −Q(c, x2)]dx2

=
∫ d

c
Q(b, x2)dx2 −

∫ d

c
Q(c, x2)dx2 =

∫

∂R
Q dx2

Hence, we obtain Green’s formula (4.53) .

-

6

? 6

�

-

a b

d

t

∂R

c

x0

R

The rectangle R with the boundary ∂R

.
For Q = u v and P = 0, from, Green’s formula, by the identities

∫

R

∫

∂uv

∂x1
dx1 dx2 =

∫

R

∫

u
∂v

∂x1
+ v

∂u

∂x1
dx1 dx2 =

∫

∂R
uv ds

∫

R

∫

∂uv

∂x2
dx1 dx2 =

∫

R

∫

u
∂v

∂x2
+ v

∂u

∂x2
dx1 dx2 =

∫

∂R
uv ds

(4.54)

we obtain the formula of integration by parts in two variables
∫

R

∫

u
∂v

∂x1
=

∫

∂R
uv ds−

∫

R

∫

v
∂u

∂x1
dx1 dx2

∫

R

∫

u
∂v

∂x2
=

∫

∂R
uv ds−

∫

R

∫

v
∂u

∂x2
dx1 dx2

(4.55)

Here the line integral along the boundary ∂R of the rectangle R is
∫

∂R
u v ds =

∫

∂R
u(x1(ξ), x2(ξ))v(x1(ξ), x2(ξ))

√

(x
′

1(ξ))2 + (x
′

2(ξ))
2dξ



56

which becomes
∫

∂R
u v ds =

∫ b

a
u(x1(ξ), c)v(x1(ξ), c)dξ +

∫ d

b
u(b, x2(ξ))v(b, x2(ξ))dξ

+
∫ c

b
u(x1(ξ), d)v(x1(ξ), d)dξ +

∫ a

d
u(a, x2(ξ))v(a, x2(ξ))dξ

The first fundamental formula for the heat equation Let us note
that the following identity holds:

vF (u)− uG(v) =
∂

∂x
[v
∂u

∂x
− u

∂v

∂x
] − ∂(uv)

∂t
,

for

F (u) =
∂2u

∂x2
− ∂u

∂t
, G(v) =

∂2v

∂x2
+
∂v

∂t
Integrating by parts both sides of the above identity (see formula integration
by parts (4.54)), in the rectangle

R = {(t, x) : 0 ≤ t ≤ T, 0 ≤ x ≤ L}
we obtain the first fundamental formula for the heat equation

∫

R
[vF (u)− uG(v)]dt dx =

∫

∂R
u v dx + (v

∂u

∂x
− u

∂v

∂x
) dt (4.56)

Hence, if u and v satisfy the equations

∂u

∂t
− ∂2u

∂x2
= 0,

∂v

∂t
+
∂2v

∂x2
= 0,

then the first fundamental formula for the heat equation becomes
∫

∂R
u v dx + (v

∂u

∂x
− u

∂v

∂x
) dt = 0. (4.57)

The second fundamental formula for the heat equation Substituting
into the first fundamental formula, η = t− δ, v(ξ, η) = U(t, x; ξ, η) for δ < η,
we obtain

∫

∂R
u(ξ, t− δ)e

−(x− ξ)2

4δ
dξ√
δ

=
∫

∂R
[uξ(ξ, η)U(t, x; ξ, η) − u(ξ, η)Uξt, x; ξ, η)]dη

+ u(ξ, η)U(t, x; ξ, η) dξ.
(4.58)

Hence, in the limit when δ− > 0, we obtain the second fundamental formula
∫

∂R
[uξ(ξ, η)U(t, x; ξ, η) − u(ξ, η)Uξ(t, x; ξ, η)]dη

+u(ξ, η)U(t, x; ξ, η)dξ =







2
√
πu(t, x), (t, x) ∈ R,

0, (t, x) out of closed R
(4.59)
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4.8 Exercises

Question 1. Solve the initial boundary problem:

ut = 9uxx, 0 ≤ x ≤ 4, t ≥ 0,

u(0, x) = sinπx + 2 sin 5πx, 0 ≤ x ≤ 4,

u(t, 0) = 1, v(t, 4) = 2, t ≥ 0

(4.60)

Question 2. Solve the initial boundary problem:

ut = 16uxx − 3u, 0 ≤ x ≤ 2, t ≥ 0,

u(0, x) =







x, 0 ≤ x ≤ 1,

1, 1 < x ≤ 2,
u(t, 0) = 1, u(t, 2) = 0, t ≥ 0

(4.61)
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Chapter 5

Elliptic Equations

5.1 Laplace Equation

. Laplace’s equation takes the following form:

1. In two variables x, y

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0, ∆u = uxx + uyy = 0, (5.1)

where the Laplace’s operator ∆ ≡ ∂2

∂x2
+

∂2

∂y2
.

2. Laplace’s equation in the polar coordinates (r, θ), r 6= 0, x = r cos θ, y =
r sin θ,

∆u = urr +
1

r
ur +

1

r2
uθθ = 0. (5.2)

where r2 = x2 + y2 and θ = arctan
y

x
, x 6= 0, θ =

π

2
, x = 0,

-

6

�
�

�
�

�
s (r, θ)

r
$

0 x

y

θ

Polar Coordinates x = r cos θ, y = r sin θ
Indeed, we can transform Laplace’s equation from Cartesian coordinates
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to Laplace’s equation in polar coordinates by the following computations:

x = r cos θ y = r sin θ, u(x, y) = u(r cos θ, r sin θ)

∂u

∂r
=
∂u

∂x
cos θ +

∂u

∂y
sin θ

∂2u

∂r2
=
∂2u

∂x2
cos2 θ +

∂2u

∂y2
sin2 θ + 2

∂2u

∂x∂y
sin θ cos θ

∂u

∂θ
= r(

∂u

∂y
cos θ − ∂u

∂x
sin θ)

∂2u

∂θ2
= −r∂u

∂y
sin θ + r2∂

2u

∂y2
cos2 θ − r2 ∂

2u

∂x∂y
sin θ cos θ

−r∂u
∂x

cos θ + r2∂
2u

∂x2
sin2 θ − r2 ∂

2u

∂x∂y
sin θ cos θ

Now, we find

urr +
1

r
ur +

1

r2
uθθ = (

∂2u

∂x2
cos2 θ +

∂2u

∂y2
sin2 θ + 2

∂2u

∂x∂y
sin θ cos θ)

+
1

r
(
∂u

∂x
cos θ +

∂u

∂y
sin θ)

+
1

r2
(−r∂u

∂y
sin θ + r2∂

2u

∂y2
cos2 θ − r2 ∂2u

∂x∂y
sin θ cos θ)

+
1

r2
(−r∂u

∂x
cos θ + r2∂

2u

∂x2
sin2 θ − r2 ∂2u

∂x∂y
sin θ cos θ)

=
∂2u

∂x2
+
∂2u

∂y2

3. Laplace’s equation in three variables x, y, z

∆u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0, ∆u = uxx + uyy + uzz = 0. (5.3)

4. Laplace’s equation in the three cylindrical coordinates r, θ, z, with r 6=
0, x = r cos θ, y = sin θ, z = z

∆u = urr +
1

r
ur +

1

r2
uθθ + uzz = 0. (5.4)

.
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Cylindrical coordinates x = r cos θ, y = r sin θ, z = z

.

where r2 = x2 + y2, r 6= 0, θ = arctan
y

x
, x 6= 0, z = z.

