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PREFACE

These lecture notes are designed for undergraduate students as a complemen-
tary reading text to an introductory course on Partial Differential Equations.
It is assumed that the students have basic knowledge in Real Analysis.

The notes have been used for teaching the course MAT426 (PDE), Partial
Differential Equations at the Faculty of Science, University of Botswana.

Tadeusz STYS









Chapter 1

Solution of Partial Differential
Equations

1.1 The General Solution of PDE

The general solution of a partial differential equation (PDE) is considered as
a collection of all possible solutions of a given equation.

Example 1.1 Consider the following first order linear PDE equations

ug(z,y) =2x+y, —oo<x,y<oo (1.1)

uy(z,y,2) =r+2y+2 —o00<x,y,2<00 (1.2)

Solution. Let the variable y in (1.1) be fixed, and let us integrate both sides
of equation (1.1) with respect to the variable z. Then, we obtain

u(x,y) =2 +yx+ f(y) (1.3)

for arbitrary differentiable function f(y). Thus, all solutions of equation (1.1)
are of the form (1.3), where f(y) is any differentiable function.

Similarly, let us integrate both sides of the equation (1.2) with respect the
variable y, when the variables z and z are fixed. Then, we obtain all solutions
of equation (1.2) in following form:

uz,y,z) =x+y°+2y+ gz, z), (1.4)
for arbitrary differentiable function g(x, 2).

Example 1.2 Consider the following second and third order linear PDE equa-
tions

Ugy(z,y) =22 +Yy, —00<uz,y<00 (1.5)
Upy(2,Y,2) =24+ 2y+2, —00<x,y,2<00 (1.6)
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Solution. Let us integrate both sides of equation (1.5) with respect to the
variable y, when the variable z is fixed. Then, we obtain

1
w(z,y) =22y + 59"+ f(2) (1.7)
for arbitrary differentiable function f(z). Next, we integrate equation (1.7)
with respect to the variable z, when the variable y is fixed. Then, we obtain

ulr,y) = 2%y + 507 7+ F(a) + g(y) (1.8

where F'(z) is an antiderivative to the function f(x) and g(y) is an arbitrary
differentiable function of the variable y. Thus, all solutions of equation (1.5)
are of the form (1.8), where F'(x) is an antiderivative to the arbitrary function
f(z), and g(y) is any differentiable function of the variable .

Now, let us integrate both sides of equation (1.6) with respect to the variable
z, when the variables x and y are fixed. Then, we obtain

1
Ugy(T,y,2) =0 2+ 2y 2 + §z2 + f(x,y) (1.9)

Next, we integrate equation (1.9) with respect to the variable y, when the
variables x and z are fixed. Then, we obtain

1
(2, y,2) =2y z+y? 2+ 5223; + F(x,y) + g(x, 2) (1.10)
where F'(x,y) is an antiderivative to f(z,y) with respect to the variable y, and
g(x, z) is an arbitrary differentiable function of the variables x and .
Finally, we integrate equation (1.10) with respect to the variable x, when the
variables y and z are fixed. Then, we obtain

1 1
u(x,y,z) = 5:1:2 yz+ay’ s+ §ZE y2? + FF(x,y)+ G(z,2) (1.11)

where F'F(x,y) is an antiderivative to the antiderivative F'(x,y) with respect
to the variable x, and G(z,z) is an antiderivative to g(z, z) with respect to
the variable z.

Example 1.3 Find all solutions of the following non-linear PDE equation.:
(tzz)? + (uyy)* =0, —00 < T,y < 00 (1.12)

Solution. We note that u,, =0 and wu,, = 0. All solutions of the equation
Uz, = 0 are in the form

u(z,y) = f(y)r +g(y) (1.13)



and all solutions of the equation wu,, = 0 are in the form

u(z,y) = q(z)y + r(v), (1.14)

for arbitrary differentiable functions f(y), ¢(y), ¢(x) and r(z). Then, all
solutions of equation (1.12) have common part which is included in both (1.13)
and (1.14). So that, the solutions which have both forms are in the following
form:

ulz,y)=azy+br+cy+d,

for arbitrary constants a, b, ¢ and d.
Example 1.4 Consider the following first order PDE equation
T Uy — 2T Uy =, —0o < x,y < 0. (1.15)

Show that
w(,y) = of(2 5 +y) (1.16)

is the solution of equation (1.15) when f is any differentiable function. Find
the solution within the family of solutions (1.16), which satisfies the condition

u(l,y) = 2, —00 < Yy < 0.

Solution. Let us note that f(2z + y) is the function of one variable ¢t =
2 +y, —oo <t < oo. By differentiation, we find

U (z,y) = fRz +y)+2x f 2z +7), uy(z,y) =2 f 2z +y).
Hence, we compute
T up—2 7 u, = f2u+y)+2 22 f 2u+y)—2 2% f 2z+y) = = f(2a+y) = ulz,y).

Now, applying the condition u(1,y) = y? to the solution (1.16), we find func-
tion f. Thus, u(l,y) =1, f2x*x1+y)=9* Lett=2+yandy =1—2.
Then, f(t) = (t — 2)%. We can choose f(2x +y) = (2z + y — 2)?. Let us note
that the solution u(x,y) = x(2z + y — 2)? satisfies the condition u(1,y) = y>.

1.2 First Order PDE with Constant Coeflicients

Let us consider the following equation
at; +bu,+cu= f(z,y), a’+b* > 0. (1.17)

where a, b, and ¢ are constant coefficients, and f(z,y) is a given continuous
function.
Let us consider the case when b # 0. Then, we shall transform the equation

at, +bu,+cu= f(z,y),



given in x,y coordinates to the equation

W+ az

bv,+cv=f( 2

, Z)
in the new coordinates w, z
w=br—ay, z=y
Hence, we find
w+az
In terms of the new coordinates, we compute

x Y=z

a uy + b uy = a(vyw, + v:2,) + b(vywy, +v:2y) = (@b—0ba)v, +bv, =buv,.

Thus, in the new variables, equation (1.17), takes the form

bvz%—cv:f(w_;az,z) (1.18)
Now, we shall solve the equation
bv,+cv=gw,z), (1.19)

for g(w, 2) = f(ET L2 2

In order to find the general solution of equation (1.19), we divide the above
cz

equation by b and multiplying by the factor 6?, to obtain

oz oz , =
e bu.(w,2) +eb pu(w,z) = pg(w,2)e b,
or
5 & , @
—[ed = — b . 1.2
5ole b u(w,2)] = Sg(w.2)e (1.20)

Integrating both sides of equation (1.20) with respect to z, and multiplying by
cz

the factor e_?, we obtain the following general solution of equation (1.19)

v(w, z) = e_?[% /g(w,z)e? dz + C(w)], (1.21)

where C'(w) is an arbitrary differentiable function of the variable z.
In the case when b = 0, we have already the equation in the form (1.19), so
that

au, + cu = f(z,y).



The new function

v(w,2) = u(r,y) = u(w _Za Z,z).

Now, we can solve equation (1.19) by formula (1.21) to get the solution v(w, z),
and then to obtain the solution u(z,y) = v(b x—a y, y). Below, we shall present
some examples following the above solution of the first order linear equation
with constant coefficients.

Example 1.5 .

(1a) Find all solutions of the equation

———tu=1 (1.22)

(1b) Find the solution of equation (1.22) which satisfies the condition
ulr,y)=2 for y=u=x

Solution 1a. Note that the coefficientsa = 1, b = —1, ¢ = 1 and the function
f(z,y) = 1. First, we transfer the equation to the form

v, +cv=g(w,z),

by the mapping
w=—1r-—y, z=y

So that we have
r=-w-—z, Y=z

We consider the new unknown
v(w, z) =u(z,y) = u(—w — z, 2),
for which, we compute the expression
Uy — Uy = (Vo Wy + Wy 2) — (U Wy + W, 2y) = —0,.
Since g(w, z) = f(—w — z, z) = 1, therefore, we obtain the equation
—vy(w, z) +v(w,z) = 1.

z

Multiplying the above equation by e *, we have

—e vy (w, 2) + e Fv(w,z) =e*  or  ——|e



By integration with z
—eFv=—"*+C(w) or v(w,z)=1-C(w)e*

Hence, we find the solution

v(w,z) =u(—w—z,2) =1-C(w)
for arbitrary differentiable function C(w).
Solution 1b. For y = z, we find u(z,z) =1 — C(—2z)e” = 2.
So that
C(—2z)=—€e"
t

Let t = —2z. Then, we have C'(t) = —e 2 and the solution

—z—y y—=
ulz,y)=14+e 2 e'=1+¢ 2

satisfies the condition u(z,z) = 2.

Example 1.6 Find the general solution of the equation
3uUy —2uy +u=ux.

Solution. We consider the new variables

w=2x+3y, z=1.

Hence
w—3z
xr = =z
5 Y
Then, we introduce the unknown
w— 32
v(w, z) = u(z,y) = u( 5 L Z).
Now, we compute
3 uy — 2 uy = 3(VpWy + V:25) — 2(Vpwy + v,2) = —20,.

Equation (1.23), in the new variables becomes

1
—20,+ v = §(w—3z).

z
Dividing by —2 and multiplying by the factor e 2, we obtain

9 —= 1 -2
&[ QU(w,z)]:—Ze 2(w—3z).

and u(x,y)=1—C(—x —y)eY,

(1.23)

(1.24)

(1.25)



Integrating both sides of (1.25) with respect z, when w is fixed, we find
z z z
e_iv(w,z) = —iw/e_§ dz + Z/ze_g dz 4+ C(w)
) z 5 _Z z

= §we_5 + Z[ze 2(-2) - /6_5(—2) dz] + C(w) (1.26)

where C'(w) is an arbitrary differentiable function of the variable w.
Hence, we find the solution

z
1 —
v(w,z) = E[w —32z—06]+e2C(w).
and coming back to the original variables, we obtain the general solution of
equation (1.23) in the following form
' y y
u(z,y) = 5[2:17 +3y —3y —6]+e2C(2x 4+ 3y) =x — 3+ e2C(2x + 3y).

Let us observe that choosing the function C'(2x + 3y), we obtain a particular
solution. For example, the particular solution is

Y
u(z,y) =x —3+e2.

for C'(2z + 3y) = 1, Indeed, we have

Y )
Buy —2uy+u=3+e2 +x—-3+e2 =z,

Also, for C'(2x 4+ 3y) = 2x + 3y, we have the particular solution

)
w(z,y) =z —3+e2(2z + 3y).

1.3 Exercises

Question 1. Find the general solution of the equations
(a) u, = 3z + 2y,
(b) usy =z y,
(€) Upy =2+ Y+ 2.
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Question 2. Find all solutions of the equations
(a) uy —2uy +u=1x+y,
(b) uy 4+ 2uy +3u=2+vy,
(¢) up —uy +u=0.

Question 3.

1. Find all solutions of the equation

Ug + Uy —2u=1y

2. Find the solution of the equation which satisfies the condition

u(z, 1) ==z for —o00<r<oo



Chapter 2

Classification of Partial

Differential Equations of the
Second Order

2.1 Hyperbolic, Elliptic and Parabolic Equations

We shall consider the following form of partial differential equations:

0*u 0*u 0*u
B +2b(z,y) 77— + c(x, y)a—yg

0xdy
ou ou

where u(z,y) is an unknown function and the coefficients

Lu =a(z,y) +

(2.1)

a(r,y), b(z,y), c(z,y), d(z,y), e(z,y), g(z,y)

and the right side f(z,y) are given functions of the variables (x,y) in the
domain €.
For the classification purpose, we consider the following differential operator
of the second order associated with the main part of equation (2.1)
0%u 0*u 0%u
Lou = — +2b — —
ou a(a?, y) o2 + (‘T> y) axay + C($> y) ayg

We shall observe that the differential operator

ou ou

of order one does not effect the type of the equation. The type of an equation
is determined by the operator Ly of the sedcond order.

Classification. All the equations of the general form (2.1) are divided in
three the following classes pending on the sign of the discriminant * — a c.

11
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1. (2.1) is called hyperbolic equation if the discriminant * —a ¢ > 0, for

all (z,y) € Q,
2. (2.1) is called elliptic equation if the discriminant b —ac<0, for
all (z,y) € Q,
3. (2.1) is called parabolic equation if the discriminant b*—ac=0, for
all (z,y) € €.
Also,

1. the operator L is called

hyperbolic operator if the discriminant 5% —a ¢ > 0,
2. the operator L is called elliptic operator if the discriminant 5% —a ¢ < 0,

3. the operator L is called parabolic operator if the discriminant > —a ¢ =

0.

Example 2.1 .

The wave equation
Pu  Pu 0
oz oy

1s the hyperbolic equation, since the discriminant

V¥ —ac=0"-1(-1)=1>0.

e Laplace’s equation
Pu 0%u

PR

1s the elliptic equation, since the discriminant

P—ac=0—1x1=—-1<0.

e The heat equation
ot 0x?

1s the parabolic equation, since the discriminant

=0,

BP—ac=0"—1x0=0.
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2.2 The Standard Form of Hyperbolic, Elliptic and Parabolic
Equations

The following standard or canonical forms of hyperbolic, elliptic and parabolic
equations are considered:

1. The first standard form of a hyperbolic equation

O et 2,0
otor 1 T e o)

2. the second standard form of a hyperbolic equation

@_W_U_f*(t %@)
oz oz T\ g0 o)

3. the standard form of an elliptic equation

ox?  Oy? U 0x Oyl

4. the standard form of a parabolic equation

ou  ,0%u . du
E_k @_l_f (t7l’>u>%)>

Here, f* is a function independent of the second derivatives.
In order to transform equation (2.1) into its canonical form, we consider the
new variables

§=o(r,y), n=v(z,y).