5. Laplace’s equation in the spherical coordinates r, θ, ϕ, with x = r sinϕ cos θ, y =
r sinϕ sin θ, z = r cosϕ.

∆u = urr +
2

r
ur +

1

r2
uϕϕ +

cotϕ

r2
uφ +

1

r2sin2ϕ
uθθ = 0. (5.5)

.
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6
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Spherical coordinates x = r sinϕ cos θ, y = r sinϕ sin θ, z = r cosϕ.

.

where r2 = x2 + y2 + z2, cosϕ =
z

r
, tan θ =

y

x

5.2 Boundary Value Problems for Laplace Equation

The following three types of the boundary value problems are considered:

1. Dirichlet boundary value problem Find the solution u(x, y) of Laplace
equation

uxx + uyy = 0, (x, y) ∈ Ω (5.6)
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in the domain Ω, which satisfies the Dirichlet’s condition (BDC)

u(x, y) = φ(x, y), (x, y) ∈ ∂Ω. (5.7)

Throughout this chapter, we shall denote by Ω a bounded domain with
the boundary ∂Ω. Here φ(x, y) is a given function on the boundary ∂Ω
of Ω.

2. Neumann boundary problem Find the solution u(x, y) of Laplace
equation

uxx + uyy = 0, (x, y) ∈ Ω

in the domain Ω, which satisfies the Neumann’s boundary condition
(BNC)

∂u(x, y)

∂n
= ψ(x, y), (x, y) ∈ ∂Ω,

where
du

dn
denotes normal derivative internal to the boundary ∂Ω of the

domain Ω. Here ψ(x, y) is a given function on the boundary ∂Ω.

3. Third kind boundary problem Find the solution u(x, y) of Laplace
equation

uxx + uyy = 0, (x, y) ∈ Ω

in the domain Ω, which satisfies the third kind boundary condition

A(x, y)
∂u(x, y)

∂n
+B(x, t)u = φ(x, y), (x, y) ∈ ∂Ω,

where A2(x, y) + B2(x, y) > 0 and µ(x, y) are given functions on the
boundary ∂Ω.

5.3 The Maximum Principle for Laplace Equation

Every solution of Laplace’s equation is called harmonic function. Below, we
shall give some of properties of the harmonic functions.

1. The maximum principle. Let u(x, y) be a continuous function in the
bounded and closed domain Ω. If u(x, y) is a harmonic function in the
domain Ω, then the function u(x, y) attains its maximum and minimum
values on the boundary ∂Ω of Ω.
Proof. Firstly, we note that u(x, y) attains its maximum in the bounded
and closed domain Ω as a continuous function. By contradiction to the
thesis, assume that the maximum value of u(x, y) is not on the bound-
ary ∂Ω. Then, the maximum value of u(x, y) is at some interior point
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(x0, y0) ∈ Ω, say M = u(x0, y0) > Mb, where Mb is maximum of u(x, y)
on the boundary ∂Ω. Let us introduce the auxiliary function

v(x, y) = u(x, y) + ε[(x− x0)2 + (y − y0)
2],

for some ε > 0. Then v(x0, y0) = u(x0, y0) = M , and the maximum of
v(x, y) on the boundary ∂Ω of Ω is equal at most Mb +εd2, where d is the
diameter of Ω. For sufficiently small ε > 0, we have M > Mb + εd, i.e.
0 < ε < (M −Mb)/d

2. For such ε, the maximum of v(x, y) cannot occur
on the boundary of Ω, since the value M of v(x, y) at (x0, y0) is larger
than the value of v(x, y) at any boundary point. There may, however, be
points in Ω, where v(x, y) is larger than M . Let the maximum of v(x, y)
be attained at (x1, y1), which, as we have seen, must be in Ω. At (x1, y1),
we must have vxx ≤ 0 and vyy ≤< 0, since the graph of v(x, y) cannot be
concave up in the x or y direction at (x1, y1). Thus, at (x1, y1), we have

vxx + vyy ≤ 0.

However, by the definition of v(x, y), we have

vxx + vyy + 2ε + 2ε = 4ε > 0.

Here, we have used the assumption that u(x, y) is harmonic on Ω. The
above two inequalities contradict one the other. So that, the assumption
that u(x, y) attains its maximum of u(x, y) at an interior point, and not
on the boundary, leads to the contradiction.
In order to prove that minimum value of u(x, y) is attanable at the bound-
ary ∂Ω, we repeat the proof for the maximum of −u(x, y). So that, the
minimum of u(x, y) must be also attainable on the boundary ∂Ω of Ω.
There is also strong maximum principle for harmonic function which we
present below.
The Strong maximum principle. Let u(x, y) be a harmonic function
on the domain Ω. Suppose that the function u(x, y) attains its maximum
or minimum at some interior point of Ω. Then u(x, y) must be constant
throughout Ω.
.
Conclusion From the maximum principle it follows that every harmonic
function u(x, y) satisfies the inequality

min
(x,y)∈∂Ω

φ(x, y) ≤ u(x, y) ≤ max
(x,y)∈∂Ω

φ(x, y),

Also, we have

|u(x, y)| ≤ max
(x,y)∈∂Ω

|φ(x, y)|, (x, y) ∈ Ω,

or

− max
(x,y)∈∂Ω

|φ(x, y)| ≤ u(x, y) ≤ max
(x,y)∈∂Ω

|φ(x, y)|, (x, y) ∈ Ω,

(5.8)
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where u(x, y) = φ(x, y) on the boundary ∂Ω of Ω.
.
Question 1. Consider the following boundary value problem:

uxx + uyy = 0, (x, y) ∈ Ω = {(x, y) : 0 < x < 2, 0 < y < 1},

u(x, y) = sinπx+ cos πy, (x, y) ∈ ∂Ω,
(5.9)

Find the range of the values of the solution u(x, y), for (x, y) ∈ Ω.
Solution. By the maximum principle, the range of the values of the
solution u(x, u) is determined by the inequality

min
(x,y)∈∂Ω

φ(x, y) ≤ u(x, y) ≤ max
(x,y)∈∂Ω

φ(x, y).

where φ(x, y) = sinπx + cosπy.
Now, we compute

min
(x,y)∈∂Ω

[sinπx+ cos πy], and max
(x,y)∈∂Ω

[sinπx+ cos πy]

Clearly, the minimum and maximum of φ(x, y) = sinπx + cos πy are at
points when the partial derivatives are equal to zero, so that

φx(x, y) = π cosπx = 0, and φy(x, y) = π sinπy = 0.

We find two boundary points (
1

2
, 0) and (

3

2
, 1) Thus, the maximum is at

the point (
1

2
, 0) equal

max
∂Ω

[sinπx+ cosπy] = 2,

and the minimum is at the point (
3

2
, 1) equal

min
∂Ω

[sinπx + cosπy] = −2.

Hence, the values of the solution u(x, y) are in the range from −2 to 2,
so that the following inequality holds:

−2 ≤ u(x, y) ≤ 2.

for all points (x, y) ∈ Ω ∪ ∂Ω.
.
The maximum principle implies uniqueness and continuous dependence
of solutions on boundary data. Namely, we shall prove the following the-
orems:
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Theorem 5.1 (Uniqueness). The Dirichlet boundary value problem
has at most one solution.

Proof. Assume that there are two solutions u1 and u2 of the Dirichlet
boundary problem (5.1). Then, the function v = u1 −u2 is continuous in
the closed domain Ω and harmonic in the open domain Ω. Since v = 0
on ∂Ω, the maximum principle implies that v ≤ 0 and v ≥ 0 on Ω, so
that v ≡ 0 on Ω and u1 ≡ u2.
Now, we shall state the theorem on continuous dependence of a harmonic
function on its boundary values.

Theorem 5.2 Let u1 and u2 be the solutions of the Dirichlet boundary
value problems

∆u1 = 0 in Ω, u1 = φ1 on ∂Ω

∆u2 = 0 in Ω, u2 = φ2 on ∂Ω

Then
|u1(x, y) − u2(x, y)| ≤M,

where M = max
∂Ω

|φ1(x, y) − φ2(x, y)|.

Proof. Let v = u1 − u2. Then, we have

−max
∂Ω

|φ1(x, y) − φ2(x, y)| ≤ v(x, y) ≤ max
∂Ω

|φ1(x, y) − φ2(x, y)|.

Hence, we obtain the inequality

|u1(x, y) − u2(x, y)| ≤M,

for all (x, y) ∈ Ω ∪ ∂Ω.

Example 1. Suppose that u(x, y) is a continuous function on the closed disk
r ≤ 1, and harmonic in the open disk r < 1. If

u(cos θ, sin θ) ≤ sin θ + cos 2θ,

then show that
u(x, y) ≤ y + x2 − y2,

for all x2 + y2 ≤ 1.
.
Solution. Note that v(x, y) = y + x2 − y2 is a harmonic function with
v(cos θ, sin θ) = sin θ + cos 2θ. By the assumption, u ≤ v on the boundary
of the disk r ≤ 1. Then, the maximum of the harmonic function u− v on the
boundary r = 1 must be less than or equal to zero. The maximum principle
then implies that u− v ≤ 0 throughout the disk.
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5.4 The Maximum Principle for Poisson Equation

We shall state the maximum Principe for Poisson’s equation

∆u = f(x, y), (x, y) ∈ Ω,

or

∂2u

∂x2
+
∂2u

∂y2
= f(x, y), (x, y) ∈ Ω,

(5.10)

where f(x, y) is given continuous functions in the bounded domain Ω.
The following maximum principle holds:
Maximum principle. If f(x, y) ≥ 0, for (x, y) ∈ Ω, then the solution u(x, y)
attains non-negative maximum M at a boundary point, or if f(x, y) ≤ 0 then
u(x, y) attains its non-positive minimum m at a boundary point.
This maximum principle can be proved in the same way as maximum principle
for harmonic functions.
As a consequence of the above maximum principle, we can state the theorem on
stability of the boundary problem for equation (5.10) with Dirichlet’s boundary
condition.

Theorem 5.3 (Stability Theorem). If the given function f(x, y) is continuous
in the closed bounded domain Ω, then the the boundary value problem

∆u = f(x, y), (x, y) ∈ Ω,

u(x, y) = φ(x, y) (x, y) ∈ Ω,
(5.11)

is stable in the maximum norm, that is, the solution u(x, y) satisfies the fol-
lowing inequality:

|u(x, y)| ≤ max
X∈∂Ω

|u(x, y)| +M max
(x,y)∈Ω

|f(x, y)|], (x, y) ∈ Ω, (5.12)

where M = ea − 1 for 0 ≤ x ≤ a.
Proof. Without any restriction, we can assume that the domain Ω is on the
right side of y axis, that is, 0 ≤ x ≤ a. We shall prove the theorem on stability
using the following lemma:

Lemma 5.1 If a function v(x, y) is a regular solution of the Poisson’s equa-
tion, and if there exists a regular function g(x, y), which satisfies the following
conditions:

1.

g(x, y) ≥ max
(x,y)∈∂Ω

|v(x, y)|, (x, y) ∈ Ω ∪ ∂Ω
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2.
−∆g(x, y) ≥ max

(x,y)∈Ω
|f(x, y)|, (x, y) ∈ Ω.

then
|v(x, y)| ≤ g(x, y)

for all (x, y) ∈ Ω ∪ ∂Ω.

Proof of lemma. In order to prove the lemma, we shall show that the
functions

z1(x, y) = v(x, y) − g(x, y), and z2(x, y) = v(x, y) + g(x, y),

satisfy the inequalities z1(x, y) ≤ 0 and z2(x, y) ≥ 0 for all (x, y) ∈ Ω ∪ ∂Ω.
We note that, by the definition,

z1(x, y) ≤ 0, z2(x, y) ≥ 0,

on the boundary ∂Ω.
By assumption 2,

∆z1(x, y) = ∆v(x, y)− ∆g(x, y)

≥ f(x, y) + maxΩ |f(x, y)| ≥ 0

∆z2(x, y) = ∆v(x, y) + ∆g(x, y)

≥ f(x, y) − maxΩ |f(x, y)| ≤ 0

for all (x, y) ∈ Ω.
Hence, by the maximum principle

z1(x, y) = v(x, y)− g(x, y) ≤ 0, z2(x, y) = v(x, y) + g(x, y) ≥ 0,

hold for (x, y) ∈ Ω ∪ ∂Ω.
Thus, we have the inequalities

−g(x, y) ≤ v(x, y) ≤ g(x, y), or |v(x, y)| ≤ g(x, y)

for all (x, y) ∈ Ω. End of lemma proof.
In order to prove the theorem, we assume that the domain Ω lies in the right
side of x axis, that is, x ≥ 0. This assumption can be satisfied by a linear
translation of Ω in x direction. We consider the function

g(x, y) = max
(x,y)∈∂Ω

|u(x, y) + [ex − ex] max
Ω

|f(x, y)|, (x, y) ∈ Ω ∪ ∂Ω.

where x ≤ x. Here, x is a fixed value on x axis.
We shall show that the function g(x, y) satisfies assumptions 1 and 2 of the
lemma. Indeed, we estimate
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1. From the definition of g(x, y), it is clear that

g(x, y) ≥ max
(x,y)∈∂Ω

|u(x, y)|

for (x, y) ∈ Ω ∪ ∂Ω.

2.
−∆g(x, y = exmax

Ω
|f(x, y)| ≥ max

Ω
|f(x, y)|.

for 0 ≤ x ≤ x.

Hence, we obtain the required inequality

|u(x, y)| ≤ max
(x,y)∈∂Ω

|u(x, y)| +M max
Ω

|f(x, y)|, (x, y) ∈ Ω.

where dsM = ea − 1 is the upper bound of the expression ex − ex,when 0 ≤
x ≤ a.
Let us note that if the solution u(x, y) satisfies the boundary condition

u(x, y) = φ0(x, y), (x, y) ∈ ∂Ω,

then we get the following the estimate of the solution

|u(x, y)| ≤ max
(x,y)∈∂Ω

|φ(x, y)|+ (ea − 1) max
(x,y)∈Ω

f(x, y)|], (x, y) ∈ Ω.