For the composed function u(§,n) = u(é(x,y),n(x,y)), we compute the fol-
lowing derivatives:

du_oudE oudn  ou_oudE oudn

ox  0&0x  Onox’ dy 00y  Onody

and
Pu_ 006, P 0E0n 0w 0n, o iy
0x2  0€2 Ox 0&0n 0x dx ~ On? O 0& 0x?  On0x?
Pu  Pud€df  0*u 0y 0w 9Edn  0*udndn

oxdy  0&2 0z Oy + 85877%83/ 00N Oy 0x ~ On? dx Ay
u 0%¢ +@ 0*n
0& 0x0Qy ~ On dxdy
@:@(%)24_2 0%u_0€ O @(@)2 @8_254_@8_277
oy?  0&2 oy 0&ondydy  On? oy’ 0 dy?  On Oy?
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Now, substituting the above relationship to equation (2.1), we obtain the fol-

lowing equation in terms of the variables & and n:

A%Jr B;; +C%+D§—?+E@+Gu_
where
A=a(Xy +2b§§+ (af,)
o
C= (g") +2bg—ng—2+ (gZ)
D:a§i§+2b§§y+ 225 o g—f,
B=agh gt el dgl ol
G=g F=/
It may be verified that
Bz—AC:(bz—ac)(%g—Z—g—i%)z,

where
o€ 0¢
| ow oy | _ocon oeon
& m) = On On Ordy Oyox
oxr Jy

is Jacobian of the mapping

§=o(r,y), n=v(,y),

(2.2)

(2.3)

Thus, the type of the equation remains the same in the new coordinates £ and

n, provided that Jacobian J(&,n) # 0.

We note that, every equation of the general form (2.1) can be transformed by

a transformation
§=p(z,y), n=v(z,y).

to a canonical form.

(2.4)
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2.3 Transformation of a Hyperbolic Equation into a Standard-
Canonical Form

If we assume the canonical form of the hyperbolic equation in the two variables

£
0%u . Pu  Pu
86877 - f (t7€7 €t€,U), or w - % - f (t7€7777u)7

with the wave equation as the representative

0%u ’u  0*u
=0 or = = 55
9&dn o0& On?

then, we have to put the following conditions:

08, ¢ 0 080
A= a(_ﬁx) + 26_817 _8y + c(—ay) =0, .
o 0n, dn on oy '
C= a(_ﬁx) + 26_&5_&/ + c(—ay) =0,

We shall call the curves given by equations (2.5) as characteristics of equation
(2.1), if the functions given in the implicit form

o(z,y) = constant  and  Y(x,y) = constant

are different solutions of characteristic equations (2.5).
Then, along of the characteristic curves the following equations hold:

3 3
b zs
dx T dy
on /.

dy = 0.
(2.6)

or

dy _ &

de &
dy _ e

dx my

(2.7)

d
Substituting relation (2.7) between d_y and &, Nx, &y, Ny, to equation (2.5), we
x
obtain the following ordinary differential equation
dy dy

a(%)2 -2 b% +c=0. (2.8)
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Hence, we obtain two ordinary differential equations to determine the charac-
teristics curves:

dy A\ — b(z,y) — \/b(CE,y)2 —a(z,y)c(x,y)
dv a(x,y) 29)
dy byt Vb, )2 = alz,y)e(x, y)
dv a(z,y)
where \; and )\ are roots of the quadratic equation
ar? — 20\ + ¢ = 0. (2.10)
and
’ (2.11)
ey,
Ty
Example 2.2 .

(a) Find equations of the characteristic for the following hyperbolic equation:

YU — T2Uyy = 0, x>0, y>0. (2.12)

(b) Transform equation (2.12) into the canonical form

Solution
To (a). The two characteristic equations are

d_y_b—\/bz—ac_ T d_y_b: b2 — ac

(2.13)

x
de a Y’ de a Yy

Note that this is equivalent to setting A = C' = 0.
Solving the above ordinary differential equations by the method of separating
variables, we find the equations for the characteristics in the implicit form

y2 — 2% = constant, y2 + 2 = constant.

To (b). We find the canonical form of the hyperbolic equation in the new
variables

§=y’ —a?, n=y*+a’.
Then, we compute the coefficients A, B, C, D, E, F, G in the equation

Au§§ —+ 2B’u§77 —+ C’um —+ Du§ —+ E"u77 + Fu=G. (2.14)
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having the coefficients a = y?, b=0, c=—22, d=0,e=0, f=0, ¢g=01in
the equations
auge + QUgy + AUy, + ate + eu, + fu = g.

we compute
A=a(&) +2b0 868 +c (&) =y*(—22)* —2*(2y)* =0
B = a&uny + 0(&emy + &) + cEymy = v (—22) (22) — 2% (2y) (2y) = —82°y?
C = a(n.)® +2bmny +c(ny)’ =y*(—22)* —2*(2y)* =0
D = a&yy + 2Euy + &y + d&y + €&y = —2((2% + ¢?)
E = a1)yy + 20y + cnyy + dn, + eny = 2(y? — 2?)
F=0, G=0.

Substituting the above coefficients to the equation (2.14), we obtain the fol-
lowing equation
— 1»2 + 2 U + 2 _ .2
Ar2y2

Hence, by the equations of the characteristics, we find the first canonical form

Uen = nug — §uy
A2 )
We can find the second canonical form of equation (2.14), introducing the new
variables

Now, we can rewrite equation (2.15), given in variables &, 7 in terms of the

variables «, § to obtain the second canonical form.
Then, we compute

Ug = UaQg + Ugfe = Uq + Ug
Uy = UaOy + UgSy = Uq — Ug
Ugy = Uaalty + Uapfy + Upatty + Upply = Uaa — Ugp
Hence, by substituting, we obtain the second canonical from equation (2.12).

Bua + aug

Haa = Upp = 208

Example 2.3 . Consider th equation

@_l_( + )82u + @_
Yoz TETY 0xdy Iagﬁ N

0, (2.16)
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1. Find the range of x and y for which the equation is hyperbolic.

2. Transform the equation to a canonical form.

1
Solution. We have a =y, b= 5(5B+y) c=x,d=e=¢g=f=0. The dis-
criminant
V¥ —ac=
is positive for all real x # y .
Then, equation (2.16) is hyperbolic on the whole z,y plane, except the line

y = x, where (2.16) becomes the parabolic equation.
The equation for the characteristics is:

dy o dy
—) = — =0. 2.17
WP = @+ L+ (217)
Then, we find the roots
x
) (@+y) —J@+y)? Ay (@ +y)— |z -y " if =<y
1: = =
2y 2y 1, if >y,
2 oy
. (@+y) —J@+y)?2 =2y (z+y)+]e -yl " if v>y
2: = =
2y 2y 1, iof z>uv,

x
So that, we consider A\ = — and Ay = 1.
Hence, we obtain the following two equations for characteristics

dy _ @ dy _

= - 1 2.18
de vy’ dx (2.18)

Solving the above equations, we find
o(z,y) = y* — 2* = constant, Y(x,y) =y — x = constant.  (2.19)

Now, we consider the mapping
£ =y* -2, n=y—x. (2.20)
To transform the hyperbolic equation to the standard form, we compute
A= a(&)? + 20868, + ¢ (§)° = y(—22)° + (z + y)(—22)(2y) + (2y)* = 0

B = a&una + b(&any + 1y7a) + cyny =

=y(—22)(=1) + 3(z + y) (=22 — 2y) + 22y = —(z — y)* = —¢?,
C = a(n.)” +20memy +c(ny)? =y — (r+y) +2=0
D = a&pn + 2080y + §yy 4+ dEp + €5y = —2(y — 1) = =20,

E = ang, + 2bny + cnyy + dn, +en, =0, F=0.
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In the new variables £ and 7, the hyperbolic equation (2.16) takes the standard
form
Fu | du_
" ogon " o€ ~

(2.21)

2.4 Transformation of an Elliptic Equation into the Standard-
Canonical Form

In the case of elliptic equations, when the discriminant b*> — ac < 0, the roots
A1 and Ag of the quadratic equation (2.10) are complex and hence ¢(z,y) and
¥ (x,y) will be also complex functions. Therefore, mapping (2.3) is determined
by the conjugate roots of quadratic equation (2.10), that is, by A — ix and
A+ip. Then | the functions ¢(x,y) and ¢ (z,y) are solutions of the differential
equations

dy : dy :
Iy Mz, y) —iu(z,y), Ty Mz, y) +iu(z,y) (2.22)

Thus, if ¢(z,y) = alz,y) + if(x,y) = constant is the solution of the char-
acteristic equation then the conjugate ¥ (x,y) = a(x,y) — if(x,y) is also the
solution of the characteristic equation. We consider the mapping

w(z,y):a(z,y)+iﬁ($,y), w($>y):a_iﬁ($>y)'

Choosing real and imaginary parts as the new variables ¢ = a(z,y), n =
B(z,y), by the formulae (2.2), we find that A = C' and B = 0. So that, the
canonical form of an elliptic equation is

’u  0%*u ou ou
Al— + — D—+ F— =F 2.2
(g * gp) + D¢ + B, + G (2.23)

or dividing by A, we obtain the canonical form

@+@+Q@+E@+g _E (224)
o2 o2 T Aoe  Aap AT A ‘

with the Laplace’s equation
Pu 0%u
— 4+ — =0,
o0& On?

as the representative.

Example 2.4 . Determine type of the equation
0%u N Pu
ox? y8y2 B

Transform the equation into the canonical form.

0, y>0, (2.25)
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Solution. The discriminant b — ac = —y < 0 for y > 0. So that, it is
the elliptic equation. The characteristics of this equation are defined by the
equations

dy ., B dy . dy .
(dz) ty=0 d:v_z\/?j’ dv WY,

Solving the above equations, we obtain the following mapping

plr,y) =z +2iyy,  Y(zy) =22/
Let § = x and n = 2,/y. Then, we find
ou_ou P _ o
ox  0& 0x2  0€2
ou_ Lou u_10 1 o
Oy yon Oy yon*  2yy30n
Hence, we find in terms of &, 7

82u+ 82u_82u+82u_1@_0 -0
Ox? y8y2_8§2 on2 non g

and the standard form of the equation in the new variables is:

P e ou_
o2 om> non v

(2.26)

2.5 Transformation of a Parabolic Equation into the
Standard-Canonical Form

For a parabolic equation there is only one repeating root of equation (2.10)

equal to —. Then, we find only one solution ¢(z,y) = constant of the equation
a

dy b
dr  a
In this case, we consider the mapping

§=o(r,y), n=v(,y),

where ¥ (x,y) = constant is an arbitrary family of curves such that Jacobian
J(p,) = Dby — Pyty # 0.
Because b
Po_ o _ b
Py a
therefore
ayp, + by, = 0.
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Multiplying this equation by b and using the equality b? = ac, we find
abp, + b*p, =0
abp, + aco, =0
a(bp, + cpy) =0 bpy + cpy, =0

Hence, we have

B = ap, Y, + b(mewy + Spywm) + Cpypy = Ve (ap, + bSDy) + wy(b(ﬁm + C(py) =0.
2

0&0n

Example 2.5 Transform to the standard form the following equation:

in the canonical form is absent.

Therefore, the term with

Ut — 2Upg + Ugy — Up — Uy + U = 0, t>0, —oo<Lz<oo.

Solution. From the general form of a linear PDE of the second order (2.1),
we find the coefficients

a=1,b=—-1,c=1d=-1,e=—-1,g=1, f=0.
In order to determine the type of the equation, we compute the discriminant
V¥ —ac=(-1)*-1=0.

Since the discriminant equals to zero, the equation is parabolic one. Then,
there is one family of characteristics determined by the ordinary differential
equation

dt
Hence, we obtain the solution ¢ + x = constant. Now, we choose the mapping

d b
z_b_
a
E=t+x, n =t.
Let us note that for 1), we are free to choose any function for which the Jacobian

& M — & # 0.

Now, we compute the coefficients

A=a(&)? + 206 & +c(&)*=1-24+1=0,
B=a&m+b&n+&m)+c&n=1-(0+1)+0=0
C=am)®+2bnm: +c(n)>=1-2+0+0=1,

D=a&;+20&, +c (&) +dé&+e&=0-2%x0+0—-1—-1= -2,
E=an:+20n.+cn)?*+dn+en,=0-2%x0+0—-1-0=—1,
G=1, F=0
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Hence, by the general form (2.2), we obtain the standard form of the equation
Upy — 2Ue — Uy +u = 0.

or
1 1 1
Ue = §um7 + 5”” - §u

Example 2.6 . Determine type of the equation

,0%u Lo 0*u N ,0%u
r'— 42 =
0x? y&v@y 4 0y?

0, (2.27)

Transform the equation into the canonical form.

Solution. The discriminant b* —ac = 2%y? — 2%y? = 0, so that it is a parabolic
equation for all real x and y.
In order to find the canonical form of the equation, we solve the characteristics
equation
dy _y
dr  z
It is easy to find the solution y = kx, where k is a generic constant. Then, we
consider the mapping

gzy_k:I> U:¢(I,y)>

Here, ¢(z,y) is an arbitrary function such that Jacobian &£,1, — &1, # 0. Let
¥(x,y) = x. Then, we find the coefficients

A =278 + 20y, + y26) = (kr —y)* =0,
B = 2 + 2y (§any + &) + y7Eyme = 0,
C = 203 + 2xynny + y*n;, = 27,
Hence, in the new variables £ and 7 equation (2.27) takes the canonical form

0%u
on

Applications of the canonical form of elliptic, parabolic and hy-
perbolic equations

1. The three major classifications as elliptic, parabolic and hyperbolic equa-
tions, in fact classify physical problems into three basic physical types:
steady-state problems, diffusion and wave propagation. The mathemat-
ical solutions of these three types of equations are very different.
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2. Much of the theoretical work on the properties of solutions to hyperbolic
problems assume the equation has been written in the canonical form

Uge — Upn = ®(€>77>U>U§>Un)-

3. Many computer programs have been written to find the numerical so-
lution of the canonical form. Having the numerical solution in the new
variables, we can always come back to the original variables.
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2.6 Exercises

Question 2.1 Classify the following equations:

1.
gy + 12ugy + duyy + u, = 0.
2.
Ugy — SUgy + 2Uyy + TU; — YUy = 0,
3.

4. Find characteristics curves of the above three equations.

5. Transform the above three equations into their canonical forms.
Question 2.2 Transform the equation
Utz + U + Uy +u = f(t, ),

into the equation
gy — Uge + ug + uy +u = g(&, 7).

Question 2.3 Find characteristics of Tricomi’s equation

Y Uz + Uyy = 0,

in the lower half-plane y < 0. Transform Tricomi’s equation into the canonical

form in the upper-half of the plane when y > 0.

Question 2.4 Show that all linear partial differential equations of the second
order in two variables x and y of elliptic type with constant coefficients can be

transformed into the canonical form

Uz ‘l’uyy + gu = f($>y)

Question 2.5 Show that all linear partial differential equations of the second
order in two variables t and x of hyperbolic type with constant coefficients can

be transformed into the canonical form

Ut — Uge + gU = f(t,l’)



Chapter 3

Hyperbolic Equations

3.1 The Initial Value Problem for Wave Equation

Find the solution u(t, ) of the initial value problem

Uy = kzumm, —x<r< o0,
(3.1)
u(0,2) = ¢go(z),  w(0,z)=¢i(z), 0<t<oo.

This problem, which has no boundaries, describes the motion of an infinite
string with given initial conditions and was solved by French mathematician
D’Alembert. The solution u(t, z) is given by the D’Alembert formula

z+kt

+% e $1(€)dE. (3.2)

u(t, z) = %[gbo(x k) + ol + kt)]

3.1.1 D’Alembert Solution

We shall solve initial value problem (3.1) into four steps.
Stepl. We note that the characteristics equations for the wave equation (3.1)
are

dr 5, dx dx
—_— — — _— = k‘ _— =
(dt) K 0, dt ’ dt
which have the solutions

—k.

x — kt = constant and T + kt = constant.
Let us write equation (3.1) in terms of the new variables
§=x— kt, n=x+ kt.
to obtain the first canonical form of equation (3.1).
Uen = 0. (3.3)

25
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Simple application of the chain rule gives
Uy = Ug + Uy
u = k(—ue + uy)
Ugz = Uge + 2Ugy + Uy
e = k*(uge — 2ugn + )
and, by substitution, it leads us to the first canonical form of equation (3.1)
ugy = 0.

This completes step 1.
Step 2. In step 2, we integrate equation (3.3), firstly with respect to the
variable £, to obtain the solution

and secondly, we integrate the equation with respect to the variable n to obtain

w(&n) =0 +v©&), )= /cb(n dn,
Thus, all solutions of equation (3.3) have the following form:

u(&,n) = w(n) + (),

where ¢(n) and () are differentiable arbitrary functions of the variables &
and 7.
For example, one can easily check that the functions

u(&,n) =sinn + &

u(é,n) =n+¢€
u(,n) = = + tan,
n

are all solutions of u¢, = 0. This completes step 2.

Step 3. In the step 3, we transform the solution u(§,n) given in terms of the
variables ¢ and 7 to the original variables ¢t and x

To find all solutions in terms of the original variables ¢t and x, we substitute

& =ux — kt, n=x+ kt,

into

u(&,n) = (n) + (),
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to obtain
u(t,z) = @(z + kt) + ¢(z — kt). (3.4)

The general solution (3.4) (all solutions) represents the sum of any two moving
waves, each wave moves in opposite directions with velocity k. For example,
the functions

u(t,z) = sin(x — kt),  one — right moving wave
u(t,x) = (z + kt)?, one — le ft moving wave
u(t,x) = sin(z — kt) + (x + kt)?, two oppositely moving waves

Step 4. In the step 4, we shall choose from all solutions that one which
satisfies the initial-value conditions.
Thus, among all solutions of the form

u(t,z) = o(x+ kt) + ¢(z — kt) (3.5)

with arbitrary differentiable functions ¢ and v, we choose that one which
satisfies the initial-value conditions

U(O,ZL’) = ¢0($)> ut(oaz) = ¢1($)

In order to find functions ¢ and 1, we apply the initial conditions

o(x) +1(z) = do(), k' (z) — k' (x) = éi(). (3.6)

We now integrate the second equation of (3.6) to obtain a new expression in
¢(x) and 9 (z). Then, we solve algebraically the two equations. Then, by
carrying out the integration on the second equation of (3.6) by integrating
from x( to x, we obtain

1 T
pla) —v(@) = 7 [ 61(6) de+ K. (37)
From (3.6) and (3.7), we find
1
o) = Sé0(x) 2k/ 61(6) de+ .
V(@) = gonl@) — 5 [ nl€) de - 5
Now, we substitute to formula (3.5),
o(x + kt) = %gbo(z + kt) + % o ¢1(s) ds + %
1 1 po—ht K
(x —kt) = §¢0(ZB — kt) — o7 s ¢1(s) ds — 5}
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Hence, the solution of the initial-value problem is

u(t,7) = sloute — k) + oo+ k) 4o [ oi©de (39)
Examples
1. Let us consider the initial value problem
U — k2 Uy = 0, t>0, —oo<zx< o0,
u(0,z) =sinz,  u(0,2) =0.

The sine wave would have the solution

u(t,x) = %[sin(x — kt) 4 sin(z + kt)]

1 2 3

2. Let us consider the initial problem with the initial velocity
Ugp — k2 Uy = 0, t>0, —oo<uz< o0,
u(0,z) =0, ut(0,z) = sinx.

The solution u(t, x) is given below

1 x4kt 1
sin€ d¢ = —[cos(z + kt) — cos(z — kt)].

U(t’x) - % r—kt 2]{?

3.1.2 The Initial Boundary Value Problem for Wave Equation
Let us consider the following initial boundary value problem:

Ut = kU, 0<z<L, 0<t< oo,

u(0,z) = ¢o(x), w(0,2) = ¢1(z).

When variable x € [0, L], the following three kind of boundary conditions are
considered:

(3.10)
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1. Controlled end points boundary conditions
u(t,0) = vo(t),
u(t, L) = y(t).
2. Force specified on the boundaries
u(t,0) = to(t),
ug(t, L) = ().
3. Elastic attachment
uz(t,0) — you(t, 0) = vo(t),
ug(t, L — yru(t, L) = ¥y (t).

3.2 Solution to the Finite Vibrating String by Separa-
tion of Variables

To solve the initial boundary value problem

Ut = k> Uy, 0<z<L, 0<t< oo,
u(0>$) = ¢0($)> ut(0>$) = ¢1($)> (311)
u(t,0) =0, u(t,L) =0, t>0.

we start by seeking standing wave solutions to the wave equation, that is,
solutions of the following form:

u(t,z) = X(x)T'(t)

Substituting this expression into the wave equation and separating variables
gives us two ordinary differential equations

T"(t) — E*AT(t) = 0, X" (z) = AX(z) = 0. (3.12)

where, now the constant A can be any real number.
In order to solve these ordinary differential equations, we find roots of the
polynomials

Py(a) =a* —k*X =0, Q(a) =a®> =X =0.

Then, we consider the following three cases:
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Case 1.

Case 2.

Case 3.

A <.
If A < 0 then there are two complex roots oy = —tkv/—X\ and ay =
ikv/—\. So that, for A = — 32, the solutions are

T(t) = Asin(kft) + B cos(kft),
(3.13)
X(x) = Csin(fz) + D cos(fx).

where A, B,C and D are constants to be determined by the initial and
boundary conditions.

A=0
If A =0 then there are linear solutions to the equations (3.12)

T(t) = At + B, X(z) = Ca + D.

In this case the solution can be trivial (u(f,z) = 0) or unbounded and
feasible because of the initial value conditions.

A>0.
If A = 3% > 0 then the solutions of equations (3.12) take the form

T(t) = A"t + Be ™t X(z) = CeP* 4 De 7"

So, in this case, the solution either it is trivial (u(¢, ) = 0) or unbounded
because of initial boundary conditions.

Let us consider the solution given by formula (3.13), when A < 0 . Now, we
apply the homogeneous boundary conditions plugging into u(¢,0) = u(t, L) =
0, t > 0. Then, we obtain

u(t,0) =T'(t)X(0) = D[Asin(kft) + B cos(kft)] =0, D=0,

u(t,L) =T(t)X (L) = Csin(SL)[Asin(k5t) + B cos(kft)] =0, sin(SL) = 0.

The constant ( has to satisfy the equation sin(GL) = 0. So that, we find

We note that for

T,.(t) = Ay sin(kpnt) + By, cos(kfBnt),
Xn(z) = sin(B,7) (3.14)

un(t, x) = sin(B,2)[Ansin(kB,t) + By, cos(kfnt))]

un(t, ) is the solution of the wave equation which satisfies the homogeneous
boundary conditions for arbitrary constants A,, B,, n=1,2,...;
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Because the wave equation is linear one, therefore every linear combination of
uy(t, ), us(t, x), ...; is also a solution of the wave equation which satisfies the
homogeneous boundary conditions. So that, the function

nmkt B nmkt
.\, COS
L L

u(t,z) = > sin ?[An sin ] (3.15)
n=1

satisfies the wave equation and homogenous boundary conditions.
Substituting sum (3.15) into the initial conditions

u(0>I) = ¢0(I)> ut(0>$) = ¢1(I)>
gives the two equations

[e.e] [e.e] k:
> B,sin o do(z), > Anﬂ sin o — o1(x) (3.16)

Using the orthogonality condition

m #n,

L L

0,

L mmrx . nmx
sin sin —dx = I
0 5, m=n

we can find the coefficients

L
A, = i/ ¢1(x) sin @dx,
nrk Jo L
(3.17)

nmwx

2 L )
B, = Z/o ¢o(x)sin Td:v.

forn=1,2,..;

Finally, the solution u(t, x) of the initial boundary problem is given by formula
(3.15) with the constants A, and B, n = 1,2, ...; determined by the formulae
(3.17).
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We present these three cases below on the following diagram :

Solution u(t, )

‘ Possible values of A ’

‘A<0,)\:—62 ’ ‘ A:0’ ‘ A>0,\= 3

|

() =
(z) =

Asin(kft) + B cos(kft) T(t) Ae®*Bt 4 Be—(K6)%
C'sin(fx) + D cos(fx — Cebr 4 De B

We shall now make the following observations:

1. Let us note that the solution takes the following form:

Z B, nmwT nmkt
sin —— cos
L L

(3.18)

if the initial velocity ¢1(x) = 0 with the homogeneous boundary condi-
tions, when the initial position of the vibrating string u(0,z) = ¢o(x) is
present.

Let the function
nwT

¢o(x) = ianin 7

n=1
Then, simple sine vibration of a string is given by the term
nmwx nrkt

B, sin N Cos i

Thus, adding the terms of each simple vibration, we obtain the solution
of the initial boundary problem. Namely, consider the initial state of a
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vibrating string with fixed end points

m
Z nS’lTL

and with zero initial velocity ¢1(z) = 0.
Then, the solution of such initial boundary value problem is

Z by, sin nre cos n7rk:t
L L

(3.19)

We can obtain formula (3.19) from the solution given by (3.18). Indeed,
from the initial conditions, the coefficients are b, for n = 1,2, ..., m; and
b, = 0 for n > m. So, we compute the coefficients

9 /L
B, = Z/o aSo(z)sin?da:

2 m
= z;bs/ sin?sin%ﬂdz

= by.

Hence, by formula (3.18), we get the solution (3.19). For example, sup-
pose that the initial string position is

3mx 5
do(z) = s1nf—l—0581n% —|—025sm%

The overall response to this initial condition would then be the sum of
the responses to each term, that is

(t,2) = sin =% cos T 4 0.55in 2% cos T 4 0,95 sin 22 cos 2T
Uu\t,r) = sin I COSs I .J S1n I COSs I . Sin I COSs I

. The n-th term in the solution (3.15)

kt kt
sin ?[An sin m; + B,, cos m; ]

is called n-th mode of vibration or n-th harmonic. This harmonic can be
rewritten in the following form

nwr nmk
s ——(t — 0n), 2
R, sin cos (t —6n) (3.20)
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where ¢, is the phase angle and R,, is the amplitude. Indeed, we have

kt kt
[A,, sin o + B,, cos _m; | =
A2 + B?| sin =" 4 cos =

] =
VA2 + B2 L /A2 + B2 L
VA2 B2[sin TR0 gy TR 4 o TR0 o PR
mo L L L L'

\/A2 + B2 cos %k(t — ) = Ry, cos wy(t — 0,),

k
where w = % is frequency, R,, = /A2 + B2 is the amplitude and 4, is
the phase angle.

Example 1.

1. By using separation variables and Fourier cosine series, solve the following
problem for finite string with fixed ends for appropriate initial data ¢o(z)

and ¢1(z)
Uy = gy, 0<x<L 0<t<oo,
t,0) =0 t,L)=0
u( Y ) Y u( Y ) Y (321)
UL
u(0,2) =Y 2—nsin ?, u(0,x) = 0.

2. Determine the frequency w, the amplitude R,, and the phase angle ¢, .
3. Graph the solution u(t,z) form =1, L =2 and t = —1,0,1

Solution.
To (a): By the formula (3.19), we find the solution

UCR| nmwx 2nmt
ta)=Y —sin—
u(t, ) nz::l o SIL—7— o8 —
. 2nm
To (b). From the above formula, we find that the frequency is w = I the

1
amplitude is R, = o and the phase angle 4,, = 0.
To (c¢): For m =1, L = 2, the solution is

1 . 7z
u(t,z) = 5 sin —- cos t.
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e sltin ol M t=1,0,1

t=)

Example 2.
Solve the following initial boundary problem by the method of separation of

variables:

U = 30Uz, T >0, 0<z <1,

u(0,2) =0, w(0,z)=4, 0<x <1, (3.22)

u(t,0) =0, wu(t,1)=0, ¢t>0.
Solution. We note that ¢o(z) = 0. Therefore, by formula (3.17), the coefficint
B, = 0 and we compute the coefficients

1 4 .
A, = ?m—?T/o dsinnrx dr = W[l — (=1)"].

Hence, by formula (3.15), the solution is:
t _y 4 1 1)"] si in(6nmt
u(t,z)=> W[ — (—=1)"] sin(nmz) sin(6nmrt).

n=1

Example 3. What is the solution to the simple supported at the ends beam

with initial conditions
ut(0, ) = sinmx, , 0<z<1.

u(0,z) = sinmzx,
Solution. We note that the solution u(¢, z) satisfies the wave equation

U = k2 Ugy, 0<z<1,

with the homogeneous boundary conditions
u(t,0) =0, u(t,1) =0, t>0.