This inequality means stability of the Dirichlet boundary value problem for
the Poisson’s equation.
Question 1. Consider the following boundary value problem:

∂2u

∂x2
+
∂2u

∂y2
= sinπx+ cos πy, (x, y) ∈ Ω = {(x, y) : 0 < x, y < 1,

u(x, y) = sinπxy, (x, y) ∈ ∂Ω.

(5.13)

Show that the boundary value problem is stable and estimate the solution
u(x, y)
Solution. We note that the Poisson’s equation (5.13) satisfies the assumptions
of the theorem on stability. By the thesis, we obtain the following estimate of
the solution u(x, y):

|u(x, y)| ≤ max
∂Ω

|φ(x, y)|+M max
Ω

|f(x, y)|

= max
∂Ω

| sinπxy| +M max
Ω

| sinπx+ cos πy)|

≤ 1 + 2 M

Because, 0 ≤ x ≤ 1 therefore, the constant M = e− 1 and

|u(x, y)| ≤ 1 + 2(e− 1),

for all (x, y) ∈ Ω ∪ ∂Ω.
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5.5 The Maximum Principle for Helmholz-Poisson Equa-

tion

We shall state the maximum Principe for Helmholz-Poisson equation

∆u+ c(x, y)u = f(x, y), (x, y) ∈ Ω,

or

∂2u

∂x2
+
∂2u

∂y2
+ c(x, y)u = f(x, y), (x, y) ∈ Ω,

(5.14)

where c(x, y) ≤ 0, and f(x, y) are given continuous functions in the bounded
domain Ω.
The following maximum principle holds:
Maximum principle. If f(x, y) ≥ 0 and c(x, y) ≤ 0 for (x, y) ∈ Ω, then the
solution u(x, y) attains non-negative maximum M at a boundary point, or if
f(x, y) ≤ 0 and c(x, y) ≤ 0, then u(x, y) attains its non-positive minimum m
at a boundary point.

As a consequence of the above maximum principle, we state the theorem on
stability of the solution of Dirichlet’s boundary problem for equation (5.14).

Theorem 5.4 (Stability Theorem). If the given functions c(x, y) ≤ 0 and
f(x, y) are continuous in the closed bounded domain Ω, then the solution
u(x, y) satisfies the following inequality:

max
(x,y)∈Ω

|u(x, y)| ≤ max
X∈∂Ω

|u(x, y)| +M max
(x,y)∈Ω

|f(x, y)|], (5.15)

where M = ea − 1 for 0 ≤ x ≤ a.
We can prove this theorem in a similar way as theorem on stability for Poisson’s
equation.
Let us note that if the solution u(x, y) satisfies the boundary condition

u(x, y) = φ0(x, y), (x, y) ∈ ∂Ω,

then we get the following priori estimate of the solution u(x, y)

|u(x, y)| ≤ max
(x,y)∈∂Ω

|u(x, y)| +M max
(x,y)∈Ω

f(x, y)|], (x, y) ∈ Ω.

where M = ea − 1, for 0 ≤ x ≤ a.
This inequality means stability of the Dirichlet boundary value problem for
the Helmholz-Poisson equation.
Question 1. Consider the following boundary value problem:

∂2u

∂x2
+
∂2u

∂y2
− 2u = sin πx+ cosπy, (x, y) ∈ Ω = {(x, y) : 0 < x, y < 1,

u(x, y) = sin πxy, (x, y) ∈ ∂Ω.
(5.16)
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Show that the boundary value problem is stable and estimate the solution
u(x, y)
Solution. We note that the Helmholz-Poisson equation (5.16) satisfies the
assumptions of the theorem on stability. Indeed, the coefficient c(x, y) = −2 ≤
0. By the thesis, we obtain the following estimate of the solution u(x, y):

|u(x, y)| ≤ max
∂Ω

|φ(x, y)|+M max
Ω

|f(x, y)|

= max
∂Ω

| sinπxy| +M max
Ω

| sinπx+ cos πy)|

≤ 1 + 2 M

Because, 0 ≤ x ≤ 1, then the constant M = e − 1, and the solution u(x, y)
satisfies the inequality

|u(x, y)| ≤ 1 + 2(e− 1),

for all (x, y) ∈ Ω ∪ ∂Ω.

5.6 Boundary Value Problem for Laplace’s Equation in

a Rectangle

Let us consider the following boundary value problem:

∂2u

∂x2
+
∂2u

∂y2
= 0, (x, y) ∈ Ω = {(x, y) : 0 < x < L1, 0 < y < L2},

u(x, 0) = 0, 0 ≤ x ≤ L1

u(0, y) = u(L1, y) = 0, 0 ≤ y ≤ L2,

u(x, L2) = ϕ(x), 0 ≤ x ≤ L1.
(5.17)

This boundary value problem can be solved by the method of separation of
variables. Namely, let u(x, y) = X(x)Y (y). Then, by substitution to Laplace’s
equation, we obtain

X ′′(x)Y (x) +X(x)Y ′′(y) = 0,

or
X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
= −λ.

Hence, we have two equations

X ′′(x) + λX(x) = 0, Y ′′(y) − λY (y) = 0.

From the boundary conditions

u(x, 0) = X(x)Y (0) = 0.
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So that Y (0) = 0. Also, we have

u(0, y) = X(0)Y (y) = 0 and u(L1, y) = X(L1)Y (y) = 0

therefore X(0) = X(L1) = 0.
Let us note the solution of the eigenvalue problem

X ′′(x) + λX(x) = 0, X(0) = X(L1) = 0

is known and the eigenvalues and eigenfunctions are given by the formulae

λn =
n2π2

L2
1

X(n)(x) = sin
nπx

 L1
, n = 1, 2, ...,

Then, we solve the corresponding equation for Y (y)

Y ′′(y) − λnY (y) = 0,

which has the general solution

Y (y) = C1e

√

λny + C2e
−

√

λny

for arbitrary constants C1 and C2.
By the condition Y (0) = 0, we find C1 + C2 = 0 and C2 = −C1, so that the
solution

Y (n)(y) = C1(e

nπy

L1 − e
−nπy
L1 ) = 2C1 sinh

nπy

L1
, n = 1, 2, ...;

Now, we observe that the terms of the sequence

un(x, y) = Bn sin
nπx

L1
sinh

nπy

L1
, n = 1, 2, ...;

are harmonic functions and satisfy the homogeneous boundary value condition
at the three sides of the rectangle Ω, that is when y = 0 or x = 0, or x = L1,
for arbitrary constants Bn, n = 1, 2, ...,. Then, we consider the solution in the
form of the following series:

u(x, y) =
∞
∑

n=1

Bn sin
nπx

L1
sinh

nπy

L1
, (5.18)

where the coefficients Bn, n = 1, 2, ...; are determined by the boundary con-
dition

u(x, L2) =
∞
∑

n=1

Bn sin
nπx

L1
sinh

nπL2

L1
= φ0(x).
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Multiplying the above identity by sin
mπx