36

and the initial value conditions
u(0,z) = sinmzx, ut (0, z) = sinmzx, 0<z<1.
By method of separation variables, the solution is given by the formula

kt kt
nz + B, cos nz ],

u(t,z) => sin ?[An sin
n=1

Hence, for ¢g(x) = sinmx, ¢i(x) = sinmx, and L = 1, we compute the
coefficients using formulae (3.17)

2 1 i, n=1,
A, = — / sinTxsinnrrdr = km
nwk Jo 0 nAl,
1 1, n = 1,
B, =2 / sin 7z sin nrxdx = {
0 0 n#l,

Thus, the solution u(¢, z) of the supported beam problem is

1
u(t,x) = sz’nﬂx[% sin(rkt) 4 cos(mkt)],

for 0 <z <1 and t>0.
Example 4. A gitar string of length L = 1 is pulled upward at middle so the
it reaches heigt 0.5 and satisfies the wave equation

Ut = 9um, 0 S X S 1.
Assuming the initial position of the string
z, 0<z2<0.5,
u(0,z) =
l—2z, 05<Z2z<1,
and the initial speed of the string
w(0,z) =1, 0<z<1.

Find the position u(t, z) of the string at time ¢ and point z.
Solution. We note that the solution u(¢, z) satisfies the wave equation

Uy = QNgy, 0<z<1,
with the homogeneous boundary conditions

u(t,0) =0, u(t,1) =0, t>0.
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and the initial value functions
z, 0<z2<0.5,

u(0,2) = ¢o(z) = { ut(0, 2=y () = 1. (3.23)

l—z, 0521,
By method of separation variables the solution is given by the formula
s nmx nrkt nrkt
= n —— An 1 n 5
x) nz::l sin — [A,, sin 7 cos —

Hence, for the given functions ¢o(x), 11 (x) by (3.23) and for L = 1, we (icients
using formulae (3.17)

2 1 COSNT 2
(- )

k:mr nmw nmw kn?m?

A, = mrk:/ sinnrrdr = — [1—(=1)"],

1/2
B, = 2/ xsinnrrdr + 2 (1 — x)sinmx dx =

1/2
. onm nm nm nm nm
28in — —nmwcos —  2sin — +nmwcos —  4sin —
_ 2 2 2 2 _ 2
n?m? n?n? n?n?
Hence, the solution u(t, ) of the gitar string problem is
tsin T
% 9 sin —
z:: S;{sznﬂx) 1—(=1)")sin(3nnt) + 3 cos(3nmt),
for 0<z<1 and ¢t >0.
3.3 Exercises
Example 3.1 Solve the following initial value problems:
1.
tt = Mgy, t >0, —00 < x < 00,
u(0,z) = cos3x, u(0,x) =x.
2.
Ut = Ugy, t >0, —00 < x < 00,
u(0,z) =sin3z, u(0,x) = cos 3x.
3.
Ut = Ugx, t>0, —o00 < T <00,
sin2x, —r7<zx<m,
(0 l’) ut(0>$) = 07
0, |x| >,
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Example 3.2 For the following equation:
yuy — 162Uz, = 0, t>0, x>0, (3.24)
(a) Determine type of the equation (3.24)
(b) Find characteristic curves of the equation (3.24).
(c) Transform equation (3.24) into canonical form.
Example 3.3 For the following equation:
Uy + gy + 2uyy = 0, —00 < X, Yoo. (3.25)
(a) Determine type of the equation (3.25)
(b) Find characteristic curves of the equation (3.25).

(c) Transform equation (3.25) into its canonical form.

Example 3.4 For the following equation:
g — AUpy + Upy — ug = 0, t geq0, —oo < x < 00. (3.26)
(a) Determine the type of the equation (3.26)
(b) Find the characteristic curves of the equation (3.26).
(c) Transform the equation (3.26) into its canonical form.
Example 3.5 Solve the initial value problem by the D’Alembert method.
Ugp — Ny =0, 20, o< r<oo
(3.27)

u(0,z) = cosdr, ui(0,x) =sindxr, —oo < x < 0.

Example 3.6 Solve the initial boundary value problem by the method of sep-
aration of variables.

Ut — QUge = 0, t>0, 0<z<4
u(0,z) =z(4—2x), u(0,x)=1, 0<z<2 (3.28)
u(t,0) =0, u(t,2) =0, t=>0.
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Example 3.7 Consider the telegraphic equation
Ugt + Up + U = Py, t>0, 0<z<L.

Find the solution u(t,z) of the telegraphic equation which satisfies the initial
condition

u(0,z) =x(L—x), w(0,z) =0, 0<xz<IL,
and the homogeneous boundary value conditions
u(t,0) =0, u(t,L)y=0, t>0.

Hint: Apply the method of separation of the variables t and x.
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Chapter 4

Parabolic Equations

4.1 Initial Boundary Value Problem
We shall consider the heat equation

up = k*ug, + f(t, ), t >0, 0<z<1L, (4.1)
with the initial condition

u(0,z) = ¢o(x), 0<z<L (4.2)

and with the boundary conditions

u(t> 0) = Q/)O(t)a u(t> L) = Q/)L(t% t>0. (43)

Here, k? is a constant and the given functions f(¢,z), ¢o(z),%o(t), ¥ (t) are
continuous for 0 <z < L, t > 0.

Let us establish some of the properties of the solution u(t,x). Firstly, we shall
state the weak maximum principle for the heat equation

Uy = k2 Uy (4.4)

in the closed rectangle R = {(t,z) : 0 < x < L, 0 <t < T}, with the
boundary

(t,z): (0<x <L) when t=0
OR =
(t,z): 0<t<T when z=0or z=1L

Let us note that the points on the interval (T, z), when 0 < x < L, are not
included in the boundary OR.
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UZ% u(tal') u:wL
m

0 L X
u(0,z) = do(z)

The initial boundary conditions at OR

The maximum principle 4.1 Let u(t,x) be a solution of the heat equation
(4.4) in the rectangle R. Then u(t,x) assumes its mazximum value on whole
closed rectangle R at a point on the boundary OR. Also, u(t,z) attains its
minimum at a point on the boundary OR of R.

Proof. We know that u(t, z) attains its maximum M at the closed rectangle
R. Also, we know that u(¢, x) attains its maximum Myg at the closed boundary
OR. To proof the thesis of the maximum principle, we shall show that

M = Mpyg.

That is, the maximum on the boundary does not exceeds the maximum on
the closed rectangle, so that Myr < M. Suppose that M — Myr = €, then we
choose a point (o, zg) € R interior to R, such that u(to, xo) = M. Since € > 0
and (g, o) is not on the boundary OR, therefore 0 < xop < L and 0 < ¢ty < 7.
Define the auxiliary function

w(t,z) =u(t,z)+ ;?(i — )2

Then, consider w(t,z) at points on JR. We note that

w(0,2) = u(0,2)+ L(:E —10)? < Mpp + L(:E — 0)?

412 412
€ 3€
< M- —[’=M—-=—< M.
< 6+4L2 4<

In similar way, we arrive at the inequalities

w(t,0) < M, and w(t, L)< M, 0<t<T.
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Indeed, we have

w(t,0) = u(t,0) + ——(0 — 20)? < Mag + ——(0 — 0)?

412 412
€ e
< M- — I’=M-=< M.
< 6+4L2 4<

and

w(t,L) = ult,L) + ——(L — 20)? < Mo + ——=(L — a0)?

412 412
€ 3e
< M- —I’=M—-=—< M.
= T 1=

But w(ty, zo) = u(ty, o) = M. Therefore the maximum of w(t,x) on R is at
least M and it is attained at a point (¢;,z1) € R, not on the boundary OR.
Because 0 < z1 < L, 0 <ty <T, then

wt(tl,:vl) = 0, wm(tl,:vl) S 0. (45)
Hence
wt(tl,:zl) — l{:zwm(tl,zl) Z 0. (46)
But
k2e k2e
wt(tl,:vl) — l{:zwm(tl,:vl) = ut(tl,l’l) — l{:zum(tl,atl) — k‘zm = —i <(27)

Thus, we have arrived at the contradiction, the inequality (4.6) against the
inequality (4.7). Therefore, u(t, z) attains its maximum value on the boundary
OR of the rectangle R.

Similarly, we can prove for minimum of u(t,x), taking —u(¢,z) instead of
u(t, ).

Then, we conclude that M = Mygr. End of the proof.

Conclusion. From the weak maximum principle, it follows that every solution
u(t,z) of the initial boundary value problem ( 4.1), (4.2),(4.3) satisfies the
inequality

< t>0, 0<z<L. 4.8
ult o) < max Ju(t.),  t20, 0<a< (4.9

As a consequence of the maximum principle, we can state the following theo-
rems

Theorem 4.1 (Uniqueness) The initial boundary value problem (4.1),(4.2)
and (4.83) has at most one continuous solution.

Proof. Assume that there are two solutions w (¢, ) and uq(t, ). Then, it is
easy to show that the difference w(t,x) = ui(t,z) — ua(t, x) is the solution of
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the homogeneous heat equation with the homogeneous initial boundary con-
ditions. By the maximum principle, we conclude that such a homogeneous
initial boundary value problem has only trivial solution, that is w(t,z) = 0 for
all (t,z) € R. Indeed, because w(t, ) attains its total maximum on R at the
boundary OR, not greater than zero, therefore w(t,z) < 0 for all (¢,z) € R.
But, also w(t,z) attains its total minim on R at the boundary dR. So that
w(t,z) > 0 for (t,z) € R. Hence w(t,z) = 0 for all (t,z) € R. End of the
proof.

Theorem 4.2 Let u)(t,z) and u®(t,z) be two solutions of the two initial
boundary value problems

V) = k2u) + f(t,z), 0<z <L, t>0,
u(0,2) = ¢ (x), 0<z<L, (4.9)
u(t,0) = oi0@),  uwO(t, L) =), t>0,

and
u? = k2@ + f(t,z), 0<z<L, t>0,
u(0,z) = (), 0<az<IL, (4.10)
u®(t,0) =),  u®(t, L) =), t>0,

for the same sours of energy f(t,x). Suppose that the distance of the initial
boundary conditions is less than € > 0, so that

667 (2) = o (@) < e, [0 — P @) <€ [pE) - 0P )] <,
(4.11)
Then, the inequality

WM (t,z) — uP(t,2)| <,
holds for allt >0, and 0 < x < L.
Proof. Let us note that the difference
o(t, ) = uM(t, z) — u@(t, z)
is the solution of the heat equation
vy = k*Ug, t>0, 0<z<L,
which satisfies the initial condition

0(0,2) = ¢§(2) — o (), 0<z<L
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and the boundary conditions
o(t,0) = v (1) =47 (t), ot L) = (1) =00 (), t=0.

By the assumption, |[v(0,x)| <€, |v(t,0)] <€, |v(t,L)] < e. Then, by the
maximum principle
v(t,z)] <e,

for allt > 0 and 0 leqz < L.
Question 1. Consider the following initial value problem:
up = k2 Ugpy, —oo <z <00, t>0,

U(O,l’) = ¢0($)> —0 < <00,

Assume that the given function ¢g(x) is continuous and bounded for all x €
(—00,00) and u(t,z) — 0 when x — Foo. Using the maximum principle show
that

u(t,z)] < __max_[¢o(z)].

—oo<r<oo

forallt >0 and —c0o < z < 0.
Solution. Let x € [—a,a] for a positive @ > 0. Then, by the weak maximum
principle (see (4.8))

lu(t,z)| < max |u(t,z)], t>0, —a<z<a.
(t,z)EOR

where R = {(07 $)> (t> _a))> (t> a)}
By the assumption u(t,z) — 0, when x — Foo, so that, for sufficiently large
a, we have

u(t, z)| < max [go(z)],

z€[—a,al

for all t > 0 and |z| > a. Therefore, the inequality

u(t. o) < max_[oo()]

for all t > 0 and —oc0 < z < 0.

4.2 Solution by Separation of Variables
. Let us consider the following initial boundary value problem
Uy = kg, t>0, 0<z<L,
u(0,z) = ¢o(z), 0<x<L, (4.12)

u(t,0) =0, u(t,L) =0, t>0.
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Substituting u(t,z) = T'(t) X (x), to the heat equation, we obtain

1" /

X T

_—_— — = —)\
X kKT ’
where \ is the separation constant. Hence, we get the equations
X'+ )X =0, T 4+ \*T = 0. (4.13)

Solving the boundary value problem for the ordinary differential equation

X"+ AX =0, X(0) = X(L) =0, (4.14)
we arrive at the solution
X, () = sin ? A = ”zf n=1,2,.. (4.15)
Now, the equation for T'(¢) becomes
T+ szszzo, n=1,2,..
with the solution
—k*n2m?t
T,t)=e L* | n=12,.. (4.16)
Hence, we find the solution of the heat equation
—k*n2m?t
un(t,2) = To(H)Xa(t) =e L  sin ”Lﬂ n=1,2.. (4.17)
which satisfies the homogeneous boundary conditions. The function
. K m?n2t
u(t,z) =3 Bne L* sin ?, (4.18)
n=1

is also the solution of the heat equation and satisfies the homogeneous bound-
ary conditions for any choice of the coefficients B,,, n =1,2, ...

In order to determine the coefficients B,,, n = 1,2, ..., we expand in the Fourier
series of sines the function ¢y(x) given in the initial condition. Then, we have

u(0,2) = ¢o(x) = 3 By sin ”Lﬂ
n=1
Having Fourier series of the initial function

oo L
() = nzzjl B, sin ”Lﬁ B, = %/0 (&) sin ”T”gdg,
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we arrive at the solution of the initial boundary value problem
—n’nlk*t
m& nmwx

u(t,z) = % i[/oL ¢o(&) sin ang]e L*  sin A (4.19)
n=1

Example 1. Solve the following initial boundary value problem:
ut:k‘zum, t>0, 0<z<1,

: 1.
u(0,z) = ¢o(z) = sinmzx + 5 sin 3rx,

Solution. We note that the coefficients of the Fourier series of the initial value
function

¢o(x) =sinmx + 3 sin 37,

1
areBlzl, BQZO, 3325, B4:B5::0
Therefore, the solution is
272 1 _g-21.2
u(t,r)=e " Kt Gin e + 3¢ 9Tkt Gin 37z,

Example 2. Solve the following initial boundary value problem by the method
of separation of variables

wr = kg, t>0, 0<z< L,
u(t,0) =0, u(t,L) =0, t>0,
L
Z, 0 5
u(0,z) = ¢o(z) = L
L —l', 5 L

(4.21)
Solution. We compute the coefficients B,,, n = 1,2, ... of the Fourier series
of the initial value function ¢g(x)

2 rL .onm —1)" —sinZ  2sinE
:E/O gbo({)sngd{:QL( ) 2 4+ 2]

nm n2m2

Hence, by the formula (4.19), we get the solution

u(t, ) —2LZ

—sin™  2sin @ —
2| Bap[——

n2m?

2n2k‘2t] .
7 sin —

(4.22)
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4.3 Transformation of Non-homogeneous Boundary Con-
ditions to Homogeneous

Let us consider the heat equation with constant temperature at the end of a
rod. So, we consider the following initial boundary value problem:

wr = kg, t>0, 0<z< L,
u(t,0) = 1o, u(t,L) =1, t>0, (4.23)
u(0,z) = ¢o(z),

where this time vy, 1 are constants.
In order to transform the non-homogeneous boundary conditions to homoge-
neous ones, we introduce the new unknown function v(¢, z) by the formula

u(t,r) = v(t,x) + Yo + — (% — o).

Clearly, the unknown v(t, z) satisfies the homogeneous boundary conditions
v(t,0) = v(t, L) = 0. So that v(¢, z) is the solution of initial boundary problem

vy = kg, t>0, 0<z<L,

v(t,0) =0, u(t,L)=0, t=0, (4.24)

v(0,2) = ¢o(x) = [0 + = (m — )], 0<z <L
By the formula (4.22), we find the solution
—n?m2k*

v(t, ) / @o(€) sin —gdg] L*  sin ?, (4.25)

where ¢ (€) = ¢o(z) — [0 + + (wL —1p)]. Finally, in terms of original un-

known

u(t,z) = v(t,z) + [Yo+ + (m — to)]. (4.26)
Example 3. Solve the following initial boundary value problem:
U = gy, t2>0, 0<xr <2,
(4.27)

u(t,0) =1, wu(t,2)=4, t>0,
u(0,z) =1, 0<z<2, (4.28)
Solution. By introducing the new unknown function v(¢,x) by the formula
u(t,r) =v(t, ) + Yo+ (WYL — o) = o(t,z)+1+5(4-1)

(4.29)
= o(t,) + 1+ F,
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we note that
'Ut(tal') :ut(tal'% Vg :umm(tal'%

Therefore v(t, ) is the solution of the heat equation. So that
v = kv, t>0, 0<zxz<L.

and
u(t,0) =v(t,0)+1=1,

u(t,2) =v(t,2)+1+2(4—1) =v(t,2) +4 =4.
Hence, we obtain
v(t,0) =0, v(t,2)=0, t>0.

Then, the new unknown function v(¢, z) satisfies the initial condition

v(0,2) = Go(a) = o(a) — [a(0) + F(Wu(t) — va(t)

T 3T
— 1+ i@4—1)]=-2
1+ L= -2
Hence, by the formula (4.19), we obtain the solution
T —n?m2k?t
o) = 73 (s "ige I sin2
© o 4 —4n?r?t (4.30)
= nz::l[/o —ésin%gdg] 4 in T '

Now, coming back to the original unknown function u(¢,z), by the formula
(4.29), we find the solution

3 3 _,2.2
u(t,x)zl%—;—l—g n—ﬂenﬂtsinzﬂ, t>0, 0<z<2.
n=1

4.4 More Developed Heat Equation

Let us consider the following initial boundary value problem:
w = k*upy — Bu, 0<ax<L, t>0,
u(0,z) = ¢go(z), 0<zxz<1L, (4.31)
u(t,0) =0, u(t,L)=0, t>0
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Here, the term —(u, 3 > 0, represents heat flow across the lateral boundary.
Let us note that by the substitution

u(t, ) = e Po(t, x), uy = —pe Put,z) + e Pu(t, 1), Upe = e Py, (t, x)

we can transform the initial boundary problem (4.31) into simple one for the
new unknown v(t, x).

v = k*vgg, 0<z<L, t>0,
v(0,2) = ¢o(x), 0<z <L, (4.32)
v(t,0) =0, v(t,L)=0, t>0

Solving the initial boundary value problem (4.32), by the formula (4.19), we
obtain the solution

) o L —n’rlk*t
u(t,z) = e Plo(t,x) = ze_ﬁt;[/o ¢o(&) sin nTﬂgdg]e L*  sin ?
(4.33)
Example 4. Let us consider the initial boundary value problem:
Up = Ugy — U, 0<x<L, t>0,
1
u(0,z) =sinTx + 5 sin3rz, 0<x <L, (4.34)
u(t,0) =0, v(t,L)=0, t>0,

Solution. We apply the substitution
u(t,r) = e "v(t, z),

to eliminate the term —wu. Then, v(t,x) satisfies the heat equation with the
initial boundary conditions

Vg = Ugy, 0<x< L, t >0,

1
v(0,z) =sinmTx + 5 sin3rz, 0<xz<1L, (4.35)
v(t,0) =0, 0,u(t,L)=0, t >0,

The solution of the problem (4.35) is

972

1
v(t,z) = e " lsinma + 3¢ bsin 37z,

Hence, coming back to the original unknown, we find the solution

92

1
u(t,x) = e_t[e_”% sinmx + 56_ "sin 3mz],
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4.5 Non-homogeneous Heat Equation

Let us consider the non homogenous heat equation with the initial boundary
value conditions

w = KUz, + f(t,x), t>0, 0<z<IL,
u(0,z) = ¢(x), 0<z<L, (4.36)
u(t,0) =0, u(t,L) =0, t>0.
In the previous section (see (4.18), we have found the solution
- k*mn?t
u(t,z)=> Bpe L sin ? (4.37)
n=1

when f(t,z) =0, ¥o(t) =0, ¥y(t) = 0. Now, we shall find the solution u(t, x)
of the non homogeneous heat equation, when f(t,x) # 0.
Assume that the given function as the heat sourse f(t,x) possesses the follow-
ing series presentation:
T 2w . T

f(t,x) = fi(t)sin T + fo(t) sin 7 + ...+ fu(t)sin A + .. (4.38)
In order to find the coefficients f,(¢), n = 1,2, ...; we multiply both sides of
(4.38) by sin ?, and integrate from zero to L with respect to the variable
x. Then, we obtain

nmwx mmnx

/OL f(t,x) sin? dr = gfn(t) /OL sinTsin 7 dr = gfm(t). (4.39)

nmwx
Hence, by the orthogonality of the sequence {sin <= 1,,2,...;} we find

the coefficients
9 L
fult) = —/ f(t,x) sin 2L de, n=12 ..; (4.40)
L Jo L

Replacing the heat sourse function f(t, z) by its decomposition (4.38). we find
the solution

u(t,z) = i T, (t) sin ”Lﬂ (4.41)
of the initial boundary value plroble?;l1
ut:kzum—l—ifn(t)sinnLﬂ, t >0, 0<z<L,
u(0,z) = gp(:BSL,Zl 0<z<IL, (4.42)

u(t,0) =0, u(t,L) =0, t>0.
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where the functions T,,(t), n = 1,2, ...; are to be determined.
By substitution (4.41) to the equations (4.42), we have the following equations:

00 00 2.2 00
N 1 ¢ 5 o N . nmx . nmx
nz::lTn(t) sin —— = —k nz::l 72 T, (t)sin I + nz::l fn(t)sin I
> To(t)sin0=0, Y T,(t)sinnt =0, t>0, (4.43)
n=1 n=1
ZTn(O)SiH$:Q@(I’), 0<az<L.
n=1
Hence )
SN k 2
ST (8) + () = fult)] sin = = 0,
n=1 . (4.44)
> T,(0)sin — = ¢(x)
n=1 L

Then,we find the coefficients T,,(t), n = 1,2, ...; solving the ordinary differen-
tial equations

/ k27202
T () + %Tn(t) — fu(t), t>0, n=12 .,
5 L (4.45)
T,(0) = Z/o o(x) sinnLﬂ = B,.
By integrating factor method, we find the solution
k27202
K m?n2t /t - Zzn (t—7)
- +] e
T,(t) = Bpe  L? 0 fu(T) dr. (4.46)

Finally, the solution of the initial boundary value problem (4.36) is given by
the following formula:

. k*m2nt . ) E*m?n2(t — 1)
u(t,z)=> Bye L* sin oy, > sin ITE e L? fn(T) dT.
n=1 L n=1 L 0
(4.47)
Example 4.1 Solve the following initial boundary value problem:
Ut = Uge +Sinz +sin22rz, 0< <1, t>0,
u(0,z) = sinmzx, 0<z<1, (4.48)

u(t,0) =0, wu(t,1)=0, t>0.
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Solution. We shall find the solution u(t, x) in the series form
u(t,x) = Z T, (t) sinnrz, 0<z<1, t>0,
n=1

where the coefficients T,,(¢), n = 1,2, ...; are determined by the ordinary dif-
ferential equation

/ 1 1
T'(t) +n*m?T,(t) = / [sin7s + sin 27ws| sinnrx ds = §fn(t)’ 0<z<1, t>0,
0

1
T,.(0) = 2/ sinws sinnws ds = B,.
0
(4.49)
We compute

1, n=1,2

1 )
fot) = 2/ [sin7s + sin 27s| sinnwx ds =
0 0, otherewise,

1, n=1,

1
B, = 2/ sinws sinnrws ds
0 0, otherewise

Solving the ordinary differential equation (4.49) for n = 1,2, ...; we find

2 2t
: —1
n=1, TH)+m ) =1, T[O0) =1, Tyt)="—
m2el

, 1 _ -Am’t (4.50)

n=2 T(t)+4r’Ta(t) =1, T5(0)=0, Tr(t) = T 4p2
T

n >3, T.(t)+n?c?T,(t) =0, T1(0)=0, T,(t)=0.

Finally, we obtain the solution
u(t,z) => Tu(t)sinnme = Ty(t)sinma + To(t) sin 27z
n=1

2 2
7T2_|_67Tt_1' 1_6—47Tt'
— —zsmﬂx—l—Tsm%m.
26T

4.6 Fundamental Solution for the Heat Equation
Let us consider the heat equation

Ut = Ugg, (451)
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The fundamental solution of the heat equation is given by the formula

(z —&)?

Ul —&t—n) = t%ne_él(t_n), (4.52)

Let us note that the fundamental solution is the function of two points P =
(t,z) and Q = (§,n) given for n < t.

Also, we note that U(t,z; &, n) satisfies the heat equation as the function of
the variables t and z at fixed £ and 7. Indeed, we find

2 _@—¢p
S k3 S SRR MR
PP 2t — )2
and
2 CE 3k
=8 1 . 74t-n

Ugr = 5
A(t—mn)z 20—

So that u; = ug,.
Also, one can check that the fundamental solution U(t,x,&,n) satisfies the
conjugate heat equation

Uy + Uge = 0,

as the function of the variables £ and 7, at fixed ¢ and .

4.7 Fundamental Formulae

Green’s Formula. Below, we present Green’s formula in its simplest form
for two continuosly differentiable functions P(xy, z2) and Q(x1, x2)

—_—— — P 4.
/ / o axg P iy dzy = /8 P day +Q das, (4.53)

where the rectangle
R={(z1,22): a<z1 <b, c<uzy<d}

with the boundary OR.
Proof. We shall show that

//8—:Egdx1dx2 _/63sz1
//a—zlda:lda:g /8Rde2
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Indeed, we compute (see picture)

/ JE: a—xzdxl dry = [ an, /dg—idxz [P, d) ~ Py, ldn,

= —/ P(xy,d)dx, —/ P(xy,c)dry = — aRP dxy

/ /8—:.r1dx1 dry = /cddasg /b g—fldzvl /cd[Q(b,zg) — Q(c, x9)]dxy
— /ch(b, x9)dwy — /ch(c, T9)dwy = /8RQ das

Hence, we obtgin Green’s formula (4.53) .
t

4 OR

The rectangle R with the boundary 0R

For @ = uv and P = 0, from, Green’s formula, by the identities

/ /g—zjdzl dre = / /uﬁ—zl + va—xldxl dxry = /aRuv ds

S (4.54)
/ /—dzl dre = / /u— —I—v—d:vl dre = / uv ds
81’2 81’2 OR
we obtain the formula of integration by parts in two variables
// :/ uvds—//v—dimdil?z
&xl AR &xl (4.55)

Jo v = Lo o= [ [ vggion o

Here the line integral along the boundary 0R of the rectangle R is

/8 wvds = /a (), 22(€)0(wa(§), w2()y (&1 (€)? + (5(€))?dg




56

which becomes

[ wvds= [Tutea(©), et s + [ ulb, 2a(6)) o, 22(6))de
+ [ (€, oea(€), e + [ ula,a(9))v(a,2a(6)dg

The first fundamental formula for the heat equation Let us note
that the following identity holds:

0. Ou ov,  O(uv)

=97V Yon T o

vF(u) — uG(v)
for Pu 8 Pv 0
u u v v
oo “WTaa T
Integrating by parts both sides of the above identity (see formula integration
by parts (4.54)), in the rectangle

R={(t,x): 0<t<T,0<z<L}

we obtain the first fundamental formula for the heat equation

/R[UF(U) — G dt dr = /aRu vdz+ (v% - u%) di (4.56)

Hence, if u and v satisfy the equations

ou  0%*u ov 0%

o a2 Y mtam Y

then the first fundamental formula for the heat equation becomes

ou v
d — —u—) dt =0. 4.57
/aRuv :E+(U&E u&r) (4.57)
The second fundamental formula for the heat equation Substituting
into the first fundamental formula, n =t — 0, v(§,n) = U(t, x; &, n) for § <,

we obtain

@-e

Lt =ae 4T = [ luc@nUlt w6 m) — u(& mUst, 6 mldn

+ u(§nU(t ;€ n) dE.
(4.58)
Hence, in the limit when d— > 0, we obtain the second fundamental formula

/aR[w(S, MU, x;&,m) —u(&,n)Ue(t, ;€ m)]dn
2y/rmu(t,x), (t,x)€ R,
+u(& U, z;§,n)ds = {

0, (t,z) out of closed R
(4.59)



4.8 Exercises

Question 1. Solve the initial boundary problem:

U = QUgy,

0<x<4,

u(0,z) = sinmx + 2sinbrz, 0<x <4,

u(t,0) =1,

v(t,4) =2,

Question 2. Solve the initial boundary problem:

up = 16Uz, — 3u,

z, 0<x <1,
u(0,z) =

1, 1<z<2
u(t,0) =1,

0<z <2,

u(t,2) =0,

57

t>0,

(4.60)
t>0
t>0,

(4.61)
t>0
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Chapter 5

Elliptic Equations

5.1 Laplace Equation

. Laplace’s equation takes the following form:

1. In two variables x,y

Pu 0%
Au:@—l—a—yzzo, Au:um—l—uyyzo, (51)
0? 0?
where the Laplace’s operator A = pye + 6—y2

2. Laplace’s equation in the polar coordinates (r,0), r # 0, x = rcosf, y =
rsinf,

1 1
Au = Upr + —u, + —ugg = 0. (5.2)
r r

T
where r? = 22 + y? and 0 = arctang, x#0, 0= 5 T 0,
x

y N (r,0)

a

X
Polar Coordinates x = rcosf, y = rsinf
Indeed, we can transform Laplace’s equation from Cartesian coordinates

59
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to Laplace’s equation in polar coordinates by the following computations:

x=rcosl y=rsinf, wu(x,y)=u(rcosd, rsind)

@ _Ou cosf + Ou sin ¢
or  Ox 8_y
Pu Pu ., Pu ., OPu
52 = %cos 6 + 8—y?Sln 9—|—2&an sin 6 cos 0
% = 7’(% cos 0 — ?sin@)
Yy x
0?u ou . ,0%u , O%u
= —ra—y sin@ + r 8—y2 cos“ 0 —r 92y sin @ cos 6
u 0%u 2u
8 osh 2 Y in2 g — 2 10 cos
T&E cost +r 972 sin T 020y sin 6 cos
Now, we find
1 1 0? 0? 0
Upp + ;ur + T_2u99 = (a—;; Cosz 0 + a—y,l; Sin2 0 + 281’;’3} sin 6l cos 9)
1,0
+ ;(a—z cosf + g—z sin 0)
1, 0 9* 2
+ T—z(—ra—z sinf + 7’26—;; cos® O — 12 &Bgy sin 0 cos 6)
1, 0 ok 0?
+ T—z(—ra—z cosf + 7’28—;; sin?6 — 2 &Egy sin 0 cos 0)
Pu 0%u
T a2 oy
3. Laplace’s equation in three variables x, v, z
92 92 92
Au = Y ¢ u =0, Au = Uy, + Uyy + Uy, = 0. (53)

0x? + 0y? + 022

4. Laplace’s equation in the three cylindrical coordinates 7,6, z, with r #
0, z=rcosf, y=sinf, z =z

1 1
Au = upr + —u, + —Ugg + Uzz = 0. (5.4)
r r
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(r,0,2)

X

Cylindrical coordinates x = rcosf, y=rsinf, z =z
where 7 = 2® + %, r#0, § = arctcmg, r#0, 2=z
x

5. Laplace’s equation in the spherical coordinates r, 0, ¢, withx = rsinp cosf, y =
rsing sinf, z = rcosp.

coty 1
2 19

Au = Uy, + U + L + ugg = 0. (5.5)

r2sin?y

(r,0,0)

X

Spherical coordinates x = rsinp cosf, y=rsing sinf, z =rcosep.

z
where 7% = 2% + y* + 2%, cosp = =, taun@zg
r x

5.2 Boundary Value Problems for Laplace Equation

The following three types of the boundary value problems are considered:

1. Dirichlet boundary value problem Find the solution u(x, y) of Laplace
equation
Ugg + Uyy = 0, (x,y) € Q (5.6)
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in the domain €2, which satisfies the Dirichlet’s condition (BDC)

u(z,y) = ¢(,y), (z,y) € 09. (5.7)

Throughout this chapter, we shall denote by 2 a bounded domain with
the boundary 0f2. Here ¢(z,y) is a given function on the boundary 02
of €.

. Neumann boundary problem Find the solution u(z,y) of Laplace

equation
Ugg + Uyy = 0, (x,y) € Q

in the domain 2, which satisfies the Neumann’s boundary condition
(BNC)
Ou(z,y)
on

= ¥(z,y), (z,y) € 0%,

d
where d_u denotes normal derivative internal to the boundary 0f2 of the

n
domain Q. Here ¢(z,y) is a given function on the boundary 0f2.

. Third kind boundary problem Find the solution u(z,y) of Laplace

equation
Ugg + Uyy = 0, (x,y) € Q

in the domain 2, which satisfies the third kind boundary condition

du(z,y)

Az, y) o

+ B(z, hu = ¢(z,y), (z,y) € 0%,

where A%(z,y) + B*(z,y) > 0 and u(x,y) are given functions on the
boundary 0f).

5.3 The Maximum Principle for Laplace Equation

Every solution of Laplace’s equation is called harmonic function. Below, we
shall give some of properties of the harmonic functions.

1. The maximum principle. Let u(x,y) be a continuous function in the

bounded and closed domain Q. If u(x,y) is a harmonic function in the
domain €, then the function u(x,y) attains its maximum and minimum
values on the boundary 02 of €.

Proof. Firstly, we note that u(z,y) attains its maximum in the bounded
and closed domain € as a continuous function. By contradiction to the
thesis, assume that the maximum value of u(z,y) is not on the bound-
ary 0f). Then, the maximum value of u(x,y) is at some interior point



63

(xo,v0) € Q, say M = u(xo,yo) > My, where M, is maximum of u(z,y)
on the boundary 0€). Let us introduce the auxiliary function

v(z,y) = ulz,y) +€l(z — 20)* + (y — m0)°],

for some € > 0. Then v(xg,y0) = u(zo,yo) = M, and the maximum of
v(x,y) on the boundary 9 of Q is equal at most My, +ed?, where d is the
diameter of ). For sufficiently small ¢ > 0, we have M > M, + €d, i.e.
0<e< (M- M,y)/d? For such €, the maximum of v(z,y) cannot occur
on the boundary of Q, since the value M of v(z,y) at (xo,yo) is larger
than the value of v(z,y) at any boundary point. There may, however, be
points in €2, where v(x,y) is larger than M. Let the maximum of v(x,y)
be attained at (z1,y;), which, as we have seen, must be in Q. At (z1,y1),
we must have v, < 0 and v,, << 0, since the graph of v(x,y) cannot be
concave up in the x or y direction at (xy,y;). Thus, at (z1,y;), we have

Ve + Vyy <0.
However, by the definition of v(z,y), we have
Vg + Vyy + 2€ + 26 = 4e > 0.

Here, we have used the assumption that u(z,y) is harmonic on 2. The
above two inequalities contradict one the other. So that, the assumption
that u(x,y) attains its maximum of u(x,y) at an interior point, and not
on the boundary, leads to the contradiction.

In order to prove that minimum value of u(z, y) is attanable at the bound-
ary 0€), we repeat the proof for the maximum of —u(z,y). So that, the
minimum of u(x,y) must be also attainable on the boundary 02 of €.
There is also strong maximum principle for harmonic function which we
present below.

The Strong maximum principle. Let u(z,y) be a harmonic function
on the domain €. Suppose that the function u(z, y) attains its maximum
or minimum at some interior point of 2. Then wu(z,y) must be constant
throughout 2.

Conclusion From the maximum principle it follows that every harmonic
function u(x,y) satisfies the inequality
in T <u(z < max z,Y),
i #z,y) Sulr,y) < max ox,y)
Also, we have

<
[u(z,y)l < max [o(z.y)l,  (z.y) €9, (5.8)

or

N = < ) €q,
Sse |0y S ule,y) < ek 0@ )l, - (@.0)
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where u(z,y) = ¢(x,y) on the boundary 0f2 of €.

Question 1. Consider the following boundary value problem:
Upg + Uyy = 0, (x,y) € Q={(z,y): 0<z <2 0<y<l1},

u(x,y) =sinmx + cosmy, (z,y) € 09,

(5.9)
Find the range of the values of the solution u(x,y), for (z,y) € Q.
Solution. By the maximum principle, the range of the values of the
solution u(z,u) is determined by the inequality

] < < .
(m%g}mgs(x, y) <u(z,y) < (m{g)gﬂwaf, Y)

where ¢(x,y) = sinmx 4 cosTy.
Now, we compute

min [sin7z 4+ cosmy|,  and max [sin 7z 4 cos my]
(z,y)€00 (x,y)€d0

Clearly, the minimum and maximum of ¢(x,y) = sinmx + coswy are at
points when the partial derivatives are equal to zero, so that

¢u(r,y) = meosmxr =0, and  ¢y(z,y) = wsinmy = 0.
1 3
We find two boundary points (5, 0) and (5, 1) Thus, the maximum is at
1
the point (5,0) equal

r%%x[sin T + cosmy| = 2,

3
and the minimum is at the point (5, 1) equal
min[sin 7x + cosTy| = —2.
o9

Hence, the values of the solution u(x,y) are in the range from —2 to 2,
so that the following inequality holds:

-2 <u(z,y) <2
for all points (z,y) € Q U 0S.
The maximum principle implies uniqueness and continuous dependence

of solutions on boundary data. Namely, we shall prove the following the-
orems:
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Theorem 5.1 (Uniqueness). The Dirichlet boundary value problem
has at most one solution.

Proof. Assume that there are two solutions u; and wuy of the Dirichlet
boundary problem (5.1). Then, the function v = u; — us is continuous in
the closed domain € and harmonic in the open domain Q. Since v = 0
on 012, the maximum principle implies that v < 0 and v > 0 on €, so
that v =0 on Q and u; = us.

Now, we shall state the theorem on continuous dependence of a harmonic
function on its boundary values.

Theorem 5.2 Let uy; and us be the solutions of the Dirichlet boundary
value problems

Auy =0 in Q, uy=¢;1 on 0N
Aug =0 in Q, us=¢s on 0N

Then
|U1(l’,y) - u2($>y)| < M>

where M = r%%x |o1(x,y) — Pa(z,y)|.

Proof. Let v = u; — us. Then, we have
—max |¢1(z, y) — ¢2(2,y)| < v(w,y) < max|di(z,y) — da(z, )]
Hence, we obtain the inequality
ur (2, y) —ua(z, y)] < M,
for all (z,y) € QU 0.

Example 1. Suppose that u(zx,y) is a continuous function on the closed disk
r < 1, and harmonic in the open disk » < 1. If

u(cos @, sin @) < sin 6 + cos 26,

then show that
U(l’,y) S Yy + $2 - y2>
for all 22 +y? < 1.

Solution. Note that v(z,y) = y + 2* — * is a harmonic function with
v(cosf,sinf) = sinf + cos20. By the assumption, u < v on the boundary
of the disk » < 1. Then, the maximum of the harmonic function v — v on the
boundary r = 1 must be less than or equal to zero. The maximum principle
then implies that u — v < 0 throughout the disk.
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5.4 The Maximum Principle for Poisson Equation

We shall state the maximum Principe for Poisson’s equation

Au = f(x,y), (z,y) €
or

(5.10)
’u  O%*u

@+8—gﬂ = f(z,y), (z,y) €,

where f(x,y) is given continuous functions in the bounded domain €2.

The following maximum principle holds:

Maximum principle. If f(x,y) > 0, for (z,y) € Q, then the solution u(zx,y)
attains non-negative maximum M at a boundary point, or if f(z,y) < 0 then
u(x,y) attains its non-positive minimum m at a boundary point.

This maximum principle can be proved in the same way as maximum principle
for harmonic functions.

As a consequence of the above maximum principle, we can state the theorem on
stability of the boundary problem for equation (5.10) with Dirichlet’s boundary
condition.

Theorem 5.3 (Stability Theorem). If the given function f(x,y) is continuous
in the closed bounded domain €0, then the the boundary value problem

Au= f(z,y), (v,y) €,

(5.11)
u(z,y) = d(r,y) (2,y) € Q,

is stable in the maximum norm, that is, the solution u(x,y) satisfies the fol-
lowing inequality:

u(e,y)| < max [ue,y)| + M max [f@y)], @ye  (512)

(zy)€

where M =¢e* —1for 0 <z <aq.

Proof. Without any restriction, we can assume that the domain 2 is on the
right side of y axis, that is, 0 < x < a. We shall prove the theorem on stability
using the following lemma:

Lemma 5.1 If a function v(zx,y) is a regular solution of the Poisson’s equa-
tion, and if there ezists a reqular function g(x,y), which satisfies the following
conditions:

1.

> QU N
g@whwﬁgJMLwL (z,y) €QUOI
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—Ag(r,y) > max |f(z,y)], (z,y) €
(z,y)EQ

then
v(z,y)| < g(z,y)
for all (z,y) € QU ON.

Proof of lemma. In order to prove the lemma, we shall show that the
functions

zi(w,y) = v(z,y) —g(z,y), and z(2,y) = v(z,y) + 9(z,y),

satisfy the inequalities 21 (z,y) < 0 and 29(z,y) > 0 for all (x,y) € QU OS.
We note that, by the definition,
Zl($>y) SO, Z2(£>y) 207

on the boundary 0f).
By assumption 2,

Az (z,y) = Av(z,y)— Ag(z,y)
Az(z,y) = Av(z,y)+ Ag(r,y)

> f($>y) _maXQ|f($>y)| < 0

for all (z,y) € Q.
Hence, by the maximum principle

zi(z,y) = v(z,y) — g2, y) <0, 2(r,y) =v(z,y)+g(z,y) >0,

hold for (z,y) € QU 9.
Thus, we have the inequalities

—g(z,y) <v(r,y) <g(z,y), or  |v(x,y)| < g(r,y)

for all (z,y) € Q. End of lemma proof.

In order to prove the theorem, we assume that the domain 2 lies in the right
side of z axis, that is, x > 0. This assumption can be satisfied by a linear
translation of €2 in x direction. We consider the function

g(,y) = max |u(w,y)+ [e* —e']max|f(z,y)], (z.y) € QU
(z,y)€00 Q

where x < 7. Here, 7T is a fixed value on z axis.

We shall show that the function g(z,y) satisfies assumptions 1 and 2 of the

lemma. Indeed, we estimate
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1. From the definition of g(x,y), it is clear that

>
g(z,y) > Jnax lu(z,y)|

for (z,y) € QU IN.