L1
and integrating from 0 to L1, and

using orthogonality property, we obtain the following formula for the coeffi-
cients Bn, n = 1, 2, ....;

Bn sinh
nπL2

L1
=

2

L1

∫ L1

0
φ0(s) sin

nπs

L1
ds

or

Bn =
2

L1 sinh
nπL2

L1

∫ L1

0
φ0(s) sin

nπs

L1
ds, n = 1, 2, ...; (5.19)

Example. Consider the following boundary value problem:

∂2u

∂x2
+
∂2u

∂y2
= 0, (x, y) ∈ Ω = {(x, y) : 0 < x < 2, 0 < y < 4},

u(x, 0) = 0, 0 ≤ x ≤ 2

u(0, y) = u(2, y) = 0, 0 ≤ y ≤ 4,

u(x, 4) = x(2 − x), 0 ≤ x ≤ 2.
(5.20)

Solution. By the formulae (5.18) and (5.19), we compute the coefficients

Bn =
2

2 sinh
nπ4

2

∫ 2

0
s(2 − s) sin

nπs

2
ds =

16(1 − (−1)n)

n3π3 sinh 2nπ
,

Hence, we find the solution in the form of the following series

u(x, y) =
16

π3

∞
∑

n−1

(1 − (−1)n)

n3 sinh 2nπ
sin

nπx

2
sinh 2nπy, 0 ≤ x ≤ 2, 0 ≤ y ≤ 4.

5.7 Boundary Value Problem for Laplace’s Equation in
a Disk

Let us consider the Laplace’s equation in the polar coordinates

urr +
1

r
ur +

1

r2
uθθ = 0, 0 < r < R, −π < θ < π, (5.21)

with the boundary condition

u(R, θ) = φ(θ), −π ≤ θ ≤ π. (5.22)

It is easy to check that the functions

1, rn cos nθ, rn sinnθ,
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are harmonic in the disk with radius R and the center at the origin, for n =
1, 2, ...;
We shall find the solution u(r, θ) in the form of the following trigonometric
series:

u(r, θ) =
1

2
a0 +

∞
∑

n=1

anr
n cosnθ + bnr

n sinnθ. (5.23)

Clearly u(r, θ) given by formula (5.23) satisfies the Laplace’s equation in the
poplar coordinates (r, θ). In order to find the coefficients an and bn, we apply
the boundary condition

u(R, θ) =
1

2
a0 +

∞
∑

n=1

anR
n cos nθ + bnR

n sinnθ = φ(θ), −π ≤ θ ≤ π.

So, an and bn are the coefficients of the Fourier series of the given function
φ(θ) for −π ≤ θ ≤ π.
These coefficients are given by the formulae

a0 =
1

π

∫ π

−π
φ(s) ds,

an =
1

Rnπ

∫ π

−π
φ(s) cos ns ds, bn =

1

Rnπ

∫ π

−π
φ(s) sinns ds,,

(5.24)

for n = 1, 2, ...;
Therefore, the solution u(r, θ) of the boundary value problem for Laplace’s
equation in a disk is given by the formulae (5.23) and (5.24).
Example. Let us consider the following boundary value problem:

urr +
1

r
ur +

1

r2
uθθ = 0, −π < θ < π, 0 < r < 2,

u(2, θ) = cos
θ

4
, −π ≤ θ ≤ π,

(5.25)

Solution. In order to find the solution u(r, θ), we apply the formulae (5.23)
and (5.24). So that, we compute the Fourier coefficients of the function φ(θ) =
cos πθ

4
given in the boundary condition. By formulae (5.24), we find

a0 =
1

π

∫ π

−π
cos

s

4
ds =

4
√

2

π
,

an =
1

2nπ

∫ π

−π
cos

s

4
cos ns ds = − 4(−1)n

√
2

2nπ(16n2 − 1)
,

bn =
1

2nπ

∫ π

−π
cos

s

4
sinns ds = 0, n = 1, 2, ... ,

(5.26)

Hence, the solution

u(r, θ) =
2
√

2

π
− 4

√
2

π

∞
∑

n=1

(−1)n

2n(16n2 − 1)
rn cosnθ,
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5.7.1 Fundamental Solution of Laplace Equation

We shall find the fundamental solution of Laplace’s equation. Here, we write
the Laplace equations in the variables X = (x1, x2), and X = (x1, x2, x3).

∂2u

∂x2
1

+
∂2u

∂x2
2

= 0, n = 2

∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

= 0, n = 3,

(5.27)

Let n = 2 and let Y = (y1, y2) be a fixed point on x1, x2−plane. Then the
distance of the point Y = (y1, y2) from a point X = (x1, x2) is

r(X, Y ) =
√

(x1 − y1)2 + (x2 − y2)2.

We note that
∂r

∂x1
=
x1 − y1

r
,

∂r

∂x2
=
x2 − y2

r
.

Let r(X, Y ) > 0 and let U(X, Y ) = ln
1

r(X, Y )
. Now, we compute

∂ ln
1

r
∂x1

= −x1 − y1

r2
,

∂ ln
1

r
∂x2

= −x2 − y2

r2
,

∂2 ln
1

r
∂x2

11

=
1

r2
− 2(x1 − y1)

2

r4
,
∂2 ln

1

r
∂x2

2

=
1

r2
− 2(x2 − y2)

2

r4
.

Hence, we find
∂2U

∂x2
1

+
∂2U

∂x2
2

= 0.

Therefore, U(X, Y ) = ln
1

r(X, Y ))
, r(X, Y ) > 0 is the harmonic function on

the whole x, y plane except the focus point Y = (y1, y2). This function is called
fundamental solution of the two dimensional Laplace equation.
.
Now, let n = 3 and Y = (y1, y2, y3) be a fixed point on the R3 space. Then
the distance of the point Y from the point X = (x1, x2, x3) is

r(X, Y ) =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

We note that

∂r

∂x1
=
x1 − y1

r
,

∂r

∂x2
=
x2 − y2

r
,

∂r

∂x3
=
x3 − y3

r
.
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Let r(X, Y )) > 0, X = (x1, x2, x3), Y = (y1, y2, y3) and let U(X, Y ) =
1

r(X, Y )
.

Then, we compute

∂U

∂x1
= −x1 − y1

r3
,

∂U

∂x2
= −x2 − y2

r2
,

∂U

∂x3
= −x3 − y3

r3

∂2U

∂x2
2

=
3(x1 − y1)2

r5
− 1

r3
,
∂2U

∂x2
2

=
3(x2 − y2)2

r5
− 1

r3
,
∂2u

∂x2
3

=
3(x3 − y3)

2

r5
− 1

r3

Hence, we find
∂2U

∂x2
1

+
∂2U

∂x2
2

+
∂2U

∂x2
3

= 0.

Therefore, U(X, Y ) =
1

r(X, Y ))
, r(X, Y )) > 0 is the harmonic function on the

variables x1, x2, x3 in the whole space except the focus point Y = (y1, y2, y3).
This function is called fundamental solution of the three dimensional Laplace
equation.
.
Green’s identities. Let Ω be a bounded domain in R2 with the piecewise
smooth closed boundary ∂Ω. Let u, v ∈ C2(Ω) be twice continuously differ-
entiable functions in Ω. Then, the following second Green’s identity holds:

n = 2,
∫ ∫

Ω
(v∆u− u∆v)dσ =

∫

∂Ω
(u
dv

dn
− v

du

dn
)ds.

n = 3,
∫ ∫ ∫

Ω
(v∆u− u∆v)dσ =

∫ ∫

∂Ω
(u
dv

dn
− v

du

dn
)ds.