~Agle,y = " max| f(z,y)] > max| f(z, )|
for0 <z <7T.
Hence, we obtain the required inequality

;o (zy) el

u(z,y)| < ma

M
Jax [u(z,y)l + Mmax|f(z,y)

where dsM = e* — 1 is the upper bound of the expression ¥ — e%, when 0 <
r < a.
Let us note that if the solution u(x,y) satisfies the boundary condition

U(l’,y) :QSO(I,?/), ($>y) €8Q>
then we get the following the estimate of the solution

u(z,y)] < max |o(z,y)|+ (e — 1) max f(z,y)l], x,y) € Q.
u(e,y)| € max [0(eg)]+ (€~ 1) max f@y)l, ()

This inequality means stability of the Dirichlet boundary value problem for
the Poisson’s equation.

Question 1. Consider the following boundary value problem:

Pu 0%u ) (z,7) (2, ) - <1

— + — =sinmxr +cosT z,y) € Q=A{(r,y): 0<z

912 2 Y, Y Y Y ) (513)
u(x,y) = sinmay, (z,y) € 0N.

Show that the boundary value problem is stable and estimate the solution

u(z,y)

Solution. We note that the Poisson’s equation (5.13) satisfies the assumptions
of the theorem on stability. By the thesis, we obtain the following estimate of
the solution u(z,y):

u(z,y)] < max|e(z, y)| + M max|f(z,y)]
= max | sin mxy| + Mmgx |sin mx + cos my)|
< 1+2M
Because, 0 < x < 1 therefore, the constant M = e — 1 and
fu(, y)] < 1+2(c - 1),
for all (z,y) € QU ON.
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5.5 The Maximum Principle for Helmholz-Poisson Equa-
tion

We shall state the maximum Principe for Helmholz-Poisson equation

Au+c(z,y)u = f(r,y), (z,y) € Q,
or
(5.14)
*u  0%*u
92 a2 + c(z,y)u = f(z,y), (z,y) €Q,

where ¢(x,y) <0, and f(x,y) are given continuous functions in the bounded
domain €.

The following maximum principle holds:

Maximum principle. If f(z,y) > 0 and ¢(z,y) < 0 for (z,y) € €2, then the
solution u(x,y) attains non-negative maximum M at a boundary point, or if
f(z,y) <0 and c(z,y) < 0, then u(x,y) attains its non-positive minimum m
at a boundary point.

As a consequence of the above maximum principle, we state the theorem on
stability of the solution of Dirichlet’s boundary problem for equation (5.14).

Theorem 5.4 (Stability Theorem). If the given functions c(z,y) < 0 and
f(z,y) are continuous in the closed bounded domain €2, then the solution
u(x,y) satisfies the following inequality:

max_|u(z,y)| < max |u(z,y)| + M max z, ’ 515
max [u(z,y)| < maglu@ )|+ M max [f@y)l,  (5.15)

where M =e* —1for 0 <z <aq.

We can prove this theorem in a similar way as theorem on stability for Poisson’s
equation.

Let us note that if the solution u(x,y) satisfies the boundary condition

U(I>y) = QSO(I','!/), ($>y) € 8Q,

then we get the following priori estimate of the solution u(x,y)
u(z,y) < max |u(z,y)|+ M max f(x,y)|], z,y) € Q.
u(e,y)| < max [u(e,y)|+ 2 max f@p)ll. (@)

where M =¢e* — 1, for 0 < x < a.

This inequality means stability of the Dirichlet boundary value problem for
the Helmholz-Poisson equation.

Question 1. Consider the following boundary value problem:

0? 0?
a—;;+a—yz—2u:sin7m+cos7ry, (z,y) € Q={(z,y): O <2,y <1,
u(z,y) = sin Ty, (z,y) € 0N.

(5.16)
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Show that the boundary value problem is stable and estimate the solution
u(z,y)

Solution. We note that the Helmholz-Poisson equation (5.16) satisfies the
assumptions of the theorem on stability. Indeed, the coefficient ¢(z,y) = —2 <
0. By the thesis, we obtain the following estimate of the solution u(x,y):

ule,y)] < max|o(z, )] + M max|f(a.y)
= max | sin Ty | + Mmgx | sin Tz + cos wy)|
< 1+2M

Because, 0 < x < 1, then the constant M = e — 1, and the solution u(zx,y)

satisfies the inequality
uz,y)] <1+ 2(e—1),

for all (z,y) € QU ON.

5.6 Boundary Value Problem for Laplace’s Equation in
a Rectangle

Let us consider the following boundary value problem:

0? 0?

gH du _y, (r,9) €Q={(z,y): 0<a <L, 0<y< Ly},
ox2  0y?

u(z,0) =0, 0<z<Iy

u(z, Lo) = ¢(x), 0<z<L.
(5.17)
This boundary value problem can be solved by the method of separation of
variables. Namely, let u(z,y) = X(x)Y (y). Then, by substitution to Laplace’s
equation, we obtain

X (@)Y (2) + X (2)Y"(y) = 0,

or " "
X'@) _ Y')
X(x) Y(y)
Hence, we have two equations
X"(x) + AX(x) =0, Y"(y) — A\Y (y) = 0.

From the boundary conditions

u(x,0) = X(z)Y(0) =0.
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So that Y (0) = 0. Also, we have
u(0,y) = X(0)Y(y) =0 and  wu(Ly,y) = X(L1)Y(y) =0

therefore X (0) = X(L;) =0.
Let us note the solution of the eigenvalue problem

X"(2)+AX(z) =0,  X(0) = X(L) =0

is known and the eigenvalues and eigenfunctions are given by the formulae

" nzgz
L
XM (g )—sinnLﬂ n=12,..,
1

Then, we solve the corresponding equation for Y (y)
Y'(y) =AY (y) =0,

which has the general solution

Y(y) = 016@y + 026_@y

for arbitrary constants C; and Cs.
By the condition Y (0) = 0, we find C; + Cy = 0 and Cy = —C}, so that the
solution
mry _nmy
YO () =Cye Lt —e Ln )—2Clsinh?, n=12 .
1

Now, we observe that the terms of the sequence

. nTT nmy
n(z,y) = B, sin —— sinh —, n=12..;
un(z,y) T I,
are harmonic functions and satisfy the homogeneous boundary value condition
at the three sides of the rectangle €2, that is when y =0 or x =0, or x = L,
for arbitrary constants B,, n = 1,2, ...,. Then, we consider the solution in the
form of the following series:

nwT nmy

Z B, sin — sinh —= (5.18)
Ly’
where the coefficients B,,, n = 1,2, ...; are determined by the boundary con-
dition .
u(z, Le) = Z B, sin 0 sinh T2 = ¢o(x).

1 Ll
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Multiplying the above identity by sin mL7Tx and integrating from 0 to L;, and

1
using orthogonality property, we obtain the following formula for the coeffi-
cients B,, n=1,2,....;

nm Lo 2 . nws
B, sinh _ = / AL
sin T o Jo ¢o(s)sin T s

or
2 nmws

Ly
B, = —mTLg/o Po(s) SmL—l ds, n=12 .. (5.19)
L sinh

1
Example. Consider the following boundary value problem:

0? 0?

ge vy, (,y) € Q={(z,y): 0<z <2 0<y<4},
ox2  0y?

u(z,0) =0, 0<z<2

u(0,y) =u(2,y) =0, 0<y <4,

u(z,4)=z(2—2x), 0<zx<2

(5.20)
Solution. By the formulae (5.18) and (5.19), we compute the coefficients
2 2 . nms 16(1 — (=1)™)
Bm 2 [ s ™ g = O
nm4 Jo 5(2 = s)sin 2 ds n373 sinh 2nm

2sinh —
sinh —
Hence, we find the solution in the form of the following series

16 3 (1—-(=1)") . nra
73 2 pSsinhonm 2 sinh2nmy,  0<z<2 0<y<4

u(z,y) =

5.7 Boundary Value Problem for Laplace’s Equation in

a Disk
Let us consider the Laplace’s equation in the polar coordinates
1 1
urr+—ur+—2ua9:0, O<r<R, —mw<bO<m, (5.21)
r r

with the boundary condition

u(R,0) = ¢(0), -1 <0<m. (5.22)
It is easy to check that the functions
1

, r™cosnf, r"sinnf,
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are harmonic in the disk with radius R and the center at the origin, for n =
1,2, ..
We shall find the solution wu(r,6) in the form of the following trigonometric

series: ) -
u(r,0) = 500 + Y apr™ cosnb + b,r" sinnd. (5.23)

n=1
Clearly u(r,6) given by formula (5.23) satisfies the Laplace’s equation in the
poplar coordinates (r,6). In order to find the coefficients a,, and b,,, we apply
the boundary condition

1 o0
u(R,0) = §a0 + Z a, R" cosnf + b, R" sinnf = ¢(0), —r<0<m.
n=1

So, a, and b, are the coefficients of the Fourier series of the given function
¢(0) for —m <0 <.
These coefficients are given by the formulae

1 T
ag = ;/_W o(s) ds,
1 T

ap = T /_7r o(s)cosns ds, by,

forn=1,2,..;

Therefore, the solution u(r,#) of the boundary value problem for Laplace’s
equation in a disk is given by the formulae (5.23) and (5.24).

Example. Let us consider the following boundary value problem:

. (5.24)

- Rror

/7r ¢(s)sinns ds,,

urr%—luf%—%u@g:(), —t<f<m 0<r<2,
" 7’9 (5.25)
u(2,6) = cos 7 —r<6<m,
Solution. In order to find the solution u(r, ), we apply the formulae (5.23)
and (5.24). So that, we compute the Fourier coefficients of the function ¢(0) =
cos %9 given in the boundary condition. By formulae (5.24), we find

1 g s 442
aoz—/ cos — ds = —,
TJn 4

™

anzﬂ/_wcoszcosnsds:—m, (5.26)
1 T

bnzﬂ/_wcosZsinnsds:O, n=12 ..,

Hence, the solution

4 00 _1\n
- 27\?_ 7\:522”(1(67112)—1)

n=1

u(r, 0)

r’ cosnb,
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5.7.1 Fundamental Solution of Laplace Equation

We shall find the fundamental solution of Laplace’s equation. Here, we write
the Laplace equations in the variables X = (x1,z3), and X = (z1, z9, x3).

’u  O%*u

gu, T _y —9

ox?  0x3 7 " 5 o7
u  *u  0%u (5.27)

— 0. n=23
ox? +8x§ +8x§ T

Let n = 2 and let Y = (y1,92) be a fixed point on x;, zo—plane. Then the
distance of the point Y = (y1,y2) from a point X = (x1, z9) is

r(XY) = (w1 — y1)? + (22 — )2

We note that

ar  x1—y or T2 — 1
ory, 1 ory v
Let 7(X,Y) >0 and let U(X,Y) =1In XY Now, we compute
1 1
aln;_ T1— 1 8ln;:_x2_y2
11 r2 D12 r2

1 1
2 21y =
8 In ; 1 2(1.1 _ y1)2 8 In ” 1 2(1.2 _ y2)2

or3, r2 r4 " 013 r2 r4

Hence, we find
ou LU
oz Oxk

1
Therefore, U(X,Y) =In m, r(X,Y) > 0 is the harmonic function on

the whole z, y plane except the focus point Y = (1, y2). This function is called
fundamental solution of the two dimensional Laplace equation.

Now, let n = 3 and Y = (y1,92,¥3) be a fixed point on the R space. Then
the distance of the point Y from the point X = (21, o, x3) is

r(X,Y) = /(w1 — y0)2 + (22 — 92)? + (23 — y3)2.
We note that

or 11— Or T3 — Y2 Or  x3—1ys3

Oy ro 0wy ro 03 r



Let r(X,Y)) >0, X = (x1,22,23), Y = (y1,92,y3) and let U(X,Y) = r(Xl, Y
Then, we compute
oU  x1—u oU  x3—1ys oU  x3—ys
or, 13 ors 12 oxs 13
U 3w —y)? 1 0°U 3@a—w)® 1 Pu_ 3(ws—ys)? 1
oxd ro 3 922 o IREANT rd 3

Hence, we find
0*U 09U 09U

=0.
ox? + o3 + 03

Therefore, U(X,Y) = r(X,Y)) > 0 is the harmonic function on the

r(X,Y))
variables 1, 25, x3 in the whole space except the focus point Y = (y1, 2, y3).
This function is called fundamental solution of the three dimensional Laplace
equation.

Green’s identities. Let 2 be a bounded domain in R? with the piecewise

smooth closed boundary 9. Let u,v € C?*(2) be twice continuously differ-
entiable functions in €2. Then, the following second Green’s identity holds:

n =2, //Q(vAu —ulAv)do = / (ud—v — vd—u)ds.

n =3, ///Q(vAu—uAv)da = //aQ %—v%)d

d
Here 2 denotes normal inner derivative to the boundary 0€2. Note that for

(5.28)

n
n = 2, 0f) is a curve on x1, T2 plane, and for n = 3, J€) is a surface in the space
R3. Note that the both functions v and v are not assumed to be harmonic.

Proof. The prove of both Green’s identities are similar. So, let us prove the
Green’s identity for n = 2. Integrating by parts, we have

// v—d:vl /as)[ g—; —uaa—;}l] cos(n, 1) ds+// d:vl,
//Q 8:82 /69[2}86—:?2_”88—172]&871@ ds+//ﬂ 8:B2

Hence, by adding both sides and moving the term with Laplacian from right
to left side, we obtain the Green’s identity

/Q/[vAu — ulAv|do = Aﬂ[uj—z - vj—Z]d
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where the normal derivative

d—u—@cos(nz)—l——ucos(nz)
dn Oy VT 9, b

Here cos(n,x1) cos(n,z2) are directive cosines between normal vector n and
x1 and x5 axes, respectively.

corollary 1. For harmonic functions v and v in €2, from Green;s identities,
we obtain the following formulae:

du dv
/aﬂ[v%—u%]dS—O, n=2

//mv%— ]ds—O n=3.

In particular, when v = 1, we obtain next corollary
corollary 2. Every harmonic function u satisfies the following identity:

/ d—uds—O n =2,
adn

//aﬂ%ds—o n=3.