(5.28)

Here
du

dn
denotes normal inner derivative to the boundary ∂Ω. Note that for

n = 2, ∂Ω is a curve on x1, x2 plane, and for n = 3, ∂Ω is a surface in the space
R3. Note that the both functions u and v are not assumed to be harmonic.
.
Proof. The prove of both Green’s identities are similar. So, let us prove the
Green’s identity for n = 2. Integrating by parts, we have

∫ ∫

Ω
v
∂2u

∂x2
1

dx1 = −
∫

∂Ω
[v
∂u

∂x1
− u

∂v

∂x1
] cos(n, x1)ds +

∫ ∫

Ω
u
∂2v

∂x2
1

dx1,

∫ ∫

Ω
v
∂2u

∂x2
2

dx2 = −
∫

∂Ω
[v
∂u

∂x2

− u
∂v

∂x2

] cos(n, x2)ds +
∫ ∫

Ω
u
∂2v

∂x2
2

dx2.

Hence, by adding both sides and moving the term with Laplacian from right
to left side, we obtain the Green’s identity

∫

Ω

∫

[v∆u− u∆v]dσ =
∫

∂Ω
[u
dv

dn
− v

du

dn
]ds,
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where the normal derivative

du

dn
=

∂u

∂x1
cos(n, x1) +

∂u

∂x2
cos(n, x2),

Here cos(n, x1) cos(n, x2) are directive cosines between normal vector n and
x1 and x2 axes, respectively.
.
corollary 1. For harmonic functions u and v in Ω, from Green;s identities,
we obtain the following formulae:

∫

∂Ω
[v
du

dn
− u

dv

dn
]ds = 0, n = 2

∫ ∫

∂Ω
[v
du

dn
− u

dv

dn
]ds = 0, n = 3.

(5.29)

In particular, when v = 1, we obtain next corollary
corollary 2. Every harmonic function u satisfies the following identity:

∫

∂Ω

du

dn
ds = 0. n = 2,

∫ ∫

∂Ω

du

dn
ds = 0, n = 3.

(5.30)

5.7.2 Theorem on representation of harmonic functions

Representation Theorem. Every harmonic function u(X) in the bounded
domain Ω with a smooth boundary ∂Ω satisfies the following formula

u(X) =
1

2π

∫

∂Ω
[u(Y )

dU(X, Y )

dn
− U(X, Y )

du(Y )

dn
]dsY , X ∈ Ω, n = 2

u(X) =
1

4π

∫ ∫

∂Ω
[u(Y )

dU(X, Y )

dn
− U(X, Y )

du(Y )

dn
]dsY , X ∈ Ω, n = 3.

(5.31)
Proof. Let u be a harmonic function and v = U be the fundamental solution of
Laplace equation. Then, we cannot apply the formula (5.29) to these functions,
since the fundamental solution U(X, Y ) has the singular point X = Y ∈ Ω.
However, we can apply the formula to the domain Ω0 = Ω −K, where K is a
disk when n = 2 or a ball when n = 3. So that, in Ω0, we have

∫

∂Ω0

[u
dU

dn
− U

du

dn
]ds = 0, n = 2

∫ ∫

∂Ω0

[u
dU

dn
− U

du

dn
]ds = 0, n = 3.

(5.32)
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Now, let us write the above integrals along the boundary ∂Ω of Ω and the
boundary ∂K of K. Taking into consideration negative orientation of ∂K
with respect Ω, from (5.32), we have

∫

∂Ω
[u
dU

dn
− U

du

dn
]ds =

∫

∂K
[u
dU

dn
− U

du

dn
]ds, n = 2

∫ ∫

∂Ω
[u
dU

dn
− U

du

dn
]ds =

∫ ∫

∂K
[u
dU

dn
− U

du

dn
]ds n = 3.

(5.33)

Next, we compute the normal derivative of the fundamental solution U(X, Y )
to the boundary ∂K

U(X, Y ) =



















ln
1

r
, n = 2, X = (x1, x2) ∈ Ω0, Y = (y1, y2) ∈ ∂K,

1

r
, n = 3, X = (x1, x2, x3) ∈ Ω0, Y = (y1, y2, y3) ∈ ∂K

Then, we compute

dU(X, Y )

dn
=



















1

r
, n = 2, X = (x1, x2) ∈ Ω0, Y = (y1, y2) ∈ ∂K,

1

r2
, n = 3, X = (x1, x2, x3) ∈ Ω0, Y = (y1, y2, y3) ∈ ∂K

Substituting the above formulae for the normal derivatives into (5.33), we
obtain

∫

∂Ω
[u
dU

dn
− U

du

dn
] ds =

1

r

∫

∂K
u ds− ln

1

r

∫

∂K

du

dn
ds, n = 2

∫ ∫

∂Ω
[u
dU

dn
− U

du

dn
]ds =

1

r2

∫

∂K
u ds− 1

r

∫ ∫

∂K

du

dn
ds n = 3.

(5.34)

Hence, by corollary 2, we have

∫

∂Ω
[U
∂u

dn
− u

dU

dn
]ds =

1

r

∫

∂K
u(Y )dsY , n = 2

∫ ∫

∂Ω
[U
du

dn
− u

dU

dn
]ds =

1

r2

∫

∂K
u(Y )dsY n = 3.

(5.35)

Now, we apply the identity
∫

∂K
u(Y )dsY =

∫

∂K
[u(Y ) − u(X)]dsY + u(X)

∫

∂K
dsY , (5.36)

Because of uniform continuity of the harmonic function u(X), we have

|u(Y ) − u(X)| < ε
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for sufficiently small r(X, Y ).
Then, we have

|
∫

∂K
[u(Y ) − u(X)]dsY | < 2πε r for n = 2

|
∫ ∫

∂K
[u(Y ) − u(X)]dsY | < 4πε r2 for n = 3.

(5.37)

Using (5.36) and (5.37), we compute the limits

lim
r−>0

1

r(X, Y )

∫

∂K
u(Y )dsY = 2πu(X) for n = 2,

lim
r−>0

1

r2(X, Y )

∫ ∫

∂K
u(Y )dsY = 4πu(X), for n = 3.

Hence by formula (5.35), we obtain equality (5.31). This ends the proof.
From the representative theorem, we conclude the following important formula
concerning boundary value problems for harmonic functions. Namely, let us
substitute to (5.31), u(X) ≡ 1. Then, we obtain the formula

∫

∂Ω

dU(X, Y )

dn
dsY = 2π, X ∈ Ω, n = 2

∫ ∫

∂Ω

dU(X.Y )

dn
dsY = 4π, X ∈ Ω, n = 3.

(5.38)

Gauss Mean Value Formula Let Ω = K be the disk (n = 2) or the ball
(n = 3) with the radius R and the center at X. Then, on the surface of K,
we have

U(X, Y ) = ln
1

R
,
dU

dn
=

1

R
, n = 2,

U(X, Y ) =
1

R
,

dU

dn
=

1

R2
, n = 3

(5.39)

Hence, by the representative theorem, we obtain Gauss Mean Value Formula
for harmonic functions

u(X) =
1

2πR

∫

∂K
u(Y )dsY , X = (x1, x2) ∈ K, n = 2,

u(X) =
1

4πR2

∫ ∫

∂K
u(Y )dsY , X = (x1, x2, x3) ∈ K, n = 3.

(5.40)
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5.7.3 Green’s Function

. We note that every harmonic function H(X, Y ) of the variable Y , and at
fixed X, satisfies the identity (see formula (5.29))

∫

∂Ω
[u(Y )

dH(X, Y )

dn
−H(X, Y )

du(Y )

dn
]ds = 0, n = 2

∫ ∫

∂Ω
[u(Y )

dH(X, Y )

dn
−H(X, Y )

du(Y )

dn
]ds = 0, n = 3.

(5.41)

Let us choose the harmonic function H(X, Y ) = U(X, Y ) for Y ∈ ∂Ω at fixed
X ∈ Ω. Then, the Green’s function is

G(X, Y ) = U(X, Y ) −H(X, Y )

By the representative theorem (see formula (5.31)), Green’s function satisfies
identity

u(X) =
1

2π

∫

∂Ω
[u(Y )

dG(X, Y )

dn
−G(X, Y )

du(Y )

dn
]dsY , X ∈ Ω, n = 2

u(X) =
1

4π

∫ ∫

∂Ω
[u(Y )

dG(X, Y )

dn
−G(X, Y )

du(Y )

dn
]dsY , X ∈ Ω, n = 3.

(5.42)
Because G(X, Y ) = 0, for Y ∈ ∂Ω, X ∈ Ω, therefore, every harmonic function
u(X) in Ω, satisfies the identity

u(X) =
1

2π

∫

∂Ω
u(Y )

dG(X, Y )

dn
dsY , X ∈ Ω, n = 2

u(X) =
1

4π

∫ ∫

∂Ω
u(Y )

dG(X, Y )

dn
dsY , X ∈ Ω, n = 3.

(5.43)

Hence, by the formula (5.43), we arrive at the following theorem:

Theorem 5.5 If G(X, Y ) is the Green’s function for Laplace’s equation, then
the solution u(X) of the Dirichlet’s problem

∆u(X) = 0, X ∈ Ω, u(X) = φ(X), X ∈ ∂Ω

is given by the formula

u(X) =
1

2π

∫

∂Ω
φ(Y )

dG(X, Y )

dn
dsY , X ∈ Ω, n = 2

u(X) =
1

4π

∫ ∫

∂Ω
φ(Y )

dG(X, Y )

dn
dsY , X ∈ Ω, n = 3.

(5.44)
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Green’s function for a disk with Dirichlet’s condition. Let r(0, Y ) < R,
be the disk with the radius R and the center at the origin. Let us denote by

ρ = 0X, ρ = 0X, r = Y X, r = Y X.

&%
'$s s

0

X

Y

�
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�
��

HH
�
�
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�

sJJ

X

R
r

ρ

rρ

Disk K
One can check that the Green’s function for the disk K is

G(X, Y ) =



















ln
1

r
− ln(

R

ρ
.
1

r
) = ln

rρ

Rr
, X 6= 0,

ln
1

r
− ln

1

R
, X = 0

(5.45)

Green’s function for a ball with Dirichlet’s conditions. Similarly, we
construct Green’s function for a ball K(0, R) = {X = (x1, x2, x3) : r(0, X) <
R}. Then, following the notations given above, we write the Green’s function
for the ball

G(X, Y ) =



















1

r
− R

ρ
.
1

r
, X 6= 0,

1

r
− 1

R
, X = 0

(5.46)

Poisson’s Integral. Let us note that in the case when the domain Ω is
a disk K or a ball K, the Green’s function is given by formulae (5.45) and
(5.46). Then, the solution u(X) of the Dirichlet’s boundary value problem,
in the case , is given by the Poisson’s integral (see Representative Theorem,
formulae (5.44)).

u(X) =
1

2π

∫

∂K
φ(Y )

dG(X, Y )

dn
dsY , X ∈ K, n = 2

u(X) =
1

4π

∫ ∫

∂K
φ(Y )

dG(X, Y )

dn
dsY , X ∈ K, n = 3.

(5.47)

In order to express the solution u(X) in a transparent form, we shall evaluate

the kernel
∂G(X, Y )

∂nY
. Let n = 3 and X 6= 0. Then, we find

dG(X, Y )

dnY
= − 1

r2

dr

dnY
+
R

ρ
.
1

r2
.
dr

dnY
(5.48)
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Because

r =

√

√

√

√

3
∑

i=1

(yi − xi)2

therefore
dr

dnY
=

3
∑

i=1

(yi − xi)
2 cos(n, xi).

But cos(n, xi) = −yi

R
, so that

dr

dnY
=

1

rR
(

3
∑

i=1

xiyi −
3

∑

i=1

y2
i ). (5.49)

We note that R2 =
3

∑

i=1

y3
i , and the expression

3
∑

i=1

xiyi is the inner product of

the vectors 0X and 0Y . Hence, it implies the identity

3
∑

i=1

xiyi = Rρ,

where ω is the angle between the vectors 0X and 0Y . Then, we can write
formula (5.49) in the form

dr

dnY
=

1

r
(ρ cosω − R). (5.50)

In a similar way, we obtain the derivative
dr

dnY
.

Taking into consideration the proportion

R

ρ
=
r

r
=
ρ

R
,

we obtain

dr

dnY
=

1

r
(ρ cosω − R) =

ρ

Rr
(
R2

ρ
cosω − R) =

1

r
(R cosω − ρ). (5.51)

From the formulae (5.48), (5.50) and (5.51), we find

dG(X, Y )

dnY
= − 1

r2
(ρ cosω − R) +

R

rrρ
(R cosω − ρ)

=
1

r3
[−(ρ cosω −R) +

ρ

R
(R cosω − ρ)]

(5.52)

Hence, w obtain the equality

dG(X, Y )

dnY
=
R2 − ρ2

Rr3
, X ∈ K, m = 3. (5.53)
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Therefore, Poisson’s integral takes the following form:

u(X) =
1

2πR

∫

∂K

R2 − ρ2

r2
φ(Y )dsY , X ∈ K, n = 2. (5.54)

and

u(X) =
1

4πR

∫ ∫

∂K

R2 − ρ2

r3
φ(Y )dsY , X ∈ K, n = 3, (5.55)

On the figure, we present the parameters r, R, ρ, φ and θ of the Green’s function
for the disk K.

.
Let us write the Poisson’s integral in the polar coordinates

y1 = R cosϕ, y2 = R sinϕ

. From the figure and by cosine formula, we find

r2 = R2 + ρ2 − 2Rρ cos(θ − ϕ).