5.7.2 Theorem on representation of harmonic functions

(5.29)

(5.30)

Representation Theorem. Every harmonic function «(X) in the bounded
domain €2 with a smooth boundary 0f2 satisfies the following formula

1 dU(X,Y)

ux) = o [ ) PET) ey M)

dn

]dSy, XeQ n=2

dU X, Y) du(Y)

u(X) = 47T//m L U(X,Y) o dsy, XeQ n=3
(5.31)
Proof. Let u be a harmonic function and v = U be the fundamental solution of
Laplace equation. Then, we cannot apply the formula (5.29) to these functions,
since the fundamental solution U(X,Y') has the singular point X =Y € Q.
However, we can apply the formula to the domain 0y = 2 — K, where K is a

disk when n = 2 or a ball when n = 3. So that, in {2y, we have

dU du
/890[ %_Udn]ds 0, n

//890 dn_ ]ds—O n=3

I
N

(5.32)
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Now, let us write the above integrals along the boundary 02 of Q and the
boundary 0K of K. Taking into consideration negative orientation of 0K
with respect €2, from (5.32), we have

du du du du
/ [u%_Udn]ds_/aK[ %_Udn]d n=2

//aﬂu%—U d—//aKu%—U |ds n=3.

Next, we compute the normal derivative of the fundamental solution U(X,Y)
to the boundary 0K

lnl

(5.33)

, 7122, X:(l’l,l’g) EQ(], Y = (yl,yg) E@K,
-, n=3, X = (r1,22,23) € Qo, Y = (y1,90,y3) € OK
Then, we compute

n=2  X= (1’1,1’2) € Q, Y = (yl,yg) S 8[(,

1
dUX,)Y) ) ¢’
dn N i

r2’ n=3, X = ($17$2>$3) € Q0> Y = (y1>y2>y3) € 0K

Substituting the above formulae for the normal derivatives into (5.33), we
obtain

/[d—U—Udu]d—l/aKuds—lnl/ d—uds n=2

dn dn oK dn
. (5.34)
//aQ %_Udn]d T2 aKUdS__//aK%dS n=s
Hence, by corollary 2, we have
Ju dU 1

/ [U%—u%]ds: ;/aKu(Y)dw, n=2

; 1 (5.35)
u
/ - U% — u%]ds 3 on u(Y)dsy n=3.

Now, we apply the identity

Y)dsy = / Y) — w(X)]d / dsy, 5.36
/aKu( )dsy 8K[u( ) — u(X)]dsy +u(X Sy (5.36)
Because of uniform continuity of the harmonic function u(X), we have

[u(Y) —u(X)] <€
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for sufficiently small r(X,Y).
Then, we have

| [ [w(Y) —u(X)]dsy| < 2mer for n=2
(5.37)
|//8K (X)]dsy| < 4me r® for n = 3.

Using (5.36) and (5.37), we compute the limits

I [ u()dsy =27u(x)  for n=2
Jim r(X Y] 8Ku( Ydsy = 2mu(X) or n=2

Thrgo o X Y] //aK Y)dsy = 4nu(X), for n=3.

Hence by formula (5.35), we obtain equality (5.31). This ends the proof.
From the representative theorem, we conclude the following important formula
concerning boundary value problems for harmonic functions. Namely, let us
substitute to (5.31), u(X) = 1. Then, we obtain the formula

XY
/ Mds;/ = 2r, X€eQ, n=2
o dn
(5.38)
XY
// de = 4r, X €, n=3.
o0 dn

Gauss Mean Value Formula Let 2 = K be the disk (n = 2) or the ball
(n = 3) with the radius R and the center at X. Then, on the surface of K,
we have

1 aUu 1
UXY)=ln—, & -2 ;=2
XY) =g, =5 n=2
o (5.39)
1 1
XY)=— % __- =
UXY)=5 G = f "3

Hence, by the representative theorem, we obtain Gauss Mean Value Formula
for harmonic functions

1
u(X) = 5 E 8Ku(Y)0l5y, X = (21,22) € K, n =2,

u(X) = 47TR2//8K Y)dsy, = (z1,x9,73) € K, n=23.
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5.7.3 Green’s Function

. We note that every harmonic function H(X,Y") of the variable Y, and at
fixed X, satisfies the identity (see formula (5.29))

/ [u( )W H(X>Y)dud(:b/)]d5:0, n=2
(5.41)
//m dH)?iY) H(X>Y)dil(§)]ds:0, n=3.

Let us choose the harmonic function H(X,Y) =U(X,Y) for Y € 99 at fixed
X € Q). Then, the Green’s function is

G(X,Y)=U(X,Y)— H(X,Y)

By the representative theorem (see formula (5.31)), Green’s function satisfies
identity

u(X)zi/ ) 2GEY) a0 X e, neo

ydGLXY) du(Y)
X e = 3.
477'//89 dn G(X’Y) dn ]dSY> cll, n 3
(5.42)

Because G(X,Y) =0, for Y € 99, X € Q, therefore, every harmonic function
u(X) in €, satisfies the identity

1 XY
u(X) = — u(Y)Mds% XeQ n=2
2rJ) a0 dn

XY
// dG )d$y, X e n=3.
47r aQ dn

(5.43)

Hence, by the formula (5.43), we arrive at the following theorem:

Theorem 5.5 If G(X,Y) is the Green’s function for Laplace’s equation, then
the solution uw(X) of the Dirichlet’s problem

Au(X)=0, XeQ  uX)=¢X), XecaQ

1s given by the formula

u(X) = %/ ¢(Y)de, XeQ n=2

(5.44)
// XY)d5y, X e n=3.
47r o0 dn
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Green’s function for a disk with Dirichlet’s condition. Let 7(0,Y) < R,
be the disk with the radius R and the center at the origin. Let us denote by

p=0X, p=0X, r=YX, T7F=Y
B X
D
@ T
Disk K
One can check that the Green’s function for the disk K is
1 R 1 T
In——In(—.-) = n;—p, X #0,
Gxvy=¢ | 7 " (5.45)
In-— —1ln— X =0
nr nR,

Green’s function for a ball with Dirichlet’s conditions. Similarly, we
construct Green’s function for a ball K (0, R) = {X = (x1, 22, 23) : 7(0,X) <
R}. Then, following the notations given above, we write the Green’s function
for the ball

S|

N

X #0,
(5.46)
X=0

Y

1
G(X,Y) = 71°

=

Y
r

Poisson’s Integral. Let us note that in the case when the domain € is
a disk K or a ball K, the Green’s function is given by formulae (5.45) and
(5.46). Then, the solution u(X) of the Dirichlet’s boundary value problem,
in the case , is given by the Poisson’s integral (see Representative Theorem,
formulae (5.44)).

1 dG(X,Y) -
u(X) = %/aKQS(Y)TdSY, XeK, n=2 1
1 dG(X,Y) B '

In order to express the solution u(X) in a transparent form, we shall evaluate

XY
%. Let n =3 and X # 0. Then, we find
y

the kernel

X, Y 1 1 dr
M dr § __ﬂ (5.48)

dny r2 dny



Because

therefore

(yi — ZBi)z cos(n, ;).

1

dr
dny _

i

But cos(n, z;) = —%, so that

dr 13 3 9
% = @(;%yi—;yi)-

3
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(5.49)

3
We note that R? = ny, and the expression Z x;y; is the inner product of

i=1 =1
the vectors 0X and 0Y. Hence, it implies the identity

3
Zziyi = Rp>
=1

where w is the angle between the vectors 0X and 0Y. Then, we can write

formula (5.49) in the form

dr 1
e~ ;(pcosw —R).

. ... dr
In a similar way, we obtain the derivative .
Ny

Taking into consideration the proportion

R_T_7P
p r R
we obtain
dr 1 R? 1
ﬁ = %(ﬁcosw —R)= %(7 cosw — R) = ;(Rcosw —p).
From the formulae (5.48), (5.50) and (5.51), we find
dG(X,Y) 1 R
Sl T—z(pcosw R)—I—TF,O(Rcosw )
1
= T—s[—(pcosw —R) + %(Rcosw - )]

Hence, w obtain the equality

dG(X,Y) R*—p?
dny N RT3 ’

(5.50)

(5.51)

(5.52)

(5.53)
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Therefore, Poisson’s integral takes the following form:

(X) = i p2¢(Y)d XeK, n=2 (5.54)
“ - 2tR Jox 12 o e '
and
1 R2 _ p2
u(X) = —47TR//8K So(V)dsy, X €K, n=3, (5.55)

On the figure, we present the parameters r, R, p, ¢ and 6 of the Green’s function
for the disk K.

G l,Y Lreters

Let‘us write the Poisson’s integral in the polar coordinates
y1 = Rcosy, Yo = Rsiny
. From the figure and by cosine formula, we find
r? = R* + p? —2Rpcos(f — ).
Therefore, the kernel of the Poisson’s integral

R2_p2_ R2_p2

= . 5.96
r2 R? + p?2 —2Rpcos(0 — ¢) (5.56)

When point Y is moving along the circle K with the radius R, at fixed point X,
the angle ¢ € [0, 27]. Changing the variable of integration Y = (y1,y2) € 0K,
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to polar coordinates y; = Rcos ¢, ya = Rsin p by (5.54) and (5.56), we obtain
the solution of the boundary value problem given by the Poisson’s integral

1 o2 R2 _ p2

o Jo R?+ p?—2Rpcos(d — ¢)

u(p,0) = P(p)dep. (5.57)
We can interpret the Poisson integral solution (5.57) as finding the potential
u at (p,0) as a weighted average of the boundary potential ¢(0) weighted by
the Poisson’s kernel (5.56). This tells us something about physical systems:
namely that the potential at a point is the weighted average of neighboring
potentials. The Poisson’s kernel tells just how much weight to assign to each
point.

Let us note that the potential at the center of the circle is given by the formula

1 21
u(0,0) = o= [ o) d. (5.58)
7 Jo
Example 1. Evaluate the potential at the center of the circle by Poisson
integral for the boundary given function ¢(y) = cos %, 0 < <2m.

Solution. By formula (5.57), we compute

1 2 1 2 % 2
0,0)= - | do= o [ Teos T dp =2,
u(0,0) 27 Jo o(p)dy 21 Jo o8y W s
Example 2. Show that the integral of Poisson kernel is equal to 27, that is
o2 R2 _ 2
P dp = 2r. (5.59)

o R?2+p?—2Rpcos(f — p)

Solution. Let the boundary given function ¢(¢) = 1. Then, the solution of
the boundary problem u(X) =1 for all X € K. Thus, by formula (5.57), we
get

1 2 R2 _ p2

1=—
2r Jo  R%?+ p?> —2pRcos(0 — ¢

dep.
)
Hence
2 R2 _ p2
0o R?2+p?—2pRcos(f — p)
Example 3. Solve the following boundary value problem using Poisson inte-
gral

dp = 2.

Ugy + Uy =0, (2,y) € K = {2% 4+ 9% < 4},

u(x,y) =2, (z,y) € OK = {2% +y* = 4},
Solution . By the Poisson formula, the solution in the polar coordinates is
1 f2n 4 — ,02

U(Pﬁ):% 0 4+ p2—2x4dcos(f—p)

2 dyp,
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Hence, by formula (5.59), we compute

B 2 r2m 4—p2
C2nJo 4+ p2—2x4cos(d— o)

u(p, 0) dp =2.

In the Cartesian coordinates, we have also the constant solution u(z,y) = 2
for all (z,y) € K.

5.8 Helmholz Equation and Eigenvalue Problem.

We shall solve the following Helmholz equation in the polar coordinates (r, ), x =
rcosf, y = rsinf with homogeneous boundary conditions:

Au(r, 0) + Nu(r,0) =0,
(5.60)
u(1,6) = 0, 0 < 62r,

where . |
AU(T’, 9) = Upp + —Up + —2U5)9.
r r

Applying the method of separation of variables let us substitute to Helmholz
equation

u(r,0) = R(r)©(0).

Then, we obtain

R +rR + (\r? —n?))R =0, Bessel's equation
R(1) =0, (5.61)
0" +n’0 =0.
Bessel’s Equation Now, we shall solve the ordinary differential Bessel’s equa-
Hon R +rR + (\r? —n?)R =0, 0<r<l,
R(1) < o0, physical condition,
(5.62)
R(1) =0,
0" +n%0 = 0.

As we know from the theory of ordinary differential equations, that Bessel’s
equation has two linearly independent solutions

1. Ri(r) = AJ,(Ar), n-th order Bessel function of the first kind,
2. Ry(r) = BY,(\r), n-th order Bessel function of the second kind.
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Here, there are power series representation of the Bessel functions

(Ar) = (%)n io m!((ﬂ:z)!(g)zm’
Y, (Ar) = %mgjn(m = %(%)—“:z:j (n - :!_ 2k [(Ai) JE.

Since Y,,(Ar) is unbounded at r = 0, we choose as our solution
R(r) = AJ,(Ar).

Next, we find R(r) and A using the boundary condition R(1) = 1. Namely,
substituting R(1) = 0 into AJ,(\r), we obtain

Tu(\) = 0.

In other words, in order to be R(r) = 0 on the boundary 0K of the circle
K, we must pick the separation constant A\ to be one of roots of the equation
Jn(r) =0, that is

A = knm,

where k,,, is the m-th root of J,(r) = 0. Finally, we obtain the solution

Unm (7, 0) = Adp(kpmr).

5.9 Exercises
Question 1. Consider the following boundary value problem:
Uz + Uy =0, (2,y) € Q={(z,y): 0<z <1, 0<y<1}, (5.63)

Find the range of the values of the solution u(x,y). which satisfies one of the
boundary condition

(a) u(x,y) = sinmzy, (x,y) € 09,
(b) u(x,y) = cosmz y, (x,y) € 09,
(¢) u(z,y) = sinmx + sinmy, (x,y) € 09,
(d) u(z,y) = cosmx + cos Ty, (xz,y) € 09,

Question 2. Show that the following boundary value problem is stable
Uno + 1ty —u = f(2,y), (2.9) €Q={(a,y): —l<a <l —1<y<1},

u($>y) = QS(ZE,'!/), ((l’,y) € 01).
(5.64)
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for given continuous functions f(z,y) and ¢(x,y). Give an priori estimate of
the solution u(x, y), when f(x,y) = e_mz_yz, (x,y) € Qand ¢(z,y) =0, (z,y) €
o0.

Question 3. Solve the following boundary value problem:

0?u  O*u
era_yz:o’ (z,y) e Q={(z,y): 0<z <1, 0<y<2},
u(z,0) =0, 0<z<1

u(0,y) =u(l,y) =0, 0<y <2,

u(x,2) =sinmz, 0<z<1.
(5.65)
Question 4. Solve the following boundary value problem:
1 1
Upr + —Up + —ugy = 0, —t<f<m 0<r<d,
o (5.66)

u(4,60) = cosg, —r<6<m,
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