Therefore, the kernel of the Poisson’s integral

R2 − ρ2

r2
=

R2 − ρ2

R2 + ρ2 − 2Rρ cos(θ − ϕ)
. (5.56)

When point Y is moving along the circleK with the radius R, at fixed pointX,
the angle ϕ ∈ [0, 2π]. Changing the variable of integration Y = (y1, y2) ∈ ∂K,
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to polar coordinates y1 = R cosϕ, y2 = R sinϕ by (5.54) and (5.56), we obtain
the solution of the boundary value problem given by the Poisson’s integral

u(ρ, θ) =
1

2π

∫ 2π

0

R2 − ρ2

R2 + ρ2 − 2Rρ cos(θ − ϕ)
φ(ϕ)dϕ. (5.57)

We can interpret the Poisson integral solution (5.57) as finding the potential
u at (ρ, θ) as a weighted average of the boundary potential φ(θ) weighted by
the Poisson’s kernel (5.56). This tells us something about physical systems:
namely that the potential at a point is the weighted average of neighboring
potentials. The Poisson’s kernel tells just how much weight to assign to each
point.
Let us note that the potential at the center of the circle is given by the formula

u(0, 0) =
1

2π

∫ 2π

0
φ(ϕ) dϕ. (5.58)

Example 1. Evaluate the potential at the center of the circle by Poisson

integral for the boundary given function φ(ϕ) = cos
ϕ

4
, 0 ≤ ϕ ≤ 2π.

Solution. By formula (5.57), we compute

u(0, 0) =
1

2π

∫ 2π

0
φ(ϕ)dϕ =

1

2π

∫ 2π

0
cos

ϕ

4
dϕ =

2

π
.

Example 2. Show that the integral of Poisson kernel is equal to 2π, that is

∫ 2π

0

R2 − ρ2

R2 + ρ2 − 2Rρ cos(θ − ϕ)
dϕ = 2π. (5.59)

Solution. Let the boundary given function φ(ϕ) ≡ 1. Then, the solution of
the boundary problem u(X) = 1 for all X ∈ K. Thus, by formula (5.57), we
get

1 =
1

2π

∫ 2π

0

R2 − ρ2

R2 + ρ2 − 2ρR cos(θ − ϕ)
dϕ.

Hence
∫ 2π

0

R2 − ρ2

R2 + ρ2 − 2ρR cos(θ − ϕ)
dϕ = 2π.

Example 3. Solve the following boundary value problem using Poisson inte-
gral

uxx + uyy = 0, (x, y) ∈ K = {x2 + y2 < 4},

u(x, y) = 2, (x, y) ∈ ∂K = {x2 + y2 = 4},
Solution . By the Poisson formula, the solution in the polar coordinates is

u(ρ, θ) =
1

2π

∫ 2π

0

4 − ρ2

4 + ρ2 − 2 ∗ 4 cos(θ − ϕ)
2 dϕ,
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Hence, by formula (5.59), we compute

u(ρ, θ) =
2

2π

∫ 2π

0

4 − ρ2

4 + ρ2 − 2 ∗ 4 cos(θ − ϕ)
dϕ = 2.

In the Cartesian coordinates, we have also the constant solution u(x, y) = 2
for all (x, y) ∈ K.

5.8 Helmholz Equation and Eigenvalue Problem.

We shall solve the following Helmholz equation in the polar coordinates (r, θ), x =
r cos θ, y = r sin θ with homogeneous boundary conditions:

∆u(r, θ) + λ2u(r, θ) = 0,

u(1, θ) = 0, 0 ≤ θ2π,
(5.60)

where

∆u(r, θ) ≡ urr +
1

r
ur +

1

r2
uθθ.

Applying the method of separation of variables let us substitute to Helmholz
equation

u(r, θ) = R(r)Θ(θ).

Then, we obtain

r2R
′′

+ rR
′

+ (λ2r2 − n2))R = 0, Bessel′s equation

R(1) = 0,

Θ
′′

+ n2Θ = 0.

(5.61)

Bessel’s Equation Now, we shall solve the ordinary differential Bessel’s equa-
tion

r2R
′′

+ rR
′

+ (λ2r2 − n2))R = 0, 0 < r < 1,

R(1) <∞, physical condition,

R(1) = 0,

Θ
′′

+ n2Θ = 0.

(5.62)

As we know from the theory of ordinary differential equations, that Bessel’s
equation has two linearly independent solutions

1. R1(r) = AJn(λr), n-th order Bessel function of the first kind,

2. R2(r) = BYn(λr), n-th order Bessel function of the second kind.
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Here, there are power series representation of the Bessel functions

Jn(λr) = (
λr

2
)n

∞
∑

m=0

(−1)m

m!(n+m)!
(
λr

2
)2m,

Yn(λr) =
2

π
ln
λr

2
Jn(λr) − 1

π
(
λr

2
)−n

n−1
∑

k=0

(n− k − 1)!

k!
[
(λr)2

4
]k.

Since Yn(λr) is unbounded at r = 0, we choose as our solution

R(r) = AJn(λr).

Next, we find R(r) and λ using the boundary condition R(1) = 1. Namely,
substituting R(1) = 0 into AJn(λr), we obtain

Jn(λ) = 0.

In other words, in order to be R(r) = 0 on the boundary ∂K of the circle
K, we must pick the separation constant λ to be one of roots of the equation
Jn(r) = 0, that is

λ = knm,

where knm is the m-th root of Jn(r) = 0. Finally, we obtain the solution

unm(r, θ) = AJn(knmr).

5.9 Exercises

Question 1. Consider the following boundary value problem:

uxx + uyy = 0, (x, y) ∈ Ω = {(x, y) : 0 < x < 1, 0 < y < 1}, (5.63)

Find the range of the values of the solution u(x, y). which satisfies one of the
boundary condition

(a) u(x, y) = sinπxy, (x, y) ∈ ∂Ω,

(b) u(x, y) = cos πx y, (x, y) ∈ ∂Ω,

(c) u(x, y) = sinπx + sinπy, (x, y) ∈ ∂Ω,

(d) u(x, y) = cos πx+ cos πy, (x, y) ∈ ∂Ω,

Question 2. Show that the following boundary value problem is stable

uxx + uyy − u = f(x, y), (x, y) ∈ Ω = {(x, y) : −1 < x < 1, −1 < y < 1},

u(x, y) = φ(x, y), ((x, y) ∈ ∂Ω.
(5.64)
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for given continuous functions f(x, y) and φ(x, y). Give an priori estimate of

the solution u(x, y), when f(x, y) = e−x2
−y2

, (x, y) ∈ Ω and φ(x, y) = 0, (x, y) ∈
∂Ω.
Question 3. Solve the following boundary value problem:

∂2u

∂x2
+
∂2u

∂y2
= 0, (x, y) ∈ Ω = {(x, y) : 0 < x < 1, 0 < y < 2},

u(x, 0) = 0, 0 ≤ x ≤ 1

u(0, y) = u(1, y) = 0, 0 ≤ y ≤ 2,

u(x, 2) = sinπx, 0 ≤ x ≤ 1.
(5.65)

Question 4. Solve the following boundary value problem:

urr +
1

r
ur +

1

r2
uθθ = 0, −π < θ < π, 0 < r < 4,

u(4, θ) = cos
θ

2
, −π ≤ θ ≤ π,

(5.66)
